Overload issue 55 june 2003

contents

A bi n Manipulator for 10Streams by Dietmar Kuehl 5
Ruminations on Knowledge in Software Development by Allan Kelly 10
From Mechanism to Method - Distinctly Qualified by Kevlin Henney 13
How to Write a Loop by Jon Jagger 19
Embedded Scripting Languages by Jonathan Tripp 22

credits & contacts

Editor: Readers:
John Merrells, lan Bruntlett
nmerrells@cmorg lanBrunt| ett @ntigs. ukl i nux. net
241 Heartwood Lane,
Mountain View, Phil Bass
CA 94041-11836, U.S.A phi | @t oneymanor. denon. co. uk

Mark Radford

Advertising: t woni ne@ woni ne. denon. co. uk
Pete Goodliffe, Chris Lowe
ads@ccu. org Thaddaeus Frogley

t.frogley@t!world.com

Membership: Richard Blundell

ich . bl I is.
David Hodge, ri chard. bl undel | @ret apraxi s. com

nmenber shi p@ccu. org
31 Egerton Road
Bexhill-on-Sea, East Sussex

TN39 3HJ, UK Website: http://ww. accu. or g/

Membership fees and how to join:

Basic (CVuonly): £15

Full (C Vu and Overload): £25

Corporate: £80

Students: half normal rate

ISDF fee (optional) to support Standards
work: £21

There are 6 journals of each type produced
every yedr.

Join on the web at www.accu.org with a
debit/credit card, T/Polo shirtsavailable.

Want to use cheque and post - email
menber shi p@ccu. or g for an
application form.

Any questions - just email
menber shi p@ccu. org.

Overload issue 55 june 2003

Editorial

by Alan Griffiths

Why am | writing the editorial?

iIX years ago | edited a single issue (19) of Overload to bridge the gap when
the then editor (Sean Corfield) gave up the job and we were seeking a new
editor. On that occasion | edited a single issue on the understanding that |
would not be able to continue and in the hope that someone would be able to take
over. Fortunately John Merrells volunteered to edit the next three issues and, as you

will be aware, he is still here!

In the editorial of “my” issue of Overload | admitted
that 1'd like to be able to do the job on along term basis
but, at that time, there were too many demands upon my
time for me to make that commitment. | even went so far
as to say that it would be a possibility “in a few years”.
But, in the meantime, John has retained his commitment
and | found standing for the ACCU Chair placed other
demands on my time.

Anyway, having now given up the Chair | now have some
time | can commit to Overload and have joined the team as
a"“ Contributing Editor”. John and | haven't discovered what
that title means in practice yet, but we've decided it means
that | can write editorials and John doesn’t have to.

Six years on

L ooking back to the editorial | wrote then makes me aware
of quite how much Overload has changed during John’'s
time as editor. While | think all the changes are for the
better, it also raises the question of how it will change in
the future.

One of the editorial concerns at that time was the range of
material that Overload covered. When John took over,
Overload was the journal of the ACCU’s “C++ Special
Interest Group” and was very much focussed on C++. When
John took over he began expanding the range of material
Overload published beyond C++ - and we regularly have
articles on other languages and on other aspects of software
development such as design and development methods.
While thiswas good for Overload it did raise questions as to
its relationship to the C++ SIG and, after awhile, | (as C++
SIG organiser) severed the connection - allowing Overload
to be repositioned as the ACCU journal for full members.

Despite having been dissociated from the C++ SIG the
majority of Overload material continues to use C++.
However, | feel the focus of such articles has changed: there
is atendency for them to be about designs, illustrated using
C++, rather than about C++ itself. That isgood, because C++
is an extremely expressive language, which continues to
surprise and delight me (although | still have the concerns |
expressed in Overload 7 about the demands it makes of
developer skills).

The current C Vu editor (James Dennett) will recognise
the situation John found himself in when he took on
Overload: the previous editor had invested a lot of energy

aq

into the journal and had done everything (soliciting articles,
reviewing them, and editing the journal) himself. John
successfully introduced an innovation: he has built up ateam
of “readers’” who work with the authors before publication
by reviewing the articles (and making helpful suggestions).
(One of the reasons | prefer writing for Overload to writing
for C Vu is the feedback | get from the readers prior to
publication.) The readers also help John decide what is
suitable for publication. The value of having ateam working
on the journal proved itself when John had to take a break
from editing and Einar Nilsen-Nygaard took over for afew
issues with no break in the continuity.

Another change is perhaps the most obvious and also the
easi est to overlook: the appearance of the journal. While the
value of the journal is still in the material the improvements
to the appearance from aprofessional production processare
spectacular.

All of this makes Overload a much more impressive
publication than it was six years ago.

The future

Over six years I've found that the work 1I’'m doing has
changed and that my interests have changed with it. Six
years ago | was using C++ to create bits of software that
worked without the author being present. Nowadays, I'm
trying to create a software development process that works
when |I'm not there to keep things progressing. In both
cases the higgest problem seems to be people that expect
hard problems to have easy answers. I’ve aso found that
similar techniques are applicable: like using an informal
“pattern language” to explain to managers why the fastest
developer on a project might be aliability - and what to do
about it. (But isthistype of material of interest to Overload
readers?)

Six years ago the lack of material led to two issues (17/18)
being rolled into a single cover. The recent pleas for
contributions indicate that thisis still arisk. One thing that
remainsthe sameisthe voluntary nature of the contributions
and editing of the material. Those that do contribute are well
aware of the benefits, but there has always been a need for
new blood. If you feel like seeing your words in print then
please get in touch - the Overload team is ready to help!

Qlan Cuiffiths

al an@ct opul | . denon. co. uk

A bi n Manipulator For

|OStreams
by Dietmar Kuehl

The standard stream classes support different bases when doing
formatted 1/O with integers: there are manipulators st d: : oct,
std: : dec,andst d: : hex for octal, decimal, and hexadecimal
1/0O, respectively. There is, however, no manipulator for writing
and reading integers using other bases, although something like
base two seems to be a natural choice, too.

The question is thus what manipulators are and what a
manipulator for formatting integers using base two would look
like. For this discussion, it is sufficient to concentrate on
manipulators without arguments. These are quite simple: A
manipulator without argument is (at least normally) just a
function with a certain signature. For example, st d: : hex
looks something like this:

nanmespace std {
std::ios_base& hex(std::ios_base& ib) {
i b.setf(std::ios_base:: hex,
std::ios_base:: basefield);
return ib;
}
}

This function just clears a bunch of bits (namely those which are
st inbasefi el d) inthe formatting flags and then sets afew of
them again (namely those which are set in hex). The standard’s
formatting functions for integers interpret these flags to
determine how integers are to be formatted and act accordingly.
However, these functions only work correctly for the bases
decimal, octal, and hexadecimal (well, at least these are the only
bases for which they are guaranteed to work).

Before going more into the formatting flags let’s discuss how
these manipulator functions actually work. The above function is
used to manipulate the stream with an expression like this:

std::cout << std::hex;

What happens is actually pretty simple: the shift operator is
overloaded to take arguments with the signature

Overload issue 55 june 2003

std::ios_base&(*)(std::ios_base&) and this
overload just calls the corresponding function, i.e. something
like this (actually, this function is implemented as a template
but this would only obfuscate the issue):

std:: ostrean&
std:: ostream : operator<<
(std::ios_base& *m)(std::ios_base&)) {
m*this);
return *this;

}

That is, if you want to implement a manipulator, you would just
implement a function with the appropriate signature: it takes a
stream (or one of its base classes: std: : i os_base or
std: :io0s) asargument and returns this argument again (the
argument and return type have to be identical but there is some
choice toward the argument types you can use). The function
would just do the manipulation on the argument and then return
the argument.

To implement a manipulator which modifies al integer output
to become binary is, however, non-trivial because it requires
interfering with how integers are formatted and the standard
routines for this are not prepared to support bases other than 8, 10,
and 16. However, it is doable because it is possible to supply the
formatting code for integers by implementing a class derived from
thest d: : num put facet whichistheninstalled (when necessary)
by the manipulator.

Formatting Integers

My guess is that talking about facets is somewhat confusing
so let's walk through this whole thing, although most of the
stuff will not be related to manipulators directly (some
additional stuff on manipulators will, however, come up
below).

Facets are ameans to adapt certain stuff to local conventions.
For example, in Germany we use “,” asadecimal point and “.”
as athousands separator whilein other (weird) places, “.” isused
as adecimal point and “,” as a thousands separator. To adapt
output (and other stuff) to the conventions the user is used to,
the C++ library uses “facets” which are just classes obeying a

few reguirements (essentially, each object has to have a public

Copy Deadlines

All articles intended for publication in Overload 56 should be submitted to the editor by July 1st, and for Overload 57 by

September 1st.

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

5

Overload issue 55 june 2003

member of typest d: : | ocal e: : i d namedi d andall public
functions should be const, i.e. the objects should be
immutable). There are several of them but the interesting one
here is num_put : the facet doing numerical formatting.
Actually, thisis not a class but a class template. | will use a
template here because it is less confusing than using the
specialization we will need to install later.

To replace the functions for formatting integers, aclassisderived
fromnum_put and afew functions are overridden:

tenpl ate <typenane cT, typenane Qutlt>
class bin_numput: public
std::numput<cT, Qutlt> {
Qutlt do_put(Qutlt to,
std::ios _base& fnt,
cT fill,
[ong v) const;

Qutlt do_put(Qutlt to,
std::ios _base& fnt,
cT fill,
unsi gned | ong v) const;

}

There are just two functions dealing with integer values, one for
signed and one for unsigned ones. Each function gets an output
iterator as argument to write individual characters to. After
writing the characters the iterator is returned as the result of the
function. The second parameter is a reference to an object
holding formatting information. The third parameter is the
character to be used for padding a value to a specific length. The
last parameter is the value to be formatted.

Since I’'m mostly interested in getting the principle right, |
will just stick to a rather simple implementation using a fixed
width of digits. A “real” implementation might want to omit
leading zeros (this isn't really hard to implement either).
Effectively, just one formatting function is needed because
formatting of signed values can be delegated to formatting
unsigned values in this case. The formatting functions will use
another facet, ct ype, to convert the characters 0 and 1 to
values of the appropriate character type:

tenpl ate <typenane cT,

Qutlt

bi n_num put<cT, Qutlt>::do _put(Qutlt to,
std::ios _base& fnt,
cT fill,
[ong v) const {

return do_put(to, fm, fill,
static_cast<unsigned |l ong>(Vv));

typenane Qutlt>

}

tenpl ate <typenane cT,

Qutlt

bi n_num put<cT, Qutlt>::do _put(Qutlt to,
std::ios _base& fnt,

typenane Qutlt>

cT fill,

unsi gned | ong v) const {
char narrowf] = "01";
cT wide[2] ={ 0 };

std::use facet<std::ctype<cT> >(
fm.getloc()).w den(begi n(narrow),
end(narrow) - 1,
begi n(wi de));
cT buffer[std::nunmeric_limts<
unsigned | ong>::digits];
std::fill(begin(buffer),
end(buffer),
wi de[0]);
cT* end = end(buffer);
for (; v!1=0; v /= 2)
*—end = wide[v % 2];

return std::copy(begin(buffer),
end(buffer), to);

}

The above code uses the following two auxiliary functions to get
an iterator (in this case actudly just a pointer) to the beginning
and the end of astatically sized array:

nanmespace {
tenpl ate <typenane T,
int sz> T* begin(T (&)[sz]){
return a;

}

tenpl ate <typenane T,
int sz> T end(T (&)[sz]) {
return a + sz;
}
}

If you don't understand these two functions, just don't worry
about them: I'm using them to conveniently get iterators to the
beginning and the end of a dtatically sized array.

The above code explicitly excludesthe last element of the array
nar r ow(thisiswhat the- 1 isgood for). Thereason for thisisthat
the array nar r ow has the size three: the null character at the end
of the string isincluded in the array. That is, the line initiaizing
narr owis equivaent to this one:

char narrowf] ={ '0", "1', 0 };

The actual formatting of the binary number is trivial: an array
with sufficient zeros is obtained and it is filled with digits
starting from the end until there are no further digits. This
approach also works for formatting integers for bases other
than two and this will be used below. Once all digits are
available, the array is copied to its destination. The only
somewhat tricky part is getting the appropriate characters
representing 0 and 1 because we don’t really know the
character type. This is done by using the facet
st d: : ct ype<cT> which can “widen” a narrow character to
the corresponding character type.

The bi n Manipulator

OK, now that the routines for formatting integers as binary are
implemented, they need to be installed into our stream to have
them used. Before implementing a corresponding manipulator,

letsdo thisin asmall test program. The facets are objects held by
a“locale’ and it is necessary to construct a locale object with the
default num_put facet replaced by the new facet. To provide
this, it is necessary to instantiate the bi n_num put class
template with appropriate types, i.e. with char ascharacter type
and st d: : ostreanbuf _it er at or <char > asiterator type:
these are the types used when doing numeric formatting using
std::cout. If awide character stream like st d: : wcout is
used, char hasto be replaced by wehar _t , of course. Once the
new locale is constructed from an existing locale and the
bi n_num put class, it isinstalled into the corresponding
stream using the i mbue() function:

int main() {
typedef std::ostreanbuf iterator<char>
iterator;
std::locale loc =
std::local e(std::cout.getloc(),
new bi n_num put <char, iterator>());
std:: cout.inbue(loc);
std::cout << 10 << "\n";

}

We can just put the code ingtalling the binary formatting into a
manipulator using an appropriate template to make it feasible
with all kinds of streams:

tenpl ate <typenane cT, typenane traits>
std::basic_ios<cT, traits>&
bi n(std::basic_ios<cT, traits>& ios) {
typedef std::ostreanbuf iterator<cT>
iterator;
std::locale loc =
std::local e(ios.getloc(),
new bi n_num put<cT, iterator>());
i 0s.imbue(loc);
return ios;

}

... and use it in the expected way:
std::cout << bin << 10 << "\n";

Well, except that there is no easy way to turn binary formatting
off again! Since we have replaced the formatting routine we can
usethe st d: : hex manipulator as often as we want: there will
be no change at al.

std::cout << bin << 10 << std:: hex
<< 10 << "\n"; // does not work

To do something like this, it is necessary to take the value of
formatting flags into account and act correspondingly. Before
supporting use of the standard manipulatorsit is, however, useful
to adapt the case to cope with arbitrary bases.

Storing Formatting Information

To do this, the selected base should be stored with the stream
such that it can be used by the formatting function. The obvious
place to store such information isin an i wor d() of the fnt

Overload issue 55 june 2003

member. Here are corresponding manipulators which also ingtall
the needed facet only if it is not yet present:

static int base_ index =
std::ios_base::xalloc();

tenpl ate <typenane cT, typenane traits>
std::basic_ios<cT, traits>&
install _bin(std::basic_ios<cT,
traits>& i os,
int base) {
i 0s.iword(base_index) = base;
typedef std::ostreanbuf iterator<cT>
iterator;
i f(!dynam c_cast
<bi n_num put <cT, iterator> const*>(
&std::use_facet<std::num put<cT,
iterator> >(ios.getloc())))
i 0s.inmbue(std::local e(ios.getloc(),
new bi n_num put<cT, iterator>()));
return ios;

}

tenpl ate <typenane cT, typenane traits>

std::basic_ios<cT, traits>&

bin(std::basic_ios<cT, traits>& ios) {
return install_bin(ios, 2);

}

tenpl ate <typenane cT, typenane traits>

std::basic_ios<cT, traits>&

oct (std::basic_ios<cT, traits>& ios) {
return install_bin(ios, 8);

}

tenpl ate <typenanme cT, typenane traits>

std::basic_ios<cT, traits>&

dec(std::basic_ios<cT, traits>& ios) {
return install_bin(ios, 10);

}

tenpl ate <typenanme cT, typenane traits>

std::basic_ios<cT, traits>&

hex(std::basic_ios<cT, traits>& ios) {
return install_bin(ios, 16);

}

The function xal | oc() “alocates’ a new index for formatting
information in the stream objects. This index can be used with
the i wor d() function of streams: this function returns a
reference to an integer. Thisinteger is associated with the stream.
Initialy, the value returned is set to zero but the above code does
not take advantage of this feature. If an integer is not sufficient, a
pointer to the formatting information can be stored using the
pwor d() function.

Thereisafunction called by the various manipulators which sets
the corresponding base and checks whether the appropriatefacetis
installed. Thisisdone by obtaining the currently installed facet and
testing whether it isan instantiation of bi n_num put . If itisnot,

7

Overload issue 55 june 2003

thisfacet isinstalled. What remainsto be doneisto usethe basein
the facet, too. The modified code looks like this:

tenpl ate <typenane cT,

Qutlt

bi n_num put<cT, Qutlt>::do _put(Qutlt to,
std::ios _base& fnt,

typenane Qutlt>

cT fill,

unsi gned | ong v) const {
char narrow] = "0123456789abcdef";
cT wide[16] ={ 0 };

std::use facet<std::ctype<cT> >(
fm.getloc()).w den(begi n(narrow),
end(narrow) - 1, begin(w de));

cT buffer[std::nuneric_Iimts<unsigned
long>::digits];
end(buffer),
wi de[0]);

std::fill(begin(buffer),

int base = fnt.iword(base_index);
for (cT* it = end(buffer)
vI=0
v /= base)
*—+t = wide[v % base];
return std::copy(begin(buffer),
end(buffer),
to);
}

Now the manipulators can be tested. For example:

int main(int ac, char* av[]) {
int val = ac == 1 ? 10
std::atoi (av[1]);
std::cout << "bin: << bin << val
<< "\ n";
std::cout << "oct: << oct << val
<< "\n";
std::cout << "dec: << dec << val
<< "\n";
std::cout << "hex: << hex << val
<< "\ n";
}

This code is not yet perfect. Actually, severa things need to be
handled but these are relatively smple and don’'t need specific
new knowledge of the standard library. In particular, the
following aspects are not yet addressed but would need handling
in areasonable implementation:

* Negative vaues conventionally use a minus sign followed by
the absolute val ue rather than the two’s complement. That is, the
function taking al ong as argument cannot directly use the
unsi gned | ong version, at least not for negative decimal
values.

* Although quite usual for binary values, leading zeros are
normally stripped for other bases. To get leading zerosfor binary
values while omitting them for other bases, the wi dt h()
currently installed in the stream could be used.

» Theformatting has to take care of padding, i.e. it hasto add fill
characters: ifwi dt h() isnon-zero, there should be at least that
many characters written to the sequence. Padding is alittle bit
tricky because there are three possible placeswhere padding, i.e.
copiesof thefi | | argument, should go:

+ totheleft of thevalue

+ theright of the value

 between aleading sign and the value or to the left if thereis
no sign

Thisisspecifiedby fmt . fl ags() &

std::ios_base::adjustfield(): thecorresponding

vduesare | eft, right,and i nternal . In any case, after the

formatting, thewi dt h() should besetto 0.

Arbitrary Bases

Of course, most of the formatting issues could be taken care of by
the base class. the do_put () function could check whether the
baseis 2 and if it is not delegate processing to the base class. On
the other hand, the above facet is capable of formatting integers
according to arbitrary bases as long as the base is bigger than 1
and there are sufficient different characters configured to
represent the digits. A manipulator setting an arbitrary base
would, however, require a parameter. The approach to
manipulators with parameters is to just provide a class with a
suitable constructor and a shift operator:

struct setbase {
set base(i nt base):
i nt nBase;

};

tenpl ate <typenane cT, typenane traits>
std::basic_ostreankcT, traits>&
operat or<< (std::basic_ostreanxcT,
traits>& os,
set base const & sb) {
install _bin(os, sb.nBase);
return os;

nBase(base) {}

}

This manipulator is obviously used identically to the
std::setworstd:: setpreci si on manipulators:.
std::cout << setbase(3) << 10 << "\n";
The only problem with this manipulator is that the user can set
bases which are out of the supported range (with the code above
[2, 16]).
Now let’s get back to supporting the standard manipulators: it

would be useful if the standard manipulators could still be used, eg.
for mixed binary and hexadecimal output:

std::cout << "binary: << bin << i
<< "\ n" << “hexadeci nal :
<< std::hex << i << "\n";

To do so, the formatting code has to become aware of the use of
st d: : hex. This can be detected if the special manipulators
clear dl bitsin the basef i el d: the standard manipulators have
to set some hits because the case where no bits are set is treated

specially for integer input (it is equivalent to the % format
specifier of scanf (), i.e. the base of the integer read is
determined by the first digits). Thus, the binary formatting code
can be rewritten to take specia action if thebasef i el d isnon-
zero. A simple approach is delegating processing to the base class
inthis case. Thisis achieved by adding these two lines to the start
of thedo_put () function:

if(fm.flags() & std::ios_base::basefield)
return std::num put<cT,
Qutlt> :do_put(to, fnt, fill, v);
The change to the manipulator is even simpler: it just takes the
following lineto clear the bitsin thebasef i el d:

i os.unsetf(std::ios_base::basefield);

Of course, the overall semantics of using the base class version
change the behavior to some extent. At least the open issues
noted above are covered. Also, the standard do_put ()
functions take care of thousands separators (if these are
configured for the locale) and some specia formatting like upper
and lower case letters for hexadecimal values.

Stream Callbacks

As afind round-off to the IOStream manipulator discussion let’s
deal with those funny callbacks defined in st d: : i os_base.
Streams support registration of callbacks which are called in case
of certain events. The main use of these calbacks is support for
resource management when associating pointers with streams via
the pwor d() function. There are three events defined in
std::ios_base:

erase_event : Thisevent isnotified when resources associated
with the stream should bereleased. Thisevent is called when the
stream is destroyed and prior to copying when copyf nt () is
called.

i tbue_event: This event is notified when a new localeis
i mbue() ed into the stream. Since we modified the locale to
take care of binary formatting, the code below demonstrates how
thisevent is caught to modify the new locale, too.

copyfnt_event: Thisevent is notified when copyf mt () is
called, after copying all formatting datato the stream. Theintent
of thisevent isto either do adeep copy of objects pointed to (the
stream merely copiesthe pointers) or maintain areference count.

Stream callbacks are rather primitive: only functions with the

signature void(*)(std::ios_base::event,

std::ios_base&, int) aresupported. The first
parameter identifies the event being notified, the second
identifies the stream object for which the event is notified, and
the third parameter is a user parameter passed when
registering an event. The callback just handles the

i mbue_event and imbues a modified locale if the

corresponding num _put facet is not a modified one (note that

it has to be checked whether the facet is already there to
prevent an infinite recursion):

tenpl ate <typenane cT,

voi d

bi n_cal | back(std::ios_base::event ev,
std::ios_base& ios, int) {

typenane traits>

Overload issue 55 june 2003

typedef std::ostreanbuf iterator<cT>
iterator;
if(ev == std::ios_base::inbue_event
&& !dynam c_cast <bi n_num put <cT,
iterator> const*>(
&std::use_facet<std::num put<cT,
iterator> >(ios.getloc())))
i 0s.inmbue(std::local e(ios.getloc(),
new bi n_num put<cT, iterator>()));

}

tenpl ate <typenane cT, typenane traits>
std::basic_ios<cT, traits>&
install _bin(std::basic_ios<cT,
traits>& ios, int base) {
typedef std::ostreanbuf iterator<cT>
iterator;
i f (!dynami c_cast <bi n_num put <cT,
iterator> const*>(
&std::use_facet<std::num put<cT,
iterator> >(ios.getloc()))) {
i 0s.inmbue(std::local e(ios.getloc(),
new bi n_num put<cT, iterator>()));
i 0s.register_call back(
bi n_cal | back<cT,
}

i 0s.iword(base_index)
return ios;

traits> 0);

= base;

}

The callback is registered when a new locae is installed. Since
this basically inhibits reinstalling the original locale without
using copyfmt () (copyfnt () copies the locale without
triggering the i mbue_event), it is not necessarily the best
design. On the other hand, it might be a reasonable thing to do
anyway and the best thing | could think of for demonstrating
stream callbacks with this example.

Conclusions

» Manipulators arejust functions with certain possible signatures.
The possible signatures are

std::ios_base& (*)(std::ios_base&)
tenpl ate <typenane cT, typenane traits>

std::basic_ios<cT, traits>&
(*)(std::basic_ios<cT, traits>&)

tenpl ate <typenane cT,
std: : basic_ostreanxcT,
(*)(std:: basic_ostreanxcT,

typenane traits>
traits>&
traits>&)

tenpl ate <typenane cT,
std:: basic_istreankcT,
(*)(std::basic_istreanxcT,

typenane traits>
traits>&
traits>&)

» Manipulators can usethefunctionsxal | oc() ,i word(),and
pwor d() to associate datawith a stream.
* Numericformatting used by the stream classesisdone viafacets
which can be customized to suit specific needs.
Dietmar Kuehl

9

Overload issue 55 june 2003

Ruminations on Knowledge

in Software Development
by Allan Kelly

In computing we are accustomed to shunting bits and bytes about.
We cal this data, we may even accept this represents information,
but is it knowledge? In fact, are there any real and important
differences between data, information and knowledge? And are
these differences of any importance to us when we develop
software? (And, with dl these questions, am | in danger of turning
into acharacter from awell know HBO seriessetin New Y ork?)

This article continues the theme of learning from my previous
Overload piece, “Software Engineering and Organisational
Learning.” In part you may like to consider this a simultaneous
review of several books which promote the same ideas.

The difference

In everyday language, data, information and knowledge tend to be
interchangeable terms. Certainly, mogt dictionaries I’ ve looked at
seem to define each term in terms of the others. However, if thereis
no difference between these termswhat is the point of having them?

For their book, Working Knowledge, Davenport and Prusak (1998)
noted that there are many words and definitionsthat are applied to the
nebulousidess of data, information and knowledge. But sncewehave
enough trouble defining just three termswe had best not ponder ontoo
many. Using their working definitionswe get:

» Dataclaimsto be some objective facts about events.

» Information is a message intended to change the receiver’s
perception of something, it isthe receiver rather than the sender
who decides what the message means.

» Knowledgeisafluid concept, incorporating experience, values,
context that existsinsde an individua’ smind or in the processes
and norms of an organisation.

One of the leading writers on the subject of knowledge is Ikujiro

Nonaka, he attributes (1995) three attributes to knowledge:

* Knowledge is about beliefs, commitment, and is a function of
perspective and intention

* Knowledgeis about action

» Knowledge, andinformation, are about meaning and are context
specific.

Later, he extended these ideas to place knowledge within a

concept called “ba’ (1998). This is a Japanese term he uses to

describe the space in which knowledge exists, take away “ba’
from knowledge and what you are left with is mere information.

Although they had the plans the Soviet engineers lacked the
context and culture of the designs. Measurement systems where
different, ways of working were different, and notations were
different. Thus, they weren’t about to build an exact replica of the
Anglo-French plane.

Similar things happen to software project when anew team takes
over an old project. The project code may come with
documentation and UML chartsbut itisstill difficult to understand.
The new team lack the“ba’ of the old team. Thismay explain why
devel opers tasked with maintenance often feel the need to re-write
existing code.

Where is knowledge in software
development?

The whole software development process is an attempt to codify
knowledge. We start with some vague idea of what a system
should do and, through successive processes of specification,
design, implementation and testing, try to turn that knowledge
into aworking, useful model.

Our problem isthat knowledgeisdifficult to codify. Assoftware
developersour skillsand knowledge reside in our own domain, our
own field of “ba’. We take a problem domain, with its own “ba’
field and attempt to produce a product which will exist in both
domains, satisfying the requirements of the problem domain while
meeting the engineering requirements of our own solution domain.

Software needs to exist simultaneously in these two
environments. Commercialy it is the part seen by customers that
tends to get priority, even though this represents the tip of the
iceberg (Figure 1). As engineers we see the bigger, more complex
problem underneath the waves.

Codification

As if this weren’t enough, much knowledge is actually tacit.
That is, it is not codified, it is not written down anywhere. We
may not realise we have this knowledge until we attempt to write
it down or do things differently. Usudly it isjust “the way we do
it around here.”

When we deliver aprogram it entersinto the users’ domain. It
hasto live as part of their “ba’ so we must respect what usersknow
and expect. If we embed values and judgementsinto our software
which are different to the onesin common use our customers will
find the system counter-intuitive and difficult to use. If, on the
other hand, we tailor our system to their norms they will find the
system easier to use.

For example, Meyers's Effective C++ is nothing
more than alist of 50 itemsin strange bizarre language
- at least when Nick Hornby publishesalist therearea
few laughs. But add experience of C++, the values of
the C++ community and the fact that readersare usually
practising C++ programmers and suddenly the contents
of Effective C++ take on a different meaning.

Another example of “ba’ occurred during the
development of Concorde. The Soviet Union decided
it had to have a supersonic passenger planeto riva the
Anglo-French Concorde and the proposed Boeing 2707.
Lacking the time and expertise the Soviets stole the
blueprints of the plane and set about building their own
Koncordski, the Tupulov 144. When revealed the plane

Custorners cnly seethe tip of
the software, needsto fit
with their way of working

Developers focus on the unseen
elements, but need to consider how the
custormers see the software

looked like Concorde, and it even flew but it didn’t
perform as expected.

10

Figure 1 - Softwareislikean iceberg

Overload issue 55 june 2003

Fromtacit totact, e g
apprenticeship, passing on
knaowledge, learning the

From tacit to explicit, e g

Internalisation

UL developie Tacit: New documenting systemn design,
Freesss Sorialisati m”;:rfigzlge writing systemn specification
Extenalisation
b 4
Tacit: Internal Explicit: Codified
understanding knowledge
armnbination

From explicit totacit, eg.
learning the workings of the
systemn, knowing where to

Exzplicit: MNew
external
knowledge

From explict to explicit, e g
writing program code to meet
specification

put breakpoints

e

Combine with other explicit knowledge

Figure 2 - Nonaka’'s four maodes of knowledge conversion (adapted from Nonaka, 1995, p62

Of course, often the whole point of introducing software isto
disrupt current practices o they can bechanged. However, weshould
be sure we know which practices we are attempting to change and
which we want to keep. There is no point in introducing software
which forces doctors to measure temperatures in Kelvin if we are
trying to change their prescribing practices.

Specification

It is when we come to write the specification that we start to
grasp the difficulties that are presented by both “ba” and tacit
knowledge. Specifications have a tendency to grow like Topsy,
they never seem to be complete. If we attempt to write a
complete specification we must not only codify the system
requirements but also the context, the “ba’ they exist in. To be
fully complete the specification for the prescribing system would
need to explain what temperature is, how it is measured and what
theunitsare.

Specifications are themselves abstractions, and in making the
abstractions we have to leave out detail. But the attempt to leave
out detail leads to incompleteness because we rely on context to
provideit. Itisaways possible to add more explanation to a
specification. Thuswe end up with thousand page specifications.

Secondly, our specifications still haven't tackled tacit
knowledge. Aswe write the specification we will uncover more
and more undocumented rules of thumb, methods of working,
common practices and so on. This continues as the system moves
to implementation and we see how the different bits interact.
Testing, dmost invariably, throws up undocumented assumptions,
missed function points and incompatible implementation.

Hand-over

Anyone who has ever worked on a serious software system will
have been involved in project hand-overs where a developer
atempts to dump the contents of their brain, their knowledge, to
anew team member. This can be scary if you're arriving on the
team and suddenly trying to absorb a million and one facts about
asystem, and if you're the one trying to pass on the information -
particularly if you're leaving the company.

Documentation is of limited help. Like many developers|’'ve
experienced the mountain of documentation which liesinwait when
you join anew project. Becauseit has been written down managers
expect that simply reading it will make you as knowledgeable as
the writer.

Again we see tacit knowledge and “ba’ at work. The
documentation can’t possibly contain everything the last devel oper
knew about the system. Even if they divided their time equally
between documentation and coding there are assumptions that will
never makeit to paper.

And reading the documentation when you first join a project
means you' re reading it in the abstract. Until you have been
immersed in the project, spoken to other developers - tried to
understand the problem and the solution - large parts of
documentation are meaningless.

Knowledge creation

In producing a solution to a problem we need to create new
knowledge about the process and about the solution. If we
understand the knowledge creation process it should help us work
with the process rather than against it.

In writing about knowledge, Nonaka, proposes a four stage
model (Figure 2) that turnstacit knowledgeinto explicit knowledge,
combines it with other explicit knowledge and turns it back into
tacit.

With each conversion knowledge is extended. This may mean
it is combined with some other knowledge to create new
knowledge, or it may mean that more people understand the
knowledge, it may also mean that individuals have a better
understanding of the knowledge.

Justdo it

Another of Nonaka s points was that knowledge implies action. We
need to act on information in order for it to truly be considered as
knowledge. After dl, how many times have you written a piece of
code which you know violates some best practice, but, for whatever
reason, time, laziness, expediency, you write it some other way?
Y ou have the information to write it better but you choose not to.

11

Overload issue 55 june 2003

Software developersarenot aloneinthis. Newspapersregularly
publish stories about reportswritten for companies or Governments
that are not acted on, how a study recommended X in 1998, and in
2001 Y happened because X hadn’t been done.

In fact, there is a whole book on subject called - the Knowing
Doing Gap by Pfeffer and Sutton (2000). They suggest that
individuals, teams, and companies often know what the best thing
to do it, but they fail to act on what they know for a variety of
reasons. Aswell as discussing these problems Pfeffer and Sutton
examine a number of companies who have succeeded in
overcoming these problems and have enjoyed considerable business
SLCCesS.

One of the companies described in Knowing Doing GapisSAS
Ingtitute of North Carolina. SAS is the worlds biggest privately
owned software company - proof, if it was needed, that these
concepts are applicable to software devel opment.

Perhaps surprisingly Pfeffer and Sutton suggest that successful
companiesdon’t have any specia secret ingredient, or magic bullet,
they don’t necessarily do anything other companies don’t know
about. What these companiesdo do, isto actually act on what they
know. Simpleredly.

What do we do now?

Many problems in software devel opment are of our own making.
We don’t do what we know to be right. We use mythsto stop us
acting on our knowledge, we get involved in infighting and, in
many cases, we collude to support a system that we know could
be better.

For example, the myth that the 1,000 page specification
describes everything that we need to know. No serious software
developer really believes this myth but people still contract to
develop software on the basis that the specification contains
everything we need to know. There is no silver bullet here, the
solution is to stop propagating the myth and instead institute
working practices that alow for learning and knowledge creation
aswe go.

Another myth particularly popular anong managers is that of
the plug compatible programmer - the idea that if a C++

programmer quits we can just hire another C++ trained devel oper
totaketheir place. | can hear agreement from Overload readers as
| write this. However, we developers must bear some of the
responsibility here. 1T people are known for changing jobs
frequently, by doing so we propagate the myth that we can “hit the
ground running” and plug a hole quickly.

This myth includes contractors and consultants - the hired guns
of the industry. Managers believe they can hire consultants for a
short-term role and | et them go at amoment’ s notice. Consultants
likethismyth becauseit leadsto bigger pay packetsand “freedom”.
But after awhile we find managers dependent on contractors and
only willing to hire those who haveworked in similar rolesaready.
Meanwhile, contractors complain that managers treat them like
commodities and don’t give them a chance to do something
different.

I've been as guilty of thisasanybody else. It canbeafinancially
rewarding way to work, and it seemsto suit many individuals, and
companiesliketheideatoo. However, it leadsto an inherent short
termism and propagates the plug compatible programmer myth.

In both cases the process and the product are inherently
linked. This shouldn’t surprise us, processes are created to
achieve goals. The problemisthat just saying aprocessisthere
to achieve“quality” or “ontimedelivery” doesnot mean it will.
Our processes are far more complex and can produce results we
don’t desire.

Thisisn’t anything new, thisis just another way of stating
Conway'’s law (1968): organisations will produce software
which is a copy of its own internal processes. If we want to
produce good software, and help our employers succeed, we
need to look beyond the immediate issues and see how all the
pieces fit together.

Conclusion

Considering software development as learning and knowledge
creation highlights the fact that it is difficult to communicate and
codify what we want from a piece of software - the old “do what
| want, not what | say” syndrome.

[concl uded at foot of next page]

The original Conways law
Conway’s Law is often applied to software development, a quick
search of the web provides references to Wikis specialising in
patterns and agile development, Jm Coplien has documented it
as an organisation pattern, and it got a few mentions at the
ACCU April 2003 conference.

The law istypically quoted something like:

“If there are n developers writing a compiler it will be an n-pass

compiler”

“A GUI program developed by x developers will provide x ways of

doing the same operation”

“Align architecture with team structure”

The original article is now over 35 years old, but still worth
reading. It isquite genera in nature giving examples as diverse
as transport systems and the US constitution, but does include
the compiler example.

Conway builds up his theory with logic, describing how as
organisations alocate peopleto projectsthey will affect the output of
the team. He explains how we can understand communication as a
graph with nodes and branches, which will cause the structure of a
system to reflect the structure of the organisation that designed it.

The conclusions are till relevant to system designers today:
“The basic thesis of this article is that organizations which design
systems (...) are constrained to produce designs which are copies
of the communication structures of these organizations. ... a
design effort should be structured according to the need for
communication.”
This causes problems, which need to be addressed by the
organisation:
“Because the design which occurs first is almost never the best
possible ... flexibility of organization is important to effective
design.”
As if describing refactoring thirty years before the word was
coined wasn't enough he foreshadows by over five years Fred
Brooks' Mythical Man Month and what we know as Brooks
Law:
“There is need for a philosophy of system design management
which is not based on the assumption that adding manpower
simply adds to productivity.”
Datamation is no longer published but the short article is well
worth reading if you can get a copy of the April 1968 issue.

12

From Mechanism to Method
— Distinctly Qualified

by Kevilin Henney

Introduction

The standard library string type is a product of elegance and
sufficiency.

OK, OK, just kidding. If it looks like the product of design by
committee it’s because it was. If you appreciate minimalist design
its baroguenessiis certain to disappoint.

The road to Hell is paved with good intentions, and the
standard library string is full of good intentions. The standard
basi c_string classtemplate started life as a simple class
and reached its middle age as an over-parameterized class
template with a bad name and a bloated interface. The process
of standardization added somewhat more than two cents worth:
What about generalization for internationalization? What about
copy optimization through reference counting? What about
customizing its memory allocation? What about safe indexing?
What about reverse search operations that mirror each forward
search operation? What about support for STL? And support for
similar index-based operations? Y ou see, good intentions every
one of them. But too much compromise in design leads to a
compromised design.

In spite of this criticism, | use the standard st r i ng type. For
onething, it's standard, and for another it satisfies more of my string
needsthan avanillachar * . More positively, insdethisbehemoth
isasmall class (or two) struggling to get out. There is a sense of
obligationtotry to release and redizeit. Inthisarticle | don’t want
to addresseach and every last detail of such aredesign, but | would
like to outline an approach. In particular, | want to declutter the
interface alittle to clear the path to a better understanding of
something that has haunted string classes for the last decade or so:
the specter of copy optimization through reference counting and
copy-on-write.

Theissuesthrown up by reference counting can be tackled head
on, with limited success, or tackled laterally. The resolution liesin

Overload issue 55 june 2003

a combination of restraint and substitutability principles
[Henney2000], and in particular treating const qualification as
aform of type separation [Henney2001a, Henney2001b].

Minimalism

The open secrets of good design practice include the importance
of knowing what to keep whole, what to combine, what to
separate, and what to throw away.

We can start with the name. Names are important. Hiding the
templatedness of strings does not actually help the reader in any
way, except perhaps to discourage them to think of or use strings
astemplated abstractions. The reason we are left with the common
t ypedef ed names of string and wstring, and the
cumbersome underlying namesof basi ¢_st ri ng<char > and
basi c_stri ng<wchar _t >, ishigtoricd. Origindly, inthe pre-
STL era, the proposed standard library was light on templates—in
factit wasquitelight, period—and st ri ng andwstri ng were
classes. In modern C++ programming we are more familiar with
template usage, and would not be quite so reticent about the names
or accepting of the supposed benefit of hiding templated usage. If
we consider strings to be templated with respect to their character
type, then so beit: st ri ng<char> andstring<wchar _t >
are clearer, more direct, and proud to be templated.

Orthogonality

Designing a string class is more of a challenge than many
people appreciate. If you have not already done so (several
times) it's worth a try: It's a good C++ work out — memory
management, operator overloading, optimization, etc. The
problem is not so much in language features or
implementation, but in interface. What problem is a string
designed to solve? Without a clear focus you discover that
everyone has a slightly different view of what a string should
be: a self-managed array of characters; a wrapper for char *
and <cstring>; asmall piece of text that requires simple
access and concatenation; a potentially large stretch of text
that requires efficient slicing and rearrangement operations;
regular-expression searchable text; and so on. The problem is

While softwareiskey to the “information economy” and used
by “knowledge workers” we should consider software
development itself as knowledge creation. The software
development community tends to look inside itself for answers
to problems, but there is much we can learn from elsewhere. The
writers quoted here aren’t specifically interested in software
developers but their ideas are highly applicable. Just don’t
expect technical solutions, these aren’t technical problems so
thereis no technical fix available.

Everything software developers do concerns the application of
knowledge and learning. From specification through design to
delivery we are concerned with using knowledge and developing
products from the application of our existing knowledge and the
creation of new knowledge. Understanding this should help
improve the development process.

Allan Ketly

Bibliography and further reading

Conway, M. 1968: How do committees invent?, Datamation,
April 1968

Davenport, T.H., Prusak, L., 2000: Working Knowledge, Harvard

Business School Press, 2000.

Kolb, D., 1976; “Management and the learning process”,

California Management Review, Spring 1976, Volume 18,

Issue 3.

Nonaka, |., Hirotaka, T., 1995: The Knowledge Creating

Company, Oxford University Press, 1995

Nonaka, 1., Konno, N. 1998: “The Concept of ‘Ba”, California

Management Review, Spring 1998, Val. 40, No. 3

Pfeffer, J.,, Sutton, R., 2000: The Knowing-Doing Gap, Harvard

Business School Press, 2000.

WBGH, 1998: Supersonic Spies, Nova, transcript at

http://wwmv. pbs. or g/ wgbh/ nova/ transcri pts/
2503super soni c. ht m

The UK Channel 4 program Equinox is the US PBS program

Nova In 1998 a programme covered the development of the Tu-

144, the Soviet Union’'s version of Concorde. A transcript of the

programme is available from the US PBS site. The UK

programme may have been dlightly different but the substance

was the same.

13

Overload issue 55 june 2003

one of choice: All of these suggestions are reasonable, but
satisfying them all simultaneously is not. Any attempt to
create a single string class that does so cannot succeed. We
have enough existence proofs to back this up.

Thereisdready an excellent example of how to solvethisdesign
problem in the standard library: the STL. The STL stands head and
shoulders above other container libraries because it is not a
container library: It is a specification that defines independent,
open-ended families of algorithms, function objects, iterators, and
containers along with the requirements that allow them to be
combined. Independent ideas are expressed independently, with
algorithms separated from underlying container representation
through iterators and from functional specifics through function
objects. This orthogonal design separates concerns quite clearly.
The added bonus is that you get some predefined algorithms,
function objects, iterators, and containers thrown into the deal.

There is no single container class that satisfies al of our needs,
so we have requirements and exemplars in the library. Given that
we now know that asking how to write a single string classis the
wrong design question, we can see how the cleaner STL-style
solution can be applied to strings. In the first instance, we can
consider strings to be sequences. Their bit-copyable elements,
common use of null termination, conversions, concatenation, and
I/O further characterize them. If we start with this, we end up with
aminimal interface that can be satisfied by lightweight char *
wrappers and sca able string implementations—such as SGI’sr ope
template [SGI] —and even st d: : basi c_stri ng. The more
complex functionality associated with different string typesisthen
expressed orthogonally through algorithms, so that new algorithms
can act on al strings and new strings can take advantage of old
agorithms. Now, should we want an al-singing, al-dancing, killer-
app, last-one-you' l1-ever-need string, we can write our own—solong
asit satisfies the base requirements of what is meansto be a string.

Choice

An interface should represent reasonable goals and present its
user with reasonable choices — overachieving interfaces are
weaker and more complex, not stronger and simpler.

Consider, for instance, the issue of subscripting. oper at or []
isnot required to perform bounds checking whereasat is. Indexing
out of bounds causes undefined behavior for operat or[] and
anout _of range exception for at . On the surface, thislooks
like areasonable choice: Y ou get to choose the quality of failurefor
yourself. The problem is that such an option is utterly useless and
cannot be reasonably exercised. When would you consciously
choose to write code that needed at rather thanoperator[] ?
If you make the choice, you have already anticipated the bug, and
can therefore prevent it.

If you have a choice, it should be reasonable to exerciseit. It
should aso be possible to exerciseit. Take alocators. Please. The
world of containers would be far simpler without them and very,
very few people would miss them. People that actually need to
customize their memory allocation — for shared memory, for
persistence, for the sake of it — find themselves working against
rather than with the allocator model. Trying effective memory
management of a contai ner whose representation and management
is not fully open to you is like eating with a knife and fork... held
with chopsticks... through mittens. If you are serious about
managing the all ocation of acontainer, then get serious and manage
it: Writeyour own container type. Itissimpler, morelikely to work,

14

and isvery much in the extensible spirit of the STL —more so than
limiting yourself to the handful of default container
implementationsin st d.

Consistency

Another property of a well-designed interface is consistency.
Some functions in basi c_string throw exceptions on
failure, whereas others do not. Thisis aready inconsistent, but is
made more so by the presence of both operat or[] andat . If
operator[] isshadowed by the exception-throwing at , then
where are the exception-throwing doubles for iteration? If an
exception-throwing access operator is considered reasonable, you
should expect — indeed, demand — safe and unsafe variants for
other forms of access. After al, what is good for the goose is
good for the gander. However, we have established that at is
not reasonable, so there is no need to clutter up the string
interface any further.

Mad COW Disease

Strings get copied. Fact of life. Copy assignment and
construction afford strings their value-based behavior. But strings
are not lightweight classes. They encapsulate a heap alocated
representation, and copying could be expensive, especiadly if the
copied string is never modified:

t enpl at e<t ypenane char _type>
class string {

private:

used, reserved; // current
/1 length and al |l ocated space

size t

char _type *text; // allocated and
/1 deallocated representation

}

The compiler is entitled to a number of optimizations. For
instance, the following:

std::string cow = "Wof!";
Isequivaent to:
std::string cow = std::string("Wof!");
But can be —and normally is— optimized to:
std::string cow("Wof!");
For assignment, overloading oper at or = to take a const
char * prevents aconversion to atemporary that is then used
with the ordinary copy assignment operator.
The result of string concatenation is atemporary string object:
std::string loud cow = cow + "!I!I"

Here oper at or + returnsatemporary std: : string object
that is used to initialize | oud_cow. Depending on how the

called function is written, the named return value optimization
(NRV) alows a compiler to construct directly into | oud_cow
[Ellis+1990, Lippmanl1996] rather than create an additional
temporary object. This optimization applies only to copy
construction, not copy assignment: If | oud_cow isassigned the
result of the concatenation, a temporary is created and then
discarded. Similarly, in the following initialization two
temporaries are created, only one of which can be optimized
away by the NRV:

std::string loud _cow = cow + " + cow,
Because value objects of class type are commonly passed around
by const reference, copying typically happens through
assignment, data member initiaization, and return values. We can
see that the compiler already has considerable license to
optimize, and that techniques such as overloading to prevent
conversions and preferring initialization to construction help
reduce the temporary burden, so to speak. But in complex
expressions and initidization of data members we can also see
that there may till be the need to amortize the cost of copying.

What is required of an optimization? Transparency — so it is
substitutable for the unoptimized version — and optimization —
many optimizations aren’t. In particular, the requirement of
transparency means that users should not be entertained by new
and interesting bugs.

Counting the Bodies

The most common copy optimization is to share the
representation of a string when a copy is made rather than make
a deep copy that results in heap allocation. This means that
copying is simple and cheap. Only when the string is going to be
modified does the ‘real’ copy occur to avoid aliasing surprises.
This lazy, just-in-time model — commonly referred to as copy
on write — defers the cost of allocation until the point it is
absolutely needed. If it is never needed, the cost is not paid.
However, few things in life are for free: The sharing is not
without overhead. For a start, it must be managed, which
increases the complexity of the code. The referencing must also
be tracked so that when — as a result of assignment or
destruction — a string’s text body is no longer referenced it is
properly deallocated, and when only a single string handle refers
to atext body, redundant deep copies are not made.

There are five waysin which references held by string handles
to text bodies can be sensibly tracked, each with its own
particular tradeoffs:

1. Hold separate pointers to the reference count and the actual
text. This means that the footprint of the string object isalittle
larger and that we are paying for the alocation of two heap
objects. The allocation meansthat it is unlikely that we recoup
our investment unless a text body is shared by more than two
string handles. For a single reference, this is a not an
optimization. Holding ast at i ¢ reference count of 1, and
only allocating adynamic count when thefigure rises above that
can reduce the overhead in this case. This will complicate the
implementation, but if the magjority of strings are never copied
this will be a saving. If, on the other hand, the string handle's
footprint is a concern, the information duplicated between
sharing handles can also be associated with the count, reducing
the footprint to two pointers:

Overload issue 55 june 2003

t enpl at e<t ypenane char _type>
class string {

private:

struct shared {
size t used,

b

shared *info;

char _type *text;

b

2. Holdasingle pointer to an object that containsthereference count,
the pointer to the shared text, and the text size information. This
awaysresultsinthedlocation of two objectson thehegp, and there
isan extraleve of indirection to reach the actual text. For some
designs this could provide an additional benefit of allowing the
actua text to beredllocated or virtudized in someway, eg. todisk,
without affecting the handle objects. In the common case, themain
benefits of this approach are alittle more restricted. The string
handle s footprint has now been reduced to asingle pointer and, if
you want to add acongtructor and destructor to the shared body, the
management of the text memory can be hidden from the string
handle. In its smplest form we can see the basic rearrangement is
aproper handle-body configuration[Coplien1992, Gammart+1995]:

t enpl at e<t ypenane char _type>
class string {

reserved, count;

private:

struct shared {
size t used, reserved,
char _type *text;

count;

H
shared *body;
b

3. Hold a single pointer to memory that contains both the
information about the string text —including the reference count
—andthe string text itself. Theinformation is held as a prefix to
thechar _type array. Only asingle pointer is held in the
handle, only a single alocation is performed, and treating the
space before thetext asadifferent type allows accessto the string
information. Although this solution is at a dightly lower level,
it can be very effective [Henney1998], especially when
encapsulated within the string handle. The drawbacks to this
approach are that any resize must also involve reallocating and
copying the information prefix, and also the intent of the code
and connections between the data structuresis less obvious:

t enpl at e<t ypenane char _type>
class string {

private:

struct shared {
size t used,
b
char _type *text; // reinterpret_cast
/] <shared *>(text) - 1

reserved, count;

15

Overload issue 55 june 2003

4. Link copied objects together in a doubly-linked list and hold a
pointer to the string text. The information about the string text
can be held duplicated in each string handle or as a prefix of the
text body’ s memory. When the links going to the previous and
next string handle are both null (or, in a circular configuration,
pointing tot hi s) the text body is uniquely owned. This style
of reference accounting (it is not really reference counting
because there is no explicit count) is perhaps least appropriate
for strings because there are no operationsthat require traversal
of al handles. Each string handlewill have alarger footprint than
the other solutions considered so far, although only a single
alocation is required per text body:

t enpl at e<t ypenane char _type>
class string {

private:

size t used, reserved;
char _type *text;
string *previous, *next;

};

5. Holdthedtring text inamanaged lookup table and retain somekind
of reference into the table. The information about the string can be
held dongsidethe actud text in thetable. Thisgpproachissuitable
when theaimisnot smply to reduce copy cost, but dsoto diminate
any duplicate gtrings. It is effectively a symboal table. The cost of
initialization from araw string is increased because of an initia
search and apossibleinitia insertion, and there isincreased space
overhead per text body that exists. Strings can be held uniquely so
that some gtring features, such as reserved capacity, are no longer
appropriate. For strings, the typical implementation isto hold a
static repostory, which introduces its own issues as far as
initialization and findlization ordering. Thisistypicaly not asuitable
design for general purpose strings:

t enpl at e<t ypenane char _type>
class string {

private:

struct less {...}; /I function object
type for conparison

struct info {

size t used,

b

t ypedef map<const char_type *,
| ess> string_map;
static string_map strings;
string_map::iterator entry;

};

Clearly, there are many ways to skin a cow. For general-purpose,
copy-on-write strings, the first three techniques are the most
appropriate and most common.

count ;

i nfo,

Trying to be Smart

It seems clear that non-const operations such as oper at or +=
andr esi ze require astring handle to operate on its own copy of
the text body. It also seems clear that const operations, such as
si ze and conpar e, can operate without ill effect on a shared

16

representation. This seems to divide operations in the string world
neatly into two type types. However, there is a grey territory in
between. What about non-const oper at or [] ? This operator
may be used for both reading from and writing to astring:

string<char> cow = "Wof!",
ghost[3] = cowW 1];

Both of these calls result in a call to the non-const
operator[], but for assgnment we want to assure that a deep
copy happens, but for reading a deep copy would be wasteful. There
is no way to distinguish between these uses within operator[] .
What we need isa smarter reference to do the work for us:

ghost = cow;

t enpl at e<t ypenane char _type>
class string {
publi c:

class reference {

publi c:

char &operator=(char); // perform
/1 deep copy before wite

operator char() const; // use shared
/1 representation

private:
string *target;
size_ t index;
b

reference operator[](size_t);

.

This smart reference approach works in most cases. However, a
smart reference is not totally substitutable for a real reference.
The following fails to compile because st d: : swap expects
real references:
swap(cow 3], ghost[1]);

There are other problems with the smart reference approach for
strings [Meyers1996, Sutter1998a], some of which are related to
dubious practice — holding the address of a returned reference — and
othersto do with congraintsin the standard —ther ef er ence type
isrequired to be ared reference, no smart references dlowed.

And don't think that the problem isjust confinedtooper at or [] :
It dso gppliestothei t er at or type, which may be used for both
reading and writing. Therefore, for reference-counted strings,
i terator mus beasmart pointer rather than raw pointer type for
the reference-counting optimization to be fully effective.

Pessimism

The outlook is pessmidtic. As a copy optimization the effectiveness
of copy-on-write reference counting has been reduced to afew cases.
In other cases it may be quite the opposite of an optimization,
regardiess of the investment and increase in code complexity.

The only workable eval uation model for these problem functions
isapessimistic one: Y ou don't know whether the user is going to
read or write through the returned reference, and you have to just
accept that and assume the worst. Y ou may aso consider catching
some of the corner cases for undefined behavior, such as holding

onto the address of areturned reference. In these cases you haveto
prevent any future sharing, so that if the current string is used as
the source for a copy it causes a deep copy rather than sharing:

t enpl at e<t ypenane char _type>
class string {
publ i c:
typedef char _type *iterator
iterator begin() {
reserve();
return text;
}
void reserve(); // reserve
representation exclusively

private:

char _type *text;
i

All in dl, this further reduces the effectiveness of copy optimization
to afew corner cases. For non-const cases there appears little to
be gained from congidering this a genera-purpose optimization.

Threadbare

The final body blow comes with the introduction of
multithreading. Sharing a reference-counted text body becomes
unnecessarily interesting when the sharing is between threads.
The gut ingtinct of programmers new to threaded programming is
that a mutex or eguivalent synchronization primitive will solve
the problem. For instance:

t enpl at e<t ypenane char _type>
class string {

private:

struct shared {
size t used,
nut ex guar d;
char _type *text;
b
shared *body;
b

reserved, count;

Synchronization primitives are operating system resources, and
as such may be potentially scarce and costly to obtain. The
temptation is then to share a common mutex for al string objects:

t enpl at e<t ypenane char _type>
class string {

private:

struct shared {

size t used, reserved,
char _type *text;

b
static nutex guard;
shared *body;

};

count ;

Overload issue 55 june 2003

In addition to the initialization and finalization issues, you
now have another problem: performance. First of al, locking
and unlocking mutexes for all data accesses comes with a
measurable overhead. And second, al string objects are now
serialized through the same mutex, creating a potential
bottleneck. Given that the aim of copy-on-write reference
counting is to optimize — and taken with all the other issues
raised previously — a mutex-based approach is not even on the
radar.

If you look carefully at what you need to lock, you will see
that the locking revolves around the reference count. Many
operating systems provide you with lock-free synchronization
primitives for incrementing and decrementing integers, e.g.
I nterl ockedl ncrenent andl nterl ockedDecr enent
on Win32. With careful coding it is now possible to ensure that no
shared text body isever compromised by race conditions. But note
that these primitives still incur a performance penalty —few things
inlifearefree.

Separation of Concerns

There is a question we have to ask ourselves: Isit al worth it?
The assumption has always been there that this is a good
general-purpose optimization, from the early days of
standardization [Tealel991] to the current standard
[1S01998]. At every stage, accommodating this style of
implementation has caused headaches, even without the
threading issues. The concern is not a recent one
[Murray1993]:

A use-counted class is more complicated than a non-use-
counted equivalent, and all of this horsing around with use counts
takes a significant amount of processing time. If the time spent
copying values is small enough (either because the values are
small and cheap to copy or they are not copied very often),
changing the class to do use counting may make programs
slower. Always do some performance measurements when
making this kind of change to convince yourself that this
optimization is not really a pessimization!

With multithreading the issues become even more involved
[Sutter1998b] and the horsing around becomes a full-blown
stampede (but hopefully not a race condition...). This simply
reinforces an earlier conclusion: It is not possible to design a single
string implementation that satisfies all uses. Thus the default
implementation that causes the fewest surprises (bugs) — either in use
or in implementation —is to avoid copy-on-write reference counting.
Avoiding it, or providing explicit information on how to disableit, is
the approach now adopted by many libraries [Dinkum, SGI].

So deeply rooted is the idea that copy-on-write reference
counting is mandatory for strings that many developers are
shocked — and sometimes go into denial — when they discover
that the return oninvestment in thistechniqueis often negligible
and sometimes negative. The long-standing belief in this old
practice is, however, younger than faith in another more
fundamental software engineering principle: separation of
concerns. And hey, do we have concerns.

A Qualified Difference

Listen to the code, it is trying to tell you something: Mixing
reference counting with mutability causes problems. Period.
However, if you listen closely, you can hear a leading question,
the whisper of a solution: What if you don’t mix reference

17

Overload issue 55 june 2003

counting with mutability? What if we are dealing with two
related but distinct types?

From an interface perspective, we can see that we can use a
string either as something that is read-mostly information or asa
read-and-write space. From an implementation perspective,
problems with reference counting arise only with mutability.
Previously we explored theideaof const qualification being a
form of subtype relationship [Henney20014] and one that can be
reflected in inheritance [Henney2001b]. For value types we can
define separate classes, not related through inheritance, and
provide substitutability through conversions [Henney2000].

Consider adesign wherest ri ng coversthe genera case and
something like const _string covers the immutable case.
const _string hasasubset of the operationsof string: theconst
ones plus some that effect arebinding of handle to text body, such as
operat or=.const _string isdifferentto const string,
which prevents al modification but still comes with any baggage not
relevant to const, eg. reserved capacity. It is more like the
relationship betweeni t erat or andconst _iterat or.

Not only do string and const_string differin
interface, but they can also differ in implementation: st ri ng
should not be reference counted but const _stri ng may be.
const _string hasnone of the concerns that plagued copy-
on-write for a mutable string, and thread safety can be catered
for by atomic increment and decrement operations.

Before you get too attached to the names string and
const _stri ng —andassuming that your compiler fully supports
partial template specialization —consder onelast refinement that uses
template speciaization and lets us keep asingle name;

t enpl at e<t ypenane char _type>
class string {

private:

size t used, reserved;
char _type *text; // unshared

};

t enpl at e<t ypenane char _type>
cl ass string<const char_type> {

private:

struct shared {
const size_t
size_t count;
b
char _type *text; // reinterpret_cast
/] <shared *>(text) - 1

used;

}

With this approach st ri ng<char > is a common, writeable
stringand st ri ng<const char > istheidiom used to work
with the read-only variant.

Conclusion

What do you get when cross a string class with copy-on-write
reference counting? A problem. What do you get when you cross
that with separation according to qualification? A solution.

18

Theroad to optimizationisfull of potholes. Trying to shoe horn
many interface and implementation possibilitiesinto asingle type
leads to twisted back roads. Separating core representation from
algorithmic abstraction can clarify and clean up a string interface.
Separation according to qualification isalso asimplifying decision,
both for interface and implementation. A cure—in strings at least —
for Mad COW Diseasel.

Hevlin Fenney

kevl i n@ur br al an. com
References

[Coplien1992] James Coplien, Advanced C++: Programming
Sylesand Idioms, Addison-Wedey, 1992
[Dinkum] The Dinkum C++ Library, Dinkumware Ltd,
http://ww. di nkumnar e. cont .
[Ellis+1990] Margaret Ellis and Bjarne Stroustrup, The
Annotated C++ Reference Manual, Addison-Wesley, 1990.
[Gamma+1995] Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison-Wedey, 1995.
[Henney1998] Kevlin Henney, “Counted Body Techniques’,
Overload 25, April 1998, also available from
http://ww. curbral an. com
[Henney2000] Kevlin Henney, “From Mechanism to Method:
Substitutability”, C++ Report 12(5), May 2000, aso available
fromhtt p: // www. cur bral an. com
[Henney2001a] Kevlin Henney, “From Mechanism to Method:
Good Qualifications’, C/C++ Users Journal C++ Experts
Forum, January 2001,

http://ww. cuj.com experts/ 1901/ henney. ht m .
[Henney2001b] Kevlin Henney, “From Mechanism to Method:
Total Ellipse”, C/C++ Users Journal C++ Experts Forum,
March 2001,

http://ww. cuj.com experts/ 1903/ henney. ht m .
[1S01998] International Standard: Programming Language -
C++, ISO/IEC 14882:1998(E), 1998.
[Lippman1996] Stanley Lippman, Inside the C++ Object Model,
Addison-Wedey, 1996.
[Meyers1996] Scott Meyers, More Effective C++: 35 New Ways
to Improve Your Programs and Designs, Addison-Wedley, 1996.
[Murray1993] Robert Murray, C++ Strategies and Tactics,
Addison-Wedey, 1993.
[SGI] SGI Standard Template Library Programmer’s Guide,
http://ww. sgi.comtech/stl/.
[Sutter1998a] Herb Sutter, “GotW #44: Reference Counting —
Part 11", September 1998,

http://ww. got w. ca/ got w 044. ht m
[Sutter1998b] Herb Sutter, “GotW #45: Reference Counting —
Part 111", October 1998,
http://wwv. got w. ca/ got w 045. ht m

[Tealel991] Steve Teale, “Proposing a C++ String Class
Standard”, Dr. Dobb’s Journal, October 1991.

This article was originally published on the C/C++ Users
Journal C++ Experts Forum in May 2001 at

http://ww. cuj.com experts/ 1905/ henney. ht m
Thanks to Kevlin for alowing usto reprint it.

1 Thanks to Andrei Alexandrescu’s original use of the Mad COW term
on comp.std.c++

How To Write A Loop

Jon Jagger

Direct Repetition

cout << 1 << endl;

cout << 2 << endl;

cout << 3 << endl;
This small code fragment writes the values 1, 2, and 3 to cout .
You'd be hard pressed to write this code more directly. It writes
the value 1, then it writes the value 2, then it writes the value 3.
Writing repeated code like this is unrewarding, understanding it
istedious, and modifying it is error-prone and painful. Of course,
programmers almost never express repetition like this; they
express the repetition more succinctly by adding a level of
indirection. Hopefully, by adding a little stylized software you
can remove a lot of code elsewhere. Less code, more software.
(Note however that in the right context loop unrolling is a useful
optimization technique).

Indirect Repetition

for (int value = 1; value <= 3;
cout << value << endl;

}
This is without question a more succinct way of expressing
repetition. If you want to write out the values 1 to 42 simply
change the 3 in the continuation condition into 42. However,
there is a price to pay for this brevity - the purpose of the codeis
now expressed less directly. This is the price of indirection. It is
totally clear what the purpose of the first code fragment is, to
write 1, to write 2, and to write 3. It isnot so directly clear what
the purpose of the f or statement is. To understand the f or
statement you have to master the extra complexity: understand
f or’s semantics, mentally examine the initialization,
continuation condition, and update parts, and make the correct
logical deductions. Experienced programmers know that although
the logical deductions required appear trivial and easy, they arein
fact fraught with traps and pitfalls. Experienced programmers
aso know that avoiding mistakes is better than making them,
then finding them, and then removing them. Debugging is slow.
As aresult, programmers tend to learn afew vital mental tools to
avoid loop traps and pitfalls. The two most important tools are
invariants (things that are always true) and intention

(programming on purpose).
Invariants

++val ue) {

Here is the unrolled sequence of statements that comprise the
previousf or statement:

initialization:

conti nuati on-condition:
body:

updat e:

conti nuati on-condition:
body:

updat e:

conti nuati on-condition:
body:

updat e:

conti nuati on-condition:

int value = 1;

(value <= 3); // 1 <=3, true
cout << value << endl;

++val ue;

(value <= 3); // 2 <=3, true
cout << value << endl;

++val ue;

(value <= 3); // 3 <=3, true
cout << value << endl;

++val ue;

(value <= 3); // 4 <= 3, false

During this sequence of statements one invariant is “the next
value to be written is always inside val ue”. That's not a useful

Overload issue 55 june 2003

invariant because it expresses a truth about the future. A useful

invariant expresses a truth about the past, such as “val ue- 1 is

the number of times something has been written”. Let'stry it.

» Beforetheloop starts, theinvariant saysthat (val ue- 1) writes
have already occurred. No writes have occured yet so (val ue-
1 == 0), henceval ue 1.Soval ueisinitidizedto 1.

» Then a continuation condition check, and then awrite. Now,
because awrite has occurred, the invariant is momentarily broken:
vaueisdill 1, 1 write has occurred, and 1- 1==1 isnot true.

* To maintain the invariant you must change val ue to 2 since
(2-1==1). The simplest way to change 1 to 2 isviaan
increment, so that’s what the update part does. The update
maintains the invariant. And, in general, if N writes have
occurred we need to change val ue from N to N+1, whichisthe
definition of ‘increment’.

* Now theinvariant saysthat (2- 1==1) writes have occurred,
which istrue.

Since the invariant is always true you can, in fact, completely

ignore the loop and instead consider the context after the loop.

When the loop has finished the continuation condition (val ue

<= 3) must befase so ! (val ue <= 3) must betrue, viz,

(value > 3).Since val ue isinitiadlized to 1, and is only

ever incremented, it must be true that (val ue 4) . The

invariant says that (4- 1==3) writes have occurred, and three
writes have indeed occurred.

IlInvariant

So, in fact, often the most important thing about the continuation
condition is not the continuation condition itself, but its negation
because it's the negation that’'s true after the loop. Looping is
easy; it's knowing when to stop that causes the problems.
Consequently you want the negation of the continuation
condition to be as strong as possible. In the example, the
continuation condition was (val ue <= 3) and hence its
negation was (val ue > 3). In order to strengthen this
negation into (val ue 4) you had to do extramental work.
However, if you weaken the continuation condition you
automatically strengthen the negation of the continuation
condition. So if instead of writing (val ue <= 3) asyour
continuation condition you write (val ue 4) then when
the loop finishes you'll know (val ue 4) with (dmost) ho
mental effort at all. Another benefit of weakening the
continuation condition is that it weakens the loop requirements
(significant when you consider function templates):
for (int value = 1; value != 4; ++value) {
cout << value << endl;

}
At this point it's worth reiterating (sorry) that this code fragment

is less direct than the very first code fragment. In the first code
fragment the values 1, 2, 3 were written and the values 1, 2, 3
all appeared directly in the code. In this latest code fragment the
value 3 does not appear a dl. Is this a problem? Does this mean
you should use(val ue <= 3) insteadof (val ue !'= 4)?I
don’t think so. | think it would be a mistake to base any decision
on the first code fragment. The reason is simple; programmers
don’'t write code like that. They just don't. Programmers write
loops using dedicated loop constructs. That is the context. The
secret of programming is not to over generalize or to over
specialize; to be aware of, and sensitive to, the immediate
problem context.

19

Overload issue 55 june 2003

Dependency

A loop has two parts. The loop control:

for (int value = 1; value != 4;
and the loop body being controlled:

{

++val ue)

cout << value << endl;
}
These two parts play different roles. The former governs the
latter, making sure it executes neither too few nor too many
times. There isaclear one-way dependency; the body depends on
the control but not vice versa. Any micro-modification that
disturbs this dependency isill advised. For example, suppose you
rewrite thef or statement like this:
for (int value = 1; value != 4;) {
cout << val ue++ << endl;

The loop control now depends on the loop body. In other words
the loop control is dependent on the very thing it is supposed to
be controlling! Entirely wrong. In fact, the control and the body
are becoming intertwined so tightly it's hard to talk about the
control as a separate concept at al. The software is disappearing
and the loop control and the loop body are gelling into an
amorphous lump of code. A lump of code that is less transparent,
harder to reason about and harder to understand.

Separation

To avoid this amorphous lump simply don't modify the loop
variable inside the loop. That way the dependency remains a one-
way dependency from the controlled to the controller, the loop
control parts remain separate (and textually together), and the
loop invariant remains transparent. As useful as this well-known
piece of adviceisit's not sufficient to protect your loops. It’s not
realy a generative piece of advice. The most important thing isto
keep the loop control separate from the loop body. Separation of
Concerns. Modifying your loop variable inside its loop body is
one way of breaking the separation and tangling the dependencies
but there are plenty of others. Using got o, br eak, cont i nue,
t hr ow, or r et ur n inside the loop body can al have the un-
desired effect as well. Here's another example where the loop
control and the loop body are tightly interwoven. Does it write 1,
2, and 3 as before? Are you sure?
int value = 1;
for (;;++value) {
cout << value << endl;
if (value !'= 4)
conti nue;
el se
br eak;

You might be thinking that advising you not to use r et ur n

statements inside loop bodies is over zedous. Do | redly mean

that? Yes| do. Functions that return something should do so viaa

single r et ur n statement at the very end of the function. Here

are some practical reasons why:

* Change The only thing absolutely guaranteed in software is
change (well, maybe corrupt datatoo). A function sprinkled with
r et ur n statementswill ailmost certainly break when changed.
Such functions are just too opague. They are not transparent. It's
too hard to see, let alone reason about, what effects achange will
have. A classic examplefrom C isadding a statement at the start

20

of the function to acquire a resource (eg callingmal | oc) and
adding a statement at the end of the function to release the
resource (eg calingf r ee). Better make surethere’snor et ur n
statement in between.

* No Change Software that separates out its concerns and
manages the dependencies between the separate parts (in
particular what's dependent on what) is significantly easier to
refactor than software that does not. If your loop body contains
ar et ur n statement then you won't be able to refactor that loop
out into another method. Y ou'll haveto first refactor theloop so
it doesn’t contain any r et ur n statements.

Half-Open Interval

A quick recap. We started with direct repetition:

cout << 1 << endl;

cout << 2 << endl;

cout << 3 << endl;
and we' ve worked through to indirect repetition:

for (int value = 1; value != 4; ++val ue) {

cout << value << endl;

}
The value 3 appears in the direct version but not in the indirect
version. As I've dready said, | don't think this is worth fretting
about since programmers never actualy write the first version.
However, there is a sense in which 3 does appear, albeit
indirectly, in the indirect version. Thisis because (1+3==4) or,
equivaently, (4- 1==3) . Specifying an inclusive lower bound
and an exclusive upper bound is an extremely common,
powerful, and idiomatic way of expressing a loop. It even has a
special notation and name. It's written like this:

[1. 4
and it's called a half-open interval. Here are two well-known
examples:

/1 [0, 42)

char array[42];

/1

const size t end = 42;

for (size_t at = 0; at != end; ++at) {
stuff(array[at]);

}

/1 [array, array+42)

char array[42];

/1

const char * const end = array + 42,

for (char * at = array; at != end; ++at) {
stuff(*at);

}

Note that:

» By definition alegal array index cannot be negative so the first
fragment usesa si ze_t to match this congtraint (si ze_t is
an 1SO C/C++ unsigned integer typedef).

By definition the size of an object fitsintoasi ze_t . In other
words, the valid indexes of the elements of an array of sizeN are
[0, N-1] butonlyasi ze_t isguaranteedto beabletohold
thevalue N.

» Thevdid indexes of the eements of an array of sizeN are[0,
N 1] andtheir eddressesare[array + 0, array + N -
1] respectively. However, |SO C/C++ explicitly saysyou can use
thejudt-past-the-end-address(ar ray + N) in pointer comparisons.

Worked Example

The secret of mastering loops (and in fact, of most programming
tasks) is to work intentionally. That is, to program on purpose
(deliberately) and for a purpose (know what it is you're trying to
do).

Suppose your intention is to search through arange of elements
looking for avalue. A loop isjust a mechanism to realize this
intention. A loop is, quite literally, a means to an end. If you
concentrate on the loop you' re solving the solution rather than
solving the problem. Concentrate on the problem. Alwaysdesign a
thing by considering it in its next larger context.

If you're searching for an element then either you'll find the
element or you won't. Y ou need to be able to distinguish between
thesetwo possihilities. One of the strengths of aHalf-Open Interva
isitsexclusive upper bound. When searching:

[begi n, end)
you can make any position (let’scdl it at) in [begi n, end)
correspond to the position of the element if found and make at
end correspond to not finding the element. Like this:
/1
if (at ==

end) // not found

el se /1 found

Furthermore, if (at == end) isnot true it means the element
a at must equal val ue: (*at == val ue) in the pointer
caseand(array[at] val ue) intheindexer case.

I

if (at == end) // not found

el se { /1 found
assert(*at == val ue);

}

Now we understand the problem context we can start to think
about a solution. If we use a loop then once the loop finishes the
following must be true:

(at == end) || (*at == val ue)
From the earlier !Invariant section we know that this expression
is the negation of the continuation condition. In other words the
continuation condition must be:

I'((at == end) || (*at == value))
which, using De Morgans Law, isthe same asthis:

I(at == end) && !(*at == value))
which isthe same asthis:
(at !'= end) && (*at != val ue)

Which means “(we're not at the end) and (we haven't found
val ue)”. Note how you can't swap the left and right arguments
to && because the left side acts a validity check on the right side.
It's now just a matter of completing the loop by filling in the
initialization part and the update part. Note that you can’t declare
the loop variable in the initialization part of a f or statement
(since it would be out of scope at the if statement).
char array[42];

/1

const char * const end = array + 42,

char * at = array;

for (; at !'= end & *at != value; ++at) {
}

Overload issue 55 june 2003

if (at == end) // not found

el se /1 found
In the majority of cases finding the value is considered the
successful outcome. It's usualy best to emphasize the positive
case rather than the negative case so a lot of programmers write
theif statement like this:

I

if (at '=end) // found

el se /1 not found
The empty initialization part and the empty loop body are
noticeable. You might be tempted to rewrite the fragment like
this:

char array[42];

/1

const char * const end = array + 42;

char * at = array;

while (at !'= end && *at != val ue) {
++at ;

}

if (at '=end) // found

el se // not found

This is possibly a minor improvement. However, a much more
relevant point is that to search another array you'd have to
write another identically structured loop. Copy-and-paste
duplication is a bad thing but it hints at something very
important; that you have formed a common pattern of use to
conquer similar problems. Instead of copying and pasting you
should be considering how to capture and name the common
pattern of use in a higher level abstraction. How about a
function:

char * find(char * begin, char * end, char
val ue) {
while (begin !'= end & *begin != value) {
++begi n;
}

return begin;
}
Or afunction template:
tenpl at e<t ypenane iterator_type,
t ypename val ue_type>
iterator_type
find(iterator_type begin,
iterator_type end,
const val ue_type & value) {
while (begin !'= end & *begin != value) {
++begi n;
}
return begin;
}
It's a mistake to think that these abstractions are “too small” to
warrant existence. And so finally, we end up with a code
fragment that is clear, concise, transparent, and intention
revealing:
[concl uded at foot of next page]

21

Overload issue 55 june 2003

Embedded Scripting

Languages or how to
add extra user functionality

to your application
by Jonathan Tripp

Why Do It?

What do | mean by an embedded scripting language and why are
they useful? By a*“ scripting language” | mean asimple, cheap (as
in free and easy to maintain) and cheerful language with just
enough functionality. It should be easy to explain to application
users who may have only a little or no programming experience.
The syntax should be clear and expressive. It would be better,
from the user’s perspective, to limit functionality for an easier
ride. Think of, for example, an early dialect of BASIC, rather
than an object-oriented extension of Lisp. By “embedded”, |
mean that an interpreter for this language can be integrated into
your C/C++ agpplication. This may seem crazy, but it redly isn't
that difficult and it can be very beneficial.

The principa reason for embedding a scripting language is to
alow your application’ sfunctionaity to be adjusted after it has been
built. At the simplest level, most applications choose to externalise
some of their operational parametersin aconfigurationfile. Thisis
areasonable approachif you are ableto determinein advance which
parameters are likely to change, but that isn’'t always the case. For
example, if your application needs to use a serial port, you could
make an entry in a configuration file like:

[Cons]

; The port to use

port = "COWR"

ti meout = 1000
So, a configuration file can be regarded as a group of keyword-
value pairs. Here the keyword is por t with corresponding value
COM2. The pairs are grouped into sections separated by the
[Conms] type line. Optional comments are on lines beginning
with a semicolon. Unfortunately, as it stands this isn’'t always
flexible enough, as | shall explain.

| write applicationsin C++ for controlling scientific equipment.
| have alibrary of routines to control and test each physical
component that | combine to build each final application. It is
during this stage that | am most exposed to the customer’ swhims.
Much is written about managing projects and customer
requirements, but | am not sure that any one system really works.
Theredlity isthat acustomer may not actually know what they want
until they can see a prototype working. For example, in a control
environment, suppose you have machines “A” and “B”, and
specification like:

TEST 10 | S:
Switch "A" on
Wait for 5 seconds for it to warmup

Switch "B" on
Wait for 10 seconds for it to warmup
Prine "B"

Trigger "B"
Coll ect data with "A" for 20 seconds
Switch all off

Anticipating that the start-up times will need some fine-tuning,
you would externalise them into your configuration file as:
[TEST 10]
; A start-up tine
Startup_A Tine = 5
; B start-up tine
Startup_B Tinme = 10
; Collect data for
Collection_Tine = 20
This works well until someone points out that in fact the
instrument start-up order needs reversing. A quick response is to
now externalise your “if” clause to the configuration file.
; False for reverse start-up order
Startup_A Then_B = True
with corresponding pseudo-code:
i f (getBool FronConfi gurationFile("Test 10",
"Startup_A Then_B") == true) {
St art A(get | nt eger FronConf i gurati onFi | e(
"Startup_A Tinme"));
St art B(get | nt eger FronConf i gurati onFi | e(
"Startup_B Tine"));
}
el se {
/1 the other way round
}
Y ou can imagine that on a complicated system thisis will quickly
get silly. Problems like this can and do show up even when
installing systems at the client’s site. A busy shop floor is
definitely not the right environment to be going through the
compile/build/link cycle for a large C/C++ application. At this
point, what you really want is to be able to program your control
algorithm in the configuration file. The installation engineer can
then modify the scripts using a simple text editor, reload them
into the application and get on with testing. The configuration file
must have the ability to present simple functions to your
application and call back into your application. So, if weimagine
asimple Pascal-like syntax:
—A start-up tine
Startup_A Tine = 5
—B start-up tine
Startup_B Tinme = 10
—Col | ect data for
Collection_Tine = 20
—Fal se for reverse start-up order
Startup_A Then_B = True

char array[42];

/1

const char * const end = array + 42,
char * at = find(array, end, value);
if (at !'= end) { /1 found it

}

22

That’s all for now.

The form of this article as well as the content of the first two
sections were collectively written by a dozen or so people during
a Birds of a Feather session at the ACCU 2003 Spring
Conference. Many thanks to everyone who contributed.

Jon Jagger

jon@ aggersoft.com

function Test 10()
if (Startup_A Then_B)
Start A(Startup_A Ti ne)
StartB(Startup_B_Ti ne)
el se
—the other way round
end
—the rest of the algorithm
end
This is your chance as the ingtigator of your fledgling language to
make it as smple as possible for non-programmers. Use a smple
gyntax, i.e,, no semi-colons and if possble infer the type from the
stuaion! | think you'll agree that this approach is alot smpler and
easier for non-programmers to understand. It can be argued that the
origina dgorithm is more clearly preserved from the specification.
Even more s0 if you imagine the C/C++ version cluttered with al
the ancillary error checking and logging. Its greatest strength is that
it is open to change by you, other non-programming engineers and
possibly even the end-user. Note that | am not advocating rewriting
the whole application in a scripting language, because | consider
C/C++ the perfect languages for the controlling libraries.

Examples

I"ll now look at some other examples of this technique, in
roughly historical order:

Firstly, GNU Emacs. From the Emacs documentation:

Emacs is the extensible, customizable, self-documenting real-
time display editor. If this seems to be a bit of a mouthful, an easier
explanation is Emacs is a text editor and more. At its core is an
interpreter for Emacs Lisp (“elisp”, for short), a dialect of the Lisp
programming language with extensions to support text editing.

After afew prior implementations, Emacs how consists of alight
C core that contains the display code and a Lisp interpreter. The
rest of Emacsis programmed in Lisp; the scripts can be edited (in
Emacs) and reloaded whilst the system is running. This
tremendous flexibility isthe main reason why Emacsisloved.

Secondly, for me, arethe CAD systems, like AutoCAD. These,
like Emacs, generally have a C/C++ core, and also expose a Lisp
interpreter. Through Lisp bindings to the core application, the user
can write scripts to manipulate much of the system from the
graphical user interface to the models.

Thirdly, VBA from the Microsoft Office Suite. From the
Microsoft web site:

Finally, Visual Basic for Applications takes the same power
available through the Visual Basic programming system and applies
it to highly functional applications, enabling infinite levels of
automation, customization, and integration.

Since Microsoft’ sinitid businesswasBASICinterpreters, it should
be no surprise that they chose BASIC as the prototype for their
embedded language, Visua BASIC for Applications (VBA). Unlike
Lisp, smal BASIC programscan bewritten easily withlittleor no prior
programming experience, after al the B isfor Beginner's.

Fourthly, computer games: many contemporary games have some
form of scripting included. The complexity of amodern gamerequires
it. The core graphics and artificia intelligence libraries are written in
C++, but hooks are exposed to an embedded scripting language. Then
the script for the game and the levels can be devel oped, changed and
tweeked dl inthe embedded scripting language. For apopular example,
the game “Unreal”, developed by Epic Games includes a very
sophigticated language called Unredl Script. By exposing this facility

Overload issue 55 june 2003

they have created a very configurable game engine that can be
customised eedily. Itsversatility isproven by Epic Gamessdlling their
engineto other games companies.

Findly, everyone sfavouriteweb server: Apache HT TP Server. This
web server also contains a small embedded scripting language for
processing what they refer to as* directives’. When the server darts, it
loadsand parsesaconfigurationfile ht t pd. conf by default, which
containsdirectives. Theseare essentidly function calbackstothemain
server, with the addition of some conditional processing, based on
either command line parameters or module availability.

These are all very successful applications, and | maintain that a
large part of their successis due to the fact that they have exposed
key configuration data and functions to the end-user.

How To Guide

The smplest way to identify which part of your application would
benefit from this is to ask yoursdf: “which parts of your system are
you frequently asked to change?’ | think there is a generd pattern
with most applications; requests for changes will be targeted at those
aress the user has most interaction with. This will probably be the
gross functiondity, i.e. the interactions of your libraries and probably
the graphical user interface, if you have one.

In choosing or designing an embedded language, keep in mind
your target users. To be accessible for a modern user, you should
probably avoid Lisp. | know it is a very powerful language, there
arefreeinterpreters available and it iseasy to bind to C, but itisa
little daunting to anovice. BASIC isfun and like many devel opers
intheir 30'sit wasthe first language | learnt on a home computer.
Y ou may pause before using Microsoft’ s VBA sinceit will reguire
extensive use of COM and it will cost you an indeterminate amount
to get alicence from Microsoft. The main scripting languages, Perl,
Python and Ruby can all function as an embedded scripting
language, and TCL was designed for just such arole. However, |
feel they are probably just too inaccessible to anovice. Thereisa
freely availablelanguage called Luathat fits my requirements. Lua
is available as C source code and comes with aliberal licence. It
also has all my other desirables: it is relatively small, can be used
asasimple procedura language and hasacleaninterfaceto C. Lua
was designed to beflexible; it is more of alanguage framework. It
can be coaxed into offering objects with member functions and
function overloading, and there are mechanisms avail able to expose
C++ classesdirectly in Lua. It dso usesavirtua machine for speed
and performs automatic garbage collection.

First download the Lua source. Version 5.0 has just become
available, and | shall beusing that. Check you can buildit asastatic
library, and build the standalone Lua interpreter to begin
experimenting. This can be used interactively, or alternatively to
processafilet est. | uatypedofile("test.lua") atthe
command prompt. Just to get afeel for thelanguage, hereisagentle
introduction.

Firstly, note that Lua uses dynamically typed variables. For
example:

—two gl obal

port = "COw"
timeout = 1000
Comments follow two hyphens and continue to the end of the
line. port and ti meout are global variables and do not
have a type, although their values have types of string and
number respectively. Lua has base types of ni |, bool ean,
nunber, string, function, userdat a, t hr ead, and

23

vari abl es

Overload issue 55 june 2003

tabl e. nil isthetermina type, bool ean, number and
string are al as expected, but note that by default Lua is
compiled with numbers as doubles. f uncti onsin Lua are
first class, which means that they can be passed around,
created and stored like any other value. user dat a types are
for smoothing integration with C. Lua treats them as simple
memory blocks, although this default behaviour can be
controlled, as | will show later. t hr eads are new to Lua 5.0
and outside the scope of this article. Finally we have the most
important type of t abl e, used exhaustively within Lua. A
t abl e isan associative map, for example:
- a global table
default_comms = { port = "COWL"
ti meout = 5000 }
Which creates a global table with keysport andt i meout with
corresponding values COML and 5000. Note that the key may be
omitted in which case it defaults to the first unused numeric
index:
anot her _comms = { port = "COWL",
ti meout = 5000, true }
will add key 1 with boolean value t r ue. Thefields can be added
or accessed using the familiar dot notation, here using the
debugging function pri nt :
print("Default conms port: ",
default _conms. port, " with timeout ",
defaul t _conms. ti meout)
will produce the outpuit:
Default comms port: COML with tineout
Luaalowsyou to define functions:
- a global function
function coms_open(port,
| ocal time = 1300
| ocal status = "OK"
- opening coms port (just fake it for
return tine, status
end
- and function cal
- this first print will print nils because the
- time variable has |ocal scope and is now
- invisible
print("Before comms_open: ", tine, status)
time, status = comms_open(anot her_coms)
print("After comms_open: ", tine, status)
This is a simple function taking some comms settings and
returning the time to start up and a status string to the caller.
Since functions are treated like any other value, they can be
added to tables. The standard libraries supplied with Lua all
package their functions within tables in analogy to
namespaces in C++. For example, the standard library for
table utilities contains a function f or each that can be used
asfollows:
- debugging, print out the contents of a table
- using the table library foreach function:
t abl e. f oreach(anot her _comrs, print)
This will visit each of the keysin anot her _comms calling the
function pri nt with the values (key, val ue), giving the

5000

ti meout)

now)

outpuit:
1 true
port cow

ti meout 5000
24

L ua also supports the usual control structures, as demonstrated by
the following function for printing even numbers:
—denonstration of control structures
function even_nunbers(total)

| ocal step = 2
for counter = 0, total, step do
if counter >= 20 then
print("Twenties", counter)
el seif counter >= 10 then
print("Tens", counter)
el se
print("Units", counter)
end
end

end

even_nunber s(24)
I think we now know enough for Lua to be a useful language,
and we can move directly on to integrating this with the
application. To use Lua as an embedded language within a C
program, you first need to create an instance of Lua and load
in al the standard libraries. Finally this resource should be
freed before the program ends with a balancing cl ose
statement:

#i ncl ude <stdio. h>
#include <string. h>

/* Lua is strictly C, so add a guard for
C++ conpil ation */

#i fdef __cplusplus

extern "C' {

#endi f

<l ua. h>
<lualib. h>
<l auxlib. h>

#i ncl ude
#i ncl ude
#i ncl ude

#i f def

}
#endi f

__cplusplus

int main(int argc, char* argv[]) {
lua_State* L = lua_open(); /* Create a new
i nstance of Lua
(lua_State *) */

/* Initialize Lua standard library
functions */

| uaopen_base(L);

| uaopen_t abl e(L);

| uaopen_i o(L);

| uaopen_string(L);

| uaopen_mat h(L);

| uaopen_debug(L);

/* do sone stuff */

| ua_cl ose(L);
return O;

All communication between C and Lua is done using a stack
mechanism, function call parameters are pushed, the call is
made and the results will be on the stack. Positive stack
indices are from the bottom and negative stack indices are
from the top, as usual a push adds elements to the top of the
stack. So, to add a new global variable and a new global table
to Lua

/* Create a global variable in Lua */
| ua_pushstring(L, "baud_rate");

/* push the variable name */
| ua_pushnunber (L, 9600);

/* then its value */
| ua_settabl e(L, LUA GLOBALSI NDEX)

/* finally set it in the global table */
/* \WW can create a global table too */
| ua_pushstring(L, "backup_comms");

/* push the table name */
| ua_newt abl e(L);

/* create a new table on the stack */
| ua_pushstring(L, "tineout");

/* push the field name and val ue */
| ua_pushnunber (L, 2500);
| ua_settabl e(L, -3);

/* now the table we created has been

pushed to -3 */

| ua_settabl e(L, LUA GLOBALSI NDEX)

/* finally set it in the global table */
The functions | ua_push*** (L, ***) just push their
datatypes onto the stack. The function set t abl e adds the field
baud_r at e with value 9600 to the table at the stack index
LUA_GLOBALSI NDEX. This is a special reserved index to
identify the table that holds the global variables. This C code is
directly equivaent to the following Lua code:

baud_rate = 9600
backup_coms = { tinmeout = 2500 }

Note that it is possible to get Luato execute code fragments from
C asfollows:

| ua_dostring(L, "baud_rate =
9600\ nbackup_coms =
{ tineout = 2500 }")

To make a C function callable from Lua we follow the stack
conventions above. Note that when Lua calls C it does so with a
clean stack each time. The calling parameters are available in
stack indices +1, +2 etc, and on return push the return values. For
example:

/* A C function callable fromLua */
int | _coms_open(lua_State *L) {
const char *port = NULL;
doubl e timeout = 0.0;
double tinme = 1300
const char *status = "OK";
/* Function paranmeters passed in at the
begi nni ng of the stack */
if (lua_isstring(L, 1))
/* check that the first
a string */

paraneter is

Overload issue 55 june 2003

port = lua_tostring(L, 1);
/* retrieve the first paraneter */
if (lua_isnunmber(L, 2))
/* ditto for nunbers */
ti meout = lua_tonunber(L, 2);

/* Do something interesting...omtted */

| ua_pushnunber (L, tine);

[* push the return val ues */
| ua_pushstring(L, status);
return 2;

/* return the nunber of results */

}

This function can be registered in C asaglobal function in Luaas
follows:

| ua_register(L, "c_conms_open",

| _conms_open);

Now we have passed some data down to Lua, we can load a Lua
script and see how it al works together. Add the following to the
end of our test script:

print("baud_rate: ", baud_rate)

tabl e. f oreach(backup_conms, print)

time, status = c_conms_open(" COW",

backup_comrs. ti neout);

print("Result of comrs_open: ", time, status)
To load a script from C and confirm the variables are popul ated
correctly, use:

lua_dofile(L, "testl.lua");
We can also get values from Lua and invoke functionsin Luain
the same manner. To get a global vaue, just push the table key
and cdl | ua_gettabl e(L, LUA GLOBALSI NDEX) to ask
Lua to look up the value and put it at the top of the stack.
Similarly, to get a value from a global table, first ask Lua to
lookup the table and put it on the stack, and then push the table
key before calling | ua_get t abl e to finaly lookup the vaue.
Using the same test script we can make a call to the Lua
conms_open function asfollows:

/* Call a Lua function */
| ua_pushstring(L, "conms_open");
/* ask Lua to find the global function
and push it onto the stack */
| ua_gettabl e(L, LUA GLOBALSI NDEX)
if (lua_isfunction(L, -1)) {
| ua_pushstring(L, "COW");
/* push the two operands */
| ua_pushnunber (L, 3500);
lua_call (L, 2, 2);
/* make the function call
and two outputs */
if (lua_isnunmber(L, -2))
/* results will be on the top of the
stack */
time = lua_tonunber(L

two inputs

-2);

if (lua_isstring(L, -1))
status = lua_tostring(L, -1);
l'ua_pop(L, 2);

}
25

Overload issue 55 june 2003

At this point we can get and set Lua global variables from C,
and call Lua global functions from C. We can also callback
from Lua into C and load and execute Lua scripts. The
example functions above could easily be isolated into a Lua
interface library, and | think there is an obvious wrapping into
a C++ class if you'd prefer. This is enough functionality to
begin exploring Lua and C integration in earnest. As |
mentioned earlier the userdata type available in Lua and
hinted that its behaviour could be modified. In fact, Lua
exposes most of itsinternal functionality through “metatables”
and these can be modified from either C or Lua script itself.
These tables are used to hold the operators for each object. To
take the example from the Lua documentation, consider the
behaviour of adding two objects. The internal processing done
by Luais as follows: if both operands are numeric, just add
them together. Otherwise, if the first operand has an __add
field in its metatable, use that function, otherwise consider the
second operand’s metatable. The operators available for
overloading inthisway are: __add, __sub, __mul, __div,
__pow, __unm (for unary minus), __concat (for string
concatenation), __eq, __ It (lessthan) and __| e (less than
or equal), __i ndex (for field getters) and __newi ndex (for
field setters) and __cal | (for function calls). Additionally
for userdata types there isthe __gc event called by the
garbage collector for object finalisation. To see how this can
be used for your userdata types consider the following
example:

#defi ne COMVMSHANDLE " Conms*"

typedef struct tagComms {
char *port;
doubl e tinmeout;

} Conms;

static int | _coms_newlua_State *L) {

/* Create a new userdata object of the
correct size */
Comms *comms =
(Comms *) | ua_newuserdat a(L,
si zeof (Conms)) ;
comms->port =
comms- >t i neout =

NULL;
0.0;

return 1;

}

If you now register this function with Lua then when it is
called it will create a new Comms struct and initialise it.
Unfortunately, since this example does not contain just plain
old data, there will be a memory leak for each of these
structures since there is no way to clean them up. To remedy
this, we need to create a new metatable object implementing
the correct garbage collection to override the default Lua
behaviour for userdata types. To create a new metatable
object, just use the function:

| uaL_newnet at abl e(L, COMVSHANDLE) ;
/* create new netatable for file handles */

26

and to attach the Comms userdata objects to this metatable, just
add the lines

| uaL_get net at abl e(L, COMVSHANDLE) ;

/* retrieve the nmetatable for this type */
| ua_setnetatabl e(L, -2);

/* set this metatable for this object */

to the Comms constructor function above. Connecting a userdata
object with its metatable in this way is the Lua equivalent of
constructing a v-table for a C++ object with virtual member
functions. You can override the garbage collection behaviour by
creating a C function asfollows:

/* Define the garbage collection
finalizer for Coms objects */
static int | _coms_gc(lua_State *L) {
Comms *comms =
(Comms *)lua_touserdata(L, 1);
free(coms->port);
comms->port = NULL;
return O;

}

Register this as the garbage collection routine for this metatable
as follows (assuming that the metatable object is currently on the
top of the stack)

| ua_pushliteral (L,
| ua_pushcfunction(L,
| ua_settabl e(L, -3);

'__gc");
| _coms_gc);

| hope | have shown that your application could benefit from
an embedded scripting language of some form. | have
discussed some of the prior examples and have introduced a
more modern language called Lua. I've given a quick taste of
Lua and indicated that it can be extended easily and it can be
embedded easily. The interface between C and Lua is easy to
understand and easy to isolate. There are examples of other
third party wrappers available that promise to even wrap C++
classes for easy access from Lua. Thereis also a growing body
of third party libraries available for processing XML and for

creating GUIswith Tk.
Jonathan Tuipp

References

[1] Emacs: ht t p: / / www. gnu. or g/ sof t war e/ emacs
[2] VBA:http://medn. nmi crosoft. com vba/ defaul t. asp
[3] TCL:http://ww scriptics. com
advocacy/tcl History. htm
[4] John K. Ousterhout:
http:// home. pacbel | . net/ouster/scripting. htm
[5] Lua http://ww. | ua. or g/
[6] Unreal Script:
http://unreal.epicganmes. con Unreal Script. htm
[7] Apache: htt p: // htt pd. apache. org

