

October 2015 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Introducing Concepts
Andrew Sutton introduces concepts in C++.

9 Building and Running Software on an
Ubuntu Phone
Alan Griffiths shows us how to build and run
software on an Ubuntu Touch phone.

12 Password Hashing: Why and How
Sergey Ignatchenko explains how to do password
hashing.

17 An Inline-variant-visitor with C++
Concepts
Jonathan Coe and Andrew Sutton provide us with a
concrete example of concepts.

OVERLOAD 129

October 2015

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Copy deadlines

All articles intended for publication in
Overload 130 should be submitted by
1st November 2015 and those for
Overload 131 by 1st January 2016.

EDITORIAL FRANCES BUONTEMPO
Failure is an option
Motivational speeches and aphorisms are
clichés. Frances Buontempo wonders if
they sometimes do more harm than good.
At the expense of sounding like a broken record, and
sticking in a rut I have dug for myself, I still do not
have a proper editorial for you. Given my persistent
failure this should come as no surprise to you. Despite
several of ways of trying to motivate myself, musing
on how to do this has distracted me as ever.

Unfortunately, no snappy one-liner managed to snap me out of it. Indeed,
the first statement of Hippocrates’ Aphorisms could, and did, leave one
thinking for hours:

Life is short, art long, opportunity fleeting, experience deceptive,
judgement difficult. [Aphorisms]

A most pertinent adage, ‘Failure is not an option’ was impotent. As with
many sayings in common parlance this stems from a film. Many proverbs
originate from films, books or plays. In order to become well-known they
need a vector to disseminate. Failure not being a possibility was used as
a title of an autobiography by Gene Kantz, director of Mission Control
for the Apollo 13 team. The phrase itself has seeds in an interview with
people involved in the team. We are told:

One of their questions was “Weren’t there times when everybody,
or at least a few people, just panicked?” My answer was “No, when
bad things happened, we just calmly laid out all the options, and
failure was not one of them. We never panicked, and we never gave
up on finding a solution.” [Failure]

Staying calm in the face of difficulties and trying to find a way to fix things
is honourable, though I suspect many of us over our careers have been told
“Failure is not an option” as a deadline attempts to go whooshing by,
wherein we discover this is being misused as a code-phrase meaning you
have to stay all night to make some software work. Though this has failed
to motivate me to write an editorial, it did spark a train of thought about
failure and if it is an option after all.

Consider for a moment how to get a grade A in an exam. Though a
complete success, with a mark of 100% would be expected to gain an A,
less than perfection will usually do. A measly 80% will often prove
sufficient for a top grade. The extent to which an accomplishment must
be a total triumph can vary with context. Watching a student heart-broken
because they only got a B interact with a supportive parent who is
delighted they passed with ‘flying colours’ is not uncommon. The
different perspectives and hopes shade the result in different tones.
Sometimes 80% sounds splendid, while at other times 4 out of 5 doesn’t
sound so good. If my mobile phone sends texts, allows internet access,

has a camera and an alarm clock but will not
make phone calls anymore, 80% is not good
enough – this might indicate it’s time for an

upgrade. We can conclude “Failure is

sometimes an option, or even considered success but it depends on context
and the person involved.” This is probably not pithy enough for a proverb
or succinct enough for a saying, though.

If we cannot fail, how do we practise test-driven development (TDD)?
Writing a failing test first is an important part of this discipline, even if
just to make sure you get a clear and precise failure message. I have seen
many people, yours truly included, write a test which happens to pass first
time and then discover they need to break open the debugger if the test
fails at a much later date when the code gets changed rather than just seeing
everything they need to know in the test fail message. People not used to
TDD are often surprised by how frequently the practitioner might use the
compiler – if the language is compiled – feeling their approach of coding
for a couple of days before resorting to kicking off the compiler and
hoping for the best is vastly superior. The compiler is a tool of last resort,
and perhaps can’t really be leant on? (Oh yes it can – see [Feathers04].)
The initial failure is important, though transitional. Sometimes you
discover a bug as you add tests to legacy code and manage to write a test
that characterises the problem. If you don’t have time to fix the bug – for
example it may be long and involved, or you would rather do one thing
at a time to avoid getting distracted – most testing frameworks will allow
you to mark the failing test as ignored. Ignoring failure is a transient
option. Mind you, all code goes away in the end, so perhaps all code
failures are transient. Avoid saying this out loud to your managers or
customer though.

If you consider the use of the word failure in software development, you
could conclude we expect it. We design failover clusters, fault tolerant
systems, checksums so we can detect something went wrong. We catch
exceptions – sometimes just logging them and carrying on regardless,
though not always. Most ‘automatic’ algorithmic trading systems have a
kill-switch, just in case something goes awry. In fact I can’t think of a
machine without an off-switch in my house. Admittedly, the off switch
on my phone no longer works; however, I digress. Nature appears to build
in some degree of fail-over. Most organisms have two lungs, kidneys and
so on. If one fails they can still survive. On a smaller scale, biochemical
functions are often encoded in two or more genes. This means things can
function normally in the face of some mutation. Now, evolution would
tell us that mutations cause the new normal. Genetic changes that start out
as perceived failures can end up becoming the new norm provided that
the mutant individuals do not die out. Apparent failure can lead to greater
success. This may loiter behind the famed Silicon Valley phrase “Fail fast,
fail often”, not to be confused with fail-fast and may be closer to the idea
of fail-safe. At very least we can say failure is interesting.

Having been considering my pension recently I noticed I might manage
to retire by 2038, which is disappointing because I was looking forward

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She works at
Bloomberg, has been a programmer since the 90s, and learnt to program by reading the manual for her
Dad's BBC model B machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | October 2015

EDITORIALFRANCES BUONTEMPO
to seeing how the next Y2k-style apocalypse/bug pans out. Some of us will
remember the hard work put in by programmers to avoid the so-called Y2K
bug – the media reported potential Armageddon when the clocks rolled
over from 1999 to the year 2000 since many dates were just recorded with
two digits. Many of us will be aware of the upcoming problem with storing
UTC in a signed 32-bit integer – this will roll-over on a Tuesday in Jan
2038. I observe there are a few web pages up and ready for this. For
example feel free to fill in the surveys (e.g. http://2038bug.com/) to let
them know how aware the mass populace is of the problem. I hope we don’t
skew the results. At the start of the new millennium, many people
complained that nothing went wrong. If consultants have been paid to fix
a potential problem and they appear to have done so, complaining seems
churlish. Perhaps public relations would have been better had one or two
catastrophic failures been left behind, or sneaked into the system. Perhaps
deliberately failing in order to look good is taking it too far.

Along with the idea of evolution continuing due to constant seeming
failures or mutations, many inventors have succeeded at the wrong thing.
For example post-it notes are fabled to have come from an attempt to build
something else. Penicillin is often attributed to Fleming’s discovery of
mould on a petri dish, though ancient Egyptians are purported to have used
mouldy bread in poultices on wounds [Penicillin]. Sometimes history has
lessons of people succeeding for the wrong reasons. A case in point is the
plague mask, which doctors wore when ‘treating’ people suffering from
the bubonic plague in Europe. The mask was designed to stuff the beak
with various herbs to hide the smell, the thinking being that the smell
carried the disease. It seems that actually the material of the whole outfit
was heavily waxed, which provided a hard barrier to the infectious fleas.
I suspect you can think of many other examples of either outright failure
or success for the wrong reasons.

Failure is not something to be feared. This is not an endorsement of
deliberately sabotaging things, but an encouragement to try new things. As
children we tend to be excited by new things, but as some people get older
they become more anxious about trying new things. However, not all
childhood experience is completely fearless, and failure seems less harsh
if a supportive adult is to hand to smooth things over. As Batman’s father
says to him in Batman Begins when he falls down deep into the bat cave,
“And why do we fall, Bruce? So we can learn to pick ourselves up,”
[Batman]. I hope to remain excited about trying out new programming
languages or trying new technologies but do sometimes experience a
twinge of worry when reading the documents or trying out a new machine
for the first time. I choose to interpret this as adrenaline and carry on
regardless. It is nice to have a supportive adult to share the experience with.
If, no longer crippled by fear, you continue to practise TDD, try out new
technologies or allow yourself to make mistakes, how do you respond to
people around you when you think they are ‘doing it wrong’, to coin yet
another phrase?

Before Cassandra became widely known as a database [Apache] she was
more commonly known in Greek mythology as a woman cursed by never
being believed, after fighting off an attempt at seduction. There are other
stories, such as the boy who cried wolf, where the main character is not
believed, having lied on previous occasions. Cassandra’s curse lay in her
foretelling truthfully what would come to pass. If Batman’s father had
stopped him playing near the end of the garden in case he fell down, we
would not have Batman. If my parents had warned me I would fall off my
bicycle when I tried to learn, that may have stopped me trying. Being a
constant voice of gloom saying how things will probably go wrong is likely
to lead to being ignored, but saying nothing if a path is fraught with danger
is unproductive and probably cruel. If you are pair programming or code
reviewing you need to choose a balance between banning someone from
doing things their way and warning about unusual or downright dangerous
approaches. If you resort to check-in gates – various automatic ways of

enforcing code standards – people might rebel and try to find workarounds.
Sometimes there is a genuine need to do something unusual. In this case
a conversation rather than a convoluted hack might be more productive.
If you warn somebody that recording every function call, with the precise
parameters used, as an expectation in a mock might lead to brittle unit tests
which need to change each time the code changes you might be proved
right and might be listened to in the future. Banning such tests may have
a different outcome. It is important to allow people space to fail while they
learn. We learn from our mistakes.

Bad Unit Tests (BUTs [Henney15]) are one matter; they will usually
become clear in the long run and can easily be deleted just like any other
code. Other potentially dangerous behaviour might need ‘nipping in the
bud’ or stopping quickly. I recall a colleague pointing out I might like to
run a couple of SQL commands in a transaction, and though I muttered
under my breath, they had a point. The SQL wouldn’t have done quite what
I intended and it would have taken a long while to sort out, had I not been
able to simply roll-back to the previous state. The suggestion to use a
transaction allowed me to fail, but safely. The support team who didn’t use
a transaction and managed to delete all of the risk figures for a year were
a different matter. They were subsequently banned from making any C, U
or D crud commands – strictly Read-only SQL for them from then on, with
more dangerous commands saved for those who used transactions
properly. Of course, if you want to get banned from over-night support this
might give you ideas.

Failure has a time and a place. Perhaps you would rather not ‘die on your
feet’ in a public situation, for example at demo to an important, or even
unimportant, customer. [Are any customers unimportant?] If you run
through first, check your specialist hard work works at their site, have two
working laptops and so on, unexpected errors can still occur. [Are any
errors expected?] The mark of your professionalism might be how you deal
with the unexpected. I am not suggesting deliberately writing buggy
software in order to look heroic by fixing the bug within hours of its
discovery. Such an approach is bound to be discovered quicker than an un-
needed sleep hiding in a loop, just so you can speed
things up easily. Don’t be afraid of failure, but rather
try to create a safe place to fail while you learn. To end
with another aphorism,

“Ever tried. Ever failed. Try again. Fail again.
 Fail better.” [Beckett]

References
[Apache] http://cassandra.apache.org/

[Aphorisms] Hippocrates. ‘Aphorismi’ according to the internet – see (for
example) http://www.perseus.tufts.edu/hopper/text?doc=Perseus
%3Atext%3A1999.01.0248%3Atext%3DAph

[Batman] Batman Begins Film, 2005 http://www.imdb.com/character/
ch0000246/quotes

[Beckett83] Westward Ho Samuel Beckett, 1983

[Feathers04] Working Effectively with Legacy Code Michael Feathers,
2004.

[Henney15] ‘What we talk about when we talk about testing’ ACCU
Conference 2015, see http://www.infoq.com/presentations/unit-
testing-tips-tricks

[Failure] https://en.wikipedia.org/wiki/Failure_Is_Not_an_Option

[Penicillin] http://www.acs.org/content/acs/en/education/
whatischemistry/landmarks/flemingpenicillin.html
October 2015 | Overload | 3

http://cassandra.apache.org/
http://www.perseus.tufts.edu/hopper/text?doc=Perseus
%3Atext%3A1999.01.0248%3Atext%3DAph
http://www.perseus.tufts.edu/hopper/text?doc=Perseus
%3Atext%3A1999.01.0248%3Atext%3DAph
http://www.imdb.com/character/ch0000246/quotes
http://www.imdb.com/character/ch0000246/quotes
http://www.infoq.com/presentations/unit-testing-tips-tricks
http://www.infoq.com/presentations/unit-testing-tips-tricks
https://en.wikipedia.org/wiki/Failure_Is_Not_an_Option
http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/flemingpenicillin.html
http://www.acs.org/content/acs/en/education/whatischemistry/landmarks/flemingpenicillin.html

FEATURE ANDREW SUTTON
Introducing Concepts
Concepts in C++11 had many false
starts. Andrew Sutton show why they are
a big deal now they are with us.
ugust is turning out to be a big month for C++. The Technical
Specification for Concepts has been submitted to the ISO for
publication [N4549], and its implementation has landed in GCC

[GCC]. I’ve heard the phrase “This is a big deal” a number of times, but I
think I like Eric Niebler’s July 20th tweet the best: he wrote, “This will
change everything” [Niebler15].

It may not be obvious why a new language feature would be such a big
deal, or why it would have any significant impact on the way you write
code. Think about the way that your C++ programming has changed since
C++11 was published. How often do you use auto? What about initializer
lists? Lambda functions? constexpr? Move semantics? Variadic
templates? I’ve often heard it said that C++11 feels like a totally different
language. It certainly does to me.

C++11 feels different because we now have language support for ideas that
had previously been supported by obscure programming idioms, copious
amounts of template metaprogramming, or extensive macro libraries
(yuck!). The improvements introduced in C++11 obviate the need for
many of those approaches, allowing C++11 programs to much more
clearly reflect their designers’ intents. These features allow ideas to be
represented directly in the language and not hidden behind impenetrable
walls of clever code.

The Concepts TS includes a number of improvements to better support
generic programming by:

 allowing the explicit specification of constraints on template
arguments as a part of a template’s declaration,

 supporting the ability to overload function templates and partially
specialize class and variable templates based on those constraints,

 providing a syntax for defining concepts and the requirements they
impose on template arguments,

 unifying auto and concepts to provide uniform and accessible
notation for programming generically,

 dramatically improving the quality of error messages resulting from
the misuse of templates, and

 doing all of this without imposing any runtime overhead or
significant increases in compile times, and also

 without restricting what can be expressed using templates.

This is the first article in a series introducing the language features included
in the Concepts TS. This one focuses on the use of concepts to declare and
constrain generic algorithms. Future articles will focus on concept
definition and design, another on overloading and specialization, and
potentially an article on generic data structure design with concepts.

For those interested in getting started with concepts, information is
available at http://asutton.github.io/origin/. This includes instructions for
downloading and installing GCC from source (the implementation was
merged into GCC 6.0, which has not yet been released). Note that the
Concepts TS does not include library extensions for concepts. Predefined
concepts and wrappers around standard facilities are provided by the
Origin C++ Libraries. An abbreviated list of those concepts is given in the
appendix.

Background
The idea of constraining template arguments is just as old as templates
themselves [Stroustrup94]. However, it wasn’t until the early 2000s that
work started in earnest on a language design to provide those capabilities.
That work culminated in what eventually became known as C++0x
concepts [Gregor06]. The development of those features, and their
application to the C++ Standard Library were a major focus of the C++
Standards Committee for C++11 [N2914]. However, those features were
ultimately removed due to some significant unanswered questions and a
looming publication deadline [Stroustrup09].

Work resumed (outside of the C++ Standards Committee) on concepts in
2010. Bjarne Stroustrup and I published a paper discussing how to
minimize the number of concepts needed to specify parts of the Standard
Library [Sutton11], and a group from Indiana University initiated work on
a new C++0x concepts implementation in Clang [Voufo11]. As a result of
the rekindled work, we (all of those actively working on concepts), were
invited by Alex Stepanov (father of the STL) to take part in a week-long
workshop with the goal of specifying all of the concepts needed to fully
constrain the STL algorithms, and to suggest a language design that could
express those constraints. The result of that work is published in the Palo
Alto report [N3351].

When I presented this paper at the C++ Kona 2012 meeting, the committee
was cautious about engaging in another large-scale experiment involving
concepts. When I left that meeting, I did so with the goal of designing the
minimum set of language features that would allow users to constrain
templates like we did in N3351. Working with Bjarne Stroustrup and
Gabriel Dos Reis, that initial goal evolved into a much more complete
language extension called Concepts Lite [N3701].

Around that time, the C++ Standards Committee began using Technical
Specifications (TS) to publish extensions to the language and library. This
gives the committee the opportunity to gain implementation experience
and user feedback before committing to a particular design.At the C++
Bristol 2013 meeting (the week after the ACCU 2013 conference), a work
item for a TS on concepts was voted into existence. The Concepts TS
[N4549] is the result of that work.

Constraining templates
Let’s start with a generic algorithm that would be typical of something you
can find in production today.

A

Andrew Sutton is an assistant professor at the University of Akron
in Ohio where he teaches and researches programming software,
programming languages, and computer networking. He is also
project editor for the ISO Technical Specification, ‘C++ Extensions
for Concepts’. You can contact Andrew at asutton@uakron.edu.
4 | Overload | October 2015

http://asutton.github.io/origin/

FEATUREANDREW SUTTON

This allows the algorithm designer to
clearly state what is expected, and it allows

the compiler to check the use of the
algorithm against those expectations
 template<typename R, typename T>
 bool in(R const& range, T const& value) {
 for (auto const& x : range)
 if (x == value)
 return true;
 return false;
 }

Ostensibly, this function returns true if value can be found within
range. We infer this from the definition because we have some
expectations about the behaviour of for loops and equality comparisons.
However, it would be better if we had some kind of annotation that
expresses kinds of types that we can accept for range and value. Today,
we do this using comments, external documentation, naming conventions,
or some combination thereof. While that might be helpful for a
programmer reading the definition of the function or its reference
documents, that documentation is not enforceable by the compiler.

What happens when a developer inevitably misuses the template? Maybe
he or she writes something like this:

 vector<string> v { ... };
 in(v, 0);

I tested with both GCC-4.9 and Clang-3.7. They both agree that this use
of those arguments with in is incorrect, and they both agree that the reason
is because std::strings cannot be compared for equality with integer
values. Who knew?

Of course, I had to do a little digging to figure that out. GCC produced 162
lines of diagnostic messages, while Clang produced 57. Errors resulting
from the incorrect use of templates are notoriously verbose and can often
be quite difficult to parse. This example isn’t especially bad: there’s only
one level of instantiation. Getting errors within a stack of deeply nested or
even recursive template definitions is not at all uncommon. These kinds
of errors tend to discourage the use of templates, especially among students
and novice users.

These are two of the problems that concepts are designed to solve. We want
to explicitly state requirements on template arguments as part of a
template’s declaration, and we want to check those requirements at the
point of that template’s use. This allows the algorithm designer to clearly
state what is expected, and it allows the compiler to check the use of the
algorithm against those expectations. If an error occurs, it can be diagnosed
immediately.

Using the concepts TS, we could write the constrained version of the
algorithm like this:

 template<typename R, typename T>
 requires Range<R>()
 && Equality_comparable<T, Value_type<R>>()
 bool in(R const& range, T const& value);

We can use a requires clause to specify constraints. The requires
keyword is followed by a constant expression that, when instantiated,
determines whether or not the template declaration can be used, or in this
case, called.

Range and Equality_comparable are concepts. A concept is a
constant expression involving template arguments that we can evaluate at
compile time. Here, we use two predicates (functions returning bools) to
say that R must be a Range and that we must be able to compare values
of T with the value type of R using ==. The definitions of those predicates
can be found in the Origin libraries and will discussed in depth in a future
article.

Value_type is an alias that names the type of the contained objects. You
can think of Value_type<C> as shorthand for typename
C::value_type, although in practice, its definition is more complex.

When the in function is used, the compiler checks the requires clause
against the deduced template arguments. Compiling the ill-formed
example above with the concepts-enabled version of GCC gives the
following (note type names have been simplified):

 In function ‘int main()’:
 error: cannot call function ‘bool in(const R&,
 const T&) [with R = vector<string>; T = int]’
 in(v, 0);
 ^
 note: constraints not satisfied
 in(R const& range, T const& value)
 ^
 note: concept
 ‘Equality_comparable<Value_type<vector<string>>,
 int>()’ was not satisfied

The error is diagnosed at the point of use – where in is called – and not
within its instantiation. The diagnostics clearly indicate the specific failure
in the use of the template. Your experience with compiler diagnostics may
vary; designing good diagnostics is hard, and the implementation of
concepts is still a work in progress. However, any conforming
implementation should be able to tell you that you cannot call in with
those arguments because the constraints are not satisfied.

The Concepts TS also allows you to constrain class templates, variable
templates, alias templates, and template template parameters (of course!).
You can attach constraints to member functions and even non-member
functions (seriously). Constraints can include predicates with non-type
template arguments (Prime<N>, anybody?) and even template template
arguments. However, these topics are outside the scope of this article, and
many of them deserve a more thorough treatment than could possibly be
given here.

Declaration style
In the example above we first said that we needed two type arguments and
then, separately, what we required from those types. However, concepts
allow us to state both at the same time. We could have defined in like this:

 template<Range R,
 Equality_comparable<Value_type<R>> T>
 bool in(R const& range, T const& value);

Here, both Range and Equality_comparable<Value_type<R>>
declare type parameters. The concept named by each declaration
October 2015 | Overload | 5

FEATURE ANDREW SUTTON

the syntax allows a variety of expressions,
allowing a developer to judge for
themselves what is appropriate in their work
determines the kind (and type) of the declared template parameter. Note
that you can use the same notation to declare non-type template
parameters, and even variadic templates.

When concepts are used to declare template parameters, the compiler
internally transforms these into a requires clause. In fact, this
declaration is equivalent to the previous one; the constraints are the same,
so they both declare the same function. You can also combine the two
notations. Here is another way of declaring the function in.

 template<Range R, typename T>
 requires Equality_comparable<T, Value_type<R>>
 bool in(R const& range, T const& value);

The Concepts TS defines other ways that you can declare this function,
which will be introduced in subsequent articles.

The Concepts TS supports multiple notations for the declaration of
constrained templates in order to provide flexibility in their presentation,
and to improve readability and writability. Not all templates need a
requires clause, but many do. If we had only added a requires clause,
declarations would necessarily become more verbose. If we had only
added a terse syntax, we would not be able to fully express the constraints
for every template. As a result, the syntax allows a variety of expressions,
allowing a developer to judge for themselves what is appropriate in their
work.

Programming with placeholders
The overarching goal of the Concepts TS is to improve support for generic
programming, and ‘generic’ is starting to show up everywhere in our
source code. How many times have you written something like this?

 for (auto iter = c.begin(); iter != c.end();
 ++iter)
 // Do stuff...

Or like this?

 for (auto const& x : c)
 // Do stuff

These examples don’t appear to be generic (where’s the template?), and
yet they are. The types of iter and x depend entirely on the type of c;
auto simply acts as a placeholder for the deduced type of those variables.
When you’re trying to read the code, the resolution of that placeholder
doesn’t actually matter. On the surface, the iter and x have generic type.

One of the criticisms that I often hear about auto is that it hides
information in the source text, and that the deduction rules can sometimes
give unexpected errors or behaviours [Orr13]. In order to know what iter
and x are, and how to use them correctly, we need to look at the declaration
of c and understand the rules of type deduction.

One of the arguments for using auto is that it improves encapsulation by
hiding type details [Sutter12]. Essentially, it helps you to write against the
interface of the c such that changes to the definition of c’s type (or
associated types) may not require changes to these for loops.

The Concepts TS provides two related features. First, it allows the use of
a concept in place of auto. This is important. It allows us to gain the
benefits of type deduction without the total loss of information. Contrast
these examples with the ones above:

 for (Pointer iter = c.begin(); iter != c.end();
 ++iter)
 // Do stuff

 for (String const& x : c)
 // Do stuff

Here, Pointer and String are concepts, and they introduce placeholder
types (just like auto). The deduced type is required to satisfy that
constraint. That means, for example, that iter’s type is required to have
the ‘shape’ T*, for some T.

The second thing that the Concepts TS does is to allow placeholders nearly
everywhere. For example, we can write declarations like this.

 tuple<Number, String> t = make_tuple(0, "abc"s);

Number and String are concept names and therefore introduce
placeholders. Here, the type of t is ultimately deduced as tuple<int,
string>. The reason that we included this feature is that it more precisely
allows us to specify the shape of a type. Here, we might not want a specific
tuple, and we don’t want any old tuple. We want one whose first
element is numeric and whose second is a type of string.

The concepts TS also allows the use of placeholders in function
parameters. We could declare sort like this:

 void sort(Sortable_container& c);

This declares sort to be a function template with a single template
parameter, and an associated constraint. It is equivalent to writing this:

 template<Sortable_container C>
 void sort(C& c);

Which is of course equivalent to this:

 template<typename C>
 requires Sortable_container<C>()
 void sort(C& c);

This particular extension of the language has been somewhat
controversial. Some say, “it isn’t easy to tell if the declaration is a template
or not”. But I don’t think that matters too much. Developers tend not to
look at actual declarations. If you’ve ever tried to read a Standard Library
implementation, you will immediately understand why. Declarations often
turn out to be macros, templates, or overloaded sets of functions. What’s
ultimately important about a declaration (or set of declarations) is how they
can be used.

Supporting multiple styles of declaration of constrained templates allows
flexibility in presentation. For simple generic functions, this use of
placeholders is ideal. I can think of no more effective or elegant way to
declare sort than the first declaration above.

However, this notation is not suitable for every template declaration. Many
templates involve multiple template parameters and need more complex
6 | Overload | October 2015

FEATUREANDREW SUTTON

A concept is not simply the minimal set of
requirements for a particular implementation

of a particular algorithm but a fundamental
building block for our thinking and our code
requirements to fully describe their interactions. Bjarne Stroustrup refers
to this as the onion principle. As he puts it, “the more layers you peel off,
the more complicated things you can do, and the more you cry”
[Stroustrup15].

The use of concept names as placeholders allows us to write our programs
almost entirely in terms of abstract data types. I admit that I am excited to
see the impact these features will have on the way C++ is written and
taught.

Defining templates
While library developers have always had to consider a template’s
constraints, the language has not provided a means of enforcing them.
Concepts gives us the means to enforce those constraints and a framework
for thinking about them in a more concrete way. That said, adding
constraints to a template declaration does not change the way that you write
its definition. The concepts TS makes no changes to lookup rules (for better
or worse), and there are no extra language rules or restrictions that apply
to the definition of constrained templates.

When considering a template’s constraints, we must select concepts that
reflect coherent abstractions used within the algorithm. A concept is not
simply the minimal set of requirements for a particular implementation of
a particular algorithm, but a fundamental building block for our thinking
and our code. The in algorithm requires two such building blocks: ranges
and equality comparison.

A range type is any type that can be used in a range-based for loop. That
is, every range r must provide the operations begin(r) and end(r).
Equality comparison requires the use of == and !=. Even though != is not
used by the in algorithm, it is nonetheless required. The building block
of the algorithm is equality, not the set of expressions used in its
implementation.

An implementation should use only the operations and types that are
required of its arguments. Otherwise, we will get the same kinds of
template errors that we have always gotten. However, this rule is not
enforced by the Concepts TS. What if, at some point, we added some ad
hoc debugging code to our algorithm?

 template<Range R,
 Equality_comparable<Value_type<R>> T>
 bool in(Range const& range, T const& value) {
 for (auto const& x : range) {
 cout << x << '\n';
 if (x == value)
 return true;
 }
 return false;
 }

Should we update the requirements? Doing so would almost certainly
break existing code.

In the Concepts TS, it doesn’t matter that streaming values of T is not part
of the building blocks of the algorithm. However, if you supply a range of

some non-streamable type, your program will fail to compile, and you will
get the usual, lengthy template error messages.

Checking template definitions against their requirements would be useful,
but we shouldn’t do so at the expense of useful facilities such as debugging
output, logging, timing, and statistics gathering. We are currently thinking
about how best to support template definition checking.

Conclusions
The Concepts TS offers a number of improvements to better support
generic programming. The ability to clearly and concisely state the
constraints on template arguments and the abstractions of placeholders
greatly improve the language’s readability and usability. However, the
features presented here only just scratch the surface. Concepts will
fundamentally change the way that generic libraries are designed,
implemented, and used. They will change how generic programming is
taught. Concepts are a big deal, and this does change everything.

Acknowledgments
The design of the features in the Concepts TS was the result of
collaboration with Bjarne Stroustrup and Gabriel Dos Reis. That material
is based upon work supported by the National Science Foundation under
Grant No. ACI-1148461. Bjarne Stroustrup also provided valuable
feedback on an early draft of this paper.

Jason Merrill is responsible for merging the Concepts implementation into
GCC, and has improved its usability significantly. Ville Voutilainen and
Braden Obrzut have also contributed to the implementation.

The WG21 Core Working group spent many, many hours over several
meetings and teleconferences reviewing the Concepts TS design and
wording. This work would not have been possible without their patience
and attention to detail. Many people have submitted pull requests to the
TS or emailed me separately to describe issues or suggest solutions. I am
grateful for their contributions. 

References
[GCC] http://www.gcc.org

[Gregor06] D. Gregor, J. Järvi, J. Siek, B. Stroustrup, G. Dos Reis, and A.
Lumsdaine. ‘Concepts: Linguistic support for generic programming
in C++’. In ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications
(OOPSLA’06), pages 291–310, Portland, Oregon, 22-26 Oct 2006.

[Niebler15] Niebler, E (ericniebler). ‘The Concepts TS was voted out
today! Concepts are (almost) an ISO standard. Congrats, A. Sutton.
This will change everything.’ 20 Jul 2015. Tweet.

[N2914] Becker, P. (ed). Working Draft, Standard for Programming
Language C++. ISO/IEC WG21 N2914, Jun 2009.

[N3351] Stroustrup, B., Sutton, A. (eds). A Concept Design for the STL.
ISO/IEC WG21 N3351, Feb 2012.
October 2015 | Overload | 7

http://www.gcc.org

FEATURE ANDREW SUTTON

 An implementation should use only the
operations and types that are required of its
arguments. Otherwise, we will get the same kinds
of template errors that we have always gotten.
[N3701] Sutton, A., Stroustrup, B., Dos Reis, G., Concepts Lite. ISO/IEC
WG21 N3701, Jun 2013.

[N4549] Sutton, Andrew (ed). ISO/IEC Technical Specification 19217.
Programming Languages – C++ Extensions for Concepts, Aug 2015.

[Orr13] Orr, R., ‘Auto – a necessary evil (Part 2)’, Overload, vol. 116,
Aug 2013.

[Sutton11] Sutton, A. and Stroustrup, B. ‘Design of concept libraries for
C++. In Proceedings of Software Language Engineering (SLE’11).
3–4 Jul, 2011.

[Sutter12] Sutter, H. ‘GotW #94 Solution: AAA Style (Almost Always
Auto)’. Blog post. 12 Aug 2013.

[Stroustrup94] B. Stroustrup. The Design and Evolution of C++.
Addison-Wesley, 1994.

[Stroustrup09] B. Stroustrup. ‘No ‘Concepts’ in C++0x’. ACCU
Overload vol. 92. Aug 2009.

[Stroustrup15] Personal communication, 30 August 2015.

[Voufo11] Larisse Voufo, Marcin Zalewski, and Andrew Lumsdaine.
‘ConceptClang: an implementation of C++ concepts in Clang’. In
Proc. 7th ACM SIGPLAN Workshop on Generic Programming
(WGP’11), pages 71–82, 2011.

Appendix: Origin concepts
The following is a brief list of concepts provided by the Origin C++
Libraries and their requirements. Note that this is not intended to be an
exhaustive list. These are based on the concepts defined in the Palo Alto
TR [N3351].

Foundational concepts
These are the base concepts that reflect the value-semantic style of modern
C++. They establish the basic requirements for construction, comparison,
and the semantic foundation needed to support logical reasoning about
programs.

 Movable<T> – Requires a type that can be both move constructed
and assigned from an rvalue of type T.

 Copyable<T> – Requires a type that can be both copy constructed
and assigned from an rvalue of type T. All copyable types must also
be movable.

 Equality_comparable<T> – requires a type that can be
compared using == and !=.

 Totally_ordered<T> – Requires a type that can be compared
using <, >, <=, and >=. Totally ordered types must also be equality
comparable.

 Equality_comparable<T, U> – Requires the equality
comparison of values of type T and type U.

 Totally_ordered<T, U> – Requires the total ordering of
values of type T and type U.

 Semiregular<T> – Requires a copyable type that can be default
constructed.

 Regular<T> – Requires a semiregular type that is also equality
comparable.

 Ordered<T> – Requires a regular type that is also totally ordered.

Functions
The function concepts in Origin are variadic concepts. The first template
argument is the type of the callable object: either a function pointer,
function object type, or a lambda closure type. The remaining template
arguments are the types of the function arguments that the function type
must accept.

 Function<F, Args...> – Requires a type F that can be called
with the argument types in Args.... The return type is unspecified.

 Predicate<P, Args...> – Requires a function P that can be
called with the argument types in Args... and returns bool.

 Relation<P, T> – Requires a binary predicate P that takes
arguments of type T.

 Unary_operation<F, T> – Requires a function F that takes an
argument of type T and has a return type of T.

 Binary_operation<F, T> – Requires a function F that takes
two arguments of type T and has a return type of T.

Iterators and ranges
The iterator category is essentially the same as that in C++. All iterator
types can be dereferenced and incremented.

 Input_iterator<I> – Requires an iterator type that can be used
in single pass algorithms, and dereferencing can be used to read the
iterator’s value type.

 Output_iterator<I, T> – Requires an iterator type that can be
used in single pass algorithms and values of type T can be assigned
through its dereferenced result.

 Forward_iterator<I> – Requires an input iterator that can be
used in algorithms requiring multiple passes over a range of values,
or that require multiple simultaneous references to values in a range.

 Bidirectional_iterator<I, T> – Requires a forward
iterator that can also be decremented.

 Random_access_iterator<I, T> – Requires a bidirectional
iterator that supports constant time random access.

 Range<R> – Requires a type that can work with a range-based for
loop.
8 | Overload | October 2015

FEATUREALAN GRIFFITHS
Building and Running Software
on an Ubuntu Phone
Many of us has a smartphone. Alan Griffiths
shows us how to hack an Ubuntu Touch phone.
t has often been said that nowadays we carry around more computing
power in our pocket than NASA used to put men on the moon. It is likely
true but, so far, that computing power has not been readily available for

general purpose computing. All that is changing. I’ve been working with
Canonical on a project that is included in their ‘Ubuntu Touch’ phone
operating system.

We’ve seen Linux on phones before (Google’s Android has been very
successful) but one thing different about Ubuntu Touch is that it uses a
large part of the same software stack as you’ll find on desktops and servers.
Canonical are working on ‘convergence’ where the same software can
provide either a phone or desktop experience depending on the connected
hardware. Full ‘convergence’ isn’t here yet but you can already
accomplish serious computing tasks like building and running software
entirely on the phone.

This is quite a cool concept and I thought I should share the experience.

The first thing you need is a suitable phone. I’ve a growing collection
owned by Canonical (plus one I own myself – I got sucked into the coolness
of carrying a general purpose computer around). You can find a list of the
supported hardware at https://wiki.ubuntu.com/Touch/Devices – there
you’ll see that there are phones supported by Canonical as well as some
community ports. The following works on Nexus 4 (mako), Nexus 10
(manta), BQ Aquaris E4.5 Ubuntu Edition (krillin) and Meizu MX4
Ubuntu Edition (arale) and I expect only small adjustments to be needed
for other phones (like specifying an image server if the phone is not
supported on the Canonical server).

I work on Ubuntu Desktop which means the desktop tools I mention below
are readily available. On Ubuntu you can install these with:

 sudo apt-get install ubuntu-device-flash

On other systems you’ll have to work out the equivalent incantations.
(They are in the packages android-tools-adb and ubuntu-device-flash.)

One final warning: if you simply want to develop Apps for the Ubuntu
phone, this isn’t the best approach (and there is plenty of guidance at
http://www.ubuntu.com/phone/developers). What follows will instead
help you with setting up a general purpose development environment on
the phone.

Installing an OS image
Depending on what you want to work on you can, of course, skip this
section and use the production image that came with a commercial Ubuntu
Touch phone. If you’re re-purposing a phone that has Android on it, or you
want access to one of the pre-release versions, then you need to write or
update the OS image. (I am working on parts of the software that runs the
phone and fall into the latter category.)

Note that the tools and commands that follow can completely replace the
existing OS and user data. Use backup appropriately!

In this section, and the following one, we assume there’s a USB connection
to your phone and that the phone is in ‘developer mode’. Essentially, you
need to go into Settings > About this phone > Developer mode. For

security reasons connecting to the phone like this requires you to have a
lock code set and for the phone to be unlocked with the screen on.

The channels providing OS images for various uses are listed here:
https://developer.ubuntu.com/en/start/ubuntu-for-devices/image-
channels/.

The tool used to manage installing the OS is ubuntu-device-flash. For
example, to change the OS on a phone with an existing Ubuntu Touch
installation:

 ubuntu-device-flash touch –channel=ubuntu-
 touch/devel/ubuntu

If you want a clean installation (or to overwrite Andrioid) you need to get
the phone into recovery mode (typically, power on with both volume
buttons pressed) and add –bootstrap to the above command. NB you
will lose any user data.

The ubuntu-device-flash touch tool does have decent –help options. For
example, ubuntu-device-flash query –help.

After installation, start the phone up, go through the setup and tutorial
setting a security code and connecting to your wifi.

Getting ssh working
In this section, like the previous one, we assume there’s a USB connection
to your phone and that the phone is in ‘developer mode’.

The instructions here are copied from http://askubuntu.com/questions/
348714/how-can-i-access-my-ubuntu-phone-over-ssh for convenience.
These enable ssh and push your public key to the default ‘phablet’ account.

adb shell android-gadget-service enable ssh
adb shell mkdir /home/phablet/.ssh
adb push ~/.ssh/id_rsa.pub
 /home/phablet/.ssh/authorized_keys
adb shell chown -R phablet.phablet
 /home/phablet/.ssh
adb shell chmod 700 /home/phablet/.ssh
adb shell chmod 600
 /home/phablet/.ssh/authorized_keys

Next, assuming your phone is connected to your LAN find the phone’s IP
address:

 adb shell ip addr show wlan0|grep inet

(You can also find the IP address through System Settings > Wi-Fi >
‘>’next to network name.)

I

Alan Griffiths has been developing software through many fashions
in development processes, technologies and programming languages.
During that time, he’s delivered working software and development
processes to a range of organizations, written for a number of
magazines, spoken at several conferences, and made many friends.
He can be contacted at alan@octopull.co.uk
October 2015 | Overload | 9

https://wiki.ubuntu.com/Touch/Devices
http://www.ubuntu.com/phone/developers
https://developer.ubuntu.com/en/start/ubuntu-for-devices/image-channels/
https://developer.ubuntu.com/en/start/ubuntu-for-devices/image-channels/
http://askubuntu.com/questions/
348714/how-can-i-access-my-ubuntu-phone-over-ssh
http://askubuntu.com/questions/
348714/how-can-i-access-my-ubuntu-phone-over-ssh

FEATURE ALAN GRIFFITHS

Ubuntu Touch uses a large part of the same software
stack as you’ll find on desktops and servers...the
same software can provide either a phone or desktop
experience depending on the connected hardware
From now on you don’t need the USB connection and can connect over
your network:

 ssh phablet@<IP from above command>

Note that the ssh service isn’t started automatically so, if you restart the
phone, it may need starting again. You don’t need a USB connection to
do this, just type android-gadget-service enable ssh in the
terminal app.

Creating a chroot to work in
There are a couple of reasons to do development work in a chroot. Firstly
the system partition is almost full, so installing the tools you want would
likely overfill it. Secondly, the system image isn’t managed using debian
packages, but by downloading deltas. If you make changes to the system
file system, things will break. Also, If you later re-flash the OS image while
preserving user data you don’t lose the chroot.

The following is pulled together from email discussions and steals ideas
from a number of developers. I especially mention Michal Sawicz who
offered the original of the script in Listing 1 (he deserves all the credit for
the good bits but no blame for the bad bits as I’ve tweaked it since).

I’ve just explained that using apt on the phone makes it incompatible with
the OTA updates – but I’m going to take a shortcut and install debootstrap
temporarily. I hope this returns the system to its original state – it hasn’t
broken on me yet. It is definitely safe if you don’t allow OTA updates.

Now in the ssh session you started at the end of the last section:

 sudo mount -oremount,rw /
 sudo apt-get install debootstrap
 sudo mount -o remount,dev /home
 sudo debootstrap vivid /home/phablet/chroots/vivid
 sudo apt-get purge debootstrap
 sudo mount -o remount,ro /

For convenience, set up a matching user account in the chroot. Listing 1
has a useful “ch” script that makes setting up the and using the chroot
simpler.

To add the “phablet” user to sudoers in the chroot. In the ssh session:

 sudo ~/bin/ch --root chroots/vivid/

Now, you’re root in the chroot and type:

 sudo adduser phablet sudo
 passwd phablet

This set up the chroot “phablet” account to be able to use sudo. Now end
the chroot root session and return to the ssh shell:

 ^D

Building some software
From the ssh session you get into the “phablet” account inside the chroot:

 sudo ~/bin/ch chroots/vivid/

You’ll use this command every time you want to switch into the chroot
for development.

Phone development uses an ‘overlay ppa’ on top of vivid (a.k.a. 15.04) so
you will want to add this to the chroot. This will continue into next year
when it will switch to a 16.04 base. The following steps add the overlay:

 sudo apt-get install software-properties-common
 sudo add-apt-repository ppa:ci-train-ppa-
 service/stable-phone-overlay
 sudo apt-get update

Still as phablet within the chroot you should install your favourite build
tools. Here are the ones I use for Mir:

 sudo apt-get install cmake g++ make bzr

Listing 1

#!/bin/bash

usage() {
 [-n "$2"] && (echo $2; echo)
 echo "Usage:"
 echo " sudo $0 [OPTIONS] CHROOT_PATH"
 echo
 echo " Options:"
 echo " -h|--help displays this help message"
 echo " -r|--root chroot as root, not current
user"
 exit $1
}

ARGS=$(getopt -o r,h --long "root,help" -n "$0" --
"$@");

if [$? -ne 0];
then
 usage 3
fi

eval set -- "$ARGS";

while true; do
 case "$1" in
 -h|--help)
 usage
 ;;
 -r|--root)
 shift;
 USERSPEC=0:0
 TARGET_UID=0
 ;;
 --)
 shift;
 break;
 ;;
 esac
done
10 | Overload | October 2015

FEATUREALAN GRIFFITHS
Now, one ought to be able to set up building a project as normal. I use the
Mir project on which I work as an example but you should vary as
appropriate for your own needs. The relevant instructions for Mir are at
http://unity.ubuntu.com/mir/building_source_for_pc.html. Sill as phablet
in the chroot:

 cd
 bzr branch lp:mir mir
 cd mir/

Now the next step tells you to sudo apt-get install devscripts
equivs cmake but equivs isn’t available in the phone archive so the
incantation doesn’t work. So instead of that command (and the one that
follows), use what is in Listing 2.

Then resume the steps to build the project:

 mkdir build
 cd build
 cmake ..
 make -j2 all ptest

Depending on the phone you're using you may be able to start more
processes (e.g. -j4), but at this stage you should have built Mir and run the
basic test suites. A few of the tests may fail as a side effect of running in
the chroot: don’t worry about them. You can also install Mir in the chroot
as normal:

 sudo make install

Then exit the chroot for the top-level ssh shell:

 ^D

Running the software
Of course, installing software in a chroot is pretty limited (see the test
failures mentioned above) but the following instructions for running the
Mir “performance test” is an example of what you can do to work around
this.

The performance test uses glmark and that is hard coded to find its data at
/usr/share/glmark2. So that can work we once again make the file system
writeable. I think adding an empty directory that can used for a “mount -
-bind” is unlikely to cause problems (but it is a risk you may wish to avoid
by removing it after use). Once again from the top-level ssh shell:

 sudo mount -oremount,rw /
 sudo mkdir /usr/share/glmark2
 sudo mount -o remount,ro /
 sudo mount --bind ~/chroots/vivid/usr/share/
 glmark2//usr/share/glmark2

Now, stop the graphics stack running the normal phone interface so that
Mir can have sole access:

 sudo stop lightdm

Now run the “performance test”:

 export MIR_CLIENT_PLATFORM_PATH=~/chroots/vivid/
 usr/local/lib/mir/client-platform/
 export MIR_SERVER_PLATFORM_PATH=~/chroots/vivid/
 usr/local/lib/mir/server-platform/
 export PATH=~/chroots/vivid/usr/bin:~/chroots/
 vivid/usr/local/bin:$PATH
 export LD_LIBRARY_PATH=~/chroots/vivid/usr/local/
 lib/
 mirbacklight
 mir_performance_tests

Finally, start the graphics stack running the normal phone interface again.

 sudo start lightdm

Conclusion
The above example shows how to go about working on Mir. Like most
open source projects, that’s entirely possible for you to do. If you’re not
interested in doing that I hope you will use these notes as a starting point
for your own ideas. The possibilities will become ever more interesting as
the Ubuntu Touch platform matures. 

Acknowledgement
Thanks to Kevin Gunn, Alexandros Frantzis and the Overload team for
their feedback, which improved the article.

Listing 1 (cont’d)

setup_chroot() {
 # $1 is chroot path
 # $2 is user id

 # add current user in the chroot if doesn't exist
 chroot $1 id $2 &> /dev/null || useradd -R $1 -u
$2 -m phablet

 # make the prompt hint when chrooted
 echo `id -un ${TARGET_UID:-$2}`@`basename $1` >
$1/etc/debian_chroot

 mount -t proc none $1/proc
 mount -t sysfs none $1/sys
 mount --bind /dev $1/dev
 mount --bind /usr/lib/locale/ $1/usr/lib/locale/
 mount --bind $HOME $1/$HOME

 cleanup() {
 umount $1/proc $1/sys $1/dev $1/$HOME
 $1/usr/lib/locale/
 }
 trap "cleanup $1" EXIT
}

[`id -u` == 0] || usage 2 "This script must be
ran as root."
[-d "$1"] || usage 1 "You need to pass a valid
chroot path as argument."

CHROOT=`readlink -f $1` || exit 2
shift
BASE_UID=`id -u $(logname)`
BASE_GID=`id -g $(logname)`

setup_chroot $CHROOT $BASE_UID

chroot --userspec ${USERSPEC:-$BASE_UID:$BASE_GID}
$CHROOT $@

Listing 2

sudo apt-get install cmake-data pkg-config debhelper doxygen xsltproc graphviz libboost-dev libboost-
date-time-dev libboost-program-options-dev libboost-system-dev libboost-filesystem-dev protobuf-
compiler libdrm-dev libegl1-mesa-dev libgles2-mesa-dev libgbm-dev libglm-dev libprotobuf-dev pkg-
config android-headers libhardware-dev libandroid-properties-dev libgoogle-glog-dev liblttng-ust-dev
libxkbcommon-dev libumockdev-dev umockdev libudev-dev libgtest-dev google-mock valgrind libglib2.0-dev
libfreetype6-dev libevdev-dev uuid-dev python3 dh-python glmark2-es2-mir
October 2015 | Overload | 11

http://unity.ubuntu.com/mir/building_source_for_pc.html

FEATURE SERGEY IGNATCHENKO
Password Hashing: Why and How
Password hashing is important.
Sergey Ignatchenko explains
how to do it properly.
Disclaimer: as usual, the opinions within this article are those of ‘No
Bugs’ Hare, and do not necessarily coincide with the opinions of the
translators and Overload editors; also, please keep in mind that
translat ion diff icult ies from Lapine (l ike those described in
[Loganberry04]) might have prevented an exact translation. In addition,
the translator and Overload expressly disclaim all responsibility from
any action or inaction resulting from reading this article.

assword hashing is a non-trivial topic, which has recently become
quite popular. While it is certainly not the only thing which you need
to do make your network app secure, it is one of those security

measures every security-conscious developer should implement. In this
article, we’ll discuss what it is all about, why hash functions need to be
slow, and how password hashing needs to be implemented in your
applications.

What is it all about?
Whenever we’re speaking about security, there is always the question:
what exactly is the threat we’re trying to protect ourselves from? For
password hashing, the answer is very unpleasant: we’re trying to mitigate
the consequences arising from stealing the whole of your site’s password
database. This is usually accompanied by the potential for stealing pretty
much any other data in your database, and represents the Ultimate
Nightmare of any real-world security person.

Some (including myself) will argue that such mitigation is akin to locking
the stable door after the horse has bolted, and that security efforts should
be directed towards preventing the database-stealing from happening in
the first place. While I certainly agree with this line of argument, on the
other hand implementing password hashing is so simple and takes so little
time (that is, if you designed for it from the very beginning) that it is simply
imprudent not to implement it. Not to mention that if you’re not doing
password hashing, everybody (your boss and any code reviewers/auditors
included) will say, “Oh, you don’t do password hashing, which is The
Second Most Important Security Feature In The Universe (after
encryption, of course).”

The most important thing, however, is not to forget about a dozen other
security-related features which also need to be implemented (such as TLS
encryption, not allowing passwords which are listed in well-known
password dictionaries, limits on login rate, etc. etc. – see ‘Bottom Line’
section below for some of these).

Attack on non-hashed passwords
So, we’re considering the scenario where the attacker has got your
password database (DB). What can he do with it? In fact, all the relevant
attacks (at least those I know about) are related to recovering a user’s
password, which allows impersonation of the user. Subtle variations of the
attack include such things as being able to recover any password (phishing
for passwords), or to being able to recover one specific password (for
example, an admin’s password).

If your DB stores your passwords in plain text, then the game is over – all
the passwords are already available to the attacker, so he can impersonate
each and every user. Pretty bad.

Attempt #1: Simple hashing
You may say, “Hey, let’s hash it with SHA256 (SHA-3, whatever-else
secure hash algorithm), and the problem is gone!”, and you will be on the
way to solving the problem. However, it is more complicated than that.

Let’s consider in more detail the scenario when you’re storing passwords
in a form of

P'=SHA256(P) (*)

where P is user-password, and P' is password-stored-in-the-database.

Dictionary attacks
So, an attacker has got your password DB, where all the passwords are
simply hashed with SHA256 (or any other fast hash function), as described
above in formula (*). What can he do with the database?

First of all, he can try to get a dictionary of popular passwords, and – for
each such dictionary password – to hash it with SHA256 and to try
matching it with all the records in your database (this is known as
‘dictionary attack’). Note that using simple P'=SHA256(P) means that the
same P will have the same P', i.e. that the same passwords will stay the
same after hashing.

This observation allows the attacker to pre-calculate SHA256 hashes for
all the popular passwords once, and then compare them to all the records
in your DB (or any other DB which uses the same simple hashing). While
this kind of attack is certainly much more difficult than just taking an
unhashed password, and therefore simple hashing is clearly better than not
hashing passwords at all, there is still a lot of room for improvement.

Attempt #2: Salted hash
To deal with the issue when the hash is the same for the same password
(which allows the pre-calculation for a dictionary attack, and also allows
some other pre-calculation attacks, briefly mentioned below), so-called
‘salted hashes’ are commonly used.

The idea is the following: in addition to P' (user password – password-
stored-in-the-database), for each user we’re storing S – so-called ‘salt’.
Whenever we need to store the password, we calculate

P'=SHA256(S||P)

where || denotes concatenation (as string/data block concatenation).

P

‘No Bugs’ Hare Translated from Lapine by Sergey Ignatchenko using
the classic dictionary collated by Richard Adams.

Sergey Ignatchenko has 15+ years of industry experience, including
architecture of a system which handles hundreds of millions of user
transactions per day. He currently holds the position of Security
Researcher and writes for a software blog (http://ithare.com). Sergey
can be contacted at sergey@ignatchenko.com
12 | Overload | October 2015

FEATURESERGEY IGNATCHENKO

none of the C++11 random number engines is
considered good enough for cryptographic

purposes ... they’re way too predictable
As long as S is different for each user, the hashes will be different for
different users, even if their passwords are exactly the same. This, in turn,
means that pre-calculation for a dictionary attack won’t work, making the
life of an attacker significantly more complicated (at virtually no cost to
us). In fact, ‘salted hashes’ as described above, defeat quite a few other
flavours of pre-calculation attacks, including so-called ‘rainbow table’
attacks.

The next practical question is what to use as salt. First of all, S must be
unique for each user. Being statistically unique (i.e. having collisions
between salts for different users very unlikely) is also acceptable; it means
that if you’re using random salts of sufficient length, you’re not required
to check the salt for uniqueness.

Traditionally (see, for example, [CrackStation]), it is recommended that S
should be a crypto-quality random number of at least 128 bit length,
usually stored alongside the password in the user DB. And crypto-quality
random numbers can be easily obtained from /dev/urandom/ on most
Linux systems, and by using something like CryptGenRandom() on
Windows.

Note that, despite a very confusing wording on this subject in
[CppReference], none of the C++11 random number engines (LCG,
Mersenne-Twister, or Lagged Fibonacci) is considered good enough for
cryptographic purposes – in short, they’re way too predictable and can be
broken by a determined attacker, given enough output has leaked. Overall,
random number generation for security purposes is a very complicated
subject, and goes far beyond the scope of this article, but currently the
safest bet in this regard is to use Schneier and Ferguson’s [Fortuna]
generator with OS events fed to it as entropy input (this is what is
implemented in most Linuxes for /dev/urandom/), or (if you do not
have the luxury of having entropy on the go, but can get a cryptographic-
quality seed), the so-called Blum-Blum-Shub generator.

However, some people (such as [Contini]) argue that using a concatenation
of a supposedly unique site-ID with a unique user-ID (which is already
available within the database) as S, is about as good as using crypto-
random S. While I tend to agree with Contini’s arguments in this regard,
I still prefer to play it safe and use crypto-random S as long as it is easy to
do so. At the very least, the ‘playing it safe’ approach will save you time
if/when you need to go through a security review/audit, because you won’t
need to argue about using not-so-standard stuff (which is always a pain in
the neck).

So, the suggested solution with regard to server-side salting is the
following:

 to store S for each user in the same DB (there is no need to encrypt
S, it can be stored as a plain text)

 whenever a password needs to be stored for user P, S (of at least 128-
bit length) is taken from /dev/urandom1 or from
CryptGenRandom()

 store a (S,P') pair for each user, calculated as P'=SHA256(S||P),
where || denotes concatenation. P must never be stored in the DB.

As discussed above, this approach is much more solid than simple hashing,
but... there is still a caveat.

Prohibition on passwords in known dictionaries
Some may ask: “Hey, why bother with salting if we can simply prohibit
users from using passwords from known dictionaries?” The answer to this
question is the following:

You do need both to prohibit passwords from known dictionaries
and to use salt as described above.

Prohibiting dictionary-passwords is necessary even if passwords are
‘salted’, because dictionary attack is still possible; if the attacker looks for
one single password, he can still run the whole dictionary against this
specific password, whether it is salted or not (what the salt does is increase
many-fold the cost of ‘phishing’ of any password out of DB).

Salt is necessary even if passwords from dictionaries are prohibited,
because besides a dictionary pre-computation attack, there is a whole class
of pre-computation attacks, including ‘rainbow table’-based attacks. The
idea behind pre-computed ‘rainbow tables’ is not trivial, and is beyond the
scope of this article (those interested may look at [WikiRainbow]), but it
is prevented by ‘salting’ in a pretty much the same way as a pre-computed
dictionary attack is.

Offline brute-force attacks on fast hash functions
Even after we have added ‘salt’ to our P' as described above, and prohibited
dictionary passwords, there is still a possible attack on our password DB .

This attack is known as an offline brute-force attack, wherein an attacker
has the whole password DB; it is different from a online brute-force attack,
when an attacker simply attempts to login repeatedly (and which can and
should be addressed by enforcing a login rate limit).

To mount an offline brute-force attack, the attacker needs to have the
password DB (or at least one entry out of it, including the password and
salt). Then the attacker may simply take this password and salt, and run
all possible password variations through our SHA256(S||P) construct; as
soon as SHA256(S||attempted-P) matches P' – bingo! attempted-P is the
real password P for this user.2

Brute-force attacks, such as the one described above, are practical only if
the number of possible passwords is quite small. If we had 2256 (or even
a measly 2128) different passwords for the attacker to analyze, a brute-force

1. Strictly speaking, you need to double-check the documentation of your
target distribution to be sure that /dev/urandom generates crypto-
quality numbers (or uses [Fortuna]), which is common, but not
guaranteed. However, I would argue that for the purposes of generating
salt S such double-checking is not 100% required.

2. Strictly speaking, a matching attempted-P may represent a hash
collision, if there is more than one attempted-P which corresponds to
(S,P') pair. However, for all intents and purposes attempted-P found in
this way will be indistinguishable from the real password P; most
importantly, it can be used for impersonation. Also after going through
the full search space, the real P will be found too.
October 2015 | Overload | 13

FEATURE SERGEY IGNATCHENKO

Prohibiting dictionary-passwords is
necessary even if passwords are ‘salted’,
because dictionary attack is still possible
attack wouldn’t be feasible at all (i.e. all the computers currently available
on the Earth wouldn’t be able to crack it until the Sun reaches the end of
its lifetime).3

However, the number of possible passwords (known as the ‘size of search
space’) is relatively low, which opens the door for a brute-force attack. If
we consider a search space consisting of all 8-character passwords, then
(assuming that both-case letters and digits are possible), we’ll get
(26+26+10)8~=2.2e14 potential passwords to try. While this might seem
a large enough number, it is not.

Modern GPUs are notoriously good in calculating hashes; also note that
the search task is inherently trivial to parallelise. In practice, it has been
reported that on a single stock GPU the number of SHA256’s calculated
per second is of the order of 1e9 [HashCat]. It means that to try all the 8-
character passwords within our 2.2e14 search space (and therefore, to get
an 8-character password for a single user for sure), it will take only about
2.5 days on a single stock GPU . As mentioned in [SgtMaj], this means
that the upper-bound of the cost of breaking the password is mere $39. This
is despite having used an industry-standard (and supposedly unbreakable)
hash function, and despite the whole thing being salted .

Note that the attack above doesn’t depend on the nature of the hashing
function. The attack doesn’t depend on any vulnerability in SHA256; the
only thing which the attack relies on is that SHA256 is a reasonably fast
hash function.

Mitigation #1: Enforce long passwords
What can be done about these brute-force attacks? Two approaches are
known in this field. The first approach is to enforce a minimum password
length of longer than 8. This can be illustrated by Table 1, which shows
that if we can enforce all users having relatively long passwords (at least
10–12 characters depending on the value of the information we’re trying
to protect), we might be OK. However, with users being notoriously
reluctant to remember passwords which are longer than 8 characters, this
might be infeasible; moreover, with the power of computers still growing
pretty much exponentially, soon we’d need to increase the password length
even more, causing even more frustration for users .

Going beyond a password length of 12 isn’t currently worthwhile;
IMNSHO (in my not-so-humble opinion), any security professional who
is trying to protect information which is worth spending half a billion to
get with a mere password (i .e.without so-called ‘two-factor
authentication’) should be fired on the spot.

Mitigation #2: Use intentionally slow hash functions
As noted above, to mount a brute-force attack, an attacker needs our hash
function to be reasonably fast. If the hash function is, say, 100,000 times
slower than SHA256, then the attack costs for the attacker go up 100,000-
fold.

That’s exactly what people are commonly doing to protect themselves
from a brute-force attack on a stolen password DB – they’re using hash
functions which are intentionally slow.

Several intentionally slow hash functions have been developed for exactly
this purpose, with the most popular ones being PBKDF2, bcrypt, and
(more recently) scrypt. As of now (mid-2015), I would suggest scrypt –
which, in addition to being intentionally slow, is specially designed to use
quite a lot of RAM and to run quite poorly on GPUs while being not-so-
bad for CPUs – or PBKDF2, if you need to keep your crypto NIST-
standardized.

All such intentionally slow functions will have some kind of parameter(s)
to indicate how slow you want your function to be (in the sense of ‘how
many computations it needs to perform’). Using these functions makes
sense only if the requested number of computations is reasonably high.

The next obvious question is, ‘Well, how big is this ‘reasonably high’
number of calculations?’ The answer, as of now, is quite frustrating: ‘as
high as you can afford without overloading your server’. 

Note that when choosing load parameters for your intentionally slow hash
function, you need to account for the worst-possible case. As noted in
[SgtMaj], in many cases with an installable client-app (rather than client-
browser) this worst-case scenario happens when you’ve got a massive
disconnect of all your users, with a subsequent massive reconnect. In this
case, if you’ve got 50,000 users per server, the load caused by intentionally
slow hash functions can be quite high, and may significantly slow down
the rate with which you’re admitting your users back.4

3. Rough calculation: 2128=3.4e38. Now let’s assume that there is a billion
(1e9) cores on Earth, each able to calculate a billion hashes per
second. It would mean that going through the whole 2128 search space
will take 3.4e38/1e9/1e9=3.4e20 seconds, or approx. 1e13 years. As
the lifetime of the Sun is currently estimated at about 5e9 years, it
means that the sun will have enough time to die 2000 times before the
search space is exhausted. And for 2256, the situation becomes
absolutely hopeless even if each and every atom of the Earth is
converted to a core calculating a billion hashes per second.

4. While caching users’ credentials to avoid overload at this point is
possible, it is quite difficult to implement such a feature without
introducing major security holes, and therefore I do not recommend it
in general.

Table 1

Password
Length

Search
Space

Time on a Single
GPU

Cost of Brute-Force
Attack

8 2.2e14 ~2.5 days ~$40

9 1.3e16 ~5 months ~$2,400

10 8.4e17 ~27 years ~$150,000

11 5.2e19 ~1648 years ~$9.3M

12 3.2e21 ~100,000 years ~$580M
14 | Overload | October 2015

FEATURESERGEY IGNATCHENKO

when choosing load parameters for your
intentionally slow hash function, you need to

account for the worst-possible case
Mitigation-for-mitigation #2.1: Client + Server hashing
To mitigate this server-overload in case of massive reconnects, several
solutions (known as ‘server relief’) have been proposed. Most of these
solutions (such as [Catena]), however, imply using a new crypto-
primitive5, which is not exactly practical for application development (that
is, until such primitives are implemented in a reputable crypto library).

One very simple but (supposedly) efficient solution is to combine both
client-side and server-side hashing. This approach, AFAIK, was first
described in a StackExchange question [paj28], with an analysis provided
in [SgtMaj].

Client + Server hashing
The ‘Client + Server’ password hashing schema works as follows:

1. User enters password P
2. P' is calculated (still on the client) as:

 client_slow_hash(SiteID||UserID||P)
where SiteID is unique per-site string, UserID is the same ID
which is used for logging in, || denotes concatenation, and
client_slow_hash is any of the intentionally slow hash
functions described above.

3. P' is transferred over the wire
4. on the server side, P'' is calculated as:

 server_slow_hash(S||P')
where server_slow_hash may be either the same as or different
from client_slow_hash, and S is a crypto-random salt stored
within user DB for each user.

5. P'' is compared to P'' stored within DB. P' is never stored in database.

This approach shifts some of the server load to the client. While you still
need to have both of your hash functions as slow as feasible,
Client + Server hashing (when you have an installable client app rather
than a browser-based app) may allow an increase from 10x to 100x of the
brute-force-attack-cost-for-the-attacker [SgtMaj], which is not that small
an improvement security-wise.

Note that while this Client + Server hashing might seem to go against the
‘no-double hashing’ recommendation in [Crackstation], in fact it is not:
with Client + Server it is not about creating our own crypto-primitive
(which is discouraged by Crackstation, and for a good reason), but rather
about providing ‘server relief’ at minimal cost (and re-using existing
crypto-primitives).

On the other hand (unless/until [WebCrypto] is accepted and widely
implemented), this Client + Server hashing won’t be helpful for browser-
based apps; the reason for this is simple – any purely Javascript-based

crypto would be way too slow to create enough additional load to bother
the attacker.

What MIGHT happen in the future
In the future, things might change. Very recently, a ‘Password Hashing
Competition’ has been held [PHC], looking for new crypto-primitives
which allow for better ways of password hashing; while they don’t seem
to apply any magic (so being intentionally slow will still be a requirement
for them), there is a chance that one of them will become a standard (and
becomes implemented by the crypto-library-you’re-using) sooner or later.
When/if it happens, most likely it will be better to use this new standard
mechanism.

Bottom line
As long as a new standard for password-hashing is not here yet, we (as app
developers) need to use those crypto-primitives we already have.
Fortunately, it is possible and is reasonably secure using the approaches
described above.

When implementing login for an installable client-app, I would suggest to
do the following:

 Encrypt the whole communication with your client. If you’re
communicate using TCP, use TLS; if you’re communicating using
UDP, use DTLS; for further details see [NoBugs]. Sending
password over an unprotected connection is something you should
never do, NEVER EVER.

 Implement Client + Server Hashing as described above, configuring
both client-side and server-side functions to be as slow as feasible

 As of now, scrypt is recommended to be used on both client-side
and server-side; if following NIST standards is a requirement,
PBKDF2 is recommended.

 For the client side, load parameters which are based on the
maximum-allowable delay for the slowest-supported client
hardware should be used.

 For the server side, load parameters which are based on the
maximum-allowable delay in the worst-possible-case (for
example, in case of massive reconnect if applicable) for the
server-hardware-currently-in-use.

 Set the minimum password length to at least 8

 Allow a maximum password length of at least 12, preferably 16

 Prohibit passwords which are in well-known password databases
(and enforce this prohibition)

5. A basic number-crunching crypto-algorithm, acting as a building block
for higher-level protocols. Examples of crypto-primitives include AES,
SHA256, and [Catena]. The problem with introducing a new crypto-
primitive is that they’re usually quite difficult to implement properly, so
for application-level programmer it is usually better to wait until a crypto
library does it for you.

WebCrypto, more formally Web Cryptography API, is a W3C candidate
recommendation, essentially aiming to provide access from JavaScript
to fast browser-implemented crypto-primitives.

WebCrypto
October 2015 | Overload | 15

FEATURE SERGEY IGNATCHENKO
 Enforce password changes (which will be a separate and quite
painful story)

 Do think how you will provide ‘password recovery’ when you’re
asked about it (and you will, there is absolutely no doubt about it).
While ‘password recovery’ is a fallacy from a security point of view,
there is 99% chance that you will be forced to do it anyway, so at
least try to avoid the most heinous things such as sending password
over e-mail (and if you cannot avoid it due to ‘overriding business
considerations’, at the least limit the password validity time slot, and
enforce that the user changes such a password as soon as she logs in
for the first time).

 Implement two-factor authentication at least for privileged users,
such as admins.

 Implement a login rate limit (to prevent online brute-force attacks)

 With the precautions listed above, pretty much any reasonable
limit will protect from brute-force as such (even limiting logins
from the same user to once per 1 second will do the trick).

 On the other hand, to avoid one user attacking another one in a
DoS manner, it is better to have two limits: one being a global
limit, and this one can be, say, one login per second. The second
limit may be a per-user-per-IP limit, and this needs to be higher
than the first one (and also may grow as number of unsuccessful
attempts increases). With these two limits in place, the whole
schema will be quite difficult to DoS.

Phew, this is quite a long list, but unfortunately these are the minimum
things which you MUST do if you want to provide your users with the
(questionable) convenience of using passwords. Of course, certificate-
based authentication (or even better, two-factor authentication) would be
much better, and if you can push your management to push your users to
use it – it is certainly the way to go, but honestly, this is not likely to happen
for 99% of the projects out there . Another way is to rely on Facebook/
whatever-other-service-everybody-already-has logins – and this is
preferable for most of the apps out there, but most likely you will still need
to provide an option for the user to use a local account on your own site,
and then all the considerations above will still apply .

For browser-based apps, the schema would be almost the same, except for
replacing ‘Implement Client + Server hashing...’ with:

 Implement Client + Server hashing without client_slow_hash,
i.e. with P'=P. Configure server-side function to be ‘as slow as
feasible’

 As of now, scrypt is recommended to be used on both client-side
and server-side; if following standards such as NIST is a
requirement, PBKDF2 is recommended.

 For the server side, load parameters which are based on the
maximum-allowable
delay in the worst-
possible-case (for

example, in the case of a massive reconnect if applicable) for the
server-hardware-currently-in-use.

Note that when/if WebCrypto is widely adopted, browser-based apps
should also move towards fully implemented Client + Server hashing as
described for installable client-apps. 

References
[Catena] Forler, Christian, Stefan Lucks, and Jakob Wenzel., ‘Catena: A

Memory-Consuming Password Scrambler.’, IACR Cryptology
ePrint Archive, 2013

[Contini] Scott Contini, ‘Method to Protect Passwords in Databases for
Web Applications’, Cryptology ePrint Archive: Report 2015/387,
https://eprint.iacr.org/2015/387

[CppReference] http://en.cppreference.com/w/cpp/numeric/random/rand

[Crackstation] ‘Salted Password Hashing – Doing It Right’,
https://crackstation.net/hashing-security.htm

[Fortuna] https://en.wikipedia.org/wiki/Fortuna_%28PRNG%29

[HashCat] ‘hashcat. advanced password recovery’, http://hashcat.net/
oclhashcat/

[Loganberry04] David ‘Loganberry’ Buttery, ‘Frithaes! – an Introduction
to Colloquial Lapine’, http://bitsnbobstones.watershipdown.org/
lapine/overview.html

[NoBugs] ‘No Bugs’ Hare, ‘64 Network DO’s and DON’Ts for Multi-
Player Game Developers.Part VIIa: Security (TLS/SSL)’,
http://ithare.com/64-network-dos-and-donts-for-multi-player-game-
developers-part-viia-security-tls-ssl/

[paj28] http://security.stackexchange.com/questions/58704/can-client-
side-hashing-reduce-the-denial-of-service-risk-with-slow-hashes

[PHC] Password Hashing Competition, https://password-hashing.net/
index.html

[SgtMaj] ‘Sergeant Major’ Hare, ‘Client-Plus-Server Password Hashing
as a Potential Way to Improve Security Against Brute Force Attacks
without Overloading the Server’, http://ithare.com/client-plus-
server-password-hashing-as-a-potential-way-to-improve-security-
against-brute-force-attacks-without-overloading-server/

[WebCrypto] http://www.w3.org/TR/WebCryptoAPI/

[WikiRainbow] ‘Rainbow tables’, Wikipedia, https://en.wikipedia.org/
wiki/Rainbow_table

Acknowledgement
Cartoon by Sergey Gordeev from Gordeev

Animation Graphics, Prague.
16 | Overload | October 2015

https://eprint.iacr.org/2015/387
http://en.cppreference.com/w/cpp/numeric/random/rand
https://crackstation.net/hashing-security.htm
https://en.wikipedia.org/wiki/Fortuna_%28PRNG%29
http://hashcat.net/oclhashcat/
http://hashcat.net/oclhashcat/
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/64-network-dos-and-donts-for-multi-player-game-developers-part-viia-security-tls-ssl/
http://security.stackexchange.com/questions/58704/can-client-side-hashing-reduce-the-denial-of-service-risk-with-slow-hashes
http://security.stackexchange.com/questions/58704/can-client-side-hashing-reduce-the-denial-of-service-risk-with-slow-hashes
https://password-hashing.net/index.html
https://password-hashing.net/index.html
http://ithare.com/client-plus-server-password-hashing-as-a-potential-way-to-improve-security-against-brute-force-attacks-without-overloading-server/
http://ithare.com/client-plus-server-password-hashing-as-a-potential-way-to-improve-security-against-brute-force-attacks-without-overloading-server/
http://www.w3.org/TR/WebCryptoAPI/
https://en.wikipedia.org/wiki/Rainbow_table
https://en.wikipedia.org/wiki/Rainbow_table

FEATUREJONATHAN COE AND ANDREW SUTTON
An Inline-variant-visitor
with C++ Concepts
Concepts are abstract. Jonathan Coe
and Andrew Sutton provide us with a
concrete example of their use.

ariants allow run-time handling of different types, without

inheritance or virtual dispatch, and can be useful when designing
loosely coupled systems. J.B.Coe and R.J.Mill [Mill14] previously

showed a technique to avoid writing boilerplate code when writing visitors
for the traditional inheritance-based VISITOR pattern. We modify the
inline-visitor technique to handle variant-based visitation and use
Concepts [Sutton13] from the Concepts TS [Concepts] to switch run-time
behaviour depending on syntactic properties of the class encountered.

Variants
A variant is a composite data type formed from the union of other types.
At any point the type of the data contained within a variant can only
correspond to one of the composite types. Variants are useful when data
flow through a program needs to correspond to multiple possible types that
are not logically related by inheritance. For instance, the data within a
spreadsheet cell could be an integer, a floating point value or a text string.
We can represent such a spreadsheet cell by a variant of int, double and
string. We can use this variant type within our program as a function
argument type or return type and defer type-specific handling to a later
point.

The boost libraries offer a variant type [Boost] as does the eggs.variant
library [Eggs-1]. There are differences between the different offerings of
variant but for the purposes of our inline visitor they are much the same
and could be implemented as a union of types with an index used to
determine which type is active (see Listing 1).

Our code examples focus on eggs.variant which is a lot more sophisticated
than the exposition-only variant class above (especially where
constexpr methods are concerned) [Eggs-2].

Design decisions about exception safety and default construction are
interesting and, at the time of writing, under much discussion among the
ISO C++ standards body, but beyond the scope of this paper.

A visitor For variants
The Gang of Four [GoF] describe the VISITOR pattern as “Represent an
operation to be performed on elements of an object structure. Visitor lets you
define a new operation without changing the classes of the elements on
which it operates.”

We can use visitors to implement the type-specific handling our variant
may require.

Writing a visitor on a variant type is a straightforward matter that entails
determining the value of the discriminator and dispatching to a function
that accepts the corresponding concrete type. For example, we could
explicitly build a function that applies a visitor for our previously
mentioned spreadsheet. See Listing 2.

V

Listing 1

class ExpositionOnlyVariant
{
 union Data_t
 {
 int i_;
 double d_;
 string s_;
 };

 Data_t data_;
 size_t active_type_;

 size_t which() const { return active_type_; }

 // Other non-illustrative methods and
 // declarations
};

Listing 2

using Cell = variant<int, double, string>;

template<typename R, typename Visitor>
R apply(const Cell& c, Visitor&& v)
{
 switch (c.which()) {
 case 0: return v(get<0>(c));
 case 1: return v(get<1>(c));
 case 2: return v(get<2>(c));
 default: throw std::logic_error
 ("Bad variant type");
 }
}

struct DoubleCell_t
{
 int operator()(int n) { return n*2; }
 double operator()(double d) { return d*2; }
 string operator()(string s) {
 return s.append(s); }
};

Cell DoubleCell(const Cell& c)
{
 return apply<Cell>(c, DoubleCell_t());
}

Jonathan Coe has been programming commercially for about 7
years. He has worked in the energy industry on process simulation
and optimisation and is currently employed in the financial sector.
You can contact Jonathan at jbcoe@me.com

Andrew Sutton is an assistant professor at the University of Akron
in Ohio where he teaches and researches programming software,
programming languages, and computer networking. He is also
project editor for the ISO Technical Specification, ‘C++ Extensions
for Concepts’. You can contact Andrew at asutton@uakron.edu.
October 2015 | Overload | 17

FEATURE JONATHAN COE AND ANDREW SUTTON

if we could predetermine sets of abstract data
types to which the visitor can be applied, then
we could define a small set of generic
functions to accommodate those behaviours
Generic code with templates
Templates in C++ allow the definition of functions and classes with
generic types [Vandevoorde02]. We can, for instance, define a generic
function that doubles its argument.

 template<typename T>
 T double(const T& t)
 {
 return t*2;
 }

 assert(8.0 == double(4.0));

We can define an operator() template for a visitor which will mean it
can be invoked on any type. This allows us to specify default behaviour
for types that are not explicitly handled (function templates have lower
precedence when it comes to overload resolution so a more specific
function will be picked where available). See Listing 3.

This is appealing; we can define default behaviour for our visitor (the
generic member function) and define exceptions to this default behaviour
(with specific overloads). In this case, the generic version uses
operator* for all non-string members of the variant, and the string
version resorts to an append member function.

This could become irksome if there were many exceptions, and we have
to know about types which need special handling ahead of time. For
example, if we later extend Cell to include support for wide-character
strings (e.g., std::u16string), then we would need to add overloads
to each visitor function to provide the required functionality. In addition,
there's no way we could reasonably expect our visitor to cope with arbitrary
user-defined types. Adding date or time representations to Cell would
require even more overloads.

However, if we could predetermine sets of abstract data types to which the
visitor can be applied, then we could define a small set of generic functions
to accommodate those behaviours. That is, some methods would use
operator*, while others used append, some might throw exceptions,
and so on. Concepts make this easy.

Constraining templates with Concepts
Concepts are an extension to the C++ Programming Language, defined as
an ISO Technical Specification [Concepts]. The Concepts extension
allows the specification of constraints on template arguments in a
straightforward, and often minimal way. While, templates can be restricted
using SFINAE tricks with enable_if [Vandevoorde02], Concepts
provides a more readable notation and vastly improved support for
overloading.

Listing 4 is a fully generic visitor written using concepts.

We only need two overloads to fully accommodate the breadth of
abstractions included in our Cell representation. The first overload takes
an argument of type Numeric and the second an argument of type
Appendable. These are concepts. A concept is a compile-time predicate
that defines a set of requirements on a template argument.

When a concept name is used in this way, it declares a function that accepts
any type that satisfies the requirements of that concept. To help make that
more explicit, we could have declared the first overload like this:

 template<typename T>
 requires Numeric<T>()
 int operator()(T n) { return n*2; }

Here, Numeric is explicitly evaluated by a requires clause. Of course,
this is more verbose so we prefer notation above.

With this visitor, the Numeric overload defines the behaviour for the int
and double members of Cell, For that matter, this will be the behaviour
for any numeric type that might include in the future (e.g., vectors or
matrices?). Similarly, the Appendable overload defines the behaviour
for all sequence-like objects.

In this example, Numeric and Appendable are function templates,
declared with the concept specifier. Here is the definition of
Appendable that we use above:

 template<typename T>
 concept bool Appendable() {
 return requires(T& t, const T& u) {
 { t.append(u) } -> T&;
 };
 }Listing 3

struct DoubleCellWithGenerics_t {
 template<typename T>
 T operator()(const T& t) { return t*2; }

 string operator()(string s) {
 return s.append(s); }
};

Cell DoubleCellWithGenerics(const Cell& c) {
 return apply<Cell>(c,
 DoubleCellWithGenerics_t());
}

Listing 4

struct DoubleCellWithConcepts_t {
 int operator()(const Numeric& n) { return n*2; }
 string operator()(Appendable s) {
 return s.append(s); }
};

Cell DoubleCellWithConcepts(const Cell& c) {
 return apply<Cell>(c,
 DoubleCellWithConcepts_t());
}

18 | Overload | October 2015

FEATUREJONATHAN COE AND ANDREW SUTTON

Concepts are effective ways of specifying
syntactic requirements. However, a

meaningful concept definition also needs
semantic requirements
The requires expression in the body of the function enumerates the
syntactic requirements to be satisfied by a type T. Here, we require T to
have a member function append, taking an argument of the same type.
The return value, specified by the -> T& must be implicitly convertible
to T&. If any of those requirements are not satisfied, the concept is not
satisfied.

Concepts are effective ways of specifying syntactic requirements.
However, a meaningful concept definition also needs semantic
requirements. What is append required to do? The concept used in this
example is not especially well-designed because it isn’t obvious how to
specify the semantics of an Appendable type, when we have only a single
operation. Additional requirements like size and back would be helpful.
In the future, we will endeavour to present only complete concepts.

Concepts are a very powerful tool and their first-class status in terms of
compiler diagnostics make their consumption by non-expert users much
more straightforward. Furthermore, the use of concepts will never add
runtime overhead to your program. A technique like type-erasure could be
used instead, but it can be difficult to implement, and it adds hidden
runtime costs.

The Concepts TS has been sent for publication by ISO and is implemented
in GCC trunk [GCC].

An inline-variant-visitor with Concepts
Defining the visitor outside the function in which it is used is necessary if
it has generic functions. The inline-visitor pattern for the traditional visitor
can be adapted to variant visitors and allow definition of concept-
constrained generic functions inline at the point of use.

 auto DoubleCell(const Cell& c)
 {
 auto inline_cell_visitor
 = begin_variant_visitor()
 .on([](Numeric n) { return n*2; })
 .on([](Appendable a) { return a.append(a); })
 .end_visitor();
 return apply<Cell>(c, inline_cell_visitor);
 }

This function is now hardened against future changes in the definition of
the variant, Cell. Adding a new Appendable member to that variant
would not require changes to this function. In fact, unless a future change
adds entirely new categories (i.e., concepts) of members to the variant, we
should never have to modify this function again (unless it contains a bug).

The inline-variant-visitor is implemented in much the same way as the
inline-visitor [Mill14]: an inner composable function object is recursively
built up and finally instantiated.

Conclusion
We have presented a method for generating visitors inline for variants
where the run-time type-specific handling can be specified in generic terms
depending on syntactic properties of the run-time type. Concept-based

handling of variants can facilitate the writing of generic header-only
libraries that make use of variant<Ts...> arguments. Type-specific
handling of user-defined types, unknown to the library author, can be
simply specified in terms of supported concepts.

Although there are slight differences in optimised assembler output with
and without the inline-variant-visitor, there is no measurable run-time
penalty for its use. 

Appendix
Implementation of a concept-enabled inline-variant-visitor (Listing 5).

Listing 5

#include <string>
#include <utility>

// These using declarations are for publication
// brevity only
using std::make_pair;
using std::move;
using std::pair;
using std::nullptr_t;

template <typename F, typename T> concept bool
UnaryFunction() {
 return requires(const F &f, const T &t) {
 { f(t) }
 };
}

template <typename F, typename BaseInner,
 typename ArgsT>
struct ComposeVariantVisitor {
 struct Inner : BaseInner {
 Inner(ArgsT &&a) : BaseInner(move(a.second)),
 f_(move(a.first)) {}

 using BaseInner::operator();

 template <typename T>
 requires UnaryFunction<F, T>()
 auto operator()(const T &t) {
 return f_(t);
 }

 private:
 F f_;
 };

 ComposeVariantVisitor(ArgsT &&args) :
 m_args(move(args)) {}
October 2015 | Overload | 19

FEATURE JONATHAN COE AND ANDREW SUTTON
Have you ever heard, ‘Our existing
application can’t do that!’ when
describing how your system works?

Now imagine you’re the one whose
product is being replaced... and not
only can it ‘do that’ but much more
besides.

Your customers don’t only need to
know how to use something: they
also need to know what’s possible.

If you want some help in keeping
your customers, get in touch.

We can help with:

Product manuals/user guides
Online help
Release notes
Training materials
(including for e-learning)
Bids and proposals...

T 0115 8492271 E info@clearly-stated.co.uk W www.clearly-stated.co.uk

References
[Boost] http://www.boost.org/doc/libs/1_59_0/doc/html/variant.html

[Concepts] Sutton, Andrew (ed). ISO/IEC Technical Specification 19217.
Programming Languages – C++ Extensions for Concepts, 2015.

[Eggs-1] http://eggs-cpp.github.io/variant/

[Eggs-2] http://talesofcpp.fusionfenix.com/post-20/eggs.variant---part-ii-
the-constexpr-experience

[GCC] svn://gcc.gnu.org/svn/gcc/trunk

[GoF] E. Gamma et al., Design Patterns. Addison-Wesley Longman,
1995.

[Mill14] Robert Mill and Jonathan Coe, ‘Defining Visitors Inline in
Modern C++’. Overload 123, October 2014.

[Sutton13] Andrew Sutton, Bjarne Stroustrup, ‘Concepts Lite:
Constraining Templates with Predicates’. https://isocpp.org/blog/
2013/02/concepts-lite-constraining-templates-with-predicates-
andrew-sutton-bjarne-s

[Vandevoorde02] Vandevoorde, David; Nicolai M. Josuttis (2002). C++
Templates: The Complete Guide Addison-Wesley Professional.
ISBN 0-201-73484-2.

Listing 5 (cont’d)

 template <typename Fadd> auto on(Fadd &&f) {
 return ComposeVariantVisitor<Fadd, Inner,
 pair<Fadd, ArgsT>>(
 make_pair(move(f), move(m_args)));
 }

 auto end_visitor() { return Inner(move(m_args));
}

 ArgsT m_args;
};

struct EmptyVariantVisitor {
 struct Inner {
 struct detail_t {};

 Inner(nullptr_t) {}

 void operator()(detail_t &) const {}
 };

 template <typename Fadd> auto on(Fadd &&f) {
 return ComposeVariantVisitor<Fadd, Inner,
 pair<Fadd, nullptr_t>>(
 make_pair(move(f), nullptr));
 }
};

EmptyVariantVisitor begin_variant_visitor() {
 return EmptyVariantVisitor(); }
20 | Overload | October 2015

http://eggs-cpp.github.io/variant/
http://talesofcpp.fusionfenix.com/post-20/eggs.variant---part-ii-the-constexpr-experience
http://talesofcpp.fusionfenix.com/post-20/eggs.variant---part-ii-the-constexpr-experience
svn://gcc.gnu.org/svn/gcc/trunk
https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s
https://isocpp.org/blog/2013/02/concepts-lite-constraining-templates-with-predicates-andrew-sutton-bjarne-s

	Overload129.pdf
	Failure is an option
	Introducing Concepts
	Building and Running Software on an Ubuntu Phone
	Password Hashing: Why and How
	An Inline-variant-visitor with C++ Concepts

