Overload issue 58 december 2003

contents

An Alternative View of Design
(and Planning) Allan Kelly

Letter to the Editor(s)

A Standard Individual: A Licensed
Engineer Chris Hills

A More Flexible Container
Rich Sposato

Choosing Template Parameters
Raoul Gough

From Mechanism to Method:
Data Abstraction and Heterarchy
Kevlin Henney

Checkedl nt : A Policy-Based
Range-Checked Integer
Hubert Matthews

10

12

16

19

24

credits & contacts

Overload Editor:

John Merrells
over |l oad@ccu. org

Contributing Editor:

Alan Griffiths
al an@ct opul | . denon. co. uk

Readers:

lan Bruntlett
lanBruntlett @ntigs. ukl i nux. net

Phil Bass
phi | @t oneynmanor . denon. co. uk

Mark Radford
t woni ne@ woni ne. denon. co. uk

Thaddaeus Frogley
t.frogley@t!world.com

Richard Blundell
ri chard. bl undel | @ret apr axi s. com

Advertising:

Chris Lowe
ads@ccu. org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://wwmv. accu. or g/

Information and Membership:
Join on the website or contact

David Hodge
nmenber shi p@ccu. org

ACCU Chair:

Ewan Milne
chair @ccu. org

Overload issue 58 december 2003

Editorial - What | Want
For Christmas

s some of you know, I've had an eventful year, and this seems like a suitable

opportunity to reflect upon those aspects of it that relate to software development.

Things are always changing and there is often a pattern but one sometimes needs
to step back a bit to see it. This time I’'m going to take a step back thirty odd years and
describe the way that software development happened then.

When | first started writing programs I’ d write them out on
paper, then when I'd checked it over I’d transcribe each line by
punching holes into a piece of card (very carefully — most errors
required starting the card again). When | had completed all the
cards |’d use several elastic bands to ensure that the stack of cards
was secured in order and place it into a tray with other programs
in the same format. Later that day the tray would be carried to a
local computer centre and the programs transferred to other trays,
a card reader and eventually united with corresponding printouts
and placed into atray awaiting transfer back from the computer
centre. If | timed things right a program could be turned around
updated and resubmitted a second timein the same day!

The effect of thiswasthat alot of the coding of a program was
concentrated into afew intensive ten-minuteinterval s separated by
hours of suspense. All too often thismeant that amistake was made
in the rush, but not noticed until the stack of cards had begun its
tortuous journey to the computer centre and back again. It may
sound horribly inefficient to the current generation but programs
were really developed this way. Nowadays errors that would not
have been reported by the compiler for half a day or more are
highlighted on the screen before | even save thefilel

Although people spent alot of effort trying to make the “dead
time” more effective, any attempt to improve efficiency by working
on several programs at once never really worked as well as might
be hoped. The relentless cycle of turnarounds forced the
development cyclesinto synchronisation, and as there was always
one program that was more urgent than therest it stole thetime that
the others needed. And, while I’ ve focussed on writing code, it
wasn't just getting the program to compile that waslikethis, testing
and deployment followed similar processes.

But code got written and systems got delivered.

The underlying difference between the way thingswere then and
theway things are now isthe speed of feedback. Most readers will
be familiar with development environments that highlight syntax
errors as you type — problems that could once have led to days of
delays and frustration are detected and corrected without conscious
thought. Such a change doesn’'t only affect the speed of progress,
it also changes the way that we approach the task. Even those
readers without this facility will be working in an environment
whereit ismore effective to use acompiler to check syntax than it
isto do so “by hand”.

Having reliable and immediate feedback available provides a
level of confidence that allows the developer’s attention to focus
elsawhere. (Thisisjust aswell, because the effect of having better
toolsisn’t that the job has got easier — the range of problems that
we are willing to tackle has expanded to compensate.)

aq

Naturally, there is much more to developing software than
getting the syntax of the code right, and much of thisis also
dependent upon accuracy. And there are two approaches to
accuracy: avoidance of error and correction of error. Each can be
appropriate in the right circumstances and, as | have tried to
illustrate in the context of coding, the choice can depend upon the
tools available.

Traditionally, software devel opment processes have been based
around avoidance of errors: getting the requirements right and big
up front design all comesfrom an eraof dow, inefficient feedback.
Thereisasignificant cost to manually double and triple checking
everything to reducetheerrorsbeing fed into aprocess. Automated
error detection that provides early feedback and allows early
correction is often much more effective. And, based on my
experiencesthisyear, | think that it isbecoming availablefor many
more aspects of software development.

Unit Testing

The checking of individual units of development is the province of
unit tests, and the ability to run these automaticaly as part of the
development environment is just about there for some
development technologies. For example, there are free JUnit
“plug-ing” for most of the popular Java development
environments. Having tests light up “green” (for success) or “red”
(for failure) when changes are made can trap a lot of slly errors
soon enough after they are made that they don’t disrupt a
developer’ s line of thought any more than the occasiona compiler
error. Of course, as yet, this isn't quite as widespread as syntax
checking editors —for example, | don’t know of a CppUnit plug-in
for the Visud Studio environment my current client favours. So,
number one on my “Christmas lit” is the availability of such a
tool for any environment that | happen to be working in.

Naturaly, there are additional issues with the use of unit tests,
such as persuading both developers and management of their
usefulness. Thiscan be asignificant problem: thereisacost to both
writing unit tests and to running them — and they do not detect al
errors. Much as | would like to | cannot point to scientific
comparisons between “equivalent” projects run with and without
unit teststhat demonstrate the benefits. All | can give is anecdota
evidencethat the projectson which I’ ve been ableto instil aculture
of unit testing have had far fewer problems when it came to
integration and delivery. (But unit testsare far from the only change
that I've introduced — and projects can be delivered successfully
without them.)

The one thing that | can say about having unit testsin place is
that the level of rework is much lower. Asone developer put it: “it

isapain writing these unit tests—but | like getting thingsright first
time”. Butitisn't assmpleasthat: thingsare not aways*“right first
time” — sometimes the requirements have been misunderstood (or
have changed: not only can the business change, but the process of
capturing requirements can question assumptions, and delivering a
software system can offer unexpected aternative approaches).
While there have been attempts to catalogue and collate
development practices that work there is very little convincing
evidence for many of the things that | would like to believe. Of
course, when working with like-minded individuals thisisn’t an
issue (credible claims require little evidence), but when trying to
justify and motivate change, it can be a major problem. When
talking to management and developers who believe that
standardisation of process, or a new technology, or some other
“magic bullet” istheanswer to al their development woesthen any
claims | make will not be considered credible without substantial
evidence. So that isthe next item on my list: citable evidence of the
effectiveness and applicability of aternative devel opment practices.

Functional Testing

Some time ago | came across one of Ward Cunningham'’s
innovations. “Fit”. Fit is a Java framework for describing system
functionality as a web page that can be executed against the
system under development. It requires the developers to write
some lightweight “fixture” classes that map the requirements
embedded in the web page to interactions with the system. The
fact that the requirements can be executed directly does a lot to
address the ambiguities that frequently find their way into the
testing of functiona requirements.

Morerecently (at The Extreme Tuesday Club) | cameacrosssome
work that builds upon the Fit framework. “Fitnesse”, produced by
ObjectMentor, isaWiki implemented around the Fit framework that
facilitates the capture of functional requirements in an executable
form: as Fit webpages. Michagl Feathers (of ObjectMentor) has dso
produced FitCpp — a C++ implementation of the Fit framework.
(Thereare somebugsand other issuesto resolvewith FitCpp but I’ ve
been working with it (and Fitnesse) for my current client and,
assuming | get suitable permissions, | will have put the resulting
material on my website by the time you read this editorial)

One of the great things about this approach is that there is very
easy visibility of project process. One may set up a summary
webpage that lists al the functional tests, colour coded according
to whether the functionality is available (green), isfailing (red) or
hasyet to be addressed (grey). Because executing the tests directly
against the system produces these results the feedback is always

Overload issue 58 december 2003

immediate, up to date and honest (which avoids the temptation to
exaggerate progress — both to oneself and to others).

It is easy to overlook what this means to people outside the
development group. All too often their experience of software
development resembles the coding process | described above:
concentrated effort at the beginning with lots of effort invested in
getting it right, followed by things being “out of their hands’ for a
long period before the results are visible. It is only then that
mistakes, ambiguities and misunderstandings become apparent.
Publishing the current state of development on the intranet gives
them much needed feedback early in the devel opment cycle. And,
becauseitisaWiki, itissimplefor the requirementsto be updated.
And because the requirements are the functional teststhesetoo are
maintained in asingle, authoritative, place.

Fitnesse demonstrates that it is possible to bring requirements
capture and functiona testing much closer together than has ever
been my experiencein the past. This (or something likeit but better)
should be part of the toolkit on any project. Another one for my
Christmaslist!

Refactoring

It has been afew years since Martin Fowler codified a number of
coding practices that experienced developers know are needed
but are hard to associate with a quantifiable benefit. These
“refactorings’ are transformations that leave the functionality
unchanged but make the structure of the code more amenable to
further development. In the Java world there is now widespread
support for automating these transformations.

Thesefacilitiesare great: it doesn’t sound much but, to take one
example, being able to remove a block of code from a growing
method body by selecting it, choosing “extract method” from the
menu and then entering the method name is so much simpler than
the“oldway” . The devel oper isfreed from the tedium and mistakes
of copying the code, changing the indentation, working out what
the parameters need to be and what the return type needsto be (and
occasionally discovering that there are subtle reasonswhy the code
cannot be moved after al).

I’ veyet to encounter corresponding support for C++ developers
—which is understandable (both in its compilation model and its
syntax C++ is a much harder language to address than Java). But
thisismy list and | see no reason to be reasonable in my demands:
these facilities are great and | don’t want C++ to be left out.

(lan Guitfiths
al an@ct opul | . denon. co. uk
www. oct opul | . denon. co. uk

Copy Deadlines

March 15t 2004.

All articlesintended for publication in Overload 59 should be submitted to the editor by January 1 2004, and for Overload 60 by

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

5

Overload issue 58 december 2003

An Alternative View of

design (and planning)
by Allan Kelly

Traditional software development techniques highlight the
importance of planning our software through the creation of
designs. We often measure our work against plans made before
coding starts, and many organisations use adherence to plan as a
management control mechanism. Y et just about anyone involved
in software development knows that time estimates are usually
wrong, and program code doesn’t always follow designs
produced to start with.

Many in the agile process movement openly question why we
bother with plansat al. “Do the simplest thing possible” becomes
the only design decision we need to make again.

I’dliketo proposethat planning isuseful, but not necessarily for
the reasons we often think it is...

Why Plan?

Although the quote is sometimes attributed to others, | believe
it was future US president, General Dwight D. Eisenhower who
sad:

In preparing for battle, | have always found that plans are useless,
but planning is indispensable.

The sentiment isn’t restricted to the battlefield, I’m sure many
software developers have had recourse to this quote on
occasions. What lies behind it is fact that we are not blessed
with perfect future vision. Most plans contain assumptions
about how the future will unfold, many of these assumptions
simply extrapolate from the way things have worked in the
past — or how we perceive the things to have worked. Many
unknowns, and plenty of unknowables, force us to make
assumptions.

Even if all our assumptions turn out to be right, we have no
guarantee that our plan is complete. How much detail do we need
in our plan? Too little detail and you risk missing something

important; too much detail and you' Il never get beyond planning —
sometimes called “ paraysis by anadysis.”

Some assumptions will be conscious and may be explicitly
stated, others will be implicit and undocumented. There will be
many implicit assumptions in any development effort, these are
derived from our existing knowledge of the technology and
business and on the whole offer short-cuts to thinking. However,
some of our implicit assumptionswill cause problems. Planningis
one means by which we can flush out these assumptions and
challenge our existing mental maps.

That plans assume foresight, and that foresight may be wrong,
isfairly obvious. What is less obvious is that plans aso assume
communication. Even the best plans can fail because they are not
communicated clearly, or thereceiversdon’t act on theinformation
as we expect.

Such problems with planning led Arie de Geus to question the
role of planning. Inthetraditional model planning isatool which
atempts to predict the future, the plans are then used to command
and control our activities. In contrast de Geus sees planning as a
tool for learning:

So the real purpose of effective planning is not to make plans but to
change the microcosm, the mental model that these decision makers
carry in their heads. (de Geus, 1988)

Like Eisenhower, de Geus is suggesting that we don’t make plans
so we can follow them, we make plans to map out the terrain —
that is, the problem domain we face. But he also goes further in
suggesting that by using planning we can accelerate learning. He
suggests planning is a game, a game were we can experiment
with different rules and safely make mistakes. The important
part of planning is not the output, but the process.

De Geus formulated his ideas as part of the planning group at
Royal Dutch/Shell. The head of this group, Pierre Wack, used
scenario planning to explore the future. Perhaps the best book on
scenario planning is Peter Schwartz, The Art of the Long View.
Schwartz is clear about the role of scenario planning:

Planning Gone Wild

As Schwartz noted, managers “prefer the illusion of certainty to
understanding of risks and redlities’. Yet pursuit of thisillusion
leads to counter productive results and top-heavy, high-
ceremony devel opment systems.

While techniques like Critical Path Analysis can be useful
in identifying dependencies and foreseeing problems, when
carried to the extreme it becomes goal-displacement. We find
managers obsessing about Microsoft Project plan charts, re-
drawing them, changing activities, re-scheduling, adding
resource, removing resource, questioning activities and the
estimates behind them.

Putting a manager in the corner with MS Project may be a
useful way to keep them out of your hair for awhile but so is
giving them a piece of paper with “P.T.O.” on both sides.
Eventually the manager steps away from MS Project and comes
to asks you why you estimated this activity at aweek, or why the
estimate said one day and you took five. People quickly forget
the meaning of the word “ estimate.”

Frequently estimates relate to how long it will take an
individual to do atask. Overrun because you helped Jane with
her work and suddenly all the talk of “teamwork” is forgotten —
even if next week Jane repays the favour and you both compl ete
work early.

Project planning can beaway to drive awedge between people,
forcing them to focus on their own tasks rather than the overall
goal. Of course, sometimesyou don't need to wedge peopl e apart.

Absent architects separate themselves from projectsand teams.
In some companies, once an individual reaches a certain level it
is believed they can wander in for a few weeks, draw up the
blueprints and move on, perhaps returning every now and then to
check the plans are being followed.

Since those implementing the plans had no hand in drawing
them up their learning curve will be steeper and longer, nor will
they be particularly motivated to see the plans come to success.
Indeed, as part of their learning processthey will probably conduct
their own planning process of sorts and may well produce afinal
product that looks nothing like the blueprint, although, the
documentation may say it does.

6

Scenarios are not predictions. It is simply not possible to predict the
future with any certainty. [...] Often, managers prefer the illusion of
certainty to understanding of risks and realities. If the forecaster fails in
his task, how can the manager be blamed? (Schwartz, 1991, p.6)

How do these ideas play out in software development? Before |
attempt to answer this question let’s just recap on the two key
ideas suggested:

+ Firstly, while plans may help usto explore the future, even the
best plans will not describe the future.

+ Secondly, the planning process is actually a learning exercise,
and it isthis process which we value, not the plans we produce.
The learning that occurs during the process is a result of
communication, exploration and the surfacing of assumptions.
Importantly, this experience is shared by the whole team.

What Planning Do We Do?

Oranges aren’'t the only fruit, and project schedules aren’t the
plans we make. Specifications, flow charts, structure diagrams,
pseudo code, UML diagrams, interaction diagrams, and a host of
other diagrams all constitute plans we make in advance as a way
of exploring our problem and solution domains before we start
coding.

In fact, even when we start coding we are ill planning. Every
function which iswritten with astub or isflagged “TODO" is part
of a plan, the more we code the more the “plan” becomes an
implementation.

Overload issue 58 december 2003

Planning can be a point of tension between managers and
software developers. On the one hand, some managers understand
progressto mean lines of code written — Steve McConnell callsthis
WISCA syndrome — Why isn’t Sam coding anything? (McConnell,
1993). On the other hand, excessive planning, document writing,
project schedules, and fancy architecture diagrams can act like
quick drying cement to stop a project from progressing.

Sometimes we do just jump in and code. Occasiondly thisis
because the problem is so simple the solution appears obvious, or
more likely, we' ve seen the problem before and know a solution
that works. Other times the problem is so hideous that we don’t
know whereto start, so we try something. Inthismode the codeis
part of the planning process, we are exploring the terrain by
experimentation.

The vaue of prototyping liesinitsrole asaplanning tool. The
prototypes are written for different audiences but typically allow
peopleto learn about the solution before committing themselvesto
asolution. By viewing the prototype, both developers and clients
can accelerate their learning about the solution.

“Test first development” is another form of planning. By
considering the test cases before we write any codewe are again
exploring the problem domain. Planning the tests gives us a
chance to improve our understanding before we start coding.
Almost as a side effect we get a test suite and save ourselves
some time later on.

The traditional view of software design is akin to building
development, the planstell us where to build aload-bearing wall.
However, with software we don’'t ways know where the load will
occur. For example, it is ailmost impossible to predict where the

Scenario Planning

One of the most extreme versions of “planning as learning” is
that of Scenario Planning. In creating a scenario the ideais not
so much to forecast the future as it is think what challenges and
opportunities you, your team or business may face as the world
changes.

Scenario planning hasits roots in military planning but has
been popularised through its use by Shell and authors like Peter
Schwartz. In his model we seek out information which may
affect the future. Some of thisis knowable right now, e.g. the
world’s population is growing, X babies were born last year,
so in 12 years time there are slightly less than X teenagers.
Other information is from “weak signals’ and comes from
talking to technologists, business people, academics, and other
thinkers.

Finding people who have insights and ideas, so-called
remarkable people, may be a challenge but is not impossible.
Oncefound, their ideas should expose someimplicit assumptions
and help you imagine adifferent sort of world.

Y ou sift through this information and look for the underlying
forces and the events that are important for your scenario. Then
you construct a story that explains the facts, highlights the forces
and providesingghts. Actualy, you may want to construct several
scenarios, say abest case and aworst case, but each story must be
internally consistent.

Once complete you name each of these scenarios. None of the
scenariosyou have produced forecasts what will happen; they only
show what could happen.

Stuart Brand suggests that scenario planning can be used in
designing buildings. By thinking about how a building may
developin thefuture we may consider what features areimportant,
what isirrelevant and what obstacleswe may be creating in anew
construction.

Software development could benefit from these ideas too.
Software designers aim for flexible products that can absorb
change, can be reused and yet are easy to maintain. Each of these
attributes comes at a cost, one answer to thisrising cost has been
XP's YAGNI —“you aren’'t going to need it” — approach. The
problem is, deciding just what you do need and what you don’t
need is difficult.

Redlity is going to be somewhere between these extremes, but
how do we know? Scenario planning offers oneway of exploring
the future of our software and flushing out real requirements.

Likewise, trying to uncover the risks entailed in your project,
or where you can expect change requirements to come from, can
be analysed through a scenario plan.

Large framework scenarios used for company strategy and
government policy can takes months of work to produce, but itis
also possible to run smaller project scenarios to examine specific
areas of interest. Even here though, you probably want to conduct
some research then schedule several days to analyse what you
have gathered, agree the forces and write your stories.

While ateam is researching and writing scenarios, they are
creating ashared understanding and even ashared language about
the problem they face. Communication and learning go hand-in-
hand.

Overload issue 58 december 2003

performance bottlenecks will be in a complex piece of software —
the costs of “premature performance optimization” are widely
accepted.

Even if building design was an accurate metaphor for software
design it is not without flaws itself. Stewart Brand (1994) has
criticised architects and lack of flexibility, and has advocated some
alternative ideas (see sidebar on scenario planning.)

Planning as Vision Formation

The activity of writing program code requires us to make design
decisions with every line we write: Isa f or loop more
appropriate than whi | e loop here? A template or a class there?

Of course, we could draw up more detailed plansto help us, but
the more detailed our plans the more the plans arethe code. (This
isoneof thefailures of mathematical forma methods, theresulting
“specification” can be more difficult to maintain than the actual
code.) And at theend of the day, we don’t deliver plans, we deliver
working code, we want to make our design decisions at the most
efficient point, sometimes thisis high level, sometimesthisis low
level.

What we require is a framework that allows us to make all our
decisionsin acoherent manner. If we have someguiding vision for
the system there is less need to examine each decision in minute
detail.

Traditionally, we would ask a System Architect to draw up a
high-level design for asystem. Thiscould berefined by “designers’
and implemented by software engineers. The engineers are
prevented from making mistakes because the plans control what
they do.

However, not only doesthismodel assumethat the architect and
designers get the design right, but it also assumes the model is
communicated with complete clarity and understood by everyone
involved in atimely fashion.

How often do we see provisional design decisionsbecomefixed
elements of the system? By the time we realise part of our design
could be better not only isthere too much code to change but there
is abunch of devel opers who need re-educating.

For asystem to remain flexible and soft, it isnot only necessary
to keep the software flexible but the people must be capable of
changetoo. Thus, we return to de Geus sideathat planning is part
of the learning process.

(Notice | say the “people must be capable of change”, not
“changethe people’. Often thefirst reaction of new developerson
a software project is to claim the existing code is unmaintainable
and the whole thing needs replacing.)

IndeGeus sworld, everyoneispart of the planning process. We
plan so that we create amental model of the system whichisshared
by everyone. To put it another way, by allowing everyone to
participatein the design everyone will buy into the architecture and
understand how it affects them.

Ric Holt of the University of Waterloo has suggested that
software architectureis most usefully thought of asamental model
shared by the devel opment team. It ismoreimportant for the team
to hold acommon understanding of what isbeing created thanitis
to create highly detailed descriptions of technology. Holt’s
conclusion echoes Conway’s Law (1968):

When teaching about or designing software architecture we should
always remember that the architecture is intimately intertwined with the
social structure of the development team. (Holt, 2001)

8

And so we return to teamwork. For software development to
succeed the team needsto work together. What, you may ask, isthe
role of the architect here?

The role of the architect, indeed any other manager on the
project, is changed when we take this view of planning. They no
longer sit in a darkened room and emerge with a completed
blueprint of how the system should be. Their role becomes one of
facilitator.

Architects may still sit in darkened rooms and think grand
thoughts, they may still examine strange new technologies, but they
no longer emerge with a plan. Instead they emerge to facilitate
discussions, their research may play a part in the architecture and
vision created by the team but for ateam to truly buy into avision,
and to truly understand the architecture, each team member must
have ahand in creating the vision.

Emergent Design

While we may like to think that the plans we make at the start
of a project actually describe the system we create the reality
is usually different. We find a need for objects that were
never included in the object model, the algorithms described
by flow charts and structure diagrams turn out to be buggy so
the code is different, and refactored code quickly diverges
from the plans.

As we develop at the code level a design emerges. To a
greater or lesser degree this mirrors our pre-coding plans
(assuming we made any). But over time the code becomes the
best place to look for design. If we want a high level view of
what and how a system works we are better abstracting from the
working code than examining blueprints devised before the code
was written.

Acknowledging that design is an emergent, ongoing process
again challenges the traditional role of design and architecture.
However, when we re-perceive design as a learning process
through which we create acommon vision and understanding of
the system, and we re-perceive the architect’ s role as one of
facilitator rather than supreme planner then emergent design is
anatural result. Because the design which emerges comesfrom
agroup of people rather than an individual the design is shared
and understood by all.

What About Plans as
Documentation?

Of course, plans have another use, they are the place we turn to
first when confronted with a new system. Day one on a new job
and we all expect to be given the system design, and usually we
find it doesn't exist, or, at best, is out of date.

The fact that plans seldom reflect the realised system has long
been known, and famously led Dave Parnas and Paul Clementsto
write about “ A rational design process and how to fakeit” (Parnas,
2001). They argue that after building our systems, we should go
back and create the documentation we would have created if we
had perfect foresight.

Although this may seem a novel idea it suffers from a number
of problems, not least that it assumes we will be allowed time to
write documents once the devel opment has completed.

More dangerous is the fact that we are introducing an element
of dishonesty into the process. No matter how well intentioned our
motives we are doing something subversive, isit any wonder that
managers ask “ Shouldn’t you have done that before you started?’

Introducing subterfuge into the process is counter-productive as it
also undermines trust.

Rather than fake our plansit is far better to be honest and say
“We wrote this after the event.” If we want documentation for
future devel opers than we should produce that as a specific task
based on the working system.

Unfortunately there are two catches here. Firstly, much of what
we learn when developing software istacit knowledge. 1t may be
shared by the team but it is actually incredibly difficult to write
down. Thefact that we can codify it at all in program codeis pretty
remarkable — athough often we may not realise we're doing it —
implicit assumptions again.

We can try and compensate here by writing copious amounts of
documentation. However, thisbrings usto the second catch which
observant readers will have spotted already. Remember de Gues's
point about speeding up learning? The more documentation you
produce the longer it is going to take new people to come up to
speed on the system. Less can really mean more, less
documentation can result in more time actualy learning about the
system.

In fact, copious documentation may make things worse still
because we cometo rely on words and diagrams. Assuming these
are accurate (abig assumption) we have now changed the nature of
the issue from one of problem solving to one of applying a
documented solution.

However, software development isinherently a problem solving
activity. If it wasn't we could automate the process. Therefore,
although they may help, documentation and plans never contain the
solutions; they may actually be false friends.

Final Thought

Onefina thought, in the de Geus model of planning aslearning it
is the ingtitution that learns — where we interpret “ingtitution” in
the broadest sense. He says:

And here we come to the most important aspect of institutional
learning, whether it be achieved through teaching or through play as we
have defined it: the institutional learning process is a process of language

Overload issue 58 december 2003

development. As the implicit knowleage of each learner becomes explicit,
his or her mental model becomes a building block of the institutional
model. (de Geus, 1988)

The emphasis on language creation is similar to the pattern
community. By developing alanguage, whether through patterns,
planning or scenarios, we create high level abstractions that allow
usto discuss complex topics.

Other parallels exist with patterns, like patterns this view of
planning seeks to turn implicit knowledge into explicit
knowledge, both focus on creating building blocks, pattern
writers and scenario planners are directed to focus on forces and
particular importance is attached to naming both patterns and
scenarios.

How different, and how much more exciting, to view planning
thisway instead of asa GANTT chart.

Ullan Felly
al l an@l | ankel 1'y. net
http://ww. al | ankel |'y. net

Bibliography

Brand, S. (1994) How Buildings Learn: What Happens After
They're Built, Penguin.

Conway, M. E. (1968) How do Committees Invent?, Datamation.
de Geus, A. P. (1988) “Planning as Learning”, Harvard Business
Review, 66, 70.

Holt, R. 2001 “ Software Architecture as a Shared Mental
Model”, http://pl g. uwat erl 0o. ca/ ~hol t/ paper s/ sw-
ar ch- nent al - nodel - 010823. ht nl , Position paper to ASERC
Workshop on Software Architecture

McConnell, S. (1993) Code Complete, Microsoft Press,
Redmond, WA.

Parnas, D. L., and Clements P.C. (2001) “A Rational Design
Process. How and Why to Fake It” In Software Fundamentals:
Collected Papers of David L. Parnas (Eds: Hoffman, D.M. and
Weiss, D.M.) Addison-Wedey.

Schwartz, P. (1991) The Art of the Long View, Bantam Doubleday
Dell, New York.

Letter to the Editor(s)

More on Singletons

To the Editor,

There are definitely pros and cons of singleton usage, depending
on whether they’re used properly or abused. | believe both sides
bring valid points to the argument. In modern generic
programming, | have experienced great benefits from them.

| have worked on several large-scale projects that have
employed a unified singleton system approach. On one such
project, we currently have 234 singleton instances. These
include such things as specific program state and task objects.
The dependencies and life-time issue for al 234 instances are
automatically handled for us. We can easily add, and change
these instances without fear of a system breakage. It’ssimilar to

a free high-performance garbage collection at the architectural
level.

Prior to working on such large-scale frameworks without such
a system, maintenance work has been a nightmare, even for the
outstandingly talented developers. The alleviation has done
wonders for preventing memory leaks and keeping our project
shutting down properly.

For anyone that isinterested in this architecturd technique, dl the
necessary codeisavailable. I’ ve posted an article that showsasmple
example of how to use a unified singleton system:
http:// daudel . or g/ code/ si ngl et on_usage. ht mi (will post
So0N)

Jetf Daudel
j ef f daudel @ahoo. com

9

Overload issue 58 december 2003

A Standard Individual:

A Licensed Engineer
by Chris Hills

Areyou an Engineer? Pause and think before you answer.

Recently | saw one of those TV programs about changing
houses. The couple were introduced: She was a “nursing
assistant” and hewas an “engineer”. Infact he was amechanic.
Now, can you imagine the outcry had she been described as a
Doctor? Several professional bodies and individual doctors
would have complained before the program had got to the
commercial break.

Today as| am editing this| am waiting for the“ service engineer”
to swap out the dishwasher. They assure me heisa“fully trained
and qualified engineer”. Last time he was here he plugged in a
laptop to the dishwasher and set it running. He told me he had
started City & Guilds Part 1 but had given up. Thelaptop then told
him the control board needed replacing... It seemsthat any one can
be “an engineer”.

In the software industry | have seen people who have taken a
short programming course and become* software engineers’. Now,
you try taking your degree in electronics or software and doing an
“architectural appreciation course” and calling yourself an
Architect... or asix-month first aid course and call yourself a
[Medical] Doctor. There arelaws against this but you will haveto
be abarrister to defend yourself in court. Thisisbecauseit hasbeen
deemed dangerous to have unqualified people as Architects,
Lawyers, Doctors, Civil (structural) Engineers, Gas Fitters etc.
However, thereisno virtually no restriction on embedded engineers
no matter how safety critical the work.

My central heating fitter has to be CORGI registered before
he can fit a cooker, fire or boiler. This involves passing and
regularly re-passing legally mandated, and expensive, examsto
be able to fit these appliances. Although many of these cookers
and heating systems are microprocessor controlled there is no
requirement for the programmer to have any form of
qualification at all.

The options for some sort of registration, certification or
licensing for engineers have been looked at and legislation
attempted severa times over the last century, from statutory and
mandatory licensing in variousformsto apurely voluntary system.
Strangely, for various reasons, in the past it is the Engineering
Institutions that have objected to mandatory systems. Some of the
major points are;

1886: The Architects and Engineers Bill was defeated. Thiswas
lobbied against by the Institute of Civil Engineers,
I.Mech.E. andthelEE. It wasat this point the Worshipful
Company of Plumbers started the register of plumbers, but
this was voluntary.

1919/1920: The Institute of Civil Engineers had come round to
thinking it was a good idea to have a statutory register of
Engineersbut again thiswas vetoed by the other Engineering
Institutes.

1926: Another Engineers Bill for Statutory Registration of
Engineers was vetoed by the Civils, Mechanicals and | EE.
The reason being that the Institutes felt that they should be
thejudges of standards not the government.

1943: Again the Government was persuaded not to implement
a Register of Engineers qualified to work on public
contracts.

10

1980: The Finnison Report lead to the creation of the Engineering
Council and protection for titles Chartered Engineer,
Incorporated Engineer and Engineering Technician.
Unfortunately the term “Engineer” was not included. The
Royal Charter protects thesetitleswith Civil Law. Notethis
was set up by the Government not the intitutes.

1993/4: A veritable library of reports and papers turned up at this
point: “Engineering into the Millenium” (Eng Council
Steering Group), “ The Statutory Question” (Porter), “ Report
of Licensing of Competent Persons’ Working Group, “The
UK Engineering Profession: The Case for Unification”
(Millman), “Engineers and Professional Self Regulation”
(Jordan) and others. Notel will dig out URLsfor these as|
can. They will be added to the version on
www. phaedsys. org.

Interestingly these preceding cases all seem to be connected in

time with major upheavals and wars. 1886 was the middle of the

rapid expansion of British interests in Africa, 1919/20 was the

end of WW1, 1926 the Genera Strike and nationalisation, 1943

WW2 and 1980 was the middle of the Thatcher era, free market

and high unemployment. In the early 1990's | recall that we had

a recession that no one talked about. | am not suggesting a

conspiracy! Just looking at the factors.

That brings us up to the present. There have been another flurry
of reports mainly in the last two years. These have culminated in
the report of May 2003: “Licensing and the UK Engineering
Profession” for the Engineering and Technology Board. You can
judgefor yourself what the major upheava behind this new interest
inlicensingis.

| will hazard a guess at the renewed interest. At this point my
employer (ww. hi t ex. co. uk) would like me to point out these
are my personal viewsand | am not legally qualified! Aswith last
month’s item on Corporate Manslaughter, it is sadly not the
professional bodies but the insurance companies who are likely to
be (indirectly) behind the changes. Product liability. Money talks.
Corporate Mandaughter comes into the report “Licensing and the
UK Engineering Profession”. Engineering, especially software and
embedded systems are playing alarger part in our lives. With the
pace of modern life there is more scope for causing more “insured
casuaties’. Perhaps| am just acynic.

The other problem is partly what are you actually trying to
license, certify or register? It ranges from the CORGI type system
for gas fitters where there is a legal requirement to pass and
continually re-pass exams before one can work, through to a
voluntary register such as C.Eng viaone of the Ingtitutes, the IEE
for example (http: //www. i ee. org). C.Eng is a one off
assessment with no reassessment. Aslong as| pay the duesto the
| EE and Engineering Council | remain Chartered.

If you think the C.Eng requirements are difficult gas fitters
have to re-take the exams every five years for each category of
work the undertake: cookers, fires etc. This can cost up to
£5000! In other words£1000 ayear. Thisgivesthem acard that
shows the categories of work they can undertake. It isillegal
for anyone to work on gas equipment for gain unless they are
CORGI registered.

It has been noted recently that the high costs are proving to
be creating problems with the legitimate fitters. It isleading to
some non-registered working. Thisisof courseillegal whichis
the get out for the insurance companies... The claim isvoid if
you used illegal fitters. | am getting cynical again! Thereisan

HSE paper on where the gas competencies are going at
http://ww. hse. gov. uk/ gas/ wg3/ wg3_co2. pdf or you
canlook athtt p: //ww. corgi - gas. co. uk. You could also
ring up my local CORGI registered gas fitter/central heating
expert and ask him about CORGI but you had better be prepared
for some strong language!! It’s not the regulation so much as
the cost.

However for the professions the UK is one of the least
regulated countries in Europe. As you would expect Germany
and Austria lead the way for Engineers along with Italy and
Luxembourg. Most of the others fit in between. Strangely,
Scandinavia, home of some well known engineering excellence
is aso low on regulation for Engineering. However, when it
comesto Accountants, Architects, Lawyers or Pharmacists they
areright up with therest, again the UK istrailing behind. There
isastudy that exploresthe regulation of professional Engineers
in Europe at http://ww. europa.eu.int/comm
conpeti on/ publications/publications.

There has been an attempt to harmonise the engineering
professions across Europe with the Eur Ing (European Engineer)
Register run by the European Engineering Federation FEANI
(http://ww. FEANI . or g). Thisiscurrently voluntary inthe
UK and is open to Chartered Engineers. Whilst it is currently
little used in the UK it will become more important astime goes
on especidly if you work with European companies. Thereisa
study on where it is expected to go at
http://ww. upf.es/dcpis/esf/papers/2bcn. doc. |
recommend that all Chartered Engineers should ask their
professional Institute for the forms and join the FEANI register.
The forms are relatively simple and the C.Eng means you are
aready at the required level. Alsoitisinexpensive, | thinkitis
£35 for 5 years registration.

Recently in the USA there have been moves to certify and/or
license Engineers to practice. In June 1998 Texas established
Software Engineering as a recognised and licensed profession.
Y ou get the right to call yourself an Engineer and can offer
software engineering servicesfor gain. Thisisfor any software
for “engineered systems including embedded systems, real-time
systems, mechanical devices, electrical devices and power
systems”. The requirements are a suitable degree, 16 years
experience and references from 9 people 5 of which must be
Licensed Engineers. Interestingly the following year in 1999
the ACM decided that it was opposed to licensing. Thiswasfor
avariety of reasons. Thereportisat http://ww. acm or g/
serving/se_policy/report.htm.

Several other US states and Canadian provinces are following
the lead from Texas. Also in Australia there is a similar
“Professional Engineer” or PE title. These are at the level of you
must be registered before you can practice for gain. |E on license
you cant write SW and get paid for it.

Many of the studies havelooked at what it isthey want to certify
or licence. There have been studies on the impact on the costs to
the Engineer, the companies using them, administering the schemes
and the economy in general. Also how it will affect theindustry as
with the gas fitters, railway signalling and aircraft maintenance.
Theideasrange from (asnow with C.Eng.) when you get asuitable
gualification and a minimum amount of experience you are
registered, through being required to do so much training (the
Continuing Professiona Development scheme), and on to annual
re-testing. The |lEE and BCS both looked at running CPD schemes

Overload issue 58 december 2003

and tried them for some years. They modified them and they
seemed to disappear.

Whilst the specific requirement will vary from profession to
profession many of these studies call for a unified “Professional
Engineer” status. This was partly realised by the Engineering
Council having the Engineering Institutes as members and
overseeing the Chartered Engineer. The proposed merger of the
IEE, IMechE and I1E will make thisideaeven easier to implement
agenera Professional Engineer status.

That said, various industries are already expanding their
licensing. For example The UK Civil Aviation Authority
licences pilots, air traffic control and maintenance engineers.
Since 2001 (remember 2001 was the start of the current flurry
of licensing reports) this has been viathe JAR-66 and JAR-145.
The JAR or Joint Aviation Requirement is world wide and is
expected to widen its remit to encompass more of the smaller
light aircraft that are currently not covered. They are regulated
by Maximum Takeoff Mass. Seehttp: //ww. caa. co. uk and
http://ww.jaa.nl for thelicensing regulations. These
licences require (for somelevels) Chartered Engineer status and
the reports are proposing mandatory amounts of CPD or training
that must be undertaken each year. Information on this at
http://ww. sbac. co. uk/fil es/ newsdocs/84/Interim
%20Repor t ¥20f i nal . pdf .

The Institution of Raillway Signal engineers
(http://ww irse. or g) haveoperated alicensing system since
1993... That’sanother of thedateswhen licensing cameto thefore.
They have many categories of licensing that require CPD and re-
testing at regular intervals.

The US proposals suggest that only 20% of their 1 T/software
peoplewill beableto gain thelicensing for the safety critical work.
| have heard a similar figure of 20% Chartered and 80%
Incorporated Engineers mentioned by amember of the Engineering
Council for the UK.

However it finally ends up, licensing for Professional Software
and Embedded Engineersisgoing to happeninthe UK. Acrossthe
world and in some sectors within the UK these schemes for
registering, certifying or licensing professional Engineers are being
strengthened and expanded. The UK will become more regulated
if not for engineering reasons then for reasons of insurance and
liability. Money and commerce are the most powerful forms of
energy there are.

In the UK the government wanted to (wantsto?) introduce a
professional qualification and license. The obvious starting
point is Chartered Engineer. Infact thiswas part of the original
thinking behind the Engineering Council and C.Eng. | think that
whatever developsit will comefrom the C.Eng., especially with
thetieinto Eur. Ing. Thereisno reason for any degree qualified
embedded engineer not to join the IEE and go for Chartered
Engineer status. See if your employer will assist. Tell them it
is tax deductible and they may need staff who are Chartered in
the not too distant future.

For embedded engineering, both hardware and software
engineers would get a C.Eng. via the IEE
(http://ww. i ee. org), pure software engineers could also
talk to the BCS. For Chartered Engineer you require a suitable
degree and experience. For older applicants, experience and
other qualifications are taken into account so, at the moment, a
lack of adegreeif you have experienceisnot abar. Note: For

[concl uded at foot of next page]

11

Overload issue 58 december 2003

A More Flexible Container
by Rich Sposato

The Standard Set

Suppose | want to store pointers to some Enpl oyee recordsin a
set, and then order that set by Enpl oyee name. That is easy;
just make a functor that compares two Enpl oyee names, and
apply it to a set. The snippet below shows how. The example
stores bare pointers, but smart pointers are often a better choice
for storing in containers.

cl ass Enpl oyee {

public:
const std::string& GetNane() const;
/1 ... other functions

}s

struct ConpareEnpl oyees {
i nline bool operator()(const Enpl oyee* |
const Enpl oyee* r) const {
return (l->GetNanme() < r->GetNane());
}
s

typedef std::set<Enpl oyee*,
Conpar eEnpl oyees> Enpl oyeeSet ;
Enpl oyeeSet enpl oyees

Now, suppose | want to find a certain Enpl oyee record that
matches any given name. Well, to do that, | have to passin an
Enpl oyee pointer with the properties | am looking for. Thisis
because the set functions that search — fi nd, count,
| ower _bound, upper _bound, equal _range, and er ase
—require areference to the same type as the key of the set. These
functions, except er ase, are commonly called the “ Specia Set
Operations”. Using the example above, | have to passin a
pointer to a bogus Enpl oyee record. The bogus object only
exists as a comparison value for finding the real record.
Assuming an Enpl oyee object can be constructed using just a
name, then the code looks something like this:

Enpl oyee* Fi ndEnpl oyee(
const std::string& name) {
Enpl oyee bogus(nane);
Enpl oyeeSet: :iterator it
= enpl oyees. fi nd(&ogus) ;
return (enployees. end() it)
? 0 *it;

}

But, what if | can’'t make an Enpl oyee object so easily?
Perhaps no Enpl oyee constructor accepts just a name. Or
maybe constructing any Enpl oyee object is so expensive that
making a temporary on the stack is not worth the effort. Why is
it necessary to make the bogus Enpl oyee record anyway? It
would be so much simpler to just pass in the name itsdlf to the
set :: fi nd function and have it return the iterator to the target
object.

Template Member Functions

The st d: : set ’s search functions typically require a reference
to the same type as the set’ s key. They look like this:

t enpl at e<cl ass Key, cl ass Conpare, cl ass Al |l oc>
class set {
/1l ... other parts of set class
public:
t enpl at e<cl ass Key>
size_type erase(const Key& Xx);

}s

Passing any type into these functions is possible only if the
functions themselves are templates. These functions are not
templated in the STL’s associative containers — and would
cause code bloat if they were, which | shall discuss later. The
next code snippet shows the declarations of these functions as
if they are template member functions. Notice that the
Conpar e_Type used for each templated function is not
among the templates for the class itself. Aslong as the
Conpar e_Type is comparable to the Key type, it can be
used by the functor. For completeness, listed below are both

[continued from previ ous page]
the UK and Europe you will need the |IEE not the USIEEE. The
|EEE, obviously, cannot confer Chartered Status.

As there is more licensing (and more pressure for licensing)
within the UK, EU, USA, Canada, Australia and rest of the world
and as embedded SW becomes more integral to most (safety
related) parts of modern life, the UK will have to follow the rest
into some form of licensing. Thisisinevitable.

Eventually the term “Engineer” might actually become a
respected profession in the UK the same as it isin Germany and
Texas. Onthe bright side, last month being a Chartered Engineer
got me areduction on my houseinsurance! Soitisof practical use
now.

Wéll, can you answer the question: Areyou an Engineer? More
importantly will you still be ableto call yourself an Engineer in five
yearstime?

Chris Fills
chri s@haedsys. org
www. phaedsys. org

Eur Ing Chris Hills CEng MIEE is a Technical Specialist with
www. hi t ex. co. uk.

See the QUEST series of papers on SW Engineering

SW Engineering button.

This article was originally published in Embedded Systems Engineering (ht t p: / / www. esemagazi ne. co. uk/) and is reproduced
here with kind permission of the editor. It is also available with the other columnsin this series on www. phaedsys. or g under the

12

the const and non-const versions. | chose the
unimaginative name of f| ex_set for the container class.
Other than the name, and templated member functions, it
behavesjust like st d: : set.

t enpl at e<cl ass Key, cl ass Conpare, cl ass Al l oc>
class flex_set {
/1l ... other parts of flex_set class

public:
t enpl at e<cl ass Conpare_Type>
size_type erase(const Conpare_Type& Xx);

t enpl at e<cl ass Conpare_Type>
size_type count (
const Conpare_Type& x) const;

t enpl at e<cl ass Conpare_Type>
iterator find(const Conpare_Type& X);

t enpl at e<cl ass Conpare_Type>
const_iterator find(
const Conpare_Type& x) const;

t enpl at e<cl ass Conpare_Type
iterator |ower_bound(
const Conpare_Type& X);

t enpl at e<cl ass Conpare_Type>
const _iterator | ower_bound(
const Conpare_Type& x) const;

t enpl at e<cl ass Conpare_Type>
iterator upper_bound(
const Conpare_Type& Xx);

t enpl at e<cl ass Conpare_Type>
const _iterator upper_bound(
const Conpare_Type& x) const;

t enpl at e<cl ass Conpare_Type>
pair<iterator,iterator> equal _range(
const Conpare_Type& X);

t enpl at e<cl ass Conpare_Type>
pai r<const _i terator, const_iterator>
equal _range(
const Conpare_Type& x) const;
b

This looks good so far, but how will these template member
functions know how to compare some arbitrary type to the set’s
key type? The answer to that lies within the comparison functor,
or comparator, used to order the set’'s elements. The comparator
is overloaded to compare an Enpl oyee record to a const

std:: string. There are overloads so the name can be on the
right or left side for symmetric comparisons. (Indeed, some
member functions of f | ex_set require both.) The result is
shown below along with a more efficient Fi ndEnpl oyee
function.

Overload issue 58 december 2003

struct Conpar eEnpl oyees

std:: binary_function<const Enpl oyee*,
const Enpl oyee*,
bool > {

inline bool operator()(const Enployee* |
const Enpl oyee* r) const {
return (I->CGetNane() < r->CetNane());
}

inline bool operator()(const Enployee* |
const std::string& r) const {

return (I->GetNanme() <r);

}
inline bool operator()(
const std::string& |
const Enpl oyee* r) const {
return (I < r->CetNane());
}

I

Enpl oyee* Fi ndEnpl oyee(
const std::string& nanme) {
Enpl oyeeSet : :iterator
it(enpl oyees. find(nane));
return (enployees.end() == it)
? 0 *it;
}

Okay, thisis much better. No need to make a bogus Enpl oyee
object just to find the real Enpl oyee. Just passin the employee
name, and the templated f | ex_set : : fi nd function returns
the proper iterator.

For every possible type that can search through the container,
simply add that type to the comparator and the compiler
automatically makesthe templated search functions. Using that
idea, the example above can be further overloaded to compare
a C-style string as shown here. | typically need only one
additional type in the functor besides the key type, so here |
would have chosen eitherst d: : st ri ng orconst char *,
but probably not both. (Admittedly, having a C-style string
overload means | do not have to convert aconst char * to
st d: : string before doing the search, so one less object to
construct.) Now that | can search using a type other than the
key type of the set, | often use the key type only when inserting,
and sothe Enpl oyee-to-Enpl oyee comparison inthefunctor
isonly used for inserting.

struct Conpar eEnpl oyees

std:: binary_function<const Enpl oyee*,
const Enpl oyee*,
bool > {

/'l rest of functor as shown above.
inline bool operator()(const Enployee* |
const char* r) const {
return (I->GetNanme() <r);

}
inline bool operator()(const char* |
const Enpl oyee* r) const {
return (I < r->GetNane());
}

I
13

Overload issue 58 december 2003

An Alternate Solution

There is another method for searching through associative
containers using types other than the key type. A bunch of
wrappers, like that shown below, can be stored inside a
st d: : set, and alow usto do searches by name.

struct Enpl oyeeWap {
Enmpl oyeeW ap(Enpl oyee*); /1 not
Enmpl oyeeW ap(const char*); /1 not
Enpl oyeeW ap(const std:string&);
/'l not

explicit
explicit

explicit

/] Either of these is used, but bot h.
Enpl oyee* m Enpl oyee;

const std::string mnane;

not

inline const std::string& GetNanme(void)

const {
return (0 == m Enpl oyee)
? mnane : mEnpl oyee->CGet Nane() ;
}
bool operator<(const Enpl oyeeWap& |,

const Enmpl oyeeWapé& r);
i

typedef std::set <Enpl oyeeW ap>
Enpl oyeeW apper Set ;

Enpl oyee* Fi ndEnpl oyee(
const std::string& name) {
Enpl oyeeW apper Set : : i terator
it(enmpl oyeeW appers. find(nane));
return (enpl oyeeWappers.end() == it)
? 0: (*it).mEnployee;
}

This wrapper has severa disadvantages. One is that it requires a

specia wrapper class to hold al the types needed for comparing.
To compare Enpl oyee records with additiona types, those types
would have to be added to the wrapper, instead of just overloading
the functor as needed for af | ex_set. The example aove has 2
elements, and the st d: : st ri ng hasto beingtantiated evenif itis
never used. Thesi zeof (st d: : string) variesfrom4 bytesto
28 bytes depending upon the implementation. This increases the
overall memory consumed by st d: : set even though all
instances of Enpl oyeeW ap within the set will not use the
std: :string. Another disadvantage is that the code above
congtructs an unnamed temporary of Enpl oyeeW ap to passinto
thestd: : set::find. Thiscongtruction cost issmal, and most
of the cost can be optimized away. Lastly,
Enpl oyeeW ap: : Get Nane imposes a smal runtime cost to
determine which data member has the name —a cost not required by
thef | ex_set method. The argument against the wrapper method
becomes: “If f | ex_set is available, then why pay for severd
cogts that are not needed?’

Other Associative Containers

Another aternate solution is, “Why not just use map instead of
set?” The Enpl oyee container will be;
std:: map<std::string, Enpl oyee*> enpl oyees.

14

There are two answers for that, one is complicated, and the other
is more complicated. The complicated answer is that although
that provides the desired ordering, it also requires storing a copy
of the Enmpl oyee name as a key for the map. (The
Empl oyeeW ap example above also stores one
std:: string withan Enpl oyee pointer, but st d: : map
actually useseach st d: : st ri ng.) Anintuitive reason to avoid
this practice is that the key, Enpl oyee name, is part of the
Enpl oyee object, and it does not makes sense to store the key
separately. A more practical reason is that storing the name
separately is inefficient. Another practical reason is that
someday, an Enpl oyee name will change, but the copy won't.
That copy is the key within amap, and people will be reluctant to
change the key in amap, but may not know that a property of the
value is the key, and so change name of the Enpl oyee without
updating the container.

The more complicated answer is that st d: : map cannot
provide the same flexible search capabilities as those afforded
by fl ex_set. To provide that flexibility for the other
associative containers, f | ex_map, fl ex_mul ti set, and
fl ex_mul ti map are needed, which are based upon same idea.
Many STL implementations use the same underlying
implementation for all four associative containers. By changing
the implementation to make any associative container more
flexible, the other three also become more flexible with little
extra effort.

Using the templated f | ex_rmap: : fi nd member function
alows for searches in a map of Enpl oyeesto Assi gnnment s
using just the name. Thiscodeshowsaf | ex_rmap of Enpl oyees
to their current Assi gnnent s.

t ypedef fl ex_map<Enpl oyee*, Assi gnnent *,
Conpar eEnpl oyees>
Enpl oyeeAssi gnnent s;
Enpl oyeeAssi gnnent s enpl oyeeAssi gnnment s;

Assi gnnment * Get Enpl oyeeCur r ent Task(
const std::string& enpl oyeeNanme) {
Enpl oyeeAssi gnnents::iterator it(
enpl oyeeAssi gnnment s. f i nd(enpl oyeeNane)) ;
return (enpl oyeeAssi gnments.end() == it)
? 0 : it->second;

}

If std:: map were used, then something similar to thisis
required.

t ypedef std:: map<Enpl oyee*, Assi gnnent *,
Conpar eEnpl oyees>
Enpl oyeeAssi gnnent s;
Enpl oyeeAssi gnnent s enpl oyeeAssi gnment s;

Assi gnment * Get Enpl oyeeCur r ent Task(
const std::string& enpl oyeeNanme) {
Enpl oyee bogus(enpl oyeeNane) ;
Enpl oyeeAssi gnnents::iterator it(
enpl oyeeAssi gnment s. fi nd(&ogus));
return (enpl oyeeAssi gnments.end() == it)
? 0 : it->second;

}

Considerations

Conpar eEnmpl oyees inherits from bi nary_f uncti on
for use with adapters such as not 2, bi nd1st, and
bi nd2nd. The adapters will only work with the functor’s
function that has the types specified as templates for
bi nary_functi on and ignore the overloaded functions. If
an adaptable functor is needed that accepts some other type,
the simple solution is to make such afunctor. The code below
shows a functor that derives from bi nary_functi on and
can be used with st d: : string. Assuming that the
hour | yEmpl oyees container is sorted by name, the
find_if cal will locate the first Enpl oyee with a name
less than the given name. One of the costs of the increased
container flexibility is that more functors are needed. But,
these additional functors are often needed for other purposes
and searches on other containers anyway, such as vector.

struct Conpar eEnpl oyeeToNane :
std:: binary_function<const Enpl oyee*,
const std::string& bool> {
operator () (const Enpl oyee* |,
const std::string& r) const {
return (l->GetName() < r);
}
i

i nline bool

t ypedef std::vector<Enpl oyee*> Enpl oyeeVect or;

Enmpl oyeeVect or hour | yEnpl oyees;
/1 Popul ate vector
Enpl oyeeVector::iterator it(
find_if(hourl yEnpl oyees. begin(),
hour | yEnpl oyees. end(),
bi nd2nd(Conpar eEnpl oyeeToNane(),
nane)));

Another consideration is code bloat. Many C++ developers
complain that templates cause code bloat, and making template
functions out of otherwise normal functions allows for bloat.
Instead of having just one f 1 ex_set : : fi nd function, there
can now be several. (My own experience is that | rarely use
more than one type of a function, so | am not paying for more
than one version of fl ex_set:: find anyway.) Fortunately,
most search functions in the associative containers are small and
inline, so code bloat will be minimal for them. Unfortunately,
some functions in the underlying implementation are not as
small, but still manageable. Still, the more flexible search
abilities are worth a little extra bloat because temporary objects
are no longer created. Since the temporary object is no longer
needed, the cost of constructing and destroying it goes away,
which may actually shrink the overall code size. Whether the
flexible searching is worth the little extra bloat is a decision that
must be made for each type and container.

Thef | ex_set isnot theideal container for primitive types.
A container of type fl ex_set <l ong> alows both
flex_set::erase(const | ong& x) and
flex_set::erase(const short& x). Thecompiler
created both functions instead of promoting the short to a
I ong and using only one function. Thiskind of code bloat can
easily be avoided by using st d: : set <l ong> instead. A

Overload issue 58 december 2003

corollary to thisisthat member functionsinst d: : set should
not be templated. (Some simple experiments with changing
st d: : set convinced me that making a separate f | ex_set
class was a better solution.) The f| ex_set is useful for
containers that store objects or store pointers to objects, but |
prefer st d: : set for containers that store primitives.

Instead of making another container class, perhapsst d: : set
itself can be extended by adding additional functions that use
predicates. The agorithm functions std: :find_if and
std::count if aesmilartostd: : findandstd:: count
except that they use apredicateinstead of avalue. Would aputative
std::set::find_if memberfunctionthat acceptsapredicate
work? Not really, because the predicate needs to compare an
dementto avalue, andso std: :set::find if will needto
receive both the value and the predicate. Which meansthe compare
value passed into st d: : set:: find_if would haveto be
constructed. This just reintroduces the original problem of
constructing a temporary. Nor could adding predicates to the
erase, | ower _bound, upper _bound, equal _r ange, and
bi nary_sear ch member functionsof st d: : set provide any
greater efficiency thanwhatf | ex_set already providesfor these
functions. Using aunary predicate which storesthe compare value
does not work either, since unary predicates cannot change the
order for the compare and key values, and the predicate must be
able to use the compare value on both the left and right side.

Could any other member functions of fl ex_set be
templatized in the same way? Only one other function accepts
areference to aconst key type as a parameter, and that function
isi nsert . Inserting anything but akey value is meaningless,
so the answer is negative. The special set operations, and one
of the er ase functions, are the only candidates for becoming
templates.

Summary

More flexible variations of the four associative containers are
possible by changing the search functions into template member
functions. Each data type used as a parameter to these functions
requires overloading the comparator to compare these data types
to the key value of the container’s elements. A cavesat that goes
with the overloading by type is that each type has to be
comparable to the element type. The flexible containers have a
beneficia side effect of resulting in more efficient code because
named temporary variables are no longer necessary. Nothing is
gained by changing st d: : set or the other STL associative
containers. Changing member functions into templated functions
causes bloat for containers of primitive types, and passing
predicates as parameters into st d: : set functions does not
work.
Rich Spesate
rds@i chsposat o. com

Y ou may use the source code provided at:

http://wwmv. ri chsposato. cont sof t war e. ht ml

as a replacement for the associative containers provided with the
GCC compiler.

Acknowledgements

Many thanks to Don Organ, Gerald Chan, Phil Bass, Alan
Griffiths, Juan Carlos Aguilar, and Cherryl Smith for their
feedback and insightful comments.

15

Overload issue 58 december 2003

Choosing Template

Parameters
by Raoul Gough

Choosing the right parameters for a template can make a
significant difference to how useful the templateis. In this article,
I will present avery simple guideline that, where applicable, can
improve atemplate s flexibility. | will aso provide an example of
how the standard library itself could have applied this guideline
but didn’t.

The fundamental idea can be seen in the following example:

t enpl at e<t ypenane El enent >
struct inflexible {
typedef El enment el enent _t;
t ypedef std::vector<El enent> container_t;
I
i

t enpl at e<t ypenane Cont ai ner >
struct flexible {
t ypedef typenane Contai ner::val ue_type
el ement _t;
t ypedef Contai ner container_t;
I
i

These two templates both define two member typedefs
el ement _t and cont ai ner _t , presumably for further use
internally (not shown). In thefirst case, athough the template can
have any element type, it always uses a st d: : vect or as
container. The second case is more flexible, since it will work
with any container, and any element type, provided that the
container has a sufficiently vector-like interface. The principle at
work can be stated as follows:

“A template will be more flexible if, instead of internally
generating a new type from its arguments, it accepts the generated
type directly as a parameter.”

Unfortunately, there are some costs associated with this approach,
which | will point out first before expanding on the benefits. Firdly,
the interface may be less convenient. From the example, client code
would havetouse f | exi bl e<st d: : vect or <i nt > >instead
of smply i nfl exi bl e<i nt >, There is an easy solution, which
is to provide a convenient interface once the more flexible
implementation is available;

tenpl ate <typenane El enent >
struct conveni ent
fl exi bl e<std::vector<El ement> > {

}

The second cost isthat the documentation for the template will be
more complicated. In the example, instead of merely specifying
the constraints on the element type, the documentation must now
also describe what interface the container type must provide,
such asan oper at or [] member function, insert functions and
so on. |deally, the requirements would aso be broad enough to
allow for future changes in the implementation of the template,
for instance switching internally from using operator[] to
random-access iterators.

16

Lastly, to inter-operate with a wide variety of argument types,
the template implementation will need to be more carefully written.
Inthe example, instead of assuming thatsi ze_t isthe correct type
for indexing into the container, the implementation should use
typenane container_t::size_ type.

A Familiar Example

To see the consequences of writing a more flexible template, let’s
takealook at st d: : map:

tenpl ate <cl ass Key,

class map {

public:
typedef Key key_type;
typedef T mapped_type;
t ypedef pair<const Key,
I

class T, ...>

T> val ue_type;
b

This should be recognizable as a variant of the first template
/i nf 1 exi bl e/, since it generates the val ue_t ype (using
st d: : pai r) from template arguments instead of accepting a
val ue_t ype parameter directly. If | have a user-defined type
that has both key_t ype and mapped_t ype in the same
object, | have a problem which will be familiar to some readers
from their own experience. For example:

struct person {
person_id_t m person_id;
std::string msurnane;
std::string mother_nanes;
/1

[/Unique identifier

i
void foo () {
typedef std::map<person_id_t,
map_t ny_nmap;
person p;
person_id_t id;

person> map_t;

/1l must generate a pair object for insertion
ny_map.insert(map_t::val ue_type
(p. mperson_id, p));

/1 1 ookup by ID and nodification are
/'l conveni ent
ny_map[id]. mother_nanes = "Joe";

}

Theinsertion isalittle cumbersome, and duplicates the person ID for
every entry in the map. How much of a problem thisisin practice
depends on the nature of the key type in use, but it is usualy a good
idea to avoid data duplication where possible. Alternatively, one
could chooseto usest d: : set and have codelikethis:

struct person_id_|less {
bool operator()(person const &pl,
person const &p2) {
return pl.mperson_id < p2. mperson_id;
}
b

void foo () {

t ypedef std::set<person, person_id_|ess>

set_t;
set_t my_set;
person p
person_id_t id
/1 insertion is convenient
ny_set.insert (p);
/1 find requires a person object instead

/1 of just the ID
p.mperson_id =id

/1 mutabl e access requires a const_cast
const _cast <person &>(
*ny_set.find (p)). mother_nanmes = "Joe"

}

Sostd: : set iseaser to use as far as insertions are concerned,
and does not duplicate any data, but element lookup and
modification are made more difficult. In fact, the st d: : set
example has a potentially catastrophic problem, since
my_set. find() will return my_set. end() if thereisno
match, leading to undefined behaviour from the code. None of
these problems are insurmountable, but they do reveal some
limitations of the two templates’ interfaces.

Now consider an dternative template, map2, which appliesthis
article’s guideline by accepting the complete value type as a
template parameter:

tenpl ate <cl ass Value, ...>
class map2 {
public:
typedef typenane Value::first_type
key_type
t ypedef typenane Val ue::second_type
mapped_t ype;

t ypedef Val ue val ue_type
I
b

This template assumes that the supplied type provides the same
interface as st d: : pai r, which means that the map
implementation needs almost no changes at all. Unfortunately,
this al'so means that the supplied type must have public member
variables first and second which contain the object’s key and
mapped value, respectively. So alowing the client to provide
different value types, but requiring a matching interface, hasn't
actually achieved very much in this case.

Of course, we don't have to stop there. Having made the
decision to accept value types other than instances of
st d: : pai r,itisfarly natural to consider aternativeinterfaces.
For instance, requiring that the value type provide member
functions get _key and get _nmapped would solve most of the
problems. It would then be relatively easy to extend the per son
classto provide the necessary interface and storeper son objects
directly inamap2.

Unfortunately, this assumes that the value type knows in
advance that it is going to be stored in a map. Furthermore, it is

Overload issue 58 december 2003

not very convenient for user defined types that could appear in
different maps with different keys (e.g.
person: : m surname would be suitable as an alternative
multimap key). A far better solution would be to accept some
additional information viaatraits class:

templ ate <class Traits, ...>
class map3 {
public:
typedef typenane Traits::key_type
key_type;
typedef typenane Traits::mapped_type
mapped_t ype

typedef typenane Traits::val ue_type
val ue_type
/1
H

struct person_id_traits {
typedef person_id_t key_type;
typedef person napped_type
typedef person val ue_type

static key_type const &get_key(
val ue_type const &val) {
return val . m person_id;

}

static mapped_type &get_mapped(
val ue_type &val) {
return val

}

static value_type construct(
key_type const &key) {
/1 Required by nmap3::operator[]
return val ue_type (key);
}
}s

void foo () {
/1 person has an unchanged interface
typedef nmap3<person_id_traits> map_t;
map_t ny_nap,
person p;
person_id_t id;

/1l insertion is convenient
nmy_map.insert (p);

/1 1 ookup by I D and nodification are
/| conveni ent
nmy_map[id] . mot her_nanmes = "Joe"

}

This template provides convenient interfaces for insertion,
lookup and modification. It avoids any data duplication and
compares well to the st d: : map and st d: : set versions,
which each made some of the operations simple but not
others.

17

Overload issue 58 december 2003

Before going on, the construct function in the traits class
probably requires further explanation. It is necessary because the
map3 operator[] acceptsjust akey as parameter and might
have to insert a whole new value into the map. The st d: : map
template hasasimilar constraint, since it definesoper at or[] in
termsof i nsert (make_pai r (key, T())),requiringthatits
parameter T be default constructible. This is also quite similar to
the lookup problem mentioned for st d: : set , which requires a
complete value object in order to search the container. The
advantage of map (or map3) is that this problem only arisesin
oper at or [] and not the dternative f i nd member function.

So the traits-based version provides a good solution, because it
means that amost any class can be stored in the map3 container
without internal changes. There is some work involved in writing
anew traits class every time, but it is easy enough to emulate the
original std:: map interface for the simple cases that it
conveniently supports:

t enpl at e<t ypenane Key,

struct std_map_traits {
typedef Key key_type;
typedef T mapped_type;
typedef std::pair<Key const,

typenane T>

T> val ue_type;

static key_type const &get_key(
val ue_type const &val) {
return val.first;

}

static mapped_type &get_mapped(
val ue_type &val) {
return val.second;

}

static val ue_type construct(
key_type const &key) {
/1 Required by map3::operator[]
return val ue_type (key, mapped_type());
}
b

t enpl at e<t ypenane Key,
struct std_map :
map3<std_map_trai t s<Key,
/'l constructors. ..

typename T, ...>

T, >

b

void bar () {
std_map<int, std::string> ny_nap;
ny_map[1] = "hello";

}

There are plenty of other applications for a more flexible map.
For instance, suppose that we want two different indexes for the
same collection of person objects, one which uses the (unique)
person ID, and another which uses the (non-unique) surname. A
sensible way to do this is to use a reference-counted smart
pointer, and maintain two sets of pointers that are sorted by the
alternative keys. In our case, client code can re-use its existing
traits classes by writing a traits pointer-adaptor template. For

18

example (using the boost reference counted pointer available free
from www. boost . or g):

/1 Adaptor to convert a traits class for
/1 via a map3 of boost::shared_ptr val ues

use

tenpl at e<t ypenane Pl ai nTraits>
struct ptr_traits {
private:
typedef typenane PlainTraits::val ue_type
pl ai n_val ue_t ype;
public:
typedef typenane PlainTraits::key_type
key_type;
typedef typenane PlainTraits::mapped_type
mapped_t ype;
boost : : shared_ptr<pl ai n_val ue_t ype>
val ue_t ype;

t ypedef

static key_type const &get_key(
val ue_type const &val) {
return PlainTraits::get_key(*val);

}

static mapped_type &get_mapped(
val ue_type &val) {
return PlainTraits::get_mapped (*val);

}

static val ue_type construct(
key_type const &key) {
return val ue_type(
new pl ai n_val ue_t ype(
Pl ai nTrai ts:: construct (key)));
}
b

/1 Define two pointer-based i ndexes using

/1 different keys

map3 <ptr_traits <person_id_traits> > indexl;

mul timap3 <ptr_traits <person_nanme_traits> >
i ndex2;

/1

i ndex1[ny_id]. m ot her_nanes = "Joe";

Note that the fact that the indexes store reference-counted

pointersinternaly is at least partially hidden from the client code.

This is not a complete solution, of course, but goes some way

towards one (interested readers may aso like to investigate the

link given under additional reading). An aternative solution

using st d: : set would aso be possible, but again is not quite

as convenient for searching and modifying. Even ignoring the

possibility of fi nd() returning end(), the assignment from

above would look more like this:

boost : : shared_ptr<person> tenp(
new person (mny_id));

(*ny_set.find (tenp))->mother_nanes = "Joe";

[concl uded at foot of next page]

From Mechanism to Method:
Data Abstraction

and Heterarchy
by Kevlin Henney

Trees. Everywhere. Ones with green leaves, ones with family
members, ones with files and directories, ones with classes, and
many more. Trees — most often upside-down with the root at the
top and leaves at the bottom — offer a common and useful
mechanism for organizing program elements [1]. Strict
hierarchies imply nesting and exclusive containment, e.g., sSingle-
inheritance hierarchies and organizationa structures blighted by
antediluvian management thinking. In common use, the term
hierarchy also includes DAGs (directed acyclic graphs) that,
although hierarchical, are not strictly hierarchies. This is the
sense in which | will use it in this article because the world we
live and work in more accurately reflects the elasticity of this
usage, e.g., multiple-inheritance hierarchies and family trees.

But a hierarchy, strict or otherwise, is not the only way of
organizing elementsin aprogram [2]:

A program which has such a structure in which there is no single
“highest level” ... is called a heterarchy (as distinguished from a
hierarchy).

The property that distinguishes hierarchies from heterarchiesis
that the former is acyclic whereas the latter contains cycles.

Of Types and Hierarchies

When we look at a well-factored program, we see that the data
concepts have been abstracted according to their use more often
than their representation. Primitive data elements have been
grouped and reclassified asinformation with behavior [3]:

As soon as we start working in an untyped universe, we begin to
organize it in different ways for different purposes. Types arise
informally in any domain to categorize objects according to their
usage and behavior. The classification of objects in terms of the
purposes for which they are used eventually results in a more or less
well-defined type system. Types arise naturally, even starting from
untyped universes.

Overload issue 58 december 2003

In C++ we have many mechanisms for organizing our types. The
two most obvious are classes — which represent an explicitly named
concept made availableto the compiler —and templatetype parameters
—where the concept of typeisimplicit according to usage [4].

Types of Subtyping

Some hierarchies represent internal structural concerns. an object
hierarchy whose implementation is layered through composition
and forwarding, a function hierarchy where a task is decomposed
into smaller tasks that are decomposed in turn, and so on. Type
hierarchies, by contrast, reflect external usage concerns.

The articulation of type and subtype concepts relates to the four
forms of polymorphism [3] — inclusion, parametric, overloading,
and coercion — and the five forms of substitutability in C++ [5] —
conversion, overloading, derivation, mutability, and genericity.

There are examples of hierarchies where the structural and type
concerns are co-aligned. A class hierarchy, which has a tangible
structural dimension, can aso be atype hierarchy, so that a pointer
to aderived classinstance may be used where apointer to abaseis
declared. This example is the most commonly quoted form of
substitutability, but it isfar from being the only one.

Because the number of implicit type conversions the compiler is
prepared to string together on your behaf is rather low — only one
for user-defined conversions — subtype behavior across type
hierarchies based on thisform of substitutability tendsto bein short
hops. For instance, the following definitions describe arelationship
whereat ext objectisexpectedast r i ng object may be provided,
andwhereast ri ng objectisexpected achar * may beprovided:

class string {
public:
string(const char *);

I

class text {
public:
text(const string &);

In the map3 solution from above, these details are effectively
encapsulatedthept r _traits template.

Conclusions

In the case of st d: : map, a number of changes were necessary
to achieve areal gain in flexibility. However, the first step was to
alow the client code to choose their own vaue type. It is then a
fairly obvious improvement to access the keys and mapped
values via client-provided functions instead of by using member
variables. In this case, a traits class is a convenient way to
provide the necessary additiona information.

More generally, whenever atemplateinternally generatesanew
type from its arguments, it is limiting its own flexibility. By
accepting the generated type as a parameter instead, the template
can become flexible not only in terms of the origina parameters,
but also in the choice of generated type. There are certain trade-offs
in terms of ease of documentation and coding, but potential users

of the template may discover unexpected benefits from a more
flexible template.

Raoul Guugh

raoul gough@l ar a. co. uk

Thanks to Phil Bass for his comments on two earlier drafts of this
article.

Additional Reading

The indexed_set library under development by Joagquin M2 L6pez
Mufioz. Google for “indexed set” or see the recent discussion at
http://1ists. boost. org/ Mil Archi ves/ boost/
nmsg54772. php

A simple implementation of the map3 template for
demonstration purposes can be found at
http://hone. cl ara. net/ raoul gough/ map/

19

Overload issue 58 december 2003

The following will compile happily:

text nessage = "This will conpile”;

But the following will be thrown rudely back in your face:

void print(const text &;
print("This won't conpile");
/1 too many conversions required

When considering subtyping and genericity, an actua type must
support at least the festures required for the template type parameter,
s0 the features of the named type used will inevitably be a subtype of
the required features. However, subtyping with generics goes further
than just this formal-actual relationship, and iterator categories
provide a good example. Each category defines a type [6], and the
relationships between the categories are in terms of subtyping:
anything that can be considered a random access iterator will dso
satisfy bidirectional iterator requirements, which in turn aso satisfy
forward iterator requirements, which in turn satisfy both input
iterator and output iterator requirements.

Analysis of Variance

When looking at type hierarchiesit is worth taking some time out
to understand how some of the properties of substitutability come
about.

Consider a base class and a derived class that is also a proper
subtype of the base (i.e., usespubl i ¢ inheritance from the base,
overridesvi rt ual functionsat least at their level of accessin the
base, and ensuresthat any member functions that would otherwise
be blocked by members declared in the derived class are made
accessible through usi ng declarations). What would you expect
to find available in the derived class sinterface as compared to that
of the base class? You'd expect to find either the same set of
members or more, but not fewer. If you found fewer, this would
break substitutability because you could not use aderived where a
base was expected. So athough you would have a class hierarchy,
it would not be atype hierarchy.

This means that the type interface, considered as a set of
operations, is contravariant with subtyping: as you descend the
hierarchy, narrowing the possible object types you can operate on,
the set of operations variesin the opposite direction (i.e., becomes
wider). You can aso see this with generic types. a pointer, which
is the model for random access iterators, supports the same
operations as an input iterator, plus many more.

Zooming in on theinterface, what about the substitutability with
respect to individual operations? As you descend the hierarchy
narrowing the possible object types, you aso narrow the possible
behavior resulting from an operation call. Thismeansthat possible
results also narrow. In C++, if avirtual function’s return typeisa
pointer or reference, then it can be overridden with amore derived
return type. Thus the return type can be covariant with subtyping:
as you descend the hierarchy, the result type also descends. As an
example, consider a simple factory scenario, where an interface
class has a Factory Method [7] that offersthe creation of instances
of aproduct hierarchy:

cl ass product {

}s
20

class factory {
public:

virtual product *create() const =0

}s

Covariance alows us to capture more accurately the constraint
that a specific factory implementation returns a specific product,
as opposed to any arbitrary product:

cl ass concrete_product publ i c product {

}s

cl ass concrete_factory
public factory {
public:
virtual concrete_product *create() const {
return new concrete_product

}
}s

Covariant return types make sense when it is likely that a user
will be accessing the feature through the derived type as opposed
to the base. Thisis not often the case, especially for a factory that
is intended to abstract concrete details, but it serves to highlight
the public advertisement of the constraint. Either way, it is
perfectly type-safe because any code written against the
fact ory interface:

product *exanpl e(const factory *creator) {
return creator->create();

}

is still valid if we reconsider it in terms of

concrete _factor y:

product *exanpl e(const concrete_factory
*creator) {
return creator->create();

}

And, if thisis all there is to writing factories for such products,
we can generalize the concrete factory code by mixing two forms
of polymorphism, inheritance and templates:

t enpl at e<t ypenane concrete_product >
cl ass concrete_factory
public factory {
public:
virtual concrete_product *create() const {
return new concrete_product

}
b
Any transgression of type safety — if concret e_product is

not descended from pr oduct — will be picked up a compile
time.

Covariance also applies to other results, such ast hr ow
specs. an overriddenvi rt ual function must declare the same
t hr ow spec or a more restrictive one than the function it is
overriding. So, avi rt ual function that doesnot have at hr ow
spec can be overridden by one that does, avi rt ual function
that declares an empty t hr ow spec can only be overridden by
one that also has an empty t hr ow spec, and avi rt ual
function that promisesonly tot hr owa base exception type can
be overridden by one that promises to t hr ow the same, a
descendant, or nothing.

What about arguments? Does it make sense to have covariant
arguments? Thereisonly one circumstance in which it is safe, and
C++ does not qualify for it: if alanguage supportsout arguments
that can be used only for results. C++ const reference arguments
can be considered i n arguments and non-const reference
arguments can be consideredi nout arguments. Any argument that
iseffectively i nout must beinvariant to betype safe. Itisfeasible
for i n arguments to be contravariant, but this would greatly
complicate C++'s already subtle overloading rules, so the ruleis
that all argumentsremain invariant with subtyping. Somelanguages
attempt to support some covariance withi n arguments—thisisthe
genera casein Eiffel and is present only for array passing in Java
and C#, where argument signatures themselves are not permitted
to be covariant — but these are basically type system hacks that
require significant extra support, typically involving runtime
checks.

Covariance and contravariance are not just about declared
types; they are more generally about behavior. The promise of
behavior for an operation at supertype level must remain the
same or be strengthened and become narrower with subtyping.
For example, is the following a valid implementation of
factory?

class null _factory
public factory {

public:
virtual concrete_product *create() const {
return O;
}
b

It depends on what the expected result of factory:: create
was promised as. If the promised result at the base class level
were simply “returns a del et e-able pointer,” then this permits
null pointers. Code written (correctly) against such an interface
would cater to this assumption:

voi d consune(product &)
voi d exanpl e(const factory *creator) ({
std::auto_ptr<product >
ptr(creator->create());
if(ptr.get())
consume(*ptr)

}

Andsonul | _factory:: create could be seen to be avalid
specidization of fact ory: : creat e in this case because the
behavior is covariant, i.e., narrower and more specific than that
of the base.

Overload issue 58 december 2003

However, if the promised result at the base class level were
specified as “returns a non-null del et e-able pointer,”
nul | _fact ory would break code that worked to this spec:

voi d consune(product &)
voi d exanpl e(const factory *creator) {
std::auto_ptr<product >
ptr(creator->create());
consune(*ptr);

}

And so nul | _factory would not be substitutable for
f act ory, and therefore not a subtype.

You can aso see the covariant promise in action with iterator
types: For an input or output iterator, there is no guarantee that
b implies++a = ++b, but for aforward iterator — and
subtypes — the behavioral promise is strengthened and this
guarantee exists. Conversely, requirements placed on calers of
functions follow contravariance.

If you are familiar with design by contract [8], you may
recognize this asthe strengthening of postconditions and weakening
of preconditions with inheritance. This variance in design by
contract is simply a different expression of the substitutability
principle and can be derived from it directly.

Of Types and Heterarchies

Although you want to avoid cycles in your compile-time
dependency graph or between threads synchronizing on common
resources, there are occasions when heterarchies provide a more
appropriate structuring scheme than hierarchies. A function
heterarchy is expressed through recursion — either simple
recursion when a function calls itself or mutual recursion where
another called function calls the original caller. A bidirectiona
relationship between objects can be considered an object
heterarchy. At any point in the execution, which object is
considered to be the top-level one depends on the action and
context. This is often the case with inversions of control flow
such as event notification callbacks.

In a hierarchy there is a unique concept of up and down —
imagine yourself anywhere in a hierarchical structure; thereis a
strong sense of what is above you and what is below, and a strong
separation. In a heterarchy there is no such gravity — imagine
yourself in a heterarchy, looking “up” or “down” you can see
yourself.

Function recursion and cyclic object relationships are examples
of structural heterarchies, but what of type heterarchies? The
simplest example of type substitutability with a cycle is between
i nt and doubl e: one can be substituted where the other is
expected. Granted, doubl e toi nt islossy, undesirable, and
accompanied by awarning on most compilers, but it does indeed
form atype heterarchy. Similarly, if a string class supports both a
conversion to and from const char * (the former being ill
advised, but nonetheless common), it too forms a cyclic
substitutability relationship.

However, these two examples are cautionary rather than
exemplary, and neither of them involves everyone' s favorite class
relationship, inheritance.

Touch Base

Imagine that you have customized the new and del et e
operatorsfor aclass:

21

Overload issue 58 december 2003

cl ass workpi ece {
public:
static void *operator new(std::size_t);
static void operator delete(void *,
std::size_t);

private:

static allocation heap

b

Assume that al | ocat i on is a class that actudly provides the
appropriate allocation intelligence — optimization for speed,
ingrumentation for debugging, etc. — and can dlocate objects of a
sizefixed onitsinitiaization and deallocate objects thet it al ocated:

class allocation {
public:
al l ocation(std::size_t,
const std::type_info &);
void *al |l ocate();
voi d deal | ocate(void *);

b

Its correct use would be:

al | ocati on wor kpi ece: : heap(
si zeof (wor kpi ece), typeid(workpiece));

voi d *wor kpi ece: : operat or new(
std::size_t size) {
si zeof (wor kpi ece) ?
heap. al | ocat e()
1 operator new(size);

return size

}

voi d wor kpi ece: : operator del ete(
void *ptr, std::size_t size) {
if(size si zeof (wor kpi ece))
heap. deal | ocate(ptr);
el se
::operator delete(ptr);

}

The size checks are important because new and del et e are, by
default, inherited and consequently may be used on a class whose
size does not equa that of the base. The code above ensures that
heap is used only for the intended size and all other alocations
and deallocations are rerouted to the global operators.

If youintendtouseal | ocat i on for the same purposein any
other classes, it would be nice to somehow factor out the code above
asamix-in class so that each class that wanted these serviceswould
simply inherit from the mix-in. Something like the following:

class allocated {
public:
static void *operator new(std::size_t);
static void operator del ete(
void *, std::size_t);

22

private:
static allocation heap
s

cl ass workpiece : public allocated {

b

Except not. All classes derived from al | ocat ed will share the
samest ati ¢ heap:

class command : public allocated {

b

A command may not have the same size as awor kpi ece and
will certainly not have the same type, so not only is heap shared
but it also becomesimpossible to initiaize or use correctly, asthe
places marked ??? in the following code indicate:

al | ocation al |l ocat ed: : heap(
si zeof (???), typeid(???));

voi d *al | ocat ed: : operator new(
std::size_t size) {
si zeof (???) ?
heap. al | ocat e()
::operator new(size);

return size

}

voi d al | ocat ed: : operator del ete(
void *ptr,std::size_t size) {
if(size si zeof (??7?))
heap. deal | ocate(ptr);
el se
::operator delete(ptr);

}

Even attempting to factor out the constant si zeof expression
will not solve the problem. It serves only to highlight it more
sharply.

Essentially the problem isthat the mix-in cannot be made fully
independent of any derived class. there is a lingering dependency
on the name and size of the derived class. This creates acycle that
can be broken by treating the downward dependency as aparameter
of variation, and therefore something to template [9]:

t enpl at e<t ypenane derived>
class allocated {
public:
static void *operator new(std::size_t);
static void operator del ete(
void *, std::size_t);

private:

static allocation heap

b

Given this, the implementation code can now get at the name and
size of thetype:

t enpl at e<t ypenane derived>
al | ocati on al | ocat ed<deri ved>:: heap(
si zeof (derived), typeid(derived));

t enpl at e<t ypenane derived>
voi d *al | ocat ed<deri ved>: : operator new
std::size_t size) {
si zeof (derived) ?
heap. al | ocat e()
1 operator new(size);

return size

}

t enpl at e<t ypenane derived>
voi d al | ocat ed<derived>::operator delete(
void *ptr, std::size_t size) {
if(size si zeof (derived))
heap. deal | ocate(ptr);
el se
::operator delete(ptr);

}

Thelast piecefallsinto place with the mixing-in itself:

cl ass workpi ece

{

public all ocat ed<wor kpi ece>

b

class command : public all ocated<conmand> {

b

Now the derived class inherits from a class that knows about it,
but without any hardwired coupling that prevents its use as a
genera solution. Each parameterization of al | ocat ed results
in a distinct type with its own code and data, which is exactly
what was required.

Thisisthe increasingly well-known Self-Parameterized Base
Class or Curiously Recurring Template pattern —thelatter being an
evocative description of its recognition [10] and the former being
amore appropriate contemporary name based on its structure.

In Good Shape

The al | ocat ed class template demonstrates an example of
heterarchical structure involving class relationships. However, it
is not a type heterarchy because no useful properties of type,
except for t ypei d and si zeof , are used: it steadfastly avoids
dealing with objects.

Consider a simple shape hierarchy, with the usual suspects
el li pseandr ect angl e. It makes senseto beableto copy such
objects polymorphically by cloning them:

cl ass shape {
public:
virtual shape *clone() const = 0

b

Overload issue 58 december 2003

class ellipse :
public:
explicit ellipse(const ellipse &
virtual shape *clone() const {
return new el lipse(*this);

}

public shape {

I

cl ass rectangl e
public:
explicit rectangl e(const rectangle &;
virtual shape *clone() const {
return new rectangl e(*this);

}

public shape {

I

There are a couple of observations to make on this:

+ Cloning is effectively areflexive Factory Method, where the
product and factory are of the same class.

» Theexpl i cit copy congructor meansthat athough el | i pse
and r ect angl e support explicit copying—asseenincl one —
the general case of passing and returning them by copy is not
supported, i.e. the identity conversion is disabled. shape objects
are hegp-bound and livein aclasshierarchy, rather than being value-
based objects for which casua copying makes sense.

* The implementations of ellipse::clone and
rect angl e: : cl one aresuspiciously similar, differing only
in the class to which they refer.

It would be nice to factor out the common source structure,
except that it is the structure as opposed to the verbatim code that
needs factoring out. Again, there is a cyclic type dependency, and
this time more entrenched because of object creation and copy
construction. And again, a Self-Parameterized Base Class offers
away to break the cycle [11]:

cl ass shape {

public:

virtual shape *clone() const =0
H
tenpl at e<t ypenane derived, typenane base>
cl ass cl oner public virtual base {
public:

virtual base *clone() const {

return new derived(
static_cast<const derived & (*this));

I

public cloner<ellipse,
shape> {

class ellipse :

I

[concl uded at foot of next page]

23

Overload issue 58 december 2003

Checkedl nt : A Policy-Based

Range-Checked Integer
by Hubert Matthews

Recently, | wanted a short example to show the canonica form
for operators on value classes. In other words, | wanted to show
how post-increment should be related to pre-increment, how
oper at or += and oper at or + fit together, which functions
should be members and which not, and so on. Having also been
reading Alexandrescu’'s excellent book Modern C++ Design, |
decided to make this exercise alittle more interesting (for me and
for the students) by incorporating something about policies and
generic programming. What came out was a small range-

checked integer type called CheckedI nt . Although nothing
remarkable, it turns out to be both flexible and useful, and
something that in retrospect | could have used myself on several
occasions.

For those who are not so familiar with operators, this class shows
how all of the arithmetic operators can (or maybe even should) be
implemented in terms of one fundamental operation:
oper at or +=. This ensures consistency between operators,
thereby avoiding potential surprising arithmetic inconsistencies.
(For reasons of space, | show only the addition-based operations.
Implementation of the others is left, in time-honoured fashion, to
you, Gentle Reader™.)

[continued on next page]

class rectangle : public cloner<rectangle,

shape> {

}s

There are afew observations to make on this solution:

* To reiterate a property of heterarchies: you really can see
yoursdlf if you look down.

* An attempt to parameterize cl oner with a non-derived class
will cause a compile-time error because the derived class will
not be substitutable for the base in the code.

 If you consider cloning to be a reflexive version of Factory
Method, this solution mirrors the templated
concrete_factory inareflexive way: in each case, the
product is the first template parameter.

* Another adaptive template technique, Parameterized
Inheritance, is used to define the appropriate base class.

* Inheritance usesavi rt ual base class to accommodate other
applications of this reflexive mix-in style, but without
introducing repeated inheritance i ssues.

Conclusion

A template technique that is becoming increasingly common has
been taken and explored within the conceptual framework of
substitutability. From its early sightings [12] and subsequent
exploration [10] to the present day [13, 14], the Self-
Parameterized Base Class pattern has found increased
applicability in expressing cyclic type relationship problems once
they have been recognized as such.

There are many techniques that combine two main forms of
generalization — templates and inheritance — and a number of them
have been used in this article. However, aSdlf-Parameterized Base
Classhasthe distinction that it unifies the forms under the heading
of subgtitutability but not of hierarchy.

Hevlin Fenney

kevl i n@ur br al an. com
Notes and References

[1] Michael Jackson. Software Requirements & Specifications: A
Lexicon of Practice, Principles and Prejudices (Addison-Wedey,
1995).

[2] Douglas R. Hofstadter. Godel, Escher, Bach: An Eternal
Golden Braid (Penguin, 1979).

24

[3] Luca Carddli and Peter Wegner. “On Understanding Types,
Data Abstraction, and Polymorphism,” Computing Surveys,
December 1985.

[4] Kevlin Henney. “From Mechanism to Method: Good
Qualifications,” C/C++ Users Journal C++ Experts Forum,
January 2001,

http://ww. cuj . com experts/ 1901/ henney. ht m

[6] Kevlin Henney. “From Mechanism to Method:
Substitutability” C++ Report, May 2000, also available from
http://ww. curbral an. com

[6] Note that these generic requirements-based types are
sometimes referred to as concepts. However, use of this term is
inadvisable because of its impressive accuracy without any
precision whatsoever: everything in software development can be
considered a concept, but only a few things can be considered
types. Generic requirements define — quite precisely —types.

[7] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software (Addison-Wedley, 1995).

[8] Bertrand Meyer. Object-Oriented Software Construction, 2nd
edition (Prentice Hall, 1997).

[9] James O. Coplien. Multi-Paradigm Design for C++
(Addison-Wedey, 1999).

[20] James O. Coplien, “Curiously Recurring Template Petterns,”
C++ Report, February 1995.

[11] Kevlin Henney. “Clone Alone,” Overload 33, August 1999.
[12] John J. Barton and Lee R. Nackman. Scientific and
Engineering C++: An Introduction with Advanced Techniques
and Examples (Addison-Wed ey, 1994).

[13] Kevlin Henney. Email correspondence with Angelika
Langer, July 2000,

http://ww. | anger. canel ot. de/ | OStreans/forum htm
[14] Klaus Kreft and Angelika Langer. “Effective C++ Standard
Library: Curiously Recurring Manipulators,” C/C++ Users
Journal C++ Experts Forum, June 2001,

http://ww. cuj . com experts/ 1906/ | anger. htm

This article was originally published on the C/C++ Users
Journal C++ Experts Forum in August 2001 at

http://ww:. cuj .conm experts/docunents/s=7992/

cuj cexpl908Henney/

Thanks to Kevlin for alowing usto reprint it.

For those already familiar with operators, the policy aspect is
moreinteresting. What should happen when you try to take arange-
checked integer or enum out of its defined range or even just modify
it? For our range-checked integer, anumber of possibilities sprang
to mind:

+ dlow silent overflow

+ throw an exception

* saturate at the limit value

» saturate at the limit and log the event

» wrap around using modular arithmetic

* log the event for debugging purposes

* efc.

This little class template allows us to choose which behaviour we
want by means of a policy class. Allowing silent overflow is the
default for integers so there’s no need to write a class for that.
Throwing an exception when straying from the promised range is
possibly indicative of a programming error. Saturating at the
limit could be useful for a digital volume control; one that sticks
tenaciously to 10 when you try to set it to 11. And wrapping
around is very useful when dealing with ring buffers, dates, etc.

Thisisasmple example of feature-driven modelling and domain
analysis, as described in Generative Programming and Multi-
ParadigmDesign for C++ wherefamilies of types are created with
variations described in policies.

S0, here' sthe abbreviated code:

template <int low, int high>
cl ass Qut O BoundsThr ower {

public:
static int RangeCheck(int newal) ({
if(newal < low || newval > high)

t hrow std:: out_of _range(
"RangeCheck failed");
return newal ;

}
b

template <int low, int high>
cl ass Modul arArithmetic {

public:
static int RangeCheck(int newal) ({
whi | e(newval > hi gh)
newal -= high - |ow,
whi | e(newval < | ow)
newal += high - |ow,
return newal ;
}
b
template <int low, int high>
class SaturatedArithnetic {
public:
static int RangeCheck(int newal) ({
i f (newal > high)
newval = hi gh;
el se if(newal < |ow)
newal = | ow,
return newal ;
}
b

Overload issue 58 december 2003

template <int low, int high,
tenplate <int, int>
cl ass Val ueChecker
cl ass Checkedl nt
prot ected Val ueChecker<l ow, high> {

= Qut O BoundsThr ower >

int val ue;
public:
explicit Checkedlnt(int i = 1ow)
val ue(RangeCheck(i)) {}
Checkedl nt & operator+=(int incr) {

val ue = RangeCheck(value + incr);
return *this;

}

Checkedl nt & operator++() {
*this += 1;
return *this;

}

const Checkedl nt operator++(int) {
Checkedl nt tenp(*this);
++*t hi s;
return tenp;

}

Checkedl nt & operator-=(int
*this += - incr;
return *this;

}

operator int() const {
return val ue;

}

Checkedl nt & operator=(int i) {
val ue = RangeCheck(i);
return *this;

}

const Checkedl nt operator +(
const Checkedl nt& other) const {
return Checkedlnt(*this) += other;

}
I

incr) {

Construction and Member Functions

Note that the constructor is, like most single argument
constructors, marked asexpl i ci t. Thisisto avoid implicit
conversions that muddy the type system. Consider what
would happen with Checkedl nt <0, 10>(5) + 27 if 27
could be explicitly converted. What should its template
parameters be? Should it throw an exception? An explicit
constructor avoids these problems and forces us to state what
we want to happen. The explicit nature of object creation is
particularly useful when we wish to constrain the underlying
i nt to a given range as we do not want to create erroneous
values. Some might bemoan the inability to write
Checkedl nt <0, 10> ci = 5; butl think that safety is
more important than ease this time. Choosing | ow as the
default parameter is purely arbitrary and it is arguable that we
should force the user to give an initial value anyway.

25

Overload issue 58 december 2003

When going in the opposite direction, i.e. fromaCheckedl nt
toani nt, thereisno danger of breaking any constraints so we can
safely use a user-defined conversion — operator int() —so
that Checkedl nt appearsin aread-only context to behave like
ani nt. Thisallowsusto useal of the existing infrastructure for
i nt ssuch asoper at or <<, oper at or ==, oper at or <, etc.
We can now do thingslikeCheckedI nt <0, 10>(5) + 27 with
impunity and no fear of exceptions.

One small fly swims in the ointment of oper at or +=. There
is the possibility that the expression val ue + i ncr might
overflow causing undefined behaviour. This would cause an
unexpected problem with saturated arithmetic if someone tried to
add avery large number to an instance that was already at its upper
limit. Alternative implementations, such as templating the
underlying arithmetic type, are possible but more complex.

The more astute of you might have noticed that oper at or +
isunusual: itisamember anditisconst . Thenormal adviceis
to make oper at or + a non-member to allow for implicit
conversion of the left-hand operand. However, since we have
specificaly disallowed that conversion there is no reason not to
make it a member and save ourselves a lot of typing! We also
return aconst value to prevent modification of a temporary
whilst still alowing it to be bound to a reference.

Templates Versus Object-Oriented
Interfaces

An interesting difference in style arises with generic
programming rather than a more traditional object-oriented
approach. With O-O, one usually ends up with an interface that
is the union of al of the sub-interfaces, whereas with a templated
version the interface is usually minima and the intersection of
features. Thisisprimarily because with an O-O interface you can
combine only those things that you design a priori to be
combinable, i.e. they must implement all of the stated interface,
which can lead to a lot of clutter and “just in case” methods.
With templates, you can combine anything that works a
posteriori. Thus, templates provide compile-time signature-
based polymorphism in a manner more reminiscent of Smalltalk
than the “one sizefits all” of Javainterfaces or C++ abstract base
classes.

Inheritance Versus Delegation

Here | have inherited from the policy class rather than delegating
toit. Altering the classto use delegation instead:

template <int low, int high,
class VC = Qut O BoundsThr ower <I ow, hi gh> >
cl ass Checkedl nt {
public:
explicit Checkedint(int i = 1ow)
val ue(VC: : RangeCheck(i)) {}

moves us towards a traits-style approach, which some might
consider to be cleaner. It is also more digestible by older
compilers. In this case because the policy has no state of its own
— it is just a wrapper for a function — there is little to choose
between the two approaches. The Val ueChecker ineffectisa
compile-time functor analogous to a combination of
bi nd2nd(), I ogical _or(), less<int>() and
greater<int>().

26

Legacy Compilers and
Binding-Time Issues

Those of us who have to tiptoe around non-standard or ancient
compilers will know that template template parameters are off
limits. So, how can we adapt Checkedl nt to be usable? One
way isto pass | ow and hi gh to the RangeCheck function at
run-time. This has the nice effect of making Val ueChecker a
non-templated class and thereby eliminating some of the
compilation problems. Another would be to have a static
member of the class that held a pointer to a free function to do
the range check. This implementation would also allow the
policy to be changed at run-time, turning the class into a classic
run-time version of Strategy pattern rather than a compile-time
version.

What we are doing is making binding-time choices. By
delaying binding from compile time to run time we trade
efficiency for the ability to use simpler constructs. We can even
change the parameters, so that we could alter the valid range of
an object. Whether wewish to do this depends on requirements.
Asmore programmers begin to understand the parallel s between
different C++ mechanisms and as compilers get better, | believe
that we will see binding time become a major design topic,
leading people into both feature-driven modelling and domain
analysis.

Extensions and Additions

Possible extensions include making the underlying type a
template parameter, as well as extending the RangeCheck
function to take the original value as a run-time parameter as
well. Thiswould allow usto implement propagating NaN (not
a number) behaviour, where if the new value is outside the
range we set the value to an out-of-bounds value and keep it
there. Thisisalittle bit like the effect of floating-point NaNs
which propagate “NaNness” into the results of any
calculation.

Summary

| hope this little class template is both useful and instructive. It
raises a number of common design issues — rel ationshi ps between
operators, implicit v. explicit conversions — and some others —
binding times, policies, implicit v. explicit interfaces, etc — that
are less widespread but which | believe will become increasingly
common with time. If anyone uses CheckedI nt, particularly
with policies other than these, | would be most interested to hear
your experiences.
Fubent Matthews
huber t @xywar e. com

Acknowledgements

My thanks go to Kevlin Henney and Andrei Alexandrescu for
comments on this article.

Bibiliography

Alexandrescu, Andrei, Modern C++ Design, 2001, Addison-
Wedey

Czarnecki, K & Eisenecker, UW, Generative Programming,
2000, Addison-Wedl ey

Coplien, JO, Multi-Paradigm Design for C++, 1999, Addison-
Wedey

