
A magazine of ACCU ISSN: 1354-3172

C++ Safety,
In Context

Herb Sutter discusses C++’s
current security problems

and potential solutions

User-Defined Formatting in std::format
Spencer Collyer demonstrates how to provide
formatting for a simple user-defined class

To See a World in a Grain of Sand
Jez Higgins shows how to refactor code that has grown
organically, making it clearer and more concise

Judgment Day
Teedy Dee finds out what happens if AI takes your job

accu

accu.org

Monthly journals, printed and online
Local groups run by ACCU members

Discounted rate for the ACCU Conference
Email discussion lists

OVERLOAD CONTENTS

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

April 2024 | Overload | 1

ACCU
ACCU is an organisation of
programmers who care about
professionalism in programming. We
care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

Many of the articles in this magazine
have been written by ACCU members –
by programmers, for programmers – and
all have been contributed free of charge.

Copyrights and trademarks
Some articles and other contributions use terms that are either registered trade marks
or claimed as such. The use of such terms is not intended to support nor disparage any
trade mark claim. On request, we will withdraw all references to a specific trade mark
and its owner.

By default, the copyright of all material published by ACCU is the exclusive property
of the author. By submitting material to ACCU for publication, an author is, by default,
assumed to have granted ACCU the right to publish and republish that material in any
medium as they see fit. An author of an article or column (not a letter or a review of
software or a book) may explicitly offer single (first serial) publication rights and thereby
retain all other rights.

Except for licences granted to 1) corporate members to copy solely for internal
distribution 2) members to copy source code for use on their own computers, no material
can be copied from Overload without written permission from the copyright holder.

April 2024
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Paul Bennett
t21@angellane.org

Matthew Dodkins
matthew.dodkins@gmail.com

Paul Floyd
pjfloyd@wanadoo.fr

Jason Hearne-McGuiness
coder@hussar.me.uk

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Christian Meyenburg
contact@meyenburg.dev

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Honey Sukesan
honey_speaks_cpp@yahoo.com

Jonathan Wakely
accu@kayari.org

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover design
Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Daniel James, of
a double row of the ‘colours’ of
the Royal Tank Regiment that can
be seen in the church of St Mary
Aldermary.

Copy deadlines
All articles intended for publication in Overload 181 should be submitted by
1st May 2024 and those for Overload 182 by 1st July 2024.

	 4	 C++ Safety, In Context
Herb Sutter discusses C++’s current security
problems and potential solutions.

	14	 To See a World in a Grain of Sand
Jez Higgins shows how to refactor code that
has grown organically, making it clearer and
more concise.

	20	 User-Defined Formatting in std::format
Spencer Collyer demonstrates how to provide
formatting for a simple user-defined class.

	27	 Judgment Day
Teedy Dee finds out what
happens if AI takes your job.

Frances BuontempoEditorial

2 | Overload | April 2024

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD using AI and
data mining. She’s written a book about machine learning: Genetic Algortithms and Machine Learning
for Programmers. She has been a programmer since the 90s, and learnt to program by reading the
manual for her Dad’s BBC model B machine. She can be contacted at frances.buontempo@gmail.com.

I Don’t Believe It!
Sometimes we are surprised by unexpected outcomes or how long
things take. Frances Buontempo confesses to how she’s lost hours
recently, but learnt from the experiences.

I recently spoke at CppOnline [CppOnline], a new
online-only conference. It was loads of fun, though it
always feels odd talking to your monitor and hoping
someone is listening. We were advised to close
unnecessary applications and browser tabs down to
ensure smooth performance of our machines while

we spoke. You may find this hard to believe, but I spent about four hours
closing browser tabs, taking up time I could have otherwise spent on an
editorial. I currently have 62 open; a grand improvement on the 99 or
more before the conference. No editorial though, sorry.

If you’re not a tab hoarder you might find spending so much time closing
tabs very strange, but I know I am not the only person who does this.
I could just bookmark pages, but I gave up on bookmarks years ago,
because links went stale and I had so many I couldn’t find anything.
If I have a tab open, it’s usually something I do want to read or listen
to at some point, and then maybe make notes or buy music or similar.
One tab I closed was for a new turntable, because our old one seemed
to have stopped working. I bit the bullet and bought the new turntable.
It’s excellent and in the process of setting it up, I discovered why the
old turntable didn’t work. The pre-amp was unplugged. The new bit of
kit does have a USB port though, so I can record all my old records one
day. Closing that tab was expensive, informative and has probably caused
another time consuming job.

Another tab was The Return of -1/12 by Numberphile on YouTube
[Numberphile]. They discussed infinite series. As many of you know, 1 +
½ + ¼ + … equals 2. We can prove this, since writing

1 ...S 2
1

4
1

8
1= + + + +

means

12 ...S2 2
1

4
1

8
1= + + + ++

which tells us when we subtract both we get 2S - S = S = 2. QED. That
doesn’t seem unreasonable. However, if we were now to try writing 1 +
10 + 100 + … we get into trouble. Writing

S=1+10+100+…

would mean we could have

10S=10+100+1000+…

so we would then be claiming 10S - S= 9S = -1. I’m not sure about you,
but this suggests the sum, S, is -1/9, which seems very unlikely. Of course,

there is a restriction on the terms of the infinite
sum. The terms need to decrease by enough

so that we can actually write the equals sign,
otherwise the sum doesn’t converge on a

number and we end up with unbelievable nonsense. Maybe you already
know about infinite series and analytic continuations [Wikipedia], which
allow us to extend the domain of functions. They are not to be confused
with algebraic continuations which allow us to continue execution using
futures and similar, and might mean I end up with more tabs open again
were I to try to explain in detail. The take away message is that reasoning
is often caveated with prerequisites; for example, a radius of convergence
for a series. Applying similar logic in different circumstances may lead
to surprises or mistakes. If something seems unbelievable, like adding
positive numbers and getting a negative answer, an assumption you are
making might be wrong.

A relevant computing example concerns benchmarking. A long time ago,
Roger Orr wrote an article entitled ‘Order notation in practice’, based
on his talk at an ACCU conference [Orr14]. He demonstrated various
factors which also influence the performance of an algorithm besides
its complexity measure. He discussed strlen, and discovered many
compilers had optimised away the call, so the theory didn’t match the
practice. Trying to build up an intuition about possible outcomes, so
you spot when something is amiss, is an important skill, so well spotted
Roger. Kevin Carpenter talked about building intuition at MeetingCpp
[Carpenter23], and discussed making educated guesses, which may or
may not be true. I couldn’t attend his talk, because it clashed with mine,
so I had a tab open to listen at some point. Fortunately, I managed to catch
his re-working of the talk live at CppOnline and even ask a question. So,
I closed another tab.

Our intuition can be wrong, but we need to start somewhere. Lots of
interesting mathematics falls out of proving a first guess is incorrect, or
finding circumstances under which the ordinary does not happen, leaving
us with something extraordinary. And wondering what-if can be fruitful.
Whether that’s imagining a square root of -1, or exploring what is possible
at compile time, new disciplines emerge. However, sometimes wondering
why we have 5 test cases for a function with 7 if/else branches leads
us to deduce we can delete the extra branches. The tests may still pass,
however there’s a chance someone forgot to add more tests when they
added more code. Mutation testing might well pick this kind of thing up.
If you’re not familiar with this, at a high level it randomly mutates the
code, dropping branches, changing + to – and similar, and reports back
if any tests still pass. Filip von Laenen wrote an article about mutation
testing for us back in 2012 [vonLaenen12] if you want to know more. He
did say at the time he wasn’t a C++ programmer so could only give details
on other languages and mention a couple of frameworks in C++ he was
aware of. Perhaps the time has come for someone to write a new article
telling us about current tools?

Tests for branches in code came to mind because Jez Higgins recently
tooted [Higgins24a] about some flappy code he refactored, which had

Frances Buontempo Editorial

April 2024 | Overload | 3

more branches than tests. Of course, a code coverage tool should pick
that up, though mutation testing may find other problems. Jez spotted this
by eye from simply looking at the code and wrote about this in a blog
[Higgins24b]. Thankfully, he has followed it up with the refactorings
to make the code better, and allowed us to include the write up in this
issue. The code he considers in his blog is unbelievable, but untidy and
confusing code does emerge over time, and you need to find time to
tidy up once in a while, otherwise the weeds grow and take over. As a
side note, we caught up with Jez at the Norfolk Developers Conference
[NorDev], which a handful of ACCU people based in the UK go to. Jez
didn’t have a ticket for the speakers’ dinner, so found an EMF gig in town
that evening instead. Unbelievable. (Possibly a niche joke if you don’t
know the band EMF, but here’s a famous song by them [EMF]: You’re
unbelievable. Apologies).

I picked the title ‘I don’t believe it’ based on an oft-repeated phrase by
a TV character, Victor Meldrew [IMDB]. A variety of slightly unlikely
things happen to him, and he usually responds with a variation of the
phrase “I don’t believe it.” I caught myself saying this a few times
recently, and treating that as a warning because the character is a slightly
sulky old man. Not something to aspire to. Now, not all unbelievable
things are negative. For example, finding a gig at the last minute is a
nice surprise. Fighting some code for a couple of hours and finding it
compiles is always a surprise too, but often leaves you wondering if it
really works. Life is so much calmer if you can take tiny baby steps to
refactor something. I hope Jez does write up his refactoring steps – maybe
we can see this as an article in Overload. Refactoring is an important
skill, and I suspect many of us still have lots to learn.

As languages change, we need to keep learning. It’s never easy, and
I don’t know about you, but I am often surprised when I come across
things I hadn’t noticed before. One of the many tabs I closed was from
CppReference, telling me all about std::piecewise_construct
[CppRef-1]. (Aside: you know I am reopening these tabs to double check
what they say as I write: place bets on my tab count when I’m done.)
The std::piecewise_construct_t is an empty class tag type and
is used to differentiate between functions taking a tuple of two elements
and those taking two arguments directly. In contrast, the next tab told
me about std::forward_as_tuple [CppRef-2]. This allows me to
construct a tuple of references to forward as an argument to a function.
CppReference gives an example using a map:
 std::map<int, std::string> m;

We can then add a value like this:
 m.emplace(std::piecewise_construct,
 std::forward_as_tuple(10),
 std::forward_as_tuple(20, 'a'));

How we ended up needing this, I can only imagine. Perhaps someone will
write in and tell me? Seriously, if you do fall across something in C++, or
any language, you hadn’t spotted before, write a page for us and send it
my way. Let’s help each other learn. There will be motivating examples
and reasons behind the piecewise construct and forward as tuple. I just
haven’t followed this up, because my tab count has now hit 68. I could
wander over to the bookcase and look it up in a book instead, but then I
definitely wouldn’t get an editorial written.

Talking of obscure parts of C++, I have been reviewing a manuscript for
a potential book, and noticed a sidebar claiming C++23 added the new
keyword really. My first instinct was, oh no, yet another thing I didn’t
notice. The writer had not explained what it did or why it was introduced,
so like a sucker I opened yet another tab or three, and went hunting. I did
find a blog post [D’Angelo22] which has the subtitle ‘A blog for April
Fool Day’, which explains a function taking an int, say f(int x),
can be called with a double, so the new keyword would allow us to say
f(really int x). As for the manuscript I am reviewing, I am tempted
to add a link to the xkcd Wikipedian Protestor holding a banner saying
“[Citation needed]” [xkcd]. Writers do get things wrong, but hopefully
our Overload review team spot any such inexactitudes. Do let us know if
we missed anything though.

Forming an intuition takes time and sometimes helps us to form correct
instincts, though we all get things wrong from time to time. Again, the
counterintuitive results in mathematics, or any discipline, often lead to
novel approaches and concepts. This is a good thing. Furthermore, if you
get to a point where you think you are so good at something you could
do it with your eyes shut, you often get a wake-up call. Again, this is a
good thing, because it should encourage you to up your game and keep
learning. Hopefully you won’t turn into Victor Meldrew, moaning and
complaining, while muttering “I don’t believe it” instead. The unfamiliar
is an opportunity. I recall a discussion about Duff’s device [Wikipedia-2]
when I had been programming for a living for a year or so and thought I
knew it all. This stopped me in my tracks. I still have to concentrate on
how the loop unrolling works and what is going on. It’s weird, confusing
and kinda beautiful all at once. I suspect most programmers enjoy slightly
surprising edge cases and unusual ways to do things, because we enjoy
thinking and learning.

What have we learnt? Citations are a good thing, because at least they may
stop you falling for an April Fools’ joke. Some things are unbelievable
because they are incorrect and based on false assumptions. Other things
are unbelievable because we just discovered a whole
new approach. Let’s check our results from time to
time, and try to avoid resting on our laurels. Surprises
can be annoying, but they can be wonderful too. And,
64 tabs, in case you wondered.

References
[Carpenter23] Kevin Carpenter, ‘Tooling Intuition’, presented at

Meeting C++ 2023, available at https://www.youtube.com/
watch?v=mmdoDfw9tIk

[CppOnline] https://cpponline.uk/
[CppRef-1] CppReference: std::piecewise_construct,

https://en.cppreference.com/w/cpp/utility/piecewise_construct
[CppRef-2] CppReference: std::forward_as_tuple

https://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
[D’Angelo22] Guiseppe D’Angelo, ‘C++23 will be really awesome’,

available at https://www.kdab.com/cpp23-will-be-really-awesome/
[EMF] ‘You’re unbelievable’ performed by EMF: https://www.youtube.

com/watch?v=g4gU74gMbp0
[Higgins24a] Jez Higgins, March 2024, https://mastodon.me.uk/@

jezhiggins/112039275413895974
[Higgins24b] Jez Higgins, ‘To see a world in a grain of sand’, blog

post published 24 February 2024 at https://www.jezuk.co.uk/
blog/2024/02/to-see-a-world-in-a-grain-of-sand.html

[IMDB] Victor Meldrew, character from One Foot in the Grave:
https://www.imdb.com/title/tt0098882/characters/nm0934014

[NorDev] Norfolk Developers Conference: https://nordevcon.com/
[Numberphile] Tony Feng ‘The Return of -1/12’, uploaded

February 2024, available athttps://www.youtube.com/
watch?v=FmLIGN8ZGdw

[Orr14] Roger Orr, ‘Order Notation in Practice’ in Overload 124,
December 2014, https://accu.org/journals/overload/22/124/orr_2043/

[vanLaenen12] Filip van Laenen ‘Mutation Testing’ in Overload 108,
April 2012, https://accu.org/journals/overload/20/108/overload108.
pdf#page=17

[Wikipedia-1] Analytic continuation: https://en.wikipedia.org/wiki/
Analytic_continuation

[Wikipedia-2] Duff’s device: https://en.wikipedia.org/wiki/Duff%27s_
device

[xkcd] https://xkcd.com/285/

https://www.youtube.com/watch?v=mmdoDfw9tIk
https://www.youtube.com/watch?v=mmdoDfw9tIk
https://cpponline.uk/
https://en.cppreference.com/w/cpp/utility/piecewise_construct
https://en.cppreference.com/w/cpp/utility/tuple/forward_as_tuple
https://www.kdab.com/cpp23-will-be-really-awesome/
https://www.youtube.com/watch?v=g4gU74gMbp0
https://www.youtube.com/watch?v=g4gU74gMbp0
https://mastodon.me.uk/@jezhiggins/112039275413895974
https://mastodon.me.uk/@jezhiggins/112039275413895974
https://www.jezuk.co.uk/blog/2024/02/to-see-a-world-in-a-grain-of-sand.html
https://www.jezuk.co.uk/blog/2024/02/to-see-a-world-in-a-grain-of-sand.html
https://www.imdb.com/title/tt0098882/characters/nm0934014
https://nordevcon.com/
https://www.youtube.com/watch?v=FmLIGN8ZGdw
https://www.youtube.com/watch?v=FmLIGN8ZGdw
https://accu.org/journals/overload/22/124/orr_2043/
https://accu.org/journals/overload/20/108/overload108.pdf#page=17
https://accu.org/journals/overload/20/108/overload108.pdf#page=17
https://en.wikipedia.org/wiki/Analytic_continuation
https://en.wikipedia.org/wiki/Analytic_continuation
https://en.wikipedia.org/wiki/Duff%27s_device
https://en.wikipedia.org/wiki/Duff%27s_device
https://xkcd.com/285/

Herb SutterFeature

4 | Overload | April 2024

C++ Safety, In Context
The safety of C++ has become a hot topic recently.
Herb Sutter discusses the language’s current problems
and potential solutions.

We must make our software infrastructure more secure against
the rise in cyberattacks (such as on power grids, hospitals, and
banks), and safer against accidental failures with the increased

use of software in life-critical systems (such as autonomous vehicles and
autonomous weapons).

The past two years in particular have seen extra attention on programming
language safety as a way to help build more-secure and -safe software; on
the real benefits of memory-safe languages (MSLs); and that C and C++
language safety needs to improve – I agree.

But there have been misconceptions, too, including focusing too narrowly
on programming language safety as our industry’s primary security and
safety problem – it isn’t. Many of the most damaging recent security
breaches happened to code written in MSLs (e.g., Log4j [CISA-1]) or
had nothing to do with programming languages (e.g., Kubernetes Secrets
stored on public GitHub repos [Kadkoda23]).

In that context, I’ll focus on C++ and try to:

	� highlight what needs attention (what C++’s problem is), and how
we can get there by building on solutions already underway;

	� address some common misconceptions (what C++’s problem isn’t),
including practical considerations of MSLs; and

	� leave a call to action for programmers using all languages.

tl;dr: I don’t want C++ to limit what I can express efficiently. I just want
C++ to let me enforce our already-well-known safety rules and best
practices by default, and make me opt out explicitly if that’s what I
want. Then I can still use fully modern C++… just nicer.

Let’s dig in.

The immediate problem “is”…
The immediate problem is that it’s Too Easy By Default™ to write
security and safety vulnerabilities in C++ that would have been caught by
stricter enforcement of known rules for type, bounds, initialization, and
lifetime language safety

In C++, we need to start with improving these four categories. These
are the main four sources of improvement provided by all the MSLs that
NIST/NSA/CISA/etc. recommend using instead of C++ [CISA-2], so
by definition addressing these four would address the immediate NIST/
NSA/CISA/etc. issues with C++. (More on this under ‘What the problem
“isn’t”…’, section (1) on page 6.)

And in all recent years including 2023 (see Figure 1’s four highlighted
rows – rows 1, 4, 7 and 12 – and Figure 2), these four constitute the bulk
of those oft-quoted 70% of CVEs (Common [Security] Vulnerabilities

Some background
Scope. To talk about C++’s current safety problems and solutions
well, I need to include the context of the broad landscape of security
and safety threats facing all software. I chair the ISO C++ standards
committee and I work for Microsoft, but these are my personal
opinions and I hope they will invite more dialog across programming
language and security communities.

Acknowledgments. Many thanks to people from the C, C++, C#,
Python, Rust, MITRE, and other language and security communities
whose feedback on drafts of this material has been invaluable,
including: Jean-François Bastien, Joe Bialek, Andrew Lilley Brinker,
Jonathan Caves, Gabriel Dos Reis, Daniel Frampton, Tanveer Gani,
Daniel Griffing, Russell Hadley, Mark Hall, Tom Honermann, Michael
Howard, Marian Luparu, Ulzii Luvsanbat, Rico Mariani, Chris McKinsey,
Bogdan Mihalcea, Roger Orr, Robert Seacord, Bjarne Stroustrup,
Mads Torgersen, Guido van Rossum, Roy Williams, Michael Wong.

Terminology. (See ISO/IEC 23643:2020 [ISO]). Software security
(or cybersecurity or similar) means making software able to protect
its assets from a malicious attacker. Software safety (or life safety
or similar) means making software free from unacceptable risk of
causing unintended harm to humans, property, or the environment.
Programming language safety means a language’s (including its
standard libraries’) static and dynamic guarantees, including but not
limited to type and memory safety, which helps us make our software
both more secure and more safe. When I say safety unqualified here,
I mean programming language safety, which benefits both software
security and software safety.

Herb Sutter Herb is a software technologist, working at the
intersection of programming language design/UX, people, and high
performance code. He is an author, chair of the ISO C++ committee,
and a software architect at Microsoft. Figure 1

Herb Sutter Feature

April 2024 | Overload | 5

and Exposures) [Wikipedia] related to language memory unsafety.
(However, that “70% of language memory unsafety CVEs” is misleading;
for example, in figure 1, most of MITRE’s 2023 “most dangerous
weaknesses” [MITRE-1] did not involve language safety and so are
outside that denominator. More on this under ‘What the problem
“isn’t”…’, section (3) on page 7.)

The C++ guidance literature already broadly agrees on safety rules
in those categories. It’s true that there is some conflicting guidance
literature, particularly in environments that ban exceptions or run-time
type support and so use some alternative rules. But there is consensus on
core safety rules, such as banning unsafe casts, uninitialized variables,
and out-of-bounds accesses (see ‘Appendix’, starting on page 9).

C++ should provide a way to enforce them by default, and require
explicit opt-out where needed. We can and do write ‘good’ code and
secure applications in C++. But it’s easy even for experienced C++
developers to accidentally write ‘bad’ code and security vulnerabilities
that C++ silently accepts, and that would be rejected as safety violations
in other languages. We need the standard language to help more by
enforcing the known best practices rather than relying on additional
nonstandard tools to recommend them.

These are not the only four aspects of language safety we should
address. They are just the immediate ones, a set of clear low-hanging
fruit where there is both a clear need and clear way to improve (see
‘Appendix’, starting on page 9).

Note: And safety categories are of course interrelated. For example,
full type safety (that an accessed object is a valid object of its type)

requires eliminating out-of-bounds accesses to unallocated objects. But,
conversely, full bounds safety (that accessed memory is inside allocated
bounds) similarly requires eliminating type-unsafe downcasts to larger
derived-type objects that would appear to extend beyond the actual
allocation.

Software safety is also important. Cyberattacks are urgent, so it’s
natural that recent discussions have focused more on security and CVEs
first. But as we specify and evolve default language safety rules, we must
also include our stakeholders who care deeply about functional safety
issues that are not reflected in the major CVE buckets but are just as
harmful to life and property when left in code. Programming language
safety helps both software security and software safety, and we should
start somewhere, so let’s start (but not end) with the known pain points
of security CVEs.

In those four buckets, a 10–50× improvement
(90–98% reduction) is sufficient
If there were 90–98% fewer C++ type/bounds/initialization/lifetime
vulnerabilities we wouldn’t be having this discussion. All languages
have CVEs, C++ just has more (and C still more); so far in 2024, Rust
has 6 CVEs [Rust-1], and C and C++ combined have 61 CVEs [C/C++].
So zero isn’t the goal; something like a 90% reduction is necessary, and
a 98% reduction is sufficient, to achieve security parity with the levels
of language safety provided by MSLs… and has the strong benefit that I
believe it can be achieved with perfect backward link compatibility (i.e.,
without changing C++’s object model, and its lifetime model which does
not depend on universal tracing garbage collection and is not limited to
tree-based data structures) which is essential to our being able to adopt
the improvements in existing C++ projects as easily as we can adopt other
new editions of C++. After that, we can pursue additional improvements
to other buckets, such as thread safety and overflow safety.

Aiming for 100%, or zero CVEs in those four buckets, would be a
mistake:

	� 100% is not necessary because none of the MSLs we’re being told
to use instead are there either. More on this under ‘What the problem
“isn’t”…’, section (2) on page 7.

	� 100% is not sufficient because many cyberattacks exploit security
weaknesses other than memory safety.

And getting that last 2% would be too costly, because it would require
giving up on link compatibility and seamless interoperability (or ‘interop’)
with today’s C++ code. For example, Rust’s object model and borrow
checker deliver great guarantees, but require fundamental incompatibility
with C++ and so make interop hard beyond the usual C interop level.
One reason is that Rust’s safe language pointers are limited to expressing
tree-shaped data structures that have no cycles; that unique ownership
is essential to having great language-enforced aliasing guarantees, but
it also requires programmers to use ‘something else’ for anything more
complex than a tree (e.g., using Rc, or using integer indexes as ersatz

Figure 2

As we specify and evolve default language
safety rules, we must also include our
stakeholders who care deeply about

functional safety issues

Herb SutterFeature

6 | Overload | April 2024

pointers); it’s not just about linked lists [Rust-2] but those are a simple
well-known illustrative example.

If we can get a 98% improvement and still have fully compatible interop
with existing C++, that would be a holy grail worth serious investment.

A 98% reduction
A 98% reduction across those four categories is achievable in new/
updated C++ code, and partially in existing code

Since at least 2014, Bjarne Stroustrup has advocated addressing safety in
C++ via a ‘subset of a superset’: That is, first ‘superset’ to add essential
items not available in C++14, then ‘subset’ to exclude the unsafe
constructs that now all have replacements.

As of C++20, I believe we have achieved the ‘superset’, notably by
standardizing span, string_view, concepts, and bounds-aware
ranges. We may still want a handful more features, such as a null-
terminated zstring_view, but the major additions already exist.

Now we should ‘subset’: Enable C++ programmers to enforce best
practices around type and memory safety, by default, in new code
and code they can update to confirm to the subset. Enabling safety
rules by default would not limit the language’s power but would require
explicit opt-outs for non-standard practices, thereby reducing inadvertent
risks. And it could be evolved over time, which is important because C++
is a living language and adversaries will keep changing their attacks.

ISO C++ evolution is already pursuing Safety Profiles for C++
[Stroustrup23]. The suggestions in the Appendix are refinements to
that, to demonstrate specific enforcements and to try to maximize their
adoptability and useful impact. For example, everyone agrees that many
safety bugs will require code changes to fix. However, how many safety
bugs could be fixed without manual source code changes, so that just
recompiling existing code with safety profiles enabled delivers some
safety benefits? For example, we could by default inject a call-site bounds
check 0 <= b < a.size() on every subscript expression a[b] when
a.size() exists and a is a contiguous container, without requiring any
source code changes and without upgrading to a new internally bounds-
checked container library; that checking would Just Work out of the
box with every contiguous C++ standard container, span, string_
view, and third-party custom container with no library updates needed
(including therefore also no concern about ABI breakage).

Rules like those summarized in the Appendix would have prevented
(at compile time, test time or run time) most of the past CVEs I’ve
reviewed in the type, bounds, and initialization categories, and
would have prevented many of the lifetime CVEs. I estimate a roughly
98% reduction in those categories is achievable in a well-defined and
standardized way for C++ to enable safety rules by default while still
retaining perfect backward link compatibility. See the Appendix on page
9 for a more detailed description.

We can and should emphasize adoptability and benefit also for C++
code that cannot easily be changed. Any code change to conform to

safety rules carries a cost; worse, not all code can be easily updated to
conform to safety rules (e.g., it’s old and not understood, it belongs to a
third party that won’t allow updates, it belongs to a shared project that
won’t take upstream changes and can’t easily be forked). That’s why above
(and in the Appendix) I stress that C++ should seriously try to deliver as
many of the safety improvements as practical without requiring manual
source code changes, notably by automatically making existing code
do the right thing when that is clear (e.g., the bounds checks mentioned
above, or emitting static_cast pointer downcasts as effectively
dynamic_cast without requiring the code to be changed), and by
offering automated fixits that the programmer can choose to apply (e.g.,
to change the source for static_cast pointer downcasts to actually say
dynamic_cast). Even though in many cases a programmer will need
to thoughtfully update code to replace inherently unsafe constructs that
can’t be automatically fixed, I believe for some percentage of cases we
can deliver safety improvements by just recompiling existing code in the
safety-rules-by-default mode, and we should try because it’s essential to
maximizing safety profiles’ adoptability and impact.

What the problem “isn’t”:
Some common misconceptions
(1) The problem “isn’t” defining what we mean by “C++’s most
urgent language safety problem.” We know the four kinds of
safety that most urgently need to be improved: type, bounds,
initialization, and lifetime safety.
We know these four are the low-hanging fruit (see ‘The immediate
problem “is”…’ on page 4). It’s true that these are just four of perhaps
two dozen kinds of ‘safety’ categories, including ones like safe integer
arithmetic. But:

	� Most of the others are either much smaller sources of problems, or
are primarily important because they contribute to those four main
categories. For example, the integer overflows we care most about
are indexes and sizes, which fall under bounds safety.

	� Most MSLs don’t address making these safe by default either,
typically due to the checking cost. But all languages (including
C++) usually have libraries and tools to address them. For example,
Microsoft ships a SafeInt library for C++ to handle integer overflows
[Microsoft-1], which is opt-in. C# has a checked arithmetic language
feature [Microsoft-2] to handle integer overflows, which is opt-in.
Python’s built-in integers are overflow-safe by default because they
automatically expand; however, the popular NumPy fixed-size
integer types do not check for overflow by default and require using
checked functions, which is opt-in.

Thread safety is obviously important too, and I’m not ignoring it. I’m
just pointing out that it is not one of the top target buckets: Most of the
MSLs that NIST/NSA/CISA/etc. recommend over C++ (except uniquely
Rust, and to a lesser extent Python) address thread safety impact on user
data corruption about as well as C++. The main improvement MSLs
give is that a program data race will not corrupt the language’s own

C++ should seriously try to deliver as
many of the safety improvements as
practical without requiring manual
source code changes

Herb Sutter Feature

April 2024 | Overload | 7

virtual machine (whereas, in C++, a data race is currently all-bets-are-off
undefined behavior). Some languages do give some additional protection,
such as that Python guarantees two racing threads cannot see a torn write
of an integer and reduces other possible interleavings because of the
global interpreter lock (GIL).

(2) The problem “isn’t” that C++ code
is not formally provably safe
Yes, C++ code makes it too easy to write silently-unsafe code by default
(see ‘The immediate problem “is”…’ on page 4).

But I’ve seen some people claim we need to require languages to be
formally provably safe, and that would be a bridge too far. Much to the
chagrin of CS theorists, mainstream commercial programming languages
aren’t formally provably safe. Consider some examples:

	� None of the widely-used languages we view as MSLs (except
uniquely Rust) claim to be thread-safe and race-free by construction,
as covered in the previous section. Yet we still call C#, Go,
Java, Python, and similar languages “safe”. Therefore, formally
guaranteeing thread safety properties can’t be a requirement to be
considered a sufficiently safe language.

	� That’s because a language’s choice of safety guarantees is a tradeoff:
For example, in Rust, safe code uses tree-based dynamic data
structures only. This feature lets Rust deliver stronger thread safety
guarantees than other safe languages, because it can more easily
reason about and control aliasing. However, this same feature also
requires Rust programs to use unsafe code more often to represent
common data structures that do not require unsafe code to represent
in other MSLs such as C# or Java, and so 30% to 50% of Rust crates
use unsafe code [Wang22], compared for example to 25% of Java
libraries [Mastrangelo15].

	� C#, Java, and other MSLs still have use-before-initialized and
use-after-destroyed type safety problems too: They guarantee not
accessing memory outside its allocated lifetime, but object lifetime
is a subset of memory lifetime (objects are constructed after, and
destroyed/disposed before, the raw memory is allocated and
deallocated; before construction and after dispose, the memory is
allocated but contains “raw bits” that likely don’t represent a valid
object of its type). If you doubt, please run (don’t walk) and ask
ChatGPT about Java and C# problems with: access-unconstructed-
object bugs (e.g., in those languages, any virtual call in a constructor
is “deep” and executes in a derived object before the derived
object’s state is initialized); use-after-dispose bugs; “resurrection”
bugs; and why those languages tell people never to use their
finalizers. Yet these are great languages and we rightly consider
them safe languages. Therefore, formally guaranteeing no-use-
before-initialized and no-use-after-dispose can’t be a requirement
to be considered a sufficiently safe language.

	� Rust, Go, and other languages support sanitizers too [Rust-3],
including ThreadSanitizer and undefined behavior sanitizers

[Rust-4], and related tools like fuzzers. Sanitizers are known to be
still needed as a complement to language safety, and not only for
when programmers use ‘unsafe’ code; furthermore, they go beyond
finding memory safety issues. The uses of Rust at scale that I know
of also enforce use of sanitizers. So using sanitizers can’t be an
indicator that a language is unsafe — we should use the supported
sanitizers for code written in any language.

Note: “Use your sanitizers” does not mean to use all of them all
the time. Some sanitizers conflict with each other, so you can only
use those one at a time. Some sanitizers are expensive, so they
should only be run periodically. Some sanitizers should not be run in
production, including because their presence can create new security
vulnerabilities.

(3) The problem “isn’t” that moving the world’s C
and C++ code to memory-safe languages (MSLs)
would eliminate 70% of security vulnerabilities
MSLs are wonderful! They just aren’t a silver bullet.

An oft-quoted number [Gaynor20] is that “70%” of programming
language-caused CVEs (reported security vulnerabilities) in C and
C++ code are due to language safety problems. That number is true and
repeatable, but has been badly misinterpreted in the press: No security
expert I know believes that if we could wave a magic wand and instantly
transform all the world’s code to MSLs, that we’d have 70% fewer CVEs,
data breaches, and ransomware attacks. (For example, see this February
2024 example analysis paper [Hanley24].)

Consider some reasons.

	� That 70% is of the subset of security CVEs that can be addressed by
programming language safety. See figure 1 again: Most of 2023’s
top 10 “most dangerous software weaknesses” were not related to
memory safety. Many of 2023’s largest data breaches and other
cyberattacks and cybercrime had nothing to do with programming
languages at all. In 2023, attackers reduced their use of malware
because software is getting hardened and endpoint protection is
effective (CRN) [Alspach23], and attackers go after the slowest
animal in the herd. Most of the issues listed in NISTIR-8397
[Black21] affect all languages equally, as they go beyond memory
safety (e.g., Log4j [CISA-1]) or even programming languages (e.g.,
automated testing, hardcoded secrets, enabling OS protections,
string/SQL injections, software bills of materials). For more detail,
see the Microsoft response to NISTIR-8397 [Microsoft-3], for
which I was the editor. (More on this in the ‘Call to Action’, below.)

	� MSLs get CVEs too, though definitely fewer (again, e.g., Log4j).
For example, see MITRE list of Rust CVEs, including six so far in
2024 [MITRE-2]. And all programs use unsafe code; for example,
see the ‘Conclusions’ section of Firouzi et al.’s study of uses of
C#’s unsafe on StackOverflow [Firouzi20] and prevalence of
vulnerabilities, and that all programs eventually call trusted native
libraries or operating system code.

Many of 2023’s largest data breaches and other
cyberattacks and cybercrime had nothing to do

with programming languages at all

Herb SutterFeature

8 | Overload | April 2024

	� Saying the quiet part out loud: CVEs are known to be an imprecise
metric. We use it because it’s the metric we have, at least for security
vulnerabilities, but we should use it with care. This may surprise
you, as it did me, because we hear a lot about CVEs. But whenever
I’ve suggested improvements for C++ and measuring “success” via
a reduction in CVEs (including in this essay), security experts insist
to me that CVEs aren’t a great metric to use… including the same
experts who had previously quoted the 70% CVE number to me. —
Reasons why CVEs aren’t a great metric include that CVEs are self-
reported and often self-selected, and not all are equally exploitable;
but there can be pressure to report a bug as a vulnerability even if
there’s no reasonable exploit because of the benefits of getting one’s
name on a CVE. In August 2023, the Python Software Foundation
became a CVE Numbering Authority (CNA) for Python and pip
distributions [MITRE-3], and now has more control over Python
and pip CVEs. The C++ community has not done so.

	� CVEs target only software security vulnerabilities (cyberattacks
and intrusions), and we also need to consider software safety (life-
critical systems and unintended harm to humans).

(4) The problem “isn’t” that C++ programmers aren’t trying hard
enough/using the existing tools well enough. The challenge is
making it easier to enable them.
Today, the mitigations and tools we do have for C++ code are an uneven
mix, and all are off-by-default:

	� Kind. They are a mix of static tools, dynamic tools, compiler
switches, libraries, and language features.

	� Acquisition. They are acquired in a mix of ways: in-the-box in the
C++ compiler, optional downloads, third-party products, and some
you need to google around to discover.

	� Accuracy. Existing rulesets mix rules with low and high false
positives. The latter are effectively unadoptable by programmers,
and their presence makes it difficult to ‘just adopt this whole set of
rules’.

	� Determinism. Some rules, such as ones that rely on interprocedural
analysis of full call trees, are inherently nondeterministic (because
an implementation gives up when fully evaluating a case exceeds
the space and time available; a.k.a. ‘best effort’ analysis). This
means that two implementations of the identical rule can give
different answers for identical code (and therefore nondeterministic
rules are also not portable, see below).

	� Efficiency. Existing rulesets mix rules with low and high (and
sometimes impossible) cost to diagnose. The rules that are not
efficient enough to implement in the compiler will always be
relegated to optional standalone tools.

	� Portability. Not all rules are supported by all vendors. ‘Conforms
to ISO/IEC 14882 (Standard C++)’ is the only thing every C++ tool
vendor supports portably.

To address all these points, I think we need the C++ standard to specify
a mode of well-agreed and low-or-zero-false-positive deterministic rules
that are sufficiently low-cost to implement in-the-box at build time.

Call(s) to action
As an industry generally, we must make a major improvement in
programming language memory safety – and we will.

CVEs are known to be an imprecise metric.
We use it because it’s the metric we have,
at least for security vulnerabilities, but we
should use it with care

Herb Sutter Feature

April 2024 | Overload | 9

In C++ specifically, we should first target the four key safety categories
that are our perennial empirical attack points (type, bounds, initialization,
and lifetime safety), and drive vulnerabilities in these four areas down to
the noise for new/updated C++ code – and we can.

But we must also recognize that programming language safety is not a
silver bullet to achieve cybersecurity and software safety. It’s one battle
(not even the biggest) in a long war: Whenever we harden one part of
our systems and make that more expensive to attack, attackers always
switch to the next slowest animal in the herd. Many of 2023’s worst
data breaches did not involve malware, but were caused by inadequately
stored credentials (e.g., Kubernetes Secrets on public GitHub repos
[Kadkoda23]), misconfigured servers (e.g., DarkBeam [Okunytė23a],
Kid Security [Okunytė23b]), lack of testing, supply chain vulnerabilities,
social engineering, and other problems that are independent of
programming languages. Apple’s white paper about 2023’s rise in
cybercrime emphasizes improving the handling, not of program code, but
of the data [Madnick23]:

it’s imperative that organizations consider limiting the amount of
personal data they store in readable format while making a greater
effort to protect the sensitive consumer data that they do store
[including by using] end-to-end [E2E] encryption.

No matter what programming language we use, security hygiene is
essential:

	� Do use your language’s static analyzers and sanitizers. Never
pretend using static analyzers and sanitizers is unnecessary “because
I’m using a safe language.” If you’re using C++, Go, or Rust, then
use those languages’ supported analyzers and sanitizers. If you’re
a manager, don’t allow your product to be shipped without using
these tools. (Again: This doesn’t mean running all sanitizers all the
time; some sanitizers conflict and so can’t be used at the same time,
some are expensive and so should be used periodically, and some
should be run only in testing and never in production including
because their presence can create new security vulnerabilities.)

	� Do keep all your tools updated. Regular patching is not just for iOS
and Windows, but also for your compilers, libraries, and IDEs.

	� Do secure your software supply chain. Do use package management
for library dependencies. Do track a software bill of materials for
your projects.

	� Don’t store secrets in code. (Or, for goodness’ sake, on GitHub!)

	� Do configure your servers correctly, especially public Internet-
facing ones. (Turn authentication on! Change the default password!)

	� Do keep non-public data encrypted, both when at rest (on disk) and
when in motion (ideally E2E… and oppose proposed legislation
that tries to neuter E2E encryption with ‘backdoors only good guys
will use’ because there’s no such thing).

	� Do keep investing long-term in keeping your threat modeling
current, so that you can stay adaptive as your adversaries keep
trying different attack methods.

We need to improve software security and software safety across the
industry, especially by improving programming language safety in C and
C++, and in C++ a 98% improvement in the four most common problem
areas is achievable in the medium term. But if we focus on programming
language safety alone, we may find ourselves fighting yesterday’s war
and missing larger past and future security dangers that affect software
written in any language.

Sadly, there are too many bad actors. For the foreseeable future, our
software and data will continue to be under attack, written in any language
and stored anywhere. But we can defend our programs and systems, and
we will.

Be well, and may we all keep working to have a safer and more secure
2024.

Appendix: Illustrating why a 98%
reduction is feasible
This Appendix exists to support why I think a 98% reduction in type/
bounds/initialization/lifetime CVEs in C++ code is believable. This is not
a formal proposal, but an overview of concrete ways to achieve such an
improvement it in new and updatable code, and ways to even get some
fraction of that improvement in existing code we cannot update but can
recompile. These notes are aligned with the proposals currently being
pursued in the ISO C++ safety subgroup, and if they pan out as I expect in
ongoing discussions and experiments, then I intend to write further details
about them in a future paper.

There are runtime and code size overheads to some of the suggestions
in all four buckets, notably checking bounds and casts. But there is no
reason to think those overheads need to be inherently worse in C++ than
other languages, and we can make them on by default and still provide a
way to opt out to regain full performance where needed.

Note: For example, bounds checking can cause a major impact on
some hot loops, when using a compiler whose optimizer does not hoist
bounds checks; not only can the loops incur redundant checking, but
they also may not get other optimizations such as not being vectorized.
This is why making bounds-checking on by default is good, but all
performance-oriented languages also need to provide a way to say
“trust me” and explicitly opt out of bounds checking tactically where
needed.

This appendix refers to the ‘profiles’ in the C++ Core Guidelines safety
profiles [CPP], a set of about two dozen enforceable rules for type and
memory safety of which I am a co-author. I refer to them only as examples,
to show ‘what’ already-known rules exist that we can enforce, to support
that my claimed improvement is possible. They are broadly consistent
with rules in other sources, such as: The C++ Programming Language’s
advice on type safety [Stroustrup13]; C++ Coding Standards’ section on

if we focus on programming language safety alone,
we may find ourselves fighting yesterday’s war and

missing larger past and future security dangers
that affect software written in any language

Herb SutterFeature

10 | Overload | April 2024

type safety [Sutter04]; the Joint Strike Fighter Coding Standards [LM05];
High Integrity C++ [Perforce13]; the C++ Core Guidelines section on
safety profiles (a small enforceable set of safety rules) [CPP-1]; and the
recently-released MISRA C++:2023 [MISRA].

The best way for ‘how’ to let the programmer control enabling those rules
(e.g., via source code annotations, compiler switches, and/or something
else) is an orthogonal UX issue that is now being actively discussed in the
C++ standards committee and community.

Type safety
Enforce the Pro.Type safety profile by default [CPP-2]. That includes
either banning or checking all unsafe casts and conversions (e.g.,
static_cast pointer downcasts, reinterpret_cast), including
implicit unsafe type punning via C union and vararg.

However, these rules haven’t yet been systematically enforced in
the industry. For example, in recent years I’ve painfully observed a
significant set of type safety-caused security vulnerabilities whose root
cause was that code used static_cast instead of dynamic_cast for
pointer downcasts, and ‘C++’ gets blamed even when the actual problem
was failure to follow the well-publicized guidance to use the language’s
existing safe recommended feature. It’s time for a standardized C++
mode that enforces these rules by default.

Note: On some platforms and for some applications, dynamic_cast
has problematic space and time overheads that hinder its use. Many
implementations bundle dynamic_cast indivisibly with all C++ run-
time typing (RTTI) features (e.g., typeid), and so require storing
full potentially-heavyweight RTTI data even though dynamic_cast
needs only a small subset. Some implementations also use needlessly
inefficient algorithms for dynamic_cast itself. So the standard must
encourage (and, if possible, enforce for conformance, such as by
setting algorithmic complexity requirements) that dynamic_cast
implementations be more efficient and decoupled from other RTTI
overheads, so that programmers do not have a legitimate performance
reason not to use the safe feature. That decoupling could require
an ABI break; if that is unacceptable, the standard must provide an
alternative lightweight facility such as a fast_dynamic_cast that
is separate from (other) RTTI and performs the dynamic cast with
minimum space and time cost.

Bounds safety
Enforce the Pro.Bounds safety profile [CPP-3] by default, and
guarantee bounds checking. We should additionally guarantee that:

	� Pointer arithmetic is banned (use std::span instead); this enforces
that a pointer refers to a single object. Array-to-pointer decay, if
allowed, will point to only the first object in the array.

	� Only bounds-checked iterator arithmetic is allowed (also, prefer
ranges instead).

	� All subscript operations are bounds-checked at the call site, by
having the compiler inject an automatic subscript bounds check

on every expression of the form a[b], where a is a contiguous
sequence with a size/ssize function and b is an integral index.
When a violation happens, the action taken can be customized
using a global bounds violation handler; some programs will want
to terminate (the default), others will want to log-and-continue,
throw an exception, integrate with a project-specific critical fault
infrastructure.

Importantly, the latter explicitly avoids implementing bounds-checking
intrusively for each individual container/range/view type. Implementing
bounds-checking non-intrusively and automatically at the call site makes
full bounds checking available for every existing standard and user-
written container/range/view type out of the box: Every subscript into
a vector, span, deque, or similar existing type in third-party and
company-internal libraries would be usable in checked mode without any
need for a library upgrade.

It’s important to add automatic call-site checking now before libraries
continue adding more subscript bounds checking in each library, so
that we avoid duplicating checks at the call site and in the callee. As a
counterexample, C# took many years to get rid of duplicate caller-and-
callee checking, but succeeded and .NET Core addresses this better now;
we can avoid most of that duplicate-check-elimination optimization work
by offering automatic call-site checking sooner.

Language constructs like the range-for loop are already safe by
construction and need no checks.

In cases where bounds checking incurs a performance impact, code can
still explicitly opt out of the bounds check in just those paths to retain
full performance and still have full bounds checking in the rest of the
application.

Initialization safety
Enforce initialization-before-use by default. That’s pretty easy to
statically guarantee, except for some cases of the unused parts of lazily
constructed array/vector storage. Two simple alternatives we could
enforce are (either is sufficient):

	� Initialize-at-declaration as required by Pro.Type [CPP-2] and ES.20
[CPP-4]; and possibly zero-initialize data by default as currently
proposed in P2723 [Bastien23]. These two are good but with
some drawbacks; both have some performance costs for cases that
require ‘dummy’ writes that are never used but hard for optimizers
to eliminate, and the latter has some correctness costs because it
‘fixing’ some uninitialized cases where zero is a valid value but
masks others for which zero is not a valid initializer and so the
behavior is still wrong, but because a zero has been jammed in it’s
harder for sanitizers to detect.

	� Guaranteed initialization-before-use, similar to what Ada and C#
successfully do. This is still simple to use, but can be more efficient
because it avoids the need for artificial ‘dummy’ writes, and can be
more flexible because it allows alternative constructors to be used

In cases where bounds checking incurs
a performance impact, code can still
explicitly opt out of the bounds check in
just those paths

Herb Sutter Feature

April 2024 | Overload | 11

for the same object on different paths. For details, see: example
diagnostic; definite-first-use rules [Sutter22].

Lifetime safety
Enforce the Pro.Lifetime safety profile [CPP-5] by default, ban
manual allocation by default, and guarantee null checking. The
Lifetime profile is a static analysis that diagnoses many common sources
of dangling and use-after-free, including for iterators and views (not just
raw pointers and references), in a way that is efficient enough to run
during compilation. It can be used as a basis to iterate on and further
improve. And we should additionally guarantee that:

	� All manual memory management is banned by default (new,
delete, malloc, and free). Corollary: ‘Owning’ raw pointers
are banned by default, since they require delete or free. Use
RAII instead, such as by calling make_unique or make_shared.

	� All dereferences are null-checked. The compiler injects an automatic
check on every expression of the form *p or p-> where p can
be compared to nullptr to null-check all dereferences at the call
site (similar to bounds checks above). When a violation happens,
the action taken can be customized using a global null violation
handler; some programs will want to terminate (the default), others
will want to log-and-continue, throw an exception, integrate with a
project-specific critical fault infrastructure.

Note: The compiler could choose to not emit this check (and not
perform optimizations that benefit from the check) when targeting
platforms that already trap null dereferences, such as platforms that
mark low memory pages as unaddressable. Some C++ features, such
as delete, have always done call-site null checking.

Reducing undefined behavior and semantic bugs
Tactically, reduce some undefined behavior (UB) and other semantic
bugs (pitfalls), for cases where we can automatically diagnose or
even fix well-known antipatterns. Not all UB is bad; any performance-
oriented language needs some. But we know there is low-hanging fruit
where the programmer’s intent is clear and any UB or pitfall is a definite
bug, so we can do one of two things:

(A – Good) Make the pitfall a diagnosed error, with zero false positives
– every violation is a real bug. Two examples mentioned above are to
automatically check a[b] to be in bounds and *p and p-> to be non-null.

(B – Ideal) Make the code actually do what the programmer
intended, with zero false positives – i.e., fix it by just recompiling. An
example, discussed at the most recent ISO C++ November 2023 meeting
[Wakely23], is to default to an implicit return *this; when the
programmer writes an assignment operator for their type C that returns
a C& (note: the same type), but forgets to write a return statement.
Today, that is undefined behavior. Yet it’s clear that the programmer
meant return *this; –nothing else can be valid. If we make return
*this; be the default, all the existing code that accidentally omits the
return is not just ‘no longer UB’, but is guaranteed to do the right and
intended thing.

An example of both (A) and (B) is to support chained comparisons
[Revzin18], that makes the mathematically valid chains work correctly
and rejects the mathematically invalid ones at compile time. Real-world
code does write such chains by accident [SO-1] [SO-2] [SO-3] [SO-4]
[SO-5] [SO-6] [SO-7] [SO-8] [SO-9] [SO-10].

	� For (A): We can reject all mathematically invalid chains like
a != b > c at compile time. This automatically diagnoses bugs
in existing code that tries to do such nonsense chains, with perfect
accuracy.

	� For (B): We can fix all existing code that writes would-be-correct
chains like 0 <= index < max. Today those silently compile
but are completely wrong, and we can make them mean the right
thing. This automatically fixes those bugs, just by recompiling the
existing code.

These examples are not exhaustive. We should review the list of UB in
the standard for a more thorough list of cases we can automatically fix
(ideally) or diagnose.

Summarizing: Better defaults for C++
C++ could enable turning safety rules on by default that would make
code:

	� fully type-safe,

	� fully bounds-safe,

	� fully initialization-safe,

and for lifetime safety, which is the hardest of the four, and where I would
expect the remaining vulnerabilities in these categories would mostly lie:

	� fully null-safe,

	� fully free of owning raw pointers,

	� with lifetime-safety static analysis that diagnoses most common
pointer/iterator/view lifetime errors;

and, finally:

	� with less undefined behavior including by automatically fixing
existing bugs just by recompiling code with safety enabled by
default.

All of this is efficiently implementable and has been implemented.
Most of the Lifetime rules have been implemented in Visual Studio and
CLion, and I’m prototyping a proof-of-concept mode of C++ that includes
all of the other above language safeties on-by-default in my cppfront
compiler [Sutter], as well as other safety improvements including an
implementation of the current proposal for ISO C++ contracts. I haven’t
yet used the prototype at scale. However, I can report that the first major
change request I received from early users was to change the bounds
checking and null checking from opt-in (off by default) to opt-out (on
by default).

Note: Please don’t be distracted by that cppfront uses an experimental
alternate syntax for C++. That’s because I’m additionally trying to
see if we can reach a second orthogonal goal: to make the C++
language itself simpler, and eliminate the need to teach ~90% of the
C++ guidance literature related to language complexity and quirks.
This essay’s language safety improvements are orthogonal to that,
however, and can be applied equally to today’s C++ syntax.

Solutions need to distinguish between (A) ‘solution for new-or-
updatable code’ and (B) ‘solution for existing code’
(A) A ‘solution for new-or-updatable code’ means that to help existing
code we have to change/rewrite our code. This includes not only ‘(re)
write in C#/Rust/Go/Python/…’ but also ‘annotate your code with SAL’
[Microsoft-4] or ‘change your code to use std::span’.

One of the costs of (A) is that anytime we write/change code to fix bugs,
we also introduce new bugs; change is never free. We need to recognize
that changing our code to use std::span often means non-trivially
rewriting parts of it which can also create other bugs. Even annotating
our code means writing annotations that can have bugs (this is a common
experience in the annotation languages I’ve seen used at scale, such as
SAL). All these are significant adoption barriers.

Actually switching to another language means losing a mature ecosystem.
C++ is the well-trod path: It’s taught, people know it, the tools exist,
interop works, and current regulations have an industry around C++
(such as for functional safety). It takes another decade at least for another
language to become the well-trod path, whereas a better C++, and its
benefits to the industry broadly, can be here much sooner.

(B) A ‘solution for existing code’ emphasizes the adoptability benefits
of not having to make manual code changes. It includes anything that
makes existing code more secure with ‘just a recompile’ (i.e., no binary/
ABI/link issues; e.g., ASAN, compiler switches to enable stack checks,

Herb SutterFeature

12 | Overload | April 2024

static analysis that produces only true positives, or a reliable automated
code modernizer).

We will still need (B) no matter how successful new languages or new
C++ types/annotations are. And (B) has the strong benefit that it is easier
to adopt. Getting to a 98% reduction in CVEs will require both (A) and
(B), but if we can deliver even a 30% reduction using just (B) that will be
a major benefit for adoption and effective impact in large existing code
bases that are hard to change.

Consider how the ideas earlier in this appendix map onto (A) and (B):

In C++,
by default,
enforce…

(A) Solution for
new/updated code
(can require code
changes – no link/
binary changes)

(B) Solution for
existing code (requires
recompile only – no
manual code changes,
no link/binary changes)

Type safety Ban all inherently
unsafe casts and
conversions

Make unsafe casts and
conversions with a safe
alternative do the safe thing

Bounds
safety

Ban pointer arithmetic

Ban unchecked
iterator arithmetic

Check in-bounds for all
allowed iterator arithmetic

Check in-bounds for all
subscript operations

Initialization
safety

Require all variables
to be initialized (either
at declaration, or
before first use)

Lifetime
safety

Statically diagnose
many common
pointer/iterator lifetime
error cases

Check not-null for all pointer
dereferences

Less
undefined
behavior

Statically diagnose
known UB/bug cases,
to error on actual bugs
in existing code with
just a recompile and
zero false positives:

	� Ban mathematically
invalid comparison
chains

	� (add additional
cases from UB
Annex review)

Automatically fix known UB/
bug cases, to make current
bugs in existing code be
actually correct with just a
recompile and zero false
positives:

	� Define mathematically
valid comparison chains

	� Default return *this;
for C assignment
operators that return C&

	� (add additional cases from
UB Annex review)

By prioritizing adoptability, we can get at least some of the safety benefits
just by recompiling existing code, and make the total improvement easier
to deploy even when code updates are required. I think that makes it a
valuable strategy to pursue.

Finally, please see again the main article’s conclusion: ‘Call(s) to action’
on page 8. n

References
[Alspach23] Kyle Alspach ‘10 Major Cyberattacks And Data Breaches

In 2023, published 13 December 2023 by CRN at https://www.
crn.com/news/security/10-major-cyberattacks-and-data-breaches-
in-2023

[Bastien23] JF Bastien, ‘P2723R1: Zero-initialize objects of automatic
storage duration’, published 15 January2023, available at https://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2723r1.html

[Black21] Paul E. Black, Barbara Guttman and Vadim Okum,
‘Guidelines on Minimum Standards for Developer Verificiation
of Software’ (NISTIR 8397) available at https://nvlpubs.nist.gov/
nistpubs/ir/2021/NIST.IR.8397.pdf

[C/C++] C and C++ CVEs: https://cve.mitre.org/cgi-bin/cvekey.
cgi?keyword=c++

[CISA-1] ‘Apache Log4j Vulnerability Guidance’, published April 2022
by America’s Cyber Defense Agency, April 2022, available at

https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-
guidance

[CISA-2] ‘The Case for Memory Safe Roadmaps’, published December
2023 jointly by US, Australian, Canadian, New Zealand and
UK cyper security centres/agencies, available at https://media.
defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-
MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF

[CPP-1] Pro: Profiles in C++ Core Guidelines, available at
https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#pro-profiles

[CPP-2] Pro.safety: Type-safety profile in C++ Core Guidelines,
available at https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#SS-type

[CPP-3] Pro.bounds: Bounds safetyprofile in C++ Core Guidelines,
available at https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#probounds-bounds-safety-profile

[CPP-4] ES.20: Always initialize an object in C++ Core Guidelines,
available at https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#Res-always

[CPP-5] Pro.safety: Type-safety profile in C++ Core Guidelines,
available at https://isocpp.github.io/CppCoreGuidelines/
CppCoreGuidelines#SS-lifetime

[Firouzi20] Ehsan Firouzi, Ashkan Sami, Foutse Khomh and Gias
Uddin ‘On the use of C# Unsafe Code Context: An Empirical Study
of Stack Overflow’ from the Proceedings of the 14th ACM / IEEE
International Symposium on Empirical Software Engineering and
Measurement (ESEM), available at https://www.researchgate.net/
publication/344892072_On_the_use_of_C_Unsafe_Code_Context_
An_Empirical_Study_of_Stack_Overflow

[Gaynor20] Alex Gaynor ‘What science can tell us about C and C++’s
security’, published 27 May 2020, available at https://alexgaynor.
net/2020/may/27/science-on-memory-unsafety-and-security/

[Hanley24] Zach Hanley ‘Rust Won’t Save Us: An Analysis of 2023’s
Known Exploited Vulnerabilities’, posted 6 February 2024,
available at https://www.horizon3.ai/attack-research/attack-blogs/
analysis-of-2023s-known-exploited-vulnerabilities/

[ISO] ISO/IEC 23643:2020 – ‘Software and systems engineering:
Capabilities of software safety and security verification tools’
https://www.iso.org/standard/76517.html

[Kadkoda23] Yakir Kadkoda and Assaf Morag ‘The Ticking Supply
Chain Attach Bomb of Exposed Kubernetes Secrets’, published 21
Nov 2023 on the Aqua Blog, available at https://www.aquasec.com/
blog/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-
secrets/

[LM05] Lockhead Martin: ‘Joint Strike Fighter Air Vehicle C++
Coding Standards for the System Development and Demonstration
Program’, published December 2025 and available at
https://www.stroustrup.com/JSF-AV-rules.pdf

[Madnick23] Stuart Madnick, ‘The Continued Threat to Personal Data:
Key Factors Behind the 2023 Increase’, published by Apple in
December 2023 and available at https://www.apple.com/newsroom/
pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-
the-2023-Increase.pdf

[Mastrangelo15] Luis Mastrangelo, Luca Pnzanelli, Andrea Mocci,
Michele Lanza, Matthias Hauswirth and Nathaniel Nystrom
‘Use at your own risk: the Java unsafe API in the wild’ from
the Proceedings of the 2015 ACM SIGPLAN International
Conference on Object-Oriented Programming Systems,
Languages and Applications, available at https://dl.acm.org/doi/
abs/10.1145/2814270.2814313

[Microsoft-1] SafeInt Library: https://learn.microsoft.com/en-us/cpp/
safeint/safeint-library?view=msvc-170

https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.crn.com/news/security/10-major-cyberattacks-and-data-breaches-in-2023
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2723r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2723r1.html
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8397.pdf
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=c++
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=c++
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://www.cisa.gov/news-events/news/apache-log4j-vulnerability-guidance
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://media.defense.gov/2023/Dec/06/2003352724/-1/-1/0/THE-CASE-FOR-MEMORY-SAFE-ROADMAPS-TLP-CLEAR.PDF
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#pro-profiles
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-type
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#probounds-bounds-safety-profile
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#Res-always
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-lifetime
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines#SS-lifetime
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://www.researchgate.net/publication/344892072_On_the_use_of_C_Unsafe_Code_Context_An_Empirical_Study_of_Stack_Overflow
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://alexgaynor.net/2020/may/27/science-on-memory-unsafety-and-security/
https://www.horizon3.ai/attack-research/attack-blogs/analysis-of-2023s-known-exploited-vulnerabilities/
https://www.horizon3.ai/attack-research/attack-blogs/analysis-of-2023s-known-exploited-vulnerabilities/
https://www.iso.org/standard/76517.html
https://www.aquasec.com/blog/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets/
https://www.aquasec.com/blog/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets/
https://www.aquasec.com/blog/the-ticking-supply-chain-attack-bomb-of-exposed-kubernetes-secrets/
https://www.stroustrup.com/JSF-AV-rules.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://www.apple.com/newsroom/pdfs/The-Continued-Threat-to-Personal-Data-Key-Factors-Behind-the-2023-Increase.pdf
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://dl.acm.org/doi/abs/10.1145/2814270.2814313
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170
https://learn.microsoft.com/en-us/cpp/safeint/safeint-library?view=msvc-170

Herb Sutter Feature

April 2024 | Overload | 13

[Microsoft-2] Checked and unchecked statements:
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/
statements/checked-and-unchecked

[Microsoft-3] Build reliable and secure C++ programs:
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-
secure-programs?view=msvc-170

[Microsoft-4] Understanding SAL: https://learn.microsoft.com/en-us/
cpp/code-quality/understanding-sal?view=msvc-170

[MISRA] MISRA 2023: https://misra.org.uk/misra-cpp2023-released-
including-hardcopy/

[MITRE-1] ‘2023 CWE Top 25’ on the Common Weakness Enumeration
website operated by Mitre, available at: https://cwe.mitre.org/top25/
archive/2023/2023_top25_list.html#tableView

[MITRE-2] Rust CVEs, from the CVE website managed by Mitre,
available at : https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust

[MITRE-3] CVE: ‘Python Software Foundation Added as CVE
Numbering Authority (CNA)’ published 29 August 2023 at https://
www.cve.org/Media/News/item/news/2023/08/29/Python-Software-
Foundation-Added-as-CNA

[Okunytė23a] Paulina Okunytė, ‘DarkBeam leaks billions of email and
password combinations’, published by Cybernews, last updated
15 November 2023, available at https://cybernews.com/security/
darkbeam-data-leak/

[Okunytė23b] Paulina Okunytė, ‘KidSecurity’s user data compromised
after app failed to set password’, published by Cybernews, last
updated 30 November 2023, available at https://cybernews.com/
security/kidsecurity-parental-control-data-leak/

[Perforce13] Perforce, ‘High Integrity C++ Coding Standard’ version
4.0, released 3 October 2013, available at https://www.perforce.com/
resources/qac/high-integrity-cpp-coding-standard

[Revzin18] Barry Revzin and Herb Sutter, ‘P0893R1: Chaining
comparisons’, published 28 April 2018, available at
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/
p0893r1.html

[Rust-1] Rust CVEs: https://cve.mitre.org/cgi-bin/cvekey.
cgi?keyword=rust

[Rust-2] ‘Learn Rust with Entirely Too Many Linked Lists’, available at
https://rust-unofficial.github.io/too-many-lists/

[Rust-3] ‘Sanitizers Support’ in the Rust Compiler Development Guide,
available at https://rustc-dev-guide.rust-lang.org/sanitizers.html

[Rust-4] Undefined behavior sanitizers: https://github.com/rust-lang/miri
[SO-1] ‘Is (4 > y > 1) a valid statement in C++? How do you evaluate

it if so?’, available on StackOverflow at https://stackoverflow.com/
questions/8889522/is-4-y-1-a-valid-statement-in-c-how-do-you-
evaluate-it-if-so

[SO-2] ‘Chaining Bool values give opposite result to expected’,
available on StackOverflow at https://stackoverflow.com/
questions/5939077/chaining-bool-values-give-opposite-result-to-
expected

[SO-3] ‘Checking if a value is within a range in if statment’, available
on StackOverflow at https://stackoverflow.com/questions/14433884/
checking-if-a-value-is-within-a-range-in-if-statment

[SO-4] ‘Test if all elements are equal with C++17 fold-expression’,
available on StackOverflow at https://stackoverflow.com/
questions/46806239/test-if-all-elements-are-equal-with-c17-fold-
expression

[SO-5] ‘Incorrect logic in C++’, available on StackOverflow at
https://stackoverflow.com/questions/25965157/incorrect-logic-in-c

[SO-6] ‘Is (val1 > val2 > val3) a valid comparison in C?’, available on
StackOverflow at https://stackoverflow.com/questions/38643022/is-
val1-val2-val3-a-valid-comparison-in-c

[SO-7] ‘Why is if not working in my Magic Square program’, available
on StackOverflow at https://stackoverflow.com/questions/45385837/
why-is-if-not-working-in-my-magic-square-program

[SO-8] ‘Math-like chaining of the comparison operator - as in, “if (
(5<j<=1))”’, available on StackOverflow at https://stackoverflow.
com/questions/20989496/math-like-chaining-of-the-comparison-
operator-as-in-if-5j-1

[SO-9] ‘Only Returning the first if statement? (C++)’, available on
StackOverflow at https://stackoverflow.com/questions/35564553/
only-returning-the-first-if-statement-c

[SO-10] ‘Warning comparison integer and pointer’, available on
StackOverflow at https://stackoverflow.com/questions/42335710/
warning-comparison-integer-and-pointer

[Stroustrup13] Bjarne Stroupstrup (2013) The C++ Programming
Language, 4th Edition published by Addison-Wesley Professional in
May 2023. ISBN-13: 978-0275967307

[Stroustrup23] Bjarne Stroustrup and Gabriel Dos Reis, ‘Safety Profiles:
Type-and-resource Safe Programming in ISO Standard C++’. The
slides presented by Bjarne at the February 2023 C++ Standard
Committee meeting, available at: https://open-std.org/JTC1/SC22/
WG21/docs/papers/2023/p2816r0.pdf

[Sutter] ccpfront compiler, available at https://github.com/hsutter/
cppfront/

[Sutter04] Herb Sutter and Andrei Alexandrescu (2004) C++ Coding
Standards: 101 Rules, Guidelines, and Best Practices, published
by Addison-Wesley Professional in October 2024. ISBN-13: 978-
0321113580

[Sutter22] Herb Sutter ‘Can C++ be 10× simpler & safer …?’, a
presentation delivered at CppCon 2022, available at
https://www.youtube.com/watch?v=ELeZAKCN4tY&t=4305s

[Wakely23] Jonathan Wakely and Thomas Köppe, ‘P2973R0: Erroneous
behaviour for missing return from assignment’ published 15
September 2023, available at https://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2023/p2973r0.html

[Wang22] Jun Wang ‘Unsafe Rust in the Wild’, published on The New
Stack on 29 September 2022, available at: https://thenewstack.io/
unsafe-rust-in-the-wild/

[Wikipedia] ‘Common Vulnerabilities and Exposures’, available at
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_
Exposures

This article was first published on Herb Sutter’s blog (Sutter’s
Mill) on 11th March 2023: https://herbsutter.com/2024/03/11/
safety-in-context/

https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/statements/checked-and-unchecked
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/build-reliable-secure-programs?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://learn.microsoft.com/en-us/cpp/code-quality/understanding-sal?view=msvc-170
https://misra.org.uk/misra-cpp2023-released-including-hardcopy/
https://misra.org.uk/misra-cpp2023-released-including-hardcopy/
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cwe.mitre.org/top25/archive/2023/2023_top25_list.html#tableView
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://www.cve.org/Media/News/item/news/2023/08/29/Python-Software-Foundation-Added-as-CNA
https://cybernews.com/security/darkbeam-data-leak/
https://cybernews.com/security/darkbeam-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://cybernews.com/security/kidsecurity-parental-control-data-leak/
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.perforce.com/resources/qac/high-integrity-cpp-coding-standard
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0893r1.html
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=rust
https://rust-unofficial.github.io/too-many-lists/
https://rustc-dev-guide.rust-lang.org/sanitizers.html
https://github.com/rust-lang/miri
https://stackoverflow.com/questions/8889522/is-4-y-1-a-valid-statement-in-c-how-do-you-evaluate-it-if-so
https://stackoverflow.com/questions/8889522/is-4-y-1-a-valid-statement-in-c-how-do-you-evaluate-it-if-so
https://stackoverflow.com/questions/8889522/is-4-y-1-a-valid-statement-in-c-how-do-you-evaluate-it-if-so
https://stackoverflow.com/questions/5939077/chaining-bool-values-give-opposite-result-to-expected
https://stackoverflow.com/questions/5939077/chaining-bool-values-give-opposite-result-to-expected
https://stackoverflow.com/questions/5939077/chaining-bool-values-give-opposite-result-to-expected
https://stackoverflow.com/questions/14433884/checking-if-a-value-is-within-a-range-in-if-statment
https://stackoverflow.com/questions/14433884/checking-if-a-value-is-within-a-range-in-if-statment
https://stackoverflow.com/questions/46806239/test-if-all-elements-are-equal-with-c17-fold-expression
https://stackoverflow.com/questions/46806239/test-if-all-elements-are-equal-with-c17-fold-expression
https://stackoverflow.com/questions/46806239/test-if-all-elements-are-equal-with-c17-fold-expression
https://stackoverflow.com/questions/25965157/incorrect-logic-in-c
https://stackoverflow.com/questions/38643022/is-val1-val2-val3-a-valid-comparison-in-c
https://stackoverflow.com/questions/38643022/is-val1-val2-val3-a-valid-comparison-in-c
https://stackoverflow.com/questions/45385837/why-is-if-not-working-in-my-magic-square-program
https://stackoverflow.com/questions/45385837/why-is-if-not-working-in-my-magic-square-program
https://stackoverflow.com/questions/20989496/math-like-chaining-of-the-comparison-operator-as-in-if-5j-1
https://stackoverflow.com/questions/20989496/math-like-chaining-of-the-comparison-operator-as-in-if-5j-1
https://stackoverflow.com/questions/20989496/math-like-chaining-of-the-comparison-operator-as-in-if-5j-1
https://stackoverflow.com/questions/35564553/only-returning-the-first-if-statement-c
https://stackoverflow.com/questions/35564553/only-returning-the-first-if-statement-c
https://stackoverflow.com/questions/42335710/warning-comparison-integer-and-pointer
https://stackoverflow.com/questions/42335710/warning-comparison-integer-and-pointer
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://open-std.org/JTC1/SC22/WG21/docs/papers/2023/p2816r0.pdf
https://github.com/hsutter/cppfront/
https://github.com/hsutter/cppfront/
https://www.youtube.com/watch?v=ELeZAKCN4tY&t=4305s
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2023/p2973r0.html
https://thenewstack.io/unsafe-rust-in-the-wild/
https://thenewstack.io/unsafe-rust-in-the-wild/
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://en.wikipedia.org/wiki/Common_Vulnerabilities_and_Exposures
https://herbsutter.com/2024/03/11/safety-in-context/
https://herbsutter.com/2024/03/11/safety-in-context/

Jez HigginsFeature

14 | Overload | April 2024

To See a World in a Grain of Sand
Code often rots over time as various people add new
features. Jez Higgins shows how to refactor code that has
grown organically, making it clearer and more concise.

In a recent blog post
[Higgins24] about my
sadness and disappointment

about the candidates we
were getting for interview, I
talked about the refactoring
exercise we give people, and
the conversations we have
afterwards.

I’m not able to show any of
that code, but I am going to talk
about some code here of the
type we often see. According to
the version history, it’s passed
through a number of hands,
and I want to be clear I know
none of the people involved
nor have I spoken to them.
They are, though, exactly
the type of person presenting
themselves for interview, and
so for my purposes here they
are exemplars.

Here’s some Python code.
It’s from a larger document
processing pipeline.
Documents come shoved
into the system, get squished
around a bit, have metadata
added, some formatting fixups,
then squirt out the other end
as nice looking pdfs. Standard
stuff.

This is not about them, though. I hold them blameless, and wish t hem
only happiness. This is about the places that they worked, about the wider
trade, about a culture that says this is fine.

To see a world in a grain of sand
Documents can have references to other documents, both within the
existing corpus, and to a variety of external sources. These references
have standard forms, and when we find something that looks like a
document reference, we do a bit of work to make sure it’s absolutely
clean and proper.

That’s where the function in Listing 1, normalise_reference, comes
in. I have obfuscated identifiers in the code sample, but its structure and
behaviour are as I found it.

I’d been kind-of browsing around a git repository, looking at folder
structure, getting the general picture. A chunk of the system is a Django
webapp and thus has that shape, so I went digging for a bit of the meat
underneath. This was almost the first thing I saw and, well, I kind of
flinched. Poking around some more confirmed it’s not an anomaly. It is
representative of the system.

You’ve probably had some kind of reaction of your own. This is what
immediately leapt out at me:

	� The length

	� The width!1

1	 As this is a printed publication, in most listings the very wide lines are
wrapped. Listing 1 is presented full-width, as is Listing 6.

def canonicalise_reference(reference_type, reference_match, canonical_form):
 if (
 (reference_type == "RefYearAbbrNum")
 | (reference_type == "RefYearAbbrNumTeam")
 | (reference_type == "YearAbbrNum")
):
 components = re.findall(r"\d+", reference_match)
 year = components[0]
 d1 = components[1]
 d2 = ""
 corrected_reference = canonical_form.replace("dddd", year).replace("d+", d1)
 elif (
 (reference_type == "RefYearAbbrNumNumTeam")
 | (reference_type
 == "RefYearAbrrNumStrokeNum")
 | (reference_type == "RefYearNumAbbrNum")
):
 components = re.findall(r"\d+", reference_match)
 year = components[0]
 d1 = components[1]
 d2 = components[2]
 corrected_reference = (
 canonical_form.replace("dddd", year).replace("d1", d1).replace("d2", d2)
)
 elif (
 (reference_type == "AbbrNumAbbrNum")
 | (reference_type == "NumAbbrNum")
 | (reference_type == "EuroRefC")
 | (reference_type == "EuroRefT")
):
 components = re.findall(r"\d+", reference_match)
 year = ""
 d1 = components[0]
 d2 = components[1]
 corrected_reference = canonical_form.replace("d1", d1).replace("d2", d2)

 return corrected_reference, year, d1, d2

Listing 1

Jez Higgins lives on the Pembrokeshire coast, largely to make
return-to-office mandates impractical. Truth is, he hasn’t worked in
an office for nearly 25 years, and has no intention of starting now.
He’s been programming for a living that whole time and thinks he
might be starting getting to get the hang of it. He can be contacted at
jez@jezuk.co.uk or @jezhiggins@mastodon.me.uk

Jez Higgins Feature

April 2024 | Overload | 15

	� The visual repetition, both in the if conditions and in the bodies of
the conditionals

	� The string literals

	� The string literal with the spelling mistake

	� The extraneous brackets in the second conditional body – written
by someone else?

	� The extra line before the return – functionally, of course, it makes
no difference, but still, urgh

Straightaway I’m thinking that more than one person has worked on this
over time. That’s normal, of course, but I shouldn’t be able to tell. If I can,
it’s a contra-indicator.

Looking a little longer, there’s a lot of repetition – in shape, and in
detail. Looking a little longer still, and I think function parameters are
in the wrong order. reference_type and canonical_form are
correlated and originate within the system. They should go together. It’s
reference_match which comes from the input document, it’s the
only true variable and so, for me anyway, should be the first parameter. I
suspect this function only had two parameters initially, and the third was
added without a great deal of thought to the aesthetics of the change.

That’s a lot to not like in not a lot of code.

But at least there are tests
And hurrah for that! There are tests for this function, tangled up in a source
file with some unrelated tests that pull in a mock database connection and
some other business, but they do exist.

There are two test functions, one checking well-formed references, the
other malformed references, but, in fact, each function checks multiple
cases.

It’s a start, but the test code is much the same as the code it exercises –
long and repetitious – which isn’t, perhaps, that surprising. A quick visual
check shows they’re deficient in other, more serious ways. There are ten
reference types named in canonicalise_reference. The tests check
seven of them and, in fact, there is a whole branch of the if/else ladder
that isn’t exercised. That’s the branch I already suspect of being a later
addition.

Curiously too, while canonicalise_reference returns a 4-tuple, the
tests only check the corrected reference and the year, ignoring the other two
values. That sent me off looking for the canonicalise_reference
call sites, where all four elements of the tuple are used. Again, I’d suggest
the 4-tuple came in after the tests were first written and were not updated
to match. After all, they still passed.

I am sure these tests were written post-hoc. They did not inform the
design and development of the code they support.

Miasma
If the phrase coming to mind is code smells, then I guess you’re right. This
code is a stinky bouquet of bad odours, except they aren’t clues to some
deeper problem with the code. We don’t need clues – it’s right out there
front and centre. No, these smells emanate from with the organisation,
from a failure to develop the programmers whose hands this code has
passed through. The code works, let’s be clear, but there’s a clumsiness to
it and a lack of care in its evolution. That’s a cultural and organisational
failing.

I keep saying this is about organisations. I’m not saying these are bad
places to work, where maladjusted managers delight in making their
underlings squirm. Quite the contrary, I’ve worked at more than one of
the organisations responsible for the code above and had a great time.
But there is something wrong – an unacknowledged failure. An unknown
failure even. There so much potential, and it’s just not being taken up

I came across this code because I was talking about potential work on it,
going back into one of those organisations. That didn’t pan out, but had

I been able I would absolutely have signed up for it. It’s fascinating stuff
and right up a multiplicity of my alleys.

Let’s imagine for a moment that I was sitting down for my first day on
this job, what would I do with this code? Well, at a guess, nothing. Well,
nothing until I needed to, and then I’d spend a bit of time on it. But I’d
absolutely be talking to my new colleagues about, well, everything.

One step at a time
The code in Listing 1 is just not great. It’s long, for a start, and it’s long
because it’s repetitious. The line
 components = re.findall(r"\d+", reference_match)

appears in every branch of the if/else. Let’s start by hoisting that up.

Clearing visual noise
The unnecessary brackets in the first elif body just jar. They catch the
eye and makes it appear that something different is happening in the
middle there, when in fact it adds nothing and is just visual noise.

(This result of this change and the previous one are shown in Listing 2).

Move the action down
The if/else ladder sets up a load of variables, which are then used to
build corrected_reference.

The lines building corrected_reference aren’t the same, but they
are pretty similar. We can move them out of the if/else ladder and
combine them together.

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 components = re.findall(r"\d+",
 reference_match)

 if (
 (reference_type == "RefYearAbbrNum")
 | (reference_type == "RefYearAbbrNumTeam")
 | (reference_type == "YearAbbrNum")
):
 year = components[0]
 d1 = components[1]
 d2 = ""
 corrected_reference =
 canonical_form.replace("dddd", year)
 .replace("d+", d1)

 elif (
 (reference_type == "RefYearAbbrNumNumTeam")
 | (reference_type ==
 "RefYearAbrrNumStrokeNum")
 | (reference_type == "RefYearNumAbbrNum")
):
 year = components[0]
 d1 = components[1]
 d2 = components[2]
 corrected_reference =
 canonical_form.replace("dddd", year)
 .replace("d1", d1).replace("d2", d2)

 elif (
 (reference_type == "AbbrNumAbbrNum")
 | (reference_type == "NumAbbrNum")
 | (reference_type == "EuroRefC")
 | (reference_type == "EuroRefT")
):
 year = ""
 d1 = components[0]
 d2 = components[1]
 corrected_reference =
 canonical_form.replace("d1", d1)
 .replace("d2", d2)

 return corrected_reference, year, d1, d2

Listing 2

Jez HigginsFeature

16 | Overload | April 2024

Looking up and out
This is a bit of a meta-change, because you can’t infer it from the code
here, but canonical_form is drawn from a data file elsewhere in the
source tree. We control that data file.

Examining it, we can see it’s safe to replace d+ with d1 in the canonical
forms. As a result, we can eliminate one of the replace calls when
constructing corrected_reference.

This change and the previous one are shown in Listing 3. The shape of
the code hasn’t wildly changed, but feels like we’re moving in a good
direction.

Typos must die
The ‘typo’ in "RefYearAbrrNumStrokeNum" is corrected – another
meta-fix. That string comes from the same data file as the canonical forms.
Obviously "RefYearAbrrEtcEtc" looks like a loads of nonsense, but
Abrr is so clearly a typo. It’s an abbreviation for abbreviation! It should
be Abbr! Like the brackets I mentioned above, this is a piece of visual
noise that needs to go.

Ok, the corrected version now says "RefYearAbbrNumStrokeNum",
which isn’t a world changing difference, but to me it looks better and IDE
agrees because there isn’t a squiggle underneath.

Constants
Those string literals give me the heebee-geebies. I’ve replaced them with
constants. (This change and the previous one are shown in Listing 4.)

Birds of a feather
By grouping like reference types together, we can slim down each if
condition.

 YearAbbrNum_Group = [
 RefYearAbbrNum,
 RefYearAbbrNumTeam,
 YearAbbrNum
]

Having tried it, I like that. Let’s roll it out to the rest of the types (see
Listing 5.)

Love it.

Remembered Python calls arrays lists, but also that it has tuples too.
Tuples are immutable, so they’re a better choice for our groups.

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 components = re.findall(r"\d+",
 reference_match)

 if (
 (reference_type == "RefYearAbbrNum")
 | (reference_type == "RefYearAbbrNumTeam")
 | (reference_type == "YearAbbrNum")
):
 year = components[0]
 d1 = components[1]
 d2 = ""

 elif (
 (reference_type == "RefYearAbbrNumNumTeam")
 | (reference_type ==
 "RefYearAbrrNumStrokeNum")
 | (reference_type == "RefYearNumAbbrNum")
):
 year = components[0]
 d1 = components[1]
 d2 = components[2]

 elif (
 (reference_type == "AbbrNumAbbrNum")
 | (reference_type == "NumAbbrNum")
 | (reference_type == "EuroRefC")
 | (reference_type == "EuroRefT")
):
 year = ""
 d1 = components[0]
 d2 = components[1]

 corrected_reference =
 (canonical_form.replace("dddd", year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 3

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 components = re.findall(r"\d+",
 reference_match)

 if (
 (reference_type == RefYearAbbrNum)
 | (reference_type == RefYearAbbrNumTeam)
 | (reference_type == YearAbbrNum)
):
 year = components[0]
 d1 = components[1]
 d2 = ""
 elif (
 (reference_type == RefYearAbbrNumNumTeam)
 | (reference_type == RefYearAbbrNumStrokeNum)
 | (reference_type == RefYearNumAbbrNum)
):
 year = components[0]
 d1 = components[1]
 d2 = components[2]
 elif (
 (reference_type == AbbrNumAbbrNum)
 | (reference_type == NumAbbrNum)
 | (reference_type == EuroRefC)
 | (reference_type == EuroRefT)
):
 year = ""
 d1 = components[0]
 d2 = components[1]

 corrected_reference =
 (canonical_form.replace("dddd", year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 4

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 components = re.findall(r"\d+",
 reference_match)

 if reference_type in YearNum_Group:
 year = components[0]
 d1 = components[1]
 d2 = ""
 elif reference_type in YearNumNum_Group:
 year = components[0]
 d1 = components[1]
 d2 = components[2]
 elif reference_type in NumNum_Group:
 year = ""
 d1 = components[0]
 d2 = components[1]

 corrected_reference =
 (canonical_form.replace("dddd", year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 5

Jez Higgins Feature

April 2024 | Overload | 17

The result of swapping tuples for lists by switching []
to () is:
 YearAbbrNum_Group = (
 RefYearAbbrNum,
 RefYearAbbrNumTeam,
 YearAbbrNum
)

Destructure FTW!
We can collapse the
 year = ...
 d1 = ...
 d2 = ...

lines together into a single statement, going from three
lines into a single line (see Listing 6).

Much easier on the eye.

An extra level of indirection
Bringing the year, d1, d2 assignments together particular highlights the
similarity across each branch of the if ladder.

Let’s pair up a type group with a little function that pulls out the
components. (See Listing 7.) Probably did a bit too much in one go here,
and it’s ugly as hell. But it works, and it captures something useful.

If we now introduce a little class to pair up the types and components
lambda function, it’s more setup at the top, but it’s neater in the function
body:
 class TypeComponents:
 def __init__(self, types, parts):
 self.Types = types
 self.Parts = parts

 YearNum_Group = TypeComponents(
 (
 RefYearAbbrNum,
 RefYearAbbrNumTeam,
 YearAbbrNum
),
 lambda cmpts: (cmpts[0], cmpts[1], "")
)

That worked, and Listing 8 shows it extended across the two elif
branches.

The if conditions and the bodies now all have the same shape. That’s
pretty cool. They were similar before, but now they’re the same.

Yoink out the decision making
It’s not really clear in the code, but there are only two things
really going on in this function. The first is pulling chunks out of
reference_match, and the second is putting those parts back together
into canonical_reference. Let’s make that clearer (see Listing 9).

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 components = re.findall(r"\d+",
 reference_match)

 if reference_type in YearNum_Group:
 year, d1, d2 = components[0], components[1], ""
 elif reference_type in YearNumNum_Group:
 year, d1, d2 = components[0], components[1], components[2]
 elif reference_type in NumNum_Group:
 year, d1, d2 = "", components[0], components[1]

 corrected_reference =
 (canonical_form.replace("dddd", year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 6

YearNum_Group = {
 "Types": [
 RefYearAbbrNum,
 RefYearAbbrNumTeam,
 YearAbbrNum
],
 "Parts": lambda cmpts: (cmpts[0], cmpts[1], "")
}

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 components = re.findall(r"\d+",
 reference_match)

 if reference_type in YearNum_Group.Types:
 year, d1, d2 =
 YearNum_Group.Parts(components)
 elif reference_type in YearNumNum_Group.Types:
 year, d1, d2 =
 YearNumNum_Group.Parts(components)
 elif reference_type in NumNum_Group.Types:
 year, d1, d2 =
 NumNum_Group.Parts(components)

 corrected_reference =
 (canonical_form.replace(“dddd”, year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 7

def reference_components(reference_type,
 reference_match):
 components = re.findall(r"\d+",
 reference_match)
 if reference_type in YearNum_Group.Types:
 year, d1, d2 =
 YearNum_Group.Parts(components)
 elif reference_type in YearNumNum_Group.Types:
 year, d1, d2 =
 YearNumNum_Group.Parts(components)
 elif reference_type in NumNum_Group.Types:
 year, d1, d2 = NumNum_Group.Parts(components)

 return year, d1, d2

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 year, d1, d2 = reference_components(
 reference_type, reference_match)

 corrected_reference =
 (canonical_form.replace("dddd", year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 9

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 components = re.findall(r"\d+",
 reference_match)

 if reference_type in YearNum_Group.Types:
 year, d1, d2 =
 YearNum_Group.Parts(components)
 elif reference_type in YearNumNum_Group.Types:
 year, d1, d2 =
 YearNumNum_Group.Parts(components)
 elif reference_type in NumNum_Group.Types:
 year, d1, d2 =
 NumNum_Group.Parts(components)

 corrected_reference =
 (canonical_form.replace("dddd", year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 8

Jez HigginsFeature

18 | Overload | April 2024

Say what you mean
There’s no need to assign year, d1, d2 in that new function. We can just
return the values directly (see Listing 10).

Search
I mentioned the if conditions and the bodies now all have the same
shape. We can exploit that now to eliminate the if/else ladder by
checking each group in turn (see Listing 11).

And rest
I first wrote this on Mastodon [Higgins24] because I’m that kind of bear,
and this where I stopped. I felt the code was in a much better place – not
perfect by any means, but better.

But then I thought of something else.

You wouldn’t let it lie
Now the types are grouped together, I was inclinded to put the string
literals back in.

We only use "RefYearAbbrNum", for example, as part of a
TypeComponents object. It’s not needed anywhere else, but having it
as a constants in its own right floating around implies that you might and
suggests that you can. In fact, it’s YearNum_Group that is the constant,
so let’s tie things down to that.
 YearNum_Group = TypeComponents(
 (
 "RefYearAbbrNum”,
 "RefYearAbbrNumTeam”,
 "YearAbbrNum"
),
 lambda cmpts: (cmpts[0], cmpts[1], “”),
)

I also felt the parameters to
 canonicalise_reference(reference_type,
 reference_match, canonical_form):

are in the wrong order.

reference_type and canonical_form go together. They originate
in the same place in the code, from the data file I mentioned earlier, and
if they were in a tuple or wrapped in a little object I certainly wouldn’t
argue.

The thing we’re working on, that we take apart and reassemble is
reference_match. To me, that means it should be the first parameter
we pass (see Listing 12).

And that I thought was that. And I went to bed.

It’s a new day
The following morning, I got a nudge from my internet fellow-traveller
Barney Dellar, who said

I tend to think of for-loops as Primitive Obsession. You aren’t
looping to do something n times. You’re actually looking for the
correct entry in the array to use. I would make that explicit. I’m not
good at Python, but some kind of find or filter. Then invoke your
method on the result of that filtering.

He was right and I knew it. Had this code been in C#, for instance, I’d
probably have gone straight from the if ladder to a LINQ expression.

He set me off. I knew Python’s list comprehensions were its LINQ-a-like,
and I had half an idea I could use one here.

However, I thought list comprehensions only created new lists. If I’d
done that here, it would mean I’d still have to extract the first element.
That felt at least as clumsy as the for loop.

Turns out I’d only ever half used them, though. A list comprehension
actually returns an iterable. Combined with next(), which pulls the next
element off the iterable, and well, it’s more pythonic.

def reference_components(reference_type,
 reference_match):
 components = re.findall(r"\d+",
 reference_match)

 if (reference_type in YearNum_Group.Types):
 return YearNum_Group.Parts(components)
 elif (reference_type in
 YearNumNum_Group.Types):
 return YearNumNum_Group.Parts(components)
 elif (reference_type in NumNum_Group.Types):
 return NumNum_Group.Parts(components)

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 year, d1, d2 =
 reference_components(reference_type,
 reference_match)

 corrected_reference =
 (canonical_form.replace(“dddd”, year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 10

TypeGroups = (
 YearNum_Group,
 YearNumNum_Group,
 NumNum_Group
)

def reference_components(reference_type,
 reference_match):
 components = re.findall(r"\d+",
 reference_match)

 for group in TypeGroups:
 if reference_type in group.Types:
 return group.Parts(components)

def canonicalise_reference(reference_type,
 reference_match, canonical_form):
 year, d1, d2 =
 reference_components(reference_type,
 reference_match)

 corrected_reference =
 (canonical_form.replace(“dddd”, year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 11

def reference_components(reference_match,
 reference_type):
 components = re.findall(r"\d+",
 reference_match)

 for group in TypeGroups:
 if reference_type in group.Types:
 return group.Parts(components)

def canonicalise_reference(reference_match,
 reference_type, canonical_form):
 year, d1, d2 =
 reference_components(reference_match,
 reference_type)

 corrected_reference =
 (canonical_form.replace("dddd", year)
 .replace("d1", d1)
 .replace("d2", d2))

 return corrected_reference, year, d1, d2

Listing 12

Jez Higgins Feature

April 2024 | Overload | 19

 def reference_components(reference_type,
 reference_match):
 components = re.findall(r"\d+",
 reference_match)

 return next(group.Parts(components)
 for group in TypeGroups
 if reference_type in group.Types)

What’s kind of fascinating about this change is that the list comprehension
has the exact same elements as the for version, but the intent, as Barney
suggested, is very different.

At the same time, Barney came up with almost exactly the same thing, too
[Dellar24]. We’d done a weird long-distance almost-synchronous little
pairing session. Magic.

Reflecting
This is contrived, obviously, because it’s a single function I’ve pulled out
of larger code base.

But, but, but, I do believe that now I’ve shoved it about that it’s better
code.

If I was able to work to my way out from here, I’m confident I could make
the whole thing better. It’d be smaller, it would be easier to read, easier
to change.

The big finish
I’m sure I have made the code better, and I’m just as sure that I’d make
the people I was working with better programmers too. I’d be better from
working with them - I’ve learned from everyone I’ve ever worked with
- but I’m old. I’ve been a lot of places, done a lot of stuff, on a lot of
different code bases, with busloads of people. I know what I’m doing, and
I know I could have helped.

I’m sorry I couldn’t take the job, but it needed more time than I could
give. In the future, well, who knows?

PS
I think it’s important to note I didn’t know where I was heading when I
started. I just knew that if I nudged things around then a right shape would
emerge. When I had that shape, I could be more directed.

Barney’s little nudge was important too. He knew there was an
improvement in there, even if neither of us was quite sure what it was
(until we were!). That was great. A lovely cherry on the top.

PPS
I tried to do the least I could at each stage. In one place I took out two
characters, in another I changed a single letter. Didn’t always succeed -
some of what I did could have been split - but small is beautiful, and we
should all aim for beauty.

This comes, in large part, from my man GeePaw Hill [Hill21] and his
‘Many More Much Smaller Steps’. He’s been a big influence on me over
the past few years, and I’ve benefited greatly as a result.

PPPS (really, the last one, I promise)
I was proofing this article before pressing publish (which probably means
there are only seven spelling and grammatical errors left), when I saw
another change I’d make. (See Listing 13.)

Again, nothing huge but just another little clarification.

That really is it. For now! n

References
[Dellar24] Barney Dellar on Mastodon:

https://mastodon.scot/@BarneyDellar/112042140234945492
[Higgins24] The changes on Mastodon:

https://mastodon.me.uk/@jezhiggins/112039275413895974
[Hill21] GeePaw (Michael) Hill: ‘Many More Much Smaller Steps’

(MMMSS): a series of five blog posts published from 29 September
2021 to 30 December 2021, available at:
 https://www.geepawhill.org/series/many-more-much-smaller-steps/

def reference_components(reference_match,
 reference_type):
 components = re.findall(r"\d+",
 reference_match)

 for group in TypeGroups:
 if reference_type in group.Types:
 return group.Parts(components)

def build_canonical_form(canonical_form,
 year, d1, d2):
 return (canonical_form.replace("dddd", year)
 .replace("d1", d1)
 .replace("d2", d2))

def canonicalise_reference(reference_match,
 reference_type, canonical_form):
 year, d1, d2 =
 reference_components(reference_match,
 reference_type)

 corrected_reference =
 build_canonical_form(canonical_form,
 year, d1, d2)

 return corrected_reference, year, d1, d2

Listing 13

This article was published as two posts on Jez’s blog:

	� ‘To See a World in a Grain of Sand’ (posted 24 February 2024)
available from: https://www.jezuk.co.uk/blog/2024/02/to-see-a-
world-in-a-grain-of-sand.html

	� ‘If You’re So Smart’ (posted 7 March 2024) available from:
https://www.jezuk.co.uk/blog/2024/03/if-youre-so-smart.html

Go to the second post to see all of the listings full-width (and some
intermediate steps).

mailto:https://mastodon.scot/@BarneyDellar/112042140234945492
mailto:https://mastodon.me.uk/@jezhiggins/112039275413895974
https://www.geepawhill.org/series/many-more-much-smaller-steps/
https://www.jezuk.co.uk/blog/2024/02/to-see-a-world-in-a-grain-of-sand.html
https://www.jezuk.co.uk/blog/2024/02/to-see-a-world-in-a-grain-of-sand.html
https://www.jezuk.co.uk/blog/2024/03/if-youre-so-smart.html

Spencer CollyerFeature

20 | Overload | April 2024

User-Defined Formatting
in std::format
std::format allows us to format values quickly and safely.
Spencer Collyer demonstrates how to provide formatting
for a simple user-defined class.

In a previous article [Collyer21], [I gave an introduction to the
std::format library, which brings modern text formatting
capabilities to C++.

That article concentrated on the output functions in the library and how
they could be used to write the fundamental types and the various string
types that the standard provides.

Being a modern C++ library, std::format also makes it relatively easy
to output user-defined types, and this series of articles will show you how
to write the code that does this.

There are three articles in this series. This article describes the basics
of setting up the formatting for a simple user-defined class. The second
article will describe how this can be extended to classes that hold objects
whose type is specified by the user of your class, such as containers.
The third article will show you how to create format wrappers, special
purpose classes that allow you to apply specific formatting to objects of
existing classes.

A note on the code listings: The code listings in this article have lines
labelled with comments like // 1. Where these lines are referred to in
the text of this article, it will be as ‘line 1’ for instance, rather than ‘the
line labelled // 1’.

Interface changes
Since my previous article was first published, based on the draft C++20
standard, the paper [P2216] was published which changes the interface
of the format, format_to, format_to_n, and formatted_size
functions. They no longer take a std::string_view as the format
string, but instead a std::format_string (or, for the wide-character
overloads std::wformat_string). This forces the format string to
be a constant at compile time. This has the major advantage that compile
time checks can be carried out to ensure it is valid.

The interfaces of the equivalent functions prefixed with v (e.g. vformat)
has not changed and they can still take runtime-defined format specs.

One effect of this is that if you need to determine the format spec
at runtime then you have to use the v-prefixed functions and pass the
arguments as an argument pack created with make_format_args or
make_wformat_args. This will impact you if, for instance, you want
to make your program available in multiple languages, where you would
read the format spec from some kind of localization database.

Another effect is on error reporting in the functions that parse the format
spec. We will deal with this when describing the parse function of the
formatter classes described in this article.

C++26 and runtime_format
Forcing the use of the v-prefixed functions for non-constant format
specs is not ideal, and can introduce some problems. The original
P2216 paper mentioned possible use of a runtime_format to allow
non-constant format specs but did not add any changes to enable that.
A new proposal [P2918] does add such a function, and once again
allows non-constant format specs in the various format functions. This
paper has been accepted into C++26, and the libstdc++ library that
comes with GCC should have it implemented by the time you read this
article, if you want to try it out.

Creating a formatter for a user-defined type
To enable formatting for a user-defined type, you need to create a
specialization of the struct template formatter. The standard defines
this as:
 template<class T, class charT = char>
 struct formatter;

where T is the type you are defining formatting for, and charT is the
character type your formatter will be writing.

Each formatter needs to declare two functions, parse and format,
that are called by the formatting functions in std::format. The purpose
and design of each function is described briefly in the following sections.

Inheriting existing behaviour
Before we dive into the details of the parse and format functions, it is
worth noting that in many cases you can get away with re-using existing
formatters by inheriting from them. Normally, you would do this if the
standard format spec does everything you want, so you can just use the
inherited parse function and write your own format function that
ultimately calls the one on the parent class to do the actual formatting.

For instance, you may have a class that wraps an int to provide
some special facilities, like clamping the value to be between min and
max values, but when outputting the value you are happy to have the
standard formatting for int. In this case you can just inherit from
std::formatter<int> and simply override the format function to
call the one on that formatter, passing the appropriate values to it. An
example of doing this is given in Listing 1 on the next page.

Or you may be happy for your formatter to produce a string representation
of your class and use the standard string formatting to output that string.
You would inherit from std::formatter<std::string> and just
override the format function to generate your string representation and
then call the parent format function to actually output the value.

The parse function
The parse function does the work of reading the format specification
(format-spec) for the type.

Spencer Collyer Spencer has been programming for more years
than he cares to remember, mostly in the financial sector, although
in his younger years he worked on projects as diverse as monitoring
water treatment works on the one hand, and television programme
scheduling on the other.

Spencer Collyer Feature

April 2024 | Overload | 21

It should store any formatting information from the format-spec in the
formatter object itself1.

As a reminder of what is actually being parsed, my previous article had
the following for the general format of a replacement field:

‘{’ [arg-id] [‘:’ format-spec] ‘}’

so the format-spec is everything after the : character, up to but not
including the terminating }.

Assume we have a typedef PC defined as follows:
 using PC = basic_format_parse_context<charT>;

where charT is the template argument passed to the formatter
template. Then the parse function prototype looks like the following:
 constexpr PC::iterator parse(PC& pc);

The function is declared constexpr so it can be called at compile time.

The standard defines specialisations of the basic_format_parse_
context template called format_parse_context and wformat_
parse_context, with charT being char and wchar_t respectively.
1	 There is nothing stopping you storing the formatting information in a

class variable or even a global variable, but the standard specifies that
the output of the format function in the formatter should only
depend on the input value, the locale, and the format-spec as parsed by
the last call to parse. Given these constraints, it is simpler to just store
the formatting information in the formatter object itself.

On entry to the function, pc.begin() points to the start of the format-
spec for the replacement field being formatted. The value of pc.end() is
such as to allow the parse function to read the entire format-spec. Note
that the standard specifies that an empty format-spec can be indicated by
either pc.begin() == pc.end() or *pc_begin() == '}', so
your code needs to check for both conditions.

The parse function should process the whole format-spec. If it
encounters a character it doesn’t understand, other than the } character
that indicates the format-spec is complete, it should report an error. The
way to do this is complicated by the need to allow the function to be
called at compile time. Before that change was made, it would be normal
to throw a std::format_error exception. You can still do this, with
the proviso that the compiler will report an error, as throw cannot be
used when evaluating the function at compile time. Until such time as
a workaround has been found for this problem, it is probably best to
just throw the exception and allow the compiler to complain. That is the
solution used in the code presented in this article.

If the whole format-spec is processed with no errors, the function should
return an iterator pointing to the terminating } character. This is an
important point – the } is not part of the format-spec and should not be
consumed, otherwise the formatting functions themselves will throw an
error.

Format specification mini-language
The format-spec for your type is written in a mini-language which you
design. It does not have to look like the one for the standard format-specs
defined by std::format. There are no rules for the mini-language, as
long as you can write a parse function that will process it.

An example of a specialist mini-language is that defined by std::chrono
or its formatters, given for instance at [CppRef]. Further examples are
given in the code samples that make up the bulk of this series of articles.
There are some simple guidelines to creating a mini-language in the
appendix at the end of this article: ‘Simple Mini-Language Guidelines’.

The format function
The format function does the work of actually outputting the value of
the argument for the replacement field, taking account of the format-spec
that the parse function has processed.

Assume we have a typedef FC defined as follows:
 using FC = basic_format_context<Out, charT>;

where Out is an output iterator and charT is the template argument
passed to the formatter template. Then the format function prototype
looks like the following:
 FC::iterator format(const T& t, FC& fc) const;

where T is the template argument passed to the formatter template.

Note that the format function should be const-qualified. This is
because the standard specifies that it can be called on a const object.

#include <format>
#include <iostream>
#include <type_traits>

class MyInt
{
public:
 MyInt(int i) : m_i(i) {};
 int value() const { return m_i; };
private:
 int m_i;
};
template<>
struct std::formatter<MyInt>
 : public std::formatter<int>
{
 using Parent = std::formatter<int>;
 auto format(const MyInt& mi,
 std::format_context& format_ctx) const
 {
 return Parent::format(mi.value(),
 format_ctx);
 }
};
int main()
{
 MyInt mi{1};
 std::cout << std::format(“{0} [{0}]\n”, mi);
}

Listing 1

The format-spec for your type is written in a
mini-language which you design …there are no
rules for the mini-language, as long as you can

write a parse function that will process it

Spencer CollyerFeature

22 | Overload | April 2024

The standard defines specialisations of the basic_format_context
template called format_context and wformat_context, with
charT being char and wchar_t respectively.

The function should format the value t passed to it, using the formatting
information stored by parse, and the locale returned by fc.locale()
if it is locale-dependent. The output should be written starting at
fc.out(), and on return the function should return the iterator just past
the last output character.

If you just want to output a single character, the easiest way is to write
something like the following, assuming iter is the output iterator and c
is the character you want to write:
 *iter++ = c;

If you need more complex formatting than just writing one or two
characters, the easiest way to create the output is to use the formatting
functions already defined by std::format, as they correctly maintain
the output iterator.

The most useful function to use is std::format_to, as that takes the
iterator returned by fc.out() and writes directly to it, returning the
updated iterator as its result. Or if you want to limit the amount of data
written, you can use std::format_to_n.

Using the std::format function itself has a couple of disadvantages.
Firstly it returns a string which you would then have to send to the
output. And secondly, because it has the same name as the function in
formatter, you have to use a std namespace qualifier on it, even if
you have a using namespace std; line in your code, as otherwise
function name resolution will pick up the format function from the
formatter rather than the std::format one.

Formatting a simple object
For our first example we are going to create a formatter for a simple
Point class, defined in Listing 2.

Default formatting
Listing 3 shows the first iteration of the formatter for Point. This just
allows default formatting of the object.

In the parse function, the lambda get_char defined in line 1 acts as
a convenience function for getting either the next character from the
format-spec, or else indicating the format-spec has no more characters
by returning zero. It is not strictly necessary in this function as it is only
called once, but will be useful as we extend the format-spec later.

The if-statement in line 2 checks that we have no format-spec defined.
The value 0 will be returned from the call to get_char if the begin and
end calls on parse_ctx return the same value.

The format function has very little to do – it just returns the result of
calling format_to with the appropriate output iterator, format string,
and details from the Point object. The only notable thing to point out is
that we wrap the format_ctx.out() call which gets the output iterator

class Point
{
public:
 Point() {}
 Point(int x, int y) : m_x(x), m_y(y) {}

 const int x() const { return m_x; }
 const int y() const { return m_y; }

private:
 int m_x = 0;
 int m_y = 0;
};

Listing 2

#include "Point.hpp"
#include <format>
#include <iostream>
#include <type_traits>

template<>
struct std::formatter<Point>
{
 constexpr auto parse(
 std::format_parse_context& parse_ctx)
 {
 auto iter = parse_ctx.begin();
 auto get_char = [&]() { return iter
 != parse_ctx.end() ? *iter : 0; }; // 1
 char c = get_char();
 if (c != 0 && c != '}') // 2
 {
 throw std::format_error(
 "Point only allows default formatting");
 }
 return iter;
 }
 auto format(const Point& p,
 std::format_context& format_ctx) const
 {
 return std::format_to(std::move(
 format_ctx.out()), "{},{}", p.x(), p.y());
 }
};
int main()
{
 Point p;
 std::cout << std::format("{0} [{0}]\n", p);
 try
 {
 std::cout << std::vformat("{0:s}\n",
 std::make_format_args(p));
 }
 catch (std::format_error& fe)
 {
 std::cout << "Caught format_error : "
 << fe.what() << "\n";
 }
}

Listing 3

If you need more complex formatting than just
writing one or two characters, the easiest way
to create the output is to use the formatting
functions already defined by std::format

Spencer Collyer Feature

April 2024 | Overload | 23

in std::move. This is in case the user is using an output that has move-
only iterators.

Adding a separator character and width specification
Now we have seen how easy it is to add default formatting for a class,
let’s extend the format specification to allow some customisation of the
output.

The format specification we will use has the following form:

[sep] [width]

where sep is a single character to be used as the separator between the two
values in the Point output, and width is the minimum width of each of
the two values. Both elements are optional. The sep character can be any
character other than } or a decimal digit.

The code for this example is in Listing 4.

Member variables
The first point to note is that we now have to store information derived
from the format-spec by the parse function so the format function
can do its job. So we have a set of member variables in the formatter
defined from line 10 onwards.

The default values of these member variables are set so that if no format-
spec is given, a valid default output will still be generated. It is a good
idea to follow the same principle when defining your own formatters.

The parse function
The parse function has expanded somewhat to allow parsing of the
new format-spec. Line 1 gives a short-circuit if there is no format-spec
defined, leaving the formatting as the default.

#include "Point.hpp"
#include <format>
#include <iostream>

using namespace std;

template<>
struct std::formatter<Point>
{
 constexpr auto parse(
 format_parse_context& parse_ctx)
 {
 auto iter = parse_ctx.begin();
 auto get_char = [&]() { return iter
 != parse_ctx.end() ? *iter : 0; };
 char c = get_char();
 if (c == 0 || c == '}') // 1
 {
 return iter;
 }
 auto IsDigit = [](unsigned char uc) { return
 isdigit(uc); }; // 2
 if (!IsDigit(c)) // 3
 {
 m_sep = c;
 ++iter;
 if ((c = get_char()) == 0 || c == '}') //4
 {
 return iter;
 }
 }
 auto get_int = [&]() { // 5
 int val = 0;
 char c;
 while (IsDigit(c = get_char())) // 6
 {
 val = val*10 + c-'0';
 ++iter;
 }
 return val;
 };

Listing 4

 if (!IsDigit(c)) // 7
 {
 throw format_error("Invalid format "
 "specification for Point");
 }
 m_width = get_int(); // 8
 m_width_type = WidthType::Literal;
 if ((c = get_char()) != '}') // 9
 {
 throw format_error("Invalid format "
 "specification for Point");
 }
 return iter;
 }
 auto format(const Point& p,
 format_context& format_ctx) const
 {
 if (m_width_type == WidthType::None)
 {
 return
 format_to(std::move(format_ctx.out()),
 "{0}{2}{1}", p.x(), p.y(), m_sep);
 }
 return format_to(std::move(format_ctx.out()),
 "{0:{2}}{3}{1:{2}}", p.x(), p.y(), m_width,
 m_sep);
 }
private:
 char m_sep = ‘,’; // 10
 enum WidthType { None, Literal };
 WidthType m_width_type = WidthType::None;
 int m_width = 0;
};
int main()
{
 Point p1(1, 2);
 cout << format("[{0}] [{0:/}] [{0:4}]"
 "[{0:/4}]\n", p1);
}

Listing 4 (cont’d)

we now have to store information derived
from the format-spec by the parse function

so the format function can do its job

Spencer CollyerFeature

24 | Overload | April 2024

In the code following the check above we need to check if the
character we have is a decimal digit. The normal way to do this is to
use std::isdigit, but because this function has undefined behaviour
if the value passed cannot be represented as an unsigned char, we
define lambda IsDigit at line 2 as a wrapper which ensures the value
passed to isdigit is an unsigned char.

As mentioned above, any character that is not } or a decimal digit is taken
as being the separator. The case of } has been dealt with by line 1 already.
The if-statement at line 3 checks for the second case. If we don’t have
a decimal digit character, the value in c is stored in the member variable.
We need to increment iter before calling get_char in line 4 because
get_char itself doesn’t touch the value of iter.

Line 4 checks to see if we have reached the end of the format-spec after
reading the separator character. Note that we check for the case where
get_char returns 0, which indicates we have reached the end of the
format string, as well as the } character that indicates the end of the
format-spec. This copes with any problems where the user forgets to
terminate the replacement field correctly. The std::format functions
will detect such an invalid condition and throw a std::format_error
exception.

The get_int lambda function defined starting at line 5 attempts to
read a decimal number from the format-spec. On entry iter should be
pointing to the start of the number. The while-loop controlled by line 6
keeps reading characters until a non-decimal digit is found. In the normal
case this would be the } that terminates the format-spec. We don’t check
in this function for which character it was, as that is done later. Note that
as written, the get_int function has undefined behaviour if a user uses
a value that overflows an int – a more robust version could be written if
you want to check against users trying to define width values greater than
the maximum value of an int.

The check in line 7 ensures we have a width value. Note that the checks
in lines 3 and 4 will have caused the function to return if we just have a
sep element.

The width is read and stored in line 8, with the following line indicating
we have a width given.

Finally, line 9 checks that we have correctly read all the format-spec. This
is not strictly necessary, as the std::format functions will detect any
failure to do so and throw a std::format_error exception, but doing
it here allows us to provide a more informative error message.

The format function
The format function has changed to use the sep and width elements
specified. It should be obvious what is going on, so we won’t go into it
in any detail.

Specifying width at runtime
In this final example we will allow the width element to be specified at
runtime. We do this by allowing a nested replacement field to be used,

specified as in the standard format specification with either {} or {n},
where n is an argument index.

The format specification for this example is identical to the one above,
with the addition of allowing the width to be specified at runtime.

The code for this example is in Listing 5. When labelling the lines in this
listing, corresponding lines in Listing 4 and Listing 5 have had the same
labels applied. This does mean that some labels are not used in Listing 5
if there is nothing additional to say about those lines compared to Listing
4. We use uppercase letters for new labels introduced in Listing 5.

#include "Point.hpp"
#include <format>
#include <iostream>
using namespace std;
template<>

struct std::formatter<Point>
{
 constexpr auto
 parse(format_parse_context& parse_ctx)
 {
 auto iter = parse_ctx.begin();
 auto get_char = [&]() { return iter
 != parse_ctx.end() ? *iter : 0; };
 char c = get_char();
 if (c == 0 || c == '}')
 {
 return iter;
 }
 auto IsDigit = [](unsigned char uc)
 { return isdigit(uc); };
 if (c != '{' && !IsDigit(c)) // 3
 {
 m_sep = c;
 ++iter;
 if ((c = get_char()) == 0 || c == '}')
 {
 return iter;
 }
 }
 auto get_int = [&]() {
 int val = 0;
 char c;
 while (IsDigit(c = get_char()))
 {
 val = val*10 + c-'0';
 ++iter;
 }
 return val
 };
 if (!IsDigit(c) && c != '{') // 7
 {
 throw format_error("Invalid format "
 "specification for Point");
 }

Listing 5

Avoid having complicated constructions or
interactions between different elements in
your mini-language … it should be possible
to parse it in a single pass

Spencer Collyer Feature

April 2024 | Overload | 25

Nested replacement fields
The standard format-spec allows you to use nested replacement fields
for thewidth and prec fields. If your format-spec also allows nested
replacement fields, the basic_format_parse_context class has a
couple of functions to support their use: next_arg_id and check_
arg_id. They are used in the parse function for Listing 5, and a
description of what they do will be given in that section.

The parse function
The first change in the parse function is on line 3. As can be seen, in
the new version, it has to check for the { character as well as for a digit
when checking if a width has been specified. This is because the dynamic
width is specified using a nested replacement field, which starts with a {
character.

The next difference is in line 7, where we again need to check for a {
character as well as a digit to make sure we have a width specified.

The major change to this function starts at line A. This if-statement
checks if the next character is a {, which indicates we have a nested
replacement field. If the test passes, line B marks that we need to read
the width from an argument, and then we proceed to work out what the
argument index is.

The if-statement in line C checks if the next character is a }, which
means we are using automatic indexing mode. If the test passes, we call
the next_arg_id function on parse_ctx to get the argument number.
That function first checks if manual indexing mode is in effect, and if
it is it throws a format_error exception, as you cannot mix manual
and automatic indexing. Otherwise, it enters automatic indexing mode
and returns the next argument index, which in this case is assigned to
the m_width variable.

If the check in line C fails, we enter the else-block at line D to do manual
indexing. We get the argument number by calling get_int, and then
we call the check_arg_id function on parse_ctx. The function
checks if automatic indexing mode is in effect, and if so it throws a
format_error exception. If automatic indexing mode is not in effect
then check_arg_id enters manual indexing mode.

The else-block starting at line E just handles the case where we have
literal width specified in the format-spec, and is identical to the code
starting at line 8 in Listing 4.

Note that when used at compile time, next_arg_id or check_arg_id
check that the argument id returned (for next_arg_id) or supplied (for

 if (c == '{') // A
 {
 m_width_type = WidthType::Arg; // B
 ++iter;
 if ((c = get_char()) == '}') // C
 {
 m_width = parse_ctx.next_arg_id();
 }
 else // D
 {
 m_width = get_int();
 parse_ctx.check_arg_id(m_width);
 }
 ++iter;
 }
 else // E
 {
 m_width = get_int(); // 8
 m_width_type = WidthType::Literal;
 }
 if ((c = get_char()) != '}')
 {
 throw format_error("Invalid format "
 "specification for Point");
 }
 return iter;
 }
 auto format(const Point& p,
 format_context& format_ctx) const
 {
 if (m_width_type == WidthType::None)
 {
 return
 format_to(std::move(format_ctx.out()),
 "{0}{2}{1}", p.x(), p.y(), m_sep);
 }
 if (m_width_type == WidthType::Arg) // F
 {
 m_width = get_arg_value(format_ctx,
 m_width);
 }
 return format_to(std::move(format_ctx.out()),
 "{0:{2}}{3}{1:{2}}", p.x(), p.y(), m_width,
 m_sep);
 }
private:
 int get_arg_value(format_context& format_ctx,
 int arg_num) const // G
 {
 auto arg = format_ctx.arg(arg_num); // H
 if (!arg)
 {
 string err;
 back_insert_iterator<string> out(err);
 format_to(out, "Argument with id {} not "
 "found for Point", arg_num);
 throw format_error(err);
 }
 int width = visit_format_arg([]
 (auto value) -> int { // I
 if constexpr (
 !is_integral_v<decltype(value)>)
 {
 throw format_error("Width is not "
 "integral for Point”);
 }
 else if (value < 0
 || value > numeric_limits<int>::max())
 {
 throw format_error("Invalid width for "
 Point");
 }
 else
 {
 return value;
 }
 }, arg);
 return width;
 }

Listing 5 (cont’d)

private:
 mutable char m_sep = ',';
 enum WidthType { None, Literal, Arg };
 mutable WidthType m_width_type
 = WidthType::None;
 mutable int m_width = 0;
};
int main()
{
 Point p1(1, 2);
 cout << format(
 "[{0}] [{0:-}] [{0:4}] [{0:{1}}]\n", p1, 4);
 cout << format(
 "With automatic indexing: [{:{}}]\n", p1, 4);
 try
 {
 cout << vformat("[{0:{2}}]\n",
 std::make_format_args(p1, 4));
 }
 catch (format_error& fe)
 {
 cout << format("Caught exception: {}\n",
 fe.what());
 }
}

Listing 5 (cont’d)

Spencer CollyerFeature

26 | Overload | April 2024

check_arg_id) is within the range of the arguments, and if not will fail
to compile. However, this is not done when called at runtime.

The format function
The changes to the format function are just the addition of the if-
statement starting at line F. This checks if we need to read the width value
from an argument, and if so it calls the get_arg_value function to get
the value and assign it to the m_width variable, so the format_to call
following can use it.

The get_arg_value function
The get_arg_value function, defined starting at line G, does the work
of actually fetching the width value from the argument list.

Line H tries to fetch the argument from the argument list. If the argument
number does not represent an argument in the list, it returns a default
constructed value. The following if-statement checks for this, and
reports the error if required. Note that in your own code you might want
to disable or remove any such checks from production builds, but have
them in debug/testing builds.

If the argument is picked up correctly, line I uses the visit_format_arg
function to apply the lambda function to the argument value picked up in
line H. The visit_format_arg function is part of the std::format
API. The lambda function checks that the value passed is of the correct
type – in this case, an integral type – and that its value is in the allowed
range. Failure in either case results in a format_error exception.
Otherwise, the lambda returns the value passed in, which is used as the
width.

Summary
We have seen how to add a formatter for a user-defined class, and
gone as far as allowing the user to specify certain behaviour (in our case
the width) at runtime. We will stop at this point as we’ve demonstrated
what is required, but there is no reason why a real-life Point class couldn’t
have further formatting abilities added.

In the next article in the series, we will explain how you can write a
formatter for a container class, or any other class where the types of some
elements of the class can be specified by the user. n

Appendix: Simple mini-language guidelines
As noted when initially describing the parse function of the formatters,
the format-spec you parse is created using a mini-language, the design
of which you have full control over. This appendix offers some simple
guidelines to the design of your mini-language.

Before giving the guidelines, I’d like to introduce some terminology.
These are not ‘official’ terms but hopefully will make sense.

	� An element of a mini-language is a self-contained set of characters
that perform a single function. In the standard format-spec most
elements are single characters, except for the width and prec values,
and the combination of fill and align.

	� An introducer is a character that says the following characters make
up a particular element. In the standard format-spec the ‘.’ at the
start of the prec element is an introducer.

Remember, the following are guidelines, not rules. Feel free to bend or
break them if you think you have a good reason for doing so.

Enable a sensible default
It should be possible to use an empty format-spec and obtain sensible
output for your type. Then the user can just write {} in the format string
and get valid output. Effectively this means that every element of your
mini-language should be optional, and have a sensible default.

Shorter is better
Your users are going to be using the mini-language each time they want
to do non-default outputting of your type. Using single characters for the
elements of the language is going to be a lot easier to use than having to
type whole words.

Keep it simple
Similar to the above, avoid having complicated constructions or
interactions between different elements in your mini-language. A simple
interaction, like in the standard format-spec where giving an align element
causes any subsequent ‘0’ to be ignored, is fine, but having multiple
elements interacting or controlling others is going to lead to confusion.

Make it single pass
It should be possible to parse the mini-language in a single pass. Don’t
have any constructions which necessitate going over the format-spec
more than once. This should be helped by following the guideline above
to ‘Keep it simple’. This is as much for ease of programming the parse
function as it is for ease of writing format-specs.

Avoid ambiguity
If it is possible for two elements in your mini-language to look alike then
you have an ambiguity. If you cannot avoid this, you need a way to make
the second element distinguishable from the first.

For instance, in the standard format-spec, the width and prec elements are
both integer numbers, but the prec element has ‘.’ as an introducer so you
can always tell what it is, even if no width is specified.

Use nested-replacement fields like the standard ones
If it makes sense to allow some elements (or parts of elements) to be
specified at run-time, use nested replacement fields that look like the
ones in the standard format-spec to specify them, i.e. { and } around an
optional number.

Avoid braces
Other than in nested replacement fields, avoid using braces (`{` and `}`)
in your mini-language, except in special circumstances.

References
[Collyer21] Spencer Collyer (2021) ‘C++20 Text Formatting – An

Introduction’ in Overload 166, December 2021, available at:
https://accu.org/journals/overload/29/166/collyer/

[CppRef] std::formatter<std::chrono::systime>:
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter

[P2216] P2216R3 – std::format improvements, Victor Zverovich, 5 Feb
2021, https://wg21.link/P2216

[P2918] P2918R2 – Runtime format strings II, Victor Zverovich, 7 Nov
2023, https://wg21.link/P2918

https://accu.org/journals/overload/29/166/collyer/
https://en.cppreference.com/w/cpp/chrono/system_clock/formatter
https://wg21.link/P2216
https://wg21.link/P2918

Teedy Deigh Feature

April 2024 | Overload | 27

Judgment Day
What if AI takes your job?
Teedy Deigh finds out.

TD	 what?
MD	I’ve been trying to get in touch.
TD	 i know

got the same desperate msg from you on a dozen platforms
repeated enough times to buffer overflow
you even left voicemail msgs
who even uses phones for that anymore?
and all before a reasonable person’s had the chance to have a 4th
coffee
so what’s app?

MD	We have a problem and we need your help.
TD	 i don’t work for you any more
MD	But we’ve got a problem.
TD	 you fired all the developers just over 2 weeks ago
MD	It’s serious.
TD	 so was firing all the developers
MD	We had no choice. Our new AI-only development strategy was

approved by the board. We followed through. There’s no turning
back. We’re embracing the future.

TD	 who proposed the strategy?
MD	That’s not important.
TD	 who proposed the strategy?
MD	I did. But it was based on a thorough study and supported by a

number of others.
TD	 who?
MD	Some managers, the finance department, marketing, HR and C-level

execs.
TD	 C-level?

sounds like you went overboard
you involve any techies?

MD	Yes, a couple of senior architects did the study.
TD	 i meant bit wranglers not hand wavers
MD	You mean developers?

Of course not! That’s like getting turkeys to vote on Xmas.
TD	 seriously WTF?!
MD	Sorry about that. Sensitivity training’s not booked until next month.

Anyway, the architects said lots of technical things that sounded very
impressive and quite persuasive.
That all you need are product owners describing the functionality
and architects filling in some technical bits, the non-functional stuff.
AI generates all the code.
They called it the Skynet strategy, for some reason, and said it would
terminate our need for developers.

TD	 oh I know which architects you mean
‘non-functional’ is definitely the right description

that ‘thorough study’ means they saw a couple of videos, read some
press releases and spent the rest of the day binge-watching classic
sci-fi

MD	I’m sure they were more thorough than that.
TD	 fraid not

been dealing with their ‘architectures’ for years
me and the other devs had sweepstakes bout what was gonna come
up
both the questionable technical choices and the movie refs

MD	Movie references?
TD	 plus we kept a repo of ADRs to deal with their decisions
MD	ADRs?
TD	 Architecture Denial Records

ways of working around and avoiding the official architecture
TBH might’ve been the most enjoyable and creative part of my job

MD	I found their presentations compelling and insightful.
TD	 that’s not how you spell inciteful

your predecessor made them architects to keep them out of the code
reckoned they couldn’t do as much damage with PowerPoint
marketecture
guess we now know that wasn’t true

MD	Which is why I’m contacting you.
It’s not working.

TD	 what’s not working?
MD	It. You know. The software. The stuff you develop.
TD	 developed
MD	Whatever. It’s not working. After the last sprint things started going

wrong, and it’s all blown up this morning.
TD	 when you say last sprint you mean the first sprint using 100% LLM-

based codegen?
MD	Yes, and we don’t understand what’s wrong. I’ve been told all the

tests are passing.
TD	 which tests?
MD	The ones generated by the AI.

TD	
has anyone looked at the code?

Teedy Deigh
Teedy says she’s been dealing with artificial intelligence her whole
career, that many of her colleagues qualify and are not as smart as
they make themselves out to be, (deeply) faking and (heavily) bluffing
their way through codebases, technologies and business decisions,
playing an imitation game informed by Stack Overflow, hype cycles and
group think, and that it’s not imposter syndrome if they are actually
imposters.

Teedy DeighFeature

28 | Overload | April 2024

MD	Yes, the architects.
TD	 what did they say?
MD	They shrugged and said ‘LGTM’, if I recall correctly. Not quite sure

what they meant.
TD	 when a dev uses LGTM it means they couldn’t be bothered to look

through it
when an architect uses LGTM it means they haven’t a clue
basically your CI/CD pipeline is now a GIGO pipeline

MD	Is that bad?
TD	 very
MD	I also overheard them later on being concerned about someone called

Ellie.
TD	 that would probably be ELE

Extinction Level Event
MD	What does that mean?
TD	 they were probably talking about the deep impact on the company’s

prospects
MD	This is even worse than I thought!
TD	 perhaps your product owners could have a go at fixing things

i mean it’s their code right?
MD	They just told the AI what they wanted it to do.
TD	 did they precisely and rigorously specify what they wanted?
MD	They’re product owners, what do you think?
TD	 ah

guess that also means they didn’t check the results or specify at a
high-level of detail?

MD	Do they need to do that? It seems like a lot of work. I thought they
just needed to nudge the AI and it would all work.

TD	 ‘prompt’ not ‘nudge’
you need to be very detailed and very precise and to pay a lot of
attention
and then you do the nudging
(and often quite a lot of shoving)
if not, it’s no better than telling your cat you farted

MD	I don’t recall all this stuff about ‘precision’, ‘rigour’, ‘detail’ and
‘checking’ being mentioned in the study. Is this what they call
‘prompt engineering’?

TD	 it’s what we call programming
tell you what
i’ll help you sort out this mess if you give me my old job back

MD	We can’t do that. There’s no software development department
anymore. We let it go, and the budget for software is frozen.

TD	 well that’s all very Disney of you but no job means no help
to be clear
what you need is someone to correctly specify, verify, adapt and
adjust prompts?

MD	Exactly.
TD	 that would be like a product owner right?
MD	Yes.

I see.
We have hiring capacity for POs. But that would mean hiring you
back at a higher pay grade than when you were a software developer.

TD	 i have no problem with that
and as a senior PO i’d be able to take advantage of this (re)hiring
capacity yes?

MD	Wait, why would you be senior?
TD	 you need a PO with the specific ability to be specific in a way that is

correct?
that seems to be a higher grade of ability than the other POs

MD	That’s true.
TD	 and you have a (very very) big problem that needs to be solved asap
MD	That’s also true.
TD	 just to check: senior PO is higher up the hierarchy than senior

architect?
MD	Correct.
TD	 then i accept

pls tell the architects i’ll be back

To connect with
like-minded people

visit accu.org

accu

Professional development
World-class conference

Individual membership
Corporate membership

Printed journals
Email discussion groups

Visit accu.org
for details

accu
Professionalism in Programming

	Editorial: I Don’t Believe I t!
	C++ Safety, In Context
	To See a World in a Grain of Sand
	User-Defined Formatting in std::format
	Judgment Day

