Overload issue 62 august 2004

contents

Letters to the Editor(s) 6

A Template Programmer’s Struggles
Revisited Chris Main 7

Handling Exceptions infinal |l y
Tony Barrett-Powell 10

ACCU Mentored Developers XML Project
Paul Grenyer and Jez Higgins 13

The Curious Case of the Compile-Time
Function Phil Bass 19

C++ Interface Classes - An Introduction
Mark Radford 21

From Mechanism to Method:
The Safe Stacking of Cats
Kevlin Henney 24

credits & contacts

Overload Editor:

Alan Griffiths
overl oad@ccu. org
al an@ct opul | . denpn. co. uk

Contributing Editor:

Mark Radford
mar k@ woni ne. co. uk

Readers:

Phil Bass
phi | @t oneynmanor. denon. co. uk

Thaddaeus Frogley
t.frogley@tlworld.com

Richard Blundell
ri chard. bl undel | @ret apr axi s. com

Advertising:
Chris Lowe
ads@ccu. org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://wwmv. accu. or g/

Information and Membership:
Join on the website or contact

David Hodge
nmenber shi p@ccu. org

Publications Officer:

John Merrells
publ i cati ons@ccu. org

ACCU Chair:

Ewan Milne
chair @ccu. org

Overload issue 62 august 2004

Editorial: The Value of
What You Know

ne of the things that constantly surprises me is the differences in value placed

upon knowledge by those that have it and those that lack it. It often seems that

anything that one knows is considered trivial or easy — and that anything one
doesn’t know is correspondingly complicated or hard.

Thusit is not uncommon to see a developer who spent days or
weeks learning how to manage atechnology expecting another to
“pick it up” inamatter of minutes. Naturally, as devel opers are not
arace apart, thisalso happensin other areas of endeavour: I’ ve seen
chess playersrun through the moves and rulesin lessthan aminute
and expect the explanation to be understood. Or those versed in
cooking giving explanations of arecipethat would only make sense
to someone that already knew most of the answer.

On the other end of such discussions the slightest confusion or
ambiguity becomesamajor setback and an obstacle to understanding.
However, to my bemusement, the enigmatic mutterings are not seen
asafailure of explanation but as afailure of understanding.

Thisisthe context inwhich Overload operates. wedl have pieces
of knowledge that may be of use to others — but we fail to see the
vaue in them and often lack the expertise to explain them. There
can be very few of you reading Overload that do not have some
knowledge or expertiseto share, and the“ readers’ arehereto provide
assistance in conveying such expertise in a manner that is
comprehensible. One only hasto note the number of authorsthat feel
the need to acknowledgetheir assistanceto redlise that thisassi stance
is both necessary and valued. But most importantly it isavailable.

Why am | telling you all this? It is because Overload is
dependent upon the willingness of ACCU membersto writefor it.
And, despite theincreasing number of ACCU membersthe number
writing for Overloadisnot healthy. We get by but, on thisoccasion,
it was only achieved by the last minute efforts of a number of
contributors who responded to a plea from the editor. To avoid
placing that pressure on them again, I'm making apleanow: please
make a contribution to Overload. This means you!

Think back over the last week: how many things have you
explained to other developers? How many of these do you
understand well enough to think, “no-one would be interested in
that”? Well, those are the things that you are expert enough on to
writeabout. Try it —most of the authorsfind that the feedback they
get makes the effort worthwhile,

And speaking of feedback: I'd like to thank all of those that
helped with this issue, especially those that contributed to the last
minute effort to fill the pages. | know that this time of year there
are other demands on your time.

Three Perplexing Properties

There is rhetorical value in the number three (“The Three Bears’,
“The Three Billy Goats Gruff”, or any number of political
speeches). And it is aso said that accidents happen in threes. I'm
sure that the following three incidents don’'t quite qualify as
accidents — there was a certain amount of intent involved. But
they certainly represent missteps, did come as atriplet, and reflect
some of the difficulties that occur when working in our field.

aq

Thereisoften aneed to store arbitrary e ementsof configuration
information and devel opersin many programming languages have
come up with the same approach: store an associative collection of
strings mapping keys to values. The keys provide convenient tags
for values to be retrieved without the collection needing to be
written with any knowledge of the information stored. And, since
most languages alow values of various types to be represented as
string values this affords the necessary degree of flexibility.
Sometimes other types of value are used as akey (see“Thetale of
a struggling template programmer” [Overload 61] or its sequels
[Overload 61, 62]), sometimes it is possible to store the values
without converting their type.

InJaval’veusethe Pr operti es classfor this purpose and
wrote atranglation of thisdesignin C++ for arecent project. The
tranglation wasn’t exact — there are a number of design decisions
inthe Javalibrariesthat | find questionable. For example, the Java
library treats Pr operti es asaspecialisation of Hashap
whereas my implementation used delegationtoast d: : map. In
a strongly typed language why allow a Pr operti es class
(which specifically containsSt r i ngsfor both keys and values)
to be treated as aHashMap (that can contain arbitrary objects).
Anyway, | did things my way and refused to expose the container
interface.

The implementation language forced another difference — C++
doesn’'t allow null references, so | had to decide what to do when
aninvalid key was supplied. My decision caused alot of discussion
during the code review (yes, this client has code reviews; no, the
moderatorsdon’t stop digressioninto solutions). What did | decide
todo?Wédll, as| intend to cover the design options later, I'll avoid
that discussion at this point.

First Motif

The code went into production and | didn’t look at it for several
months. | had no reason to until | happened to revisit some code
that had used it —when | noticed that the classname had changed.
Curiosity aroused | went to have a look. During the project
lifecycle the original properties class had been renamed to
foo_properties and “improved’ by giving it a constructor
that parsed a domain specific string format and a member
function to produce such a string. This format (similar to field
value pairs in a URL) contains embedded key/value pairs. The
developer in question needed this functionality and was evidently
convinced that this was the right class to support this
functionality. (After al there was no other class to which these
functions belonged!) There is even prior art: the Java library
Properti es class can serialise and deseridise itself.
Personally | didn’'t (and don’t) see why these functions belonged
as part of this class. It aready did one thing well, and adding a

second role makes it less, not more usable. The class didn’'t need
these functions to perform its role: they could be implemented
efficiently viaits public interface. And, if cohesion isn’'t a strong
enough argument then consider the coupling introduced: the
properti es classwasnow attached to thisf oo string format.

There are severa pointsto be considered here: when the change
was made there was only oneclient of thepr operti es class, so
it was simpleto makethe change. It isa so agood pocket example
of how adding functionality to acomponent reducesits reusability.
For many of our colleagues this is counter-intuitive and a good
supply of examplesis needed to convince them otherwise.

By thetime| saw it, the code wasin production (changes manage
to achieve that without being reviewed) and there was enough work
to do without fixing things that were not manifesting problems to
theuser. (Like fixing things that didn’t work.)

Second Motif

“How do | return a NULL string?’ came the voice from behind
me. Like most of these questions it is worth finding out a bit of
the context: | could guess that the language was C++, but why
would anyone want to return aNULL st d: : st ri ng?

Theanswer to that wasn't illuminating: “becausethat’ swhat I'd do
inC". My colleagueknew that in C agring isrepresented asachar *
and that can be NULL. But he dso knew that aC++ st d: : stri ng
cannot be NULL. Stop. Rewind. What was he trying to do?

It turns out that the problem is how to indicate alookup failure
in an associative map of stri ng key to st ri ng value. And, as
with the way my colleague would have implemented it in C,
returning NULL is exactly the choice made in the Javalibrary’s
Properti es class

public String getProperty(String key)
Searches for the property with the specified key in this property list.
Ifthe key is not found in this property list, the default property list, and
its defaults, recursively, are then checked. The method returns null if
the property is not found.

So there are precedents for returning NULL. Also, in the C++
standard library is a similar solution in a different but analogous
situation. From “ Associative container requirements’ (23.1.2/7):

a. find(k)
returns an iterator pointing to an element with the key equivalent to
k, or a.end() if such an element is not found.

This may not be NULL, but it is definitely a specia value — with
all the difficulties that this causes the client code.

Overload issue 62 august 2004

Returning to Javathe Pr operti es class aso provides an
alternative solution:

public String getProperty(String key,
String defaul t Val ue)
Searches for the property with the specified key in this property list.
Ifthe key is not found in this property list, the default property list, and
its defaults, recursively, are then checked. The method returns the
default value argument if the property is not found.

While we are considering possible solutions there is another one
in the C++ standard library. (From 23.1.1/12)

The member function at () provides bounds-checked access to
container elements. at () throws out _of _range ifn >=
a.size().

L ets recap: we have seen three possible behaviours in the face of
arequest for the value associated with an unknown key:

1. Return aspecia valueto indicate failure

2. Return adefault value supplied by the caller

3. Throwing an exception

While these may all be reasonable solutions they are not all
appropriate to every situation. And, there are additional options:
“fallible” return types; stipulating the result as “undefined
behaviour”; aborting the program; user-supplied callbacks and
status flags (of various scopes) indicators are all possibilities (but
less commonly used).

In order to recommend a solution it is necessary to know even
more about the problem. It turns out that my questioner wasin the
process of designing a class to hold the configuration parameters
for an application. Hey! That soundsfamiliar, maybethereis some
prior art — even an existing implementation somewhere?

But before | could look for prior art or alibrary to use my
guestioner was gone with: “the configuration va ues should be there
— Il throw an exception. Thanks!”

Third Motif

When | started this editorial |1 had three discussions of

implementations of “Property” classes to discuss. But between

then and now one of them has evaporated into the mists of memory

and been dispersed by the force of ongoing commitments. I'll have
to trust that you have your own story to tell.

| fear that you will.

| wonder: how many times hasthis particular wheel beeninvented?

Alan Griffiths

al an@ct opul | . denon. co. uk

Copy Deadlines

by November 18t 2004.

All articles intended for publication in Overload 63 should be submitted to the editor by September 18 2004, and for Overload 64

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

5

Overload issue 62 august 2004

Letters to the Editor(s)

Dear Editor

| was reading Stefan Heinzmann’s paper “The Tale of a
Struggling Template Programmer” in June 2004 Overload, and |
could not help thinking that a 2 page long code listing cannot
possibly be aproper solution to such asimple problem!

To make the following discussion clearer, this is Stefan’'s
declaration of thel ookup function:

t enpl at e<cl ass EKey, class EVal, unsigned n,

cl ass Key, class Val >
EVal | ookup(const Pair<EKey, EVal >(& bl)[n],
const Key & key, const Val & def)

As it is clearly stated by Phil Bass in his solution, the real
problem in this declaration is the fact that we do not really want
the types of the key and def function arguments to be
automatically deduced by compiler. What instead we want is to
force the compiler to deduce the types of the EKey and EVal
template arguments by looking at the type of the t bl s Pai r
elements, and then use these deduced types as the types of the
key and def function arguments.

Using pseudo code thisis how it would look:

tenpl ate<class K, class V, int N>
V | ookup(const Pair<K, V>(&bl)[N,
typeof (K) key,
typeof (V) const & def)
Now in order to trandate this pseudo code into real code the only
thing we need is away to name the types of the Pai r 'sK and V
template arguments. And by far the smplest way to create a name
for the type of a template argument is by creating a t ypedef
within the definition of the template itself:

tenpl at e<cl ass K, class V>

struct Pair {

t ypedef K key_type;

t ypedef V mapped_type;
key_type key;
mapped_t ype val ue;

b
Once this is done we can rewrite the signature of the | ookup
function thisway:

tenpl ate<class K, class V, int N>

typename Pair<K, V>::mapped_type

const & | ookup(const Pair<K, V>(&bl)[N],
typenanme Pair<K, V>::key_type key,
typenanme Pair<K, V>::mapped_type
const & default_val ue);
Which solves pretty much al of Stefan’s problems related to the
I ookup function (no more ugly casts, function can return the
result by reference).

| am attaching the code for the complete solution at the bottom
of thismail.

In order to keep the code as simple and as clean as possible, |
have decided to provide globa definitions of the < and == operators
for thePai r typeinstead of resorting to a custom function object.
Given that the Pai r typeisavery simple type whose usage is
entirely under our control | feel thisisnot at all inappropriate.

Kind Regards

Renato Mancuso
http://ww. renat onancuso. com

#i ncl ude <i ostreanr

/] for std::cout, std::cerr, std::endl
#include <algorithne // for std::I|ower_bound
#i ncl ude <cassert> /1 for the assert macro

/1 This is the definition of the Pair
/1 templ ate cl ass.
/1 W do not declare a constructor since
/1 we want this struct to be a POD type.
tenpl at e<cl ass K, class V>
struct Pair {

t ypedef K key_type;

t ypedef V mapped_type;

key_type key;

mapped_t ype val ue;

b

/1 These are the global operator < and == for
/1 the Pair tenplate class. They define a weak
/'l ordering rel ationship based on the val ue of
/1 the Pair's key data menber. NOTE: Coneau
/1 4.3.3 STL requires the declaration of the
/1l complete set of relational operators. This
/1 is not correct according to the Standard.
tenpl at e<cl ass K, class V>
i nline bool operator<(const Pair<K, V> & I|hs,
const Pair<K, V> & rhs) {
return | hs. key < rhs. key;
}
tenpl at e<cl ass K, class V>
i nline bool operator==(const Pair<K, V> & |hs,
const Pair<K, V> & rhs) {
return | hs. key == rhs. key;

}

/1 This is the | ookup function. It assunes
/1 that tbl's elements are sorted according
/! to the // global < and == operators.
tenpl ate<class K, class V, int N>
typename Pair<K, V>::mapped_type const &
| ookup(const Pair< K, V >(&bl)[N,
typename Pair<K, V>::key_type key,
typename Pair<K, V>::mapped_type
const & default_value) {
typedef Pair<K, V> pair_type;
t ypedef const pair_type * iterator_type;
const pair_type target = { key };
iterator_type first = thl;
iterator_type last = thl + N
iterator_type found =
std::lower_bound(first, last, target);
if((found !'= last) && (*found == target)) {
return found->val ue;

}

return default_val ue;

[concluded at foot of next page]

A Template Programmer’s
Struggles Revisited

by Chris Main

Overload 61 included a couple of lengthy articles ([1] and [2])
which demonstrated how difficult it is to undertake a small,
realistic and well defined programming task using function
templates and C++. The afterwords of the authors and of the
editor of Overload suggested that C++ istoo difficult to use.

The solution in the second article does indeed look verbose.
Surely, | saidto myself, there must be abetter way. | wondered what
| would have doneif | had been faced with the same task.

What’s Required?

A lookup table.

My initia reaction isto just use st d: : map unlessthereisa
good reason not to.

Isthere agood reason not to? In this case, yes, becauseitisalso
required to hold the table in non-volatile memory, which requires
thetableto be POD (aC-stylearray of aC-stylestruct). st d: : map
does not fulfil this requirement.

We need something that behaves like st d: : map but is
implemented with POD.

First Pass: Defining the Interface

Let’ sborrow the bits of the interface we need from st d: : map:
namespace rom {

t enpl at e<t ypenane T1,
struct pair {

typedef T1 first_type;

t ypename T2>

Overload issue 62 august 2004

typedef T2 second_type;
T1 first;
T2 second;

I

tenpl at e<t ypenane Key, typenane T,
typename Cnp = std::|ess<Key> >

class map {

public:

typedef Key key_type;

typedef T mapped_type;

typedef pair<const Key,

typedef Cmp key_conpare;

H

T> val ue_type;

}
I’'m sure if | had been doing this from scratch | would have tried

touse st d: : pai r, then realised like Stefan that this wouldn’t
work because it is not an aggregate. However |I've used the
hindsight | gained from reading his article to go straight to using
apair that supports aggregate initialisation.

Our new r om : map does not need a template parameter for
alocation, since the whole point of it isthat it uses a statically
initialised array, so we discard that parameter of st d: : map.

The congtructor of r om : map seemsto be the obvious way to
asociateit with an array. The constructor would aso beanidedl place
to check that the array is sorted. Stefan used template argument
deduction to obtain the size of the array but, as this fails on some
compilers, | passthe size as a separate argument. The arguments of
the constructor suggest the member variables the class requires:

[continued on next page]

/1 This tenplate function checks that the

/1 table is sorted and that the key val ues
/1 are unique.

/1l Since this is a tenplate function, it is

/1 only instantiated if it is called.
tenpl ate<class T, int N>
bool is_sorted(T(&bl)[N) {
for(int i =0; i < N- 1; ++i) {
if((tbl[i+1] < tbl[i])
[(tbl[i+1] == tbl[i])) {
std::cerr << "Elenent at index " << i+l
<< " is not greater than its "
<< "predecessor.\n";
return fal se;
}
}
return true;
}

/1 This is our test array mapping error codes
/1 to error messages.
const Pair<int, char const *> table[] = {
{0 "X},
{ 6, "mnor glitch in self-destruction modul e" },
{ 13, "Error logging printer out of paper" },
{ 101, "Emergency cool i ng systemi noperabl e" },
{ 2349, "Dangerous substance rel eased" },

{ 32767, "Gane over, you lost" }
H

/1 This is how we check that the array is
/1 sorted. It is done only in DEBUG builds.
#i f ! defi ned(NDEBUG)
nanespace {
struct check_sorted {
check_sorted() { assert(is_sorted(table)); }
H
check _sorted checker;

}
#endi f /* !defi ned(NDEBUG */

int main() {
/1 no need to cast the third argunent to a
/1 (char const*) since now the type of the
/1 default_val ue argument is deduced from
/1 the type of the elements of table[]...
const char* result = |ookup(table, 6, 0);
std::cout << (result ? result
<< std::endl;
std::cout << |ookup(table, 5,
<< std::endl;
return O;

"not found")

"unknown error")

Overload issue 62 august 2004

t enpl at e<t ypenane Key, typenane T,
typename Cnp = std::| ess<Key> >
class map {
public:
t ypedef pair<const Key, T> val ue_type
map(const val ue_type array[],
unsi gned int array_size)
val ues(array), size(array_size) {}
private:
const val ue_type * const val ues;
unsi gned int size;
b
The only member function we need is fi nd() . For st d: : map
this returns an iterator, but we can smply return a vaue because we
are supplying a default value to use if none can be found. At this
stage | want to verify that the interface is sound, so to get something
that | can try out as early as possible | implement fi nd() with a
linear search rather than amore efficient binary search:
t enpl at e<t ypenane Key, typenane T,
typename Cnp = std::| ess<Key> >
class map {
public:
const T &find(const Key &, const T &dlef) const {

for(unsigned int n = 0; n != size; ++n) {
if(!'Cmp()(k, values[n].first)
&& ' Cnp() (values[n].first, k)) {

return val ues[n].second;

}
}
return def;
}
b

Testing the Interface

Let'stry it out. We know that the r om : map should behave like a
st d: : map, so wewrite autility to populate a st d: : map with the
same table asa rom : map and check that every entry in the
st d: : map canbefoundinther om : map. Additiondly we check
that if an entry cannot be found in the r om : map the supplied
default vaue is returned. (For brevity, | have implemented my tests
with plain Casser t srather than use a unit test framework.)

namespace {

typedef rom : map<unsigned int,

const char *> RonlLookup

RonmLookup: : val ue_type table[] = {
{0, "k},
{6,"Mnor glitch in self-destruction nodul e"},
{13,"Error logging printer out of paper"},
{101, "Emer gency cool i ng system i noperable"},
{2349, "Danger ous substances rel eased"},
{32767, " Game over, you lost"}

b

typedef std::map<Ronlookup:: key_type

RonLookup: : mapped_t ype> St dLookup;

voi d Popul at eSt dLookup(
const RonlLookup::value_type table[],
unsigned int table_size
St dLookup &stdLookup) {

for(unsigned int n=0; n != tabl e_size;
st dLookup[tabl e[n].first]
}

++n) {
= tabl e[n] . second,;

}

cl ass CheckFind {

public:
CheckFi nd(const
const

RonmLookup &r onLookup
RonLookup: : mapped_t ype
&def _val ue)
| ookup(ronmLookup), def(def_value) {}
voi d operator()(const StdLookup::val ue_type
&val ue) const {
assert (|l ookup.find(val ue.first, def)
== val ue. second) ;
}
private:
const
const

RonmLookup & ookup
RonmLookup: : mapped_t ype &def;
b

}

int main(int,
const

char**) {
unsi gned int table_size
= sizeof (tabl e)/sizeof (table[0]);
RonmLookup romLookup(table, table_size);
St dLookup st dLookup
Popul at eSt dLookup(tabl e, table_size,
st dLookup) ;
std:: for_each(stdLookup. begin(),
st dLookup. end(),
CheckFi nd(romLookup
assert(rontLookup. find(1, 0) == 0);
return O;

0));

}
Thisis al fine. We have a usable interface and set of test cases.

Note that | didn't need to do any type casting to pass O as the
default argument to r omLookup. fi nd(), it just compiled
straight away with no problems.

Second Pass: Implementing the
Binary Search

Now we need to refine fi nd() to use a binary search, which
requiresst d: : | ower _bound. My first attempt is:.
t enpl at e<t ypenane Key, typenane T,
typename Cnp = std::| ess<Key> >
class map {
public:
const T &find(const Key &, const T &lef) const {
const val ue_type *value = std:: | ower_bound(
val ues, val ues+size, k, Cnp());
i f(value == val ues+si ze

|| Cp()(k, value->first)) {
return def;
}
el se {
return val ue->second
}

}
b

This gives me a compiler error saying it can’'t pass
val ue_typestol ess<unsi gned int>. Itisn'ttoo hard
to work out that this is because | am passing a key_t ype
comparison function to st d: : | ower _bound which attempts
to use it to compare val ue_t ypes. So in the private part of
the map | write a function object that adapts the key
comparison function to work withval ue_t ypes. Normaly |
do not bother to derive private function objects from
std::unary_function or std::binary_function,
but as this raised problems in the original article | did so on
this occasion:

tenpl at e<t ypenane Key, typenanme T

typenanme Cnp = std:: | ess<Key> >
class map {
public:
const T &find(const Key &k
const T &def) const {
const val ue_type *value =
std:: | ower_bound(val ues, val ues+si ze
k, val ue_conpare());

// rest of nmenber function as before

}
private:
struct val ue_conpare
public std::binary_function<val ue_type,
val ue_type, bool > {
operator()(const value_type &v1i,
const val ue_type &v2) const {
return Crp() (vl.first, v2.first);
}
i
b
Still a compiler error, this time that | am trying to pass an
unsi gned i nt as an argument to
val ue_conpare: :operator (). Again, it is not too
difficult to spot that | am passing a key_t ype as the third
argument of st d: : | ower _bound whereaval ue_type is
required. We use the elegant fix employed in[2]:
tenpl at e<t ypenane Key, typenane T
typename Cnmp = std::| ess<Key> >
class map {
public:
const T &find(const Key &k
const T &def) const {
const value_type key = { k };
const val ue_type *value =
std:: | ower_bound(val ues, val ues+size
key, val ue_conpare());
of menber function as before

bool

/'l rest
}
b
Now everything compiles cleanly (including the use of
std: : binary_function) and the test code also executes
successfully.

Third Pass: Considering the
Disadvantages

We have reached a solution that works. We reached it by a less
painful route, with less code and with smpler code. But does this
solution have some disadvantages the original did not have?

Overload issue 62 august 2004

Most obviously, it does not provide a mechanism that can be
used equally well for any map-like container: it is a less general
solution. I'm not convinced this is a disadvantage. “Why restrict
ourselvesto arrays?’ asks[2]. I'm tempted to reply “Why not?’

Another difference is that our r om : maps have two member
variablesthat take up memory which the original solution did not.
This may be insignificant, but since the context of the task is an
embedded system it is conceivable that we may be required to
conserve memory. If thisis the case there is a smple refactoring
that can be applied to ther om : map. The array can be passed
directly tothef i nd() member function, which can be made static,
and the constructor and member variables removed. (If we had
implemented acheck that the array is sorted in the constructor, that
code could also be refactored into a static member function).

At thisstage, if | had asmart enough compiler, | could try to use
template argument deduction to determinethe array size rather than
passit asan explicit parameter. Personaly, | don’t think | would go
to that trouble.

Fourth Pass: Things Get Nasty

If we find it necessary to eiminate the constructor and member
variables, leaving only a static member function, the next obvious
refactoring is to turn it into a standalone function. But if we do
that, we run into the problems experienced in [1]. So we are
faced with a choice: proceed with the refactoring and introduce
the necessary traits class asin [2], or abandon the refactoring and
stick with what we have. I'd go for the latter. The syntax is alittle
less elegant, but overdl it's ssmpler.

Conclusion

Why did things run more smoothly with the approach | took? It is
because my solution uses a class template rather than a function
template. It therefore does much less template argument
deduction, which avoids awhole host of problems.

This suggests a design guideline: if you are struggling to
implement a function template, consider re-implementing it as a
class template (as an adternative to introducing traits).

Chris Main
chris@hri smai n. ukl i nux. net

Afterword

Is C++ too difficult? I’'m not so sure. | think I've demonstrated
that the code which provoked comments to that effect was
unnecessarily complicated. | think | did so not because | am a
C++ expert but because | followed strategies that are generally
useful when programming: follow the pattern of a known
working solution to a similar problem (in this case st d: : map),
work incrementally towards the solution, try to keep things as
simple as possible.

How would the problem be solved in other programming
languages? In C you could use the standard library bsear ch() .
| have used it, but it is quite fiddly to get the casting to and from
voi d * right, soin my experienceit isnot significantly easier to
use than C++. What other languages could be used?

References

[1] S. Heinzmann, “The Tale of a Struggling Template
Programmer”, Overload 61, June 2004

[2] S. Heinzmann and P. Bass, “A Template Programmer’s
Struggles Resolved”, Overload 61, June 2004

9

Overload issue 62 august 2004

Handling Exceptions in
finally

by Tony Barrett-Powell

Recently | was reviewing some old Java code that performs SQL
gueries against a database and closes the resourcesin fi nal | 'y
blocks. When | examined the code | realized that the handling of
the resources was flawed if an exception occurred. This article
looks at how the handling of the resources and exceptions was
problematic and some approaches to solving these problems.

The Problems

The code in question was made up of static methods where each
method used a Connect i on parameter and performed the
necessary actions to create a query, perform the query and
process the results of the query. My problem came from the
handling of the query and results resources, i.e. the instances of
Pr epar edSt at enent and Resul t Set .

The Pr epar edSt at enent and Resul t Set were created in
themaint ry block of the method and were closed in the associated
final | yblock. Thecl ose() method of these classescanthrow a
SQ Excepti on andinthef i nal | y block eachcl ose() method
waswrapped in at r y/cat ch wherethe SQLExcept i on was
caught and converted intoaRunt i meExcept i on tobethrown. The
outline of the origina codeis shown in the following listing:

public static ArraylList foo(Connection conn)
throws SQLException {

ArraylList results = null;

PreparedSt at ement ps = nul | ;

ResultSet rs = null

try {
/1 create a query, performthe query and
/'l process the results

}

finally {

try {
rs.close();

}
cat ch(SQLException ex) {
t hrow new Runti neException(ex);
}
try {
ps.close();
}
cat ch(SQLException ex) {
t hrow new Runti neExcepti on(ex);
}
}
return results;
}

There are anumber of problems with this code:

1 If an exception isthrown in thet ry block and a subsequent

exception is thrown in the fi nal | y block the original
exceptionislogt.
The problem where an exception is hidden by a subsequent
exception iswell known and is discussed in a number of books:
Thinking in Java [Eckel] ‘the lost exception’, Javain Practice
[Warren] and Practical Java - Programming Language Guide
[Hagger] to name afew. All discuss the problem and | will
present atrivial version here with some example code:

10

public void foo() {
try {
t hrow new Runti neException("Real ly
i mportant");
}
finally {
t hrow new Runti neExcepti on("Just
trivial");

}

}
A cdller of thisfunctionwould receivethe“ Just trivial” exception,
therewould be no evidence that the“ Really important” exception
ever occurred at dl. Inthe original code if an exception occurred
inthefinaly block after aSQLExcept i on had been thrownin
thet ry block, the SQLExcept i on would belost.

2 Theuseof Runt i neExcept i onstothrow theExcept i ons
caughtinthefi nal | y block when the method would throw a
SQLException from the try block is inconsistent,
SQLExcept i on should be used for both.

3 If an exception isthrown by the closing of theResul t Set , no
atempt is made to close the Pr epar edSt at nent , that may
cause a possible resource leak.

Solutions

We can fix some of the problems very easily by nesting the
handling of the resourcesin try/fi nally blocks (as
demonstrated in [Griffiths]) and to remove the conversion to
Runt i meExcepti ons. This would be implemented in the
method asfollows:

/1 assign query to ps

try {
/1l performthe query and assign result to rs
try {
/1 process the results
}

finally { rs.close(); }

}

finally { ps.close(); }

This solves the second problem, as the method is already
declared to throw a SQLExcept i on no conversion is required,
and the third problem, because even if a exception is thrown by
rs.close() theps. cl ose() will always be called.
However this leaves the first problem of the lost exception.

The suggested approach in [Warren] isto “Never let exceptions
propagate out of af i nal 'y block”, thiswould be implemented in
thef i nal | y block asfollows:

finally {

try {
rs.close();

}

cat ch(SQLException ex) {
/* exception ignored */

}

try {
ps.close();

}

cat ch(SQLException ex) {
/* exception ignored */

}

}

This approach only solves the hidden exception problem in the
original code but as a consequence adds an additiond problem: itis
possiblefor ther s. cl ose() tobetheorigina exception and this
isignored. Ignoring an exception is likely to make recovery in
higher levels of the code more difficult, if not impossible. Itisaso
likely to midead a user trying to determine the cause of afailure; a
later related exception may be mistakenly diagnosed as the source
of the problem. The consequences of ignoring exceptions are
discussed further in [Bloch] “Item 47: Don’t ignore exceptions’.
[Hagger] offersadifferent solution to this problem by collecting
up the exceptions thrown during processing of a method. Thisis
achieved by the creation of a derived exception class containing a
collection of other exceptions (adightly modified version follows):
cl ass FooException extends Exception {
private ArraylList exceptions;
publ i ¢ FooException(Arrayli st
exceptions = exs;
}
public ArrayList getExceptions() {
return except ions;

}

}
And the original code is modified to make use of this exception:

public static ArraylList foo(Connection conn)
t hrows FooException {

exs) {

ArraylLi st exceptions = new ArrayList();
ArraylList results = null;

PreparedSt atement ps = null;

ResultSet rs = null;

try {

/'l create a query, performthe query and
/'l process the results

}

cat ch(SQLException ex) {
exceptions. add(exception);

}
finally {

try {
rs.close();

}
cat ch(SQLException ex) {
exceptions. add(ex);

}

try {
ps. close();

}

cat ch(SQLException ex) {
exceptions. add(ex);

}

i f(exceptions.size() !'=0) {
t hr ow new FooExcepti on(exceptions);

}

}

return results;

This approach doesn't lose any of the exceptions thrown and the
Pr epar edSt at ement will be closed even if the close of the
Resul t Set throws an exception, but now the method throws a
user-defined Except i on instead of SQLExcepti on. It is
better to use standard exceptions where possible as discussed in

Overload issue 62 august 2004

[Bloch] ltem 42: Favor the use of standard exceptions. More
importantly the exceptions are collected as peers not as causes, and so
is not idiomatic (at least not since JDK1.4) where the Thr owabl e
class allows nesting of another Thr owabl e as a cause[JDK 14].

SQLExcept i on was written before JDK 1.4 and has its own
mechanism for nesting other SQLEXcept i ons, thisissupported by
methodsset Next Except i on() andget Next Excepti on().
Thismechanism, being limitedto SQLExcept i on, isnot generaly
idiomatic for al Thr owabl e typesand sowill be not be considered
for the purposes of thisarticle.

A More Idiomatic Approach?

SoaThr owabl e (and its derived classes) can be constructed with a
cause (if this support has been implemented), or can be initiaized
with acauseusng thei ni t Cause() method. Nesting exceptions
at different levels of abstraction has been idiomatic even before
support was added to Thr owabl e, an implementation of this can
be found at http://waw. j avawor | d. com’ j avawor | d/
javatips/jwjavatip9l. ht . So to be more idiomatic the
same gpproach should be taken within the origind method.

We can use amodified version of Hagger’ s solution, combining
thiswith nestedt r y/f i nal | y blocksfrom thefirst solution and
nest the SQLExcepti ons usingi ni t Cause() , if required.
Thusthe origina code is rewritten:

public static ArrayList foo(Connection conn)
throws SQLException {

SQLExcepti on cachedException = null;
ArraylList results = null;
PreparedSt aterent ps = nul | ;
ResultSet rs = null;
/1 assign query to ps
try {
/1 performquery and assign result to rs
try {
/1 process the results
}

cat ch(SQLException ex) ({
cachedExcepti on = ex;
t hrow ex;

}
finally {

try {
rs.close();

}

cat ch(SQLException ex) ({
i f(cachedException !'= null) {

ex. i nitCause(cachedException);

}
cachedException =
t hrow ex;

}

}

}
cat ch(SQLException ex) {

i f(cachedException !'= null) {
ex. i nitCause(cachedException);

}

cachedException =

t hrow ex;

}

ex;

ex;

11

Overload issue 62 august 2004

finally {

try {
ps.close();

}

cat ch(SQLException ex) {
i f(cachedException !'= null) {

ex. i nitCause(cachedExcepti on);

}
t hrow ex;

}

}

return results;

This solves the three problems of the original code, no exception
is lost, the exception thrown isa SQLExcepti on and the
Pr epar edSt at enent is closed even if the attempt to close
the Resul t Set resultsin an Except i on. Unfortunately this
isn't agenera solution, thei ni t Cause() method isused to set
the cause of a SQLExcept i on if an existing SQLExcept i on
had been caught, buti ni t Cause() hassomerestrictions:

‘publ i ¢ Throwabl e i nit Cause(Throwabl e cause)
Initializes the cause of this throwable to the specified value. (The
cause is the throwable that caused this throwable to get thrown.)
This method can be called at most once. It is generally called from
within the constructor, or immediately after creating the throwable.

If this throwable was created with Thr owabl e(Thr owabl e) or

Thr owabl e(St ri ng, Thr owabl e), this method cannot be

called even once.” [JDK14]
This means that if the exceptions caught in the fi nal | y block
already have a cause then the i ni t Cause() method call will
fail with a j ava. |l ang. |1 egal St at eExcepti on. To
explain further this example demonstrates how to provoke the
failure:

voi d Anot her Thr owi nghet hod() {
t hrow new Runti neException();

}
voi d Throw ngMet hod() {

try {
Anot her Thr owi nghet hod() ;

}
cat ch(Runti meException ex) {
t hrow new Runti neExcepti on(ex);
}
}

void foo() throws Exception {
Excepti on cachedException =

try {
Thr owi ngMet hod() ;

}

cat ch(Exception ex) {
cachedExcepti on = ex;
t hrow ex;

}
finally {

try {
Thr owi ngMet hod() ;

}
cat ch(Exception ex) {
i f(cachedException !'= null) {
ex. i nitCause(cachedExcepti on);

nul | ;

12

/1 error: 111legal StateException
/'l Exception ex already has a cause
}
t hrow ex;
}
}
}
The idiomatic approach could be written to check for this
situation, for example the handling of the
Pr epar edSt at enent could become;
if(ps !'=null) {
try {
ps.close();
}
cat ch(SQLException ex) {
i f(ex.getCause() == null) {

i f(cachedException !'= null) {
ex. i nitCause(cachedExcepti on);
}
}
t hrow ex;
}

}
But this will mean that the original exception is lost, as discussed

above, making Hagger’ s approach better in this case.
Summary

Handling exceptions thrown while in a fi nal I y block is
problematic in the context of an existing exception. This article
has presented some approaches that solve at least some of the
problems discovered in the example but no approach is entirely
satisfactory. For the example presented the idiomatic solution
works and is the best solution.

In the wider context of a general solution each approach has
drawbacks or will not work, for example the idiomatic approach
will fail if the exception being handled already hasacause. Of the
approaches presented | would use, in order of preference, the
idiomatic version, then Hagger’ s approach (if the exceptions being
handled could already have a cause). | would resist using the
approach in [Warren] as ignoring exceptions is a particularly bad
idiom and should be avoided under any circumstances.

Tony Barrett-Powell
tony. barrett-powel | @l| ueyonder. co. uk

Bibliography

[Bloch] Joshua Bloch, Effective Java - Programming Language
Guide Addison-Wed ey 0-201-31005-8

[Eckel] Bruce Eckel, Thinking in Java, 3rd Edition, Prentice-Hall
0-131-002872

[Griffiths] Alan Griffiths, “More Exceptiona Java,” Overload 49
and adsoavailableatht t p: / / www. oct opul | . denmon. co. uk/
j aval/ Mor eExcept i onal Java. ht m

[Hagger] Peter Hagger, Practical Java - Programming Language
Guide Addison-Wed ey 0-201-61646-7

[JDK14] http://java. sun.com j 2se/ 1. 4. 2/ docs/ api /
javall ang/ Thr owabl e. ht m

[Warren] Nigel Warren and Philip Bishop, Javain Practice- Design
Syles and Idioms for Effective Java, Addison-Wedey 0-201-
36065-9

ACCU Mentored Developers

XML Project
Exercise 1: Validate XML
Files and Display

Element Structure
by Paul Grenyer and Jez Higgins

This article was originally written in December 2002 as part of
the ACCU Mentored Developers [MDevelopers] XML
[XMLRec] project. It has now been revised, with considerable
help from Jez Higgins, for publication in Overload.

The first exercise set for the project students by the project
mentors was as follows:

Incorporate either the Xerces[Xerces] or Microsoft
XML[MSXML] parsersinto a C++ project and useit to:
1. Parse XML strings and files.
2. Output the element structure as an indented tree.
As most of my development experience has been on Windows |
followed the MSXML route.

Downloading and Installing MSXML

The MSXML parser can be downloaded from the Microsoft
website. The latest version at the time of writing is version 4.0
and requires the latest Windows installer, which is
incorporated into Windows XP and comes with Windows
service pack 3. Theinstaller can also be downloaded as single
executable [InstMsi].

Assuming thelatest Windows Ingtaller is present on your system
installing MSXML issmply acase of running theinstaller package.
As MSXML is Component Object Model (COM) based this will
register the MSXML dynamic link library (mexm 4. dl |). The
installer aso creates a directory with all necessary files needed to
use the parser in a C++ project.

Overload issue 62 august 2004

Testing MSXML

Although there are the usua Microsoft help filesincorporated with
MSXML there aren’'t any examples, so | used Google to try and
find some and found the PerfectX ML [PerfectXML] website. The
webgte includes a number of MSXML C++ examples and one in
particular, Using DOM [UsingDOM], that downloads an XML file
from an Internet location, parses it, modifies it and writes it to the
locd hard disk. | used this example as atemplate for the following
simple MSXML console application test program:

#i ncl ude <i ostrean

#include <string>
#i ncl ude <wi ndows. h>
#i ncl ude <atl base. h>
#i nport "nexm 4.dl 1"
int main() {

std::cout << "MSXML DOM Sinple Test 1: Creating"
<< " of COM object and parsing of XM..\n\n"

:Colnitialize(0);

MSXM.2: : | XM_LDOVDocunent 2Ptr pXM.Doc = 0O
/1 Create MSXML DOM obj ect
HRESULT hr = pXM.Doc. Creat el nst ance(
"Msxm 2. DOVDocunent . 4. 0") ;
i f (SUCCEEDED(hr)) {
/1 Load the docunent synchronously
pXM.Doc- >async = fal se
_variant_t varLoadResult((bool)false);
const std::string xm File("poemxm");
/1 Load the XML document
var LoadResul t = pXM.Doc- >l oad(xm File.c_str())
i f(varLoadResult) {
std::cout << "Successfully loaded XM_ file: "
<< " file: " << xmFile << "\n"

}

An XML Mini-Glossary

Attributes — XML elements can have attributes. An attributeisa
name-value pair attach to the element’s start tag. Names are
separated from their values by an equals sign, and values are
enclosed in single or double quotes. Attribute order is not
significant.
<bi gbrai n i nvent ed=" SGW" >Char | es Gol df ar b</ bi gbr ai n>

DOM — The Document Object Model isaW3C recommendation
which an application programming interface well-formed XML
documents [DOMRec], defining the logical structure of
documents and the way a document is accessed and
manipulated. The DOM is defined in programming-language
neutral terms. Thisleadsto some dightly clumsy looking code,
but that aside the DOM iswidely used (if not necessarily well-
loved). Itsin-memory representation makes it well suited to
document editing, navigation and data retrieval applications.

DTD — Document Type Definition, the original XML schema
language described inthe XML recommendation. A Document
Type Definition defines the legal building blocks of an XML
document. It defines the document structure with alist of legal
elements, each element’ s allowed content and so on.

Elements& Tags —Here'satiny XML document
<bi gbr ai n>Char | es ol bf ar b</ bi gbr ai n>

It consists of a single element named bi gbr ai n and the
element’s content, the text string Char | es Gol df ar b. The
element is delimited by the start tag <bi gbr ai n> and the end
tag </ bi gbr ai n>.

Valid — Documents which conform to a particular XML
application are said to be valid. Inthe early days of XML (all
of five years ago) validity meant conforming to aDTD. With
the development and widespread adoption of other schema
languages, valid has come to mean valid to whatever schema
you happen to be using.

Well-formed —Not al, quite probably most, XML documentsare
not vaid, nor do they need to be. However they are all well-
formed. An XML document is well-formed if it satisfies the
basic XML grammar —the elements are properly delimited, start
and end tags match and so on. A document which is not well-
formed is like a C++ program with a missing semi-colon, no
good for anything.

XML Application — A set of XML elements and attributes for a
particular purpose —for instance DocBook, SVG, WSDL, Open
Officefile format — is called an XML application. An XML
application is often expressed in one of the many available
schema languages — DTD, XML Schema, RelaxNG,
Schematron, etc. An XML application is not an application
which uses XML.

13

Overload issue 62 august 2004

el se {
std::cout << "Failed to load XM file: "
<< xm File << "\'n";
/] Get parseError interface
MBXML2: : | XM_DOWPar seErrorPtr pError = O;
i f (SUCCEEDED(pXM_Doc- >get _par seError (
&pError))) {
USES_CONVERSI ON,;
std::cout << "Error: "
<< WRA(pError->reason) << "\n";
}
}
}

el se {
std::cout << "Failed to create M5 XM. COM "
<< "object.\n";
}
}
c:CoUninitialize();
return O;
}
This program takes the following XML file and parsesit:
<?xm version="1.0" encodi ng="UTF- 8" ?>
<poenp
<line>Roses are red, </I|ine>
<line>Violets are blue.</line>
<line>Sugar is sweet,</line>
<line>and | |ove you</line>
</ poen»
If the parse fails an error message is written to st d: : cout
giving the reason. Although this code snippet does the intended
job, it is a bit rough and needs some work in order to achieve
the objective of this exercise. Among other things it would
benefit from wrapping of MSXML and some proper exception
handling.
Itisworth noting#i nport isspecificto Microsoft Visual C++
and is not supported by other Win32 compilers.

Engineering the Exercise Solution:
Part 1

I’'m going to look at the exercise solution in two parts. The first
part will reengineer the PerfectXML example into a more genera
solution with a clean interface, proper runtime handling and
exception handling. The second part will look at writing the
element structure to a stream.

COM Runtime

As MSXML is COM based, the COM runtime must be started
before any COM objects can be indantiated. The COM runtime is
garted by the Col ni ti al i zeEx AP function and stopped with
CoUninitialize. MSDN states that every call to
ColnitializeEx must be matched by a cal to
CoUninitialize,evenif Col nitial i zeEx fals.

CoUni ni ti al i ze must not be called until all COM objects
have been released. For instance in the example above thereis an
extra scope wrapping the MSXML code so that the
| XMLDOVDocunent 2Pt r smart pointer destructor is called,
destroying the DOM, before CoUni ni ti al i ze iscaled.

The easiest way to achieve this, even in the presence of
exceptions, is to take advantage of C++'s RAIl (Resource

14

Acquisition Is Initialization) and place Col ni ti al i seEx in
the constructor of a class and CoUni niti alize in the
destructor and to create an instance of the class on the stack, at
the beginning of the program before anything else.
COVRunt i mel ni t, shown below, isjust such a class. The
copy constructor and copy-assignment operator are both private
and undefined, to prevent copying. A COMRunt i mel ni t
object has no state and therefore it does not make sense to copy
it. This method of preventing copying and some more of the
reasons behind it are discussed by Scott Meyers in Effective
C++[EC++].

#i ncl ude <stdexcept>

#i ncl ude <string>

#i ncl ude <wi ndows. h>

class COVRuntinmelnit {

public:
COVRuntinmelnit() {
HRESULT hr = ::ColnitializeEx(O,

CO NI T_APARTMENTTHREADED) ;
i f(FAILED(hr)) {
Unlnitialize();
std::string errorMsg = "Failed to start COM"
"Runtime: ";
switch(hr) {
case E_I NVALI DARG
errorMsg += "An invalid paraneter was "
"passed to the returning "
"function.";
br eak;
case E_OUTOFMEMORY:
errorMsg += "Qut of menory.";
br eak;
case E_UNEXPECTED:
errorMsg += "Unexpected error.";
br eak;
case S_FALSE:
errorMsg += "The COM library is already "
"initialized on this "

"thread.";
br eak;
defaul t:
errorMsg += "Unknown.";
br eak;

}
throw std::runtine_error(errorMsg);
}

}
~COMRuntinmelnit() {

Unlnitialize();
}
private:
void Uninitialize() const {
c:CoUninitialize();
}
COVRunti nel nit(const COVRuntinmelnitg&);
COVRunti mel nit& operator=(const COVRuntinmelnité&);
3
There are of course times when the initial call to
Col nitialiseEx may fal. The cause of the failure can be
ascertained from its return value. The obvious way to communicate

the cause of the failure to the user is via an exception. This hasthe
drawback that the destructor will not be called when the
constructor throws and therefore CoUni ni ti al i ze must be
called manually. For now st d: : runti me_error will be
thrown when Col ni ti al i zeEx fails, later on we'll look at a
custom exception type.

As stated above, the COVRunt i nel ni t instance must be
declared before any other object on the stack. The instance cannot
be put at file scope asit throws an exceptionif it fails, so the obvious
placeis at the top of mai n'sscope. A t ry/cat ch block is also
needed to detect the failure.

#i ncl ude <i ostreanp

#include "conruntineinit.h"

int main() {

try {
COMRuntinmelnit conRunti ne;

}

catch(const std::runtinme_error& e) {
std::cout << e.what() << "\n";

}

return O;

}
Instantiating the MSXML DOM

Code that uses COM, as with most Microsoft APl code, is just
plain ugly and really should be hidden behind an interface.
Exercise 1 of the XML project states that either the Xerces parser
or the MSXML parser can be used. Ideally they should be easily
interchangeable and their use completely hidden from the user.
Hiding the ugly code and making the parsers easily
interchangeable can be achieved with the Pimpl Idiom, as
discussed by Herb Sutter in Exceptional C++ [EXC++].

The first stage in the exercise is to create the MSXML DOM
parser. Thisis achieved with the DOM class:

/!l domh
/!l Forward declaration so that
/'l can be conpl etely hidden.

i mpl enent ati on

cl ass DOM npl ;

cl ass DOM {
private:
DOM mpl *i npl _;
public:
DOM)) ;
~Dov() ;
private:
DOV const DOVE) ;
DOV& oper at or =(const DOVE) ;
b

The DOMclass will form a basic wrapper for the DOM npl class
which will do al the work. DOM npl is forward declared, so
that its implementation can be completely hidden.

The DOM class implementation is shown below. It creates an
instance of the DOM npl cl ass ontheheap inthe constructor and
deletesit in the destructor.

/1 dom cpp

#i ncl ude "dom h"

#i ncl ude "dom npl . h"

DOVt : DOM) i mpl _(new DOM npl) {}

DOV : ~DOM) { delete inmpl_; }

Overload issue 62 august 2004

DOM npl creates the MSXML DOM parser in the same way as
the PerfectXML example:

[/ dom npl.h
#import "mexm 4.dl "
class DOM nmpl {
private:
MSXML2: : | XMLDOVDocunent 2Pt r xmi Doc_;
public:
DOM npl () xm Doc_(0) {

xm Doc_. Creat el nst ance(
"Msxm 2. DOVDocument . 4. 0") ;
}
private:
DOM npl (const DOM npl &) ;
DOM npl & oper at or =(const
H
Both DOM and DOM npl have private copy constructors and
copy assignment operators, again to prevent copying.

The above code does not include any error checking. It is
possible for the call to Createl nstance to fail. The
msxm 4. dl | may not be registered, for example. The success or
failure of theCr eat el nst ance call can be detected by itsreturn
vaue.

DOM npl () xm Doc_(0) {
HRESULT hr = xm Doc_. Creat el nst ance(
"Msxm 2. DOVDocunent . 4. 0") ;

DOM nmpl &) ;

i f (FAILED(hr)) {
std::string errorMsg = "Failed to start
"create MSXM. "

switch(hr) {
case CO_E_NOTI NI TI ALI ZED:

errorMsg += "Colnitialize has not

"been called.";

br eak;

case CO E CLASSSTRI NG
errorMsg += "Invalid class string.";
br eak;

case REGDB_E_CLASSNOTREG
errorMsg += "A specified class is '
"not registered.”
br eak;
case CLASS E NOAGGREGATI ON:
errorMsg += "This class cannot be "
"created as part of an "
"aggregate.";
br eak;
case E_NO NTERFACE:
errorMsg += "The specified class "
"does not inplement the "
"requested interface";
br eak;
defaul t:
errorMsg += "Unknown error.";
br eak;
}
throw std::runtinme_error(errorhsg);
}
}

15

Overload issue 62 august 2004

NonCopyable

We now have three classes which are “copy prevented”, with a
private copy constructor and copy assignment operator. Thereisa
clearer way to document the fact that a class is not intended to be
copied. When used by a number of different classes it also
reduces the amount of code.

The NonCopyabl e class, show below, has a private copy
constructor and assignment operator to prevent prevent copying.
When another class inherits from NonCopyabl e, the private
copy constructor and assignment operator are also inherited.
This both prevents the subclass from being copied and
documents the intention. The relationship between
NonCopyabl e and its subclass is not IS-A and therefore the
inheritance can be private.

AsNonCopyabl e isintended only to provide behaviour to
a derived class, rather than act as a class in its own right, its
default constructor is protected, preventing a free
NonCopyabl e object being created. Its destructor too, is
protected to prevent a subclass being deleted via a pointer to
NonCopyabl e. To further document this intention, the
destructor is not virtual.

cl ass NonCopyabl e {
pr ot ect ed:
NonCopyabl e() {}
~NonCopyabl e() {}
private:
NonCopyabl e(const NonCopyabl e&) ;
NonCopyabl e& oper at or=(const NonCopyabl e&) ;
s

The NonCopyabl e classwas written by Dave Abrahams for the
boost [boost] library. | have recreated it here so that a
dependency on the boost library is avoided.

Now that the NonCopyabl e class is in place the copy
constructors and assignment operators can be removed from
COVRunt i el ni t , DOMand DOM npl . They can then be
changed to privately inherit from NonCopyabl e.

class COVRunti el nit private NonCopyabl e {

}s

class DOM : private NonCopyable {

}s

cl ass DOM npl private NonCopyabl e {

i .
Loading and Validating the XML

The MSXML DOM has a method that loads and parses an XML
file. While parsing the file it is checked to make sure it is well
formed and if there is a DTD or Schema specified it is also
validated. If the file cannot be opened, is not well formed or
cannot be validated the call fails.

The method iscalled | oad and takes a single parameter which
isthe full path to the XML file. To load and parse an XML file, a
similar method can be added to DOM npl and a corresponding
forwarding function added to DOM

16

cl ass DOM npl
public:

private NonCopyabl e {

voi d Load(const std::string& fullPath) {
xm Doc_->l oad(fullPath.c_str());
}
i
mai n can then be modified to call the new function with the path
to an XML file.
try {
COMRuntinelnit conmRunti ne;
DOM dom
dom Load("poem xm ") ;
}
catch(const std::runtinme_erroré& e) {
std::cout << e.what() << "\n";
}
Once again there is no way of detecting failure and the return value
of the MSXML DOM | oad method must be tested to find out if it
failed. If afailure has occurred an exception should be thrown.
voi d Load(const std::string& fullPath) {
i f(!'xm Doc_->load(fullPath.c_str())) {
throw std::runtine_error(ErrorMessage());

}

}
The method of extracting an error message from an MSXML
DOM is allittle fiddly, so | have placed it in its own function,
Err or Message.
cl ass DOM npl
public:

private NonCopyabl e {

std::string ErrorMessage() const {
std::string result = "Failed to extract
"error.";
MSXML2: : | XMLDOWPar seErrorPtr pError =
xm Doc_- >par seError;
i f(pError->reason.length()) {
result = pError->reason;
}
return result;
}
b
A parse error is extracted from an MSXML DOM as an
XMLDOWPar ser Er r or object. The error description is fetched
from the r eason property. If no description is available, the
bstr_t returned by r eason hasalength of 0. bstr_t isa
wrapper class for COM’s native unsi gned short* string
type. It provides a conversion to const char *, and thus can
beassignedtoastd: : stri ng.

Custom Exception Types

Our mai n function’s body is

try {
COMRuntinelnit conmRunti ne;
DOM dom
dom Load("poem xm ") ;

}

catch(const std::runtinme_erroré& e) {
std::cout << e.what() << "\n";

}

Currently the example throwsa st d: : runti ne_error if the
COM runtime fails to initialise or if there is an XML failure. In
both cases the error message is prefixed with a description of the
type of error. Exceptions thrown as a result of the COM runtime
failing to initialise are probably fatal and it may be appropriate
for the program to exit, while for exceptions thrown due to an
XML parse fail it might be more appropriate to log the error and
move on to the next file.

These different categories of error would be better
communicated by the exception’s actud type and it is easy to add
custom exceptions. Throwing different types of exceptions helpsto
maintain the context in which the exception was thrown and enables
the behaviour of aprogram to change based on the type of exception
that is thrown.

Deriving from st d: : excepti on not only means that
custom exception types can be caught along with other standard
exception typesin asingle cat ch statement if necessary, but
also provides an implementation for the custom exception
object.

cl ass BadCOVRunti e :
public:
BadCOVRunt i me(const std::string& nmsg)
exception(nmsg.c_str()) {}

public std::exception {

b
st d: : excepti on’s constructor takes a char *, but | know
that | will be building exception messages with strings and
following the model of std::runtime_error,
BadCOVRunt i me’s constructor takesast d: : stri ng.
COVRunt i el ni t 'sconstructor must be modified for the new

exception:
COVRuntinmelnit() {
HRESULT hr = ::Colnitialize(0);

i f(FAILED(hr)) {
Unlnitialize();
std::string errorMsg = "Unknown.";
switch(hr) {
case E_| NVALI DARG
errorMsg = "An invalid paraneter was "
"passed to the returning "
"function.";
br eak;
defaul t:
br eak;
}
t hr ow BadCOVRunt i me(error Msg) ;
}
}
and mai n must be modified to catch the new exception:
try {
COMRuntinmelnit conRunti ne;
DOM dom
dom Load("poem xm ") ;
}
cat ch(const
std:: cout

BadCOVRunti ne& e) {

<< "COMinitialisation error:
<< e.what ()

<< "\'n";

Overload issue 62 august 2004

The exceptions thrown by DOM mpl are a little more
complicated. DOM npl throws exceptions when two different
things happen and therefore requires two different exception
types, which should be in some way related. One way to solve
this is to have a common exception type for DOM npl from
which two other exception types derive.

DOM npl is the implementation of DOMand any exception
thrown by DOM npl is most likely to be caught outside DOM
Therefore, to the user of DOM who is unaware of DOM npl , itis
more logica for DOMto be throwing exceptions of type Bad DOM
rather than BadDOM npl .

#i ncl ude <stdexcept>
#i ncl ude <string>

cl ass BadDOM :
public:
BadDOM const std::string& nsg)
exception(nsg.c_str()) {}

public std::exception {

b
class CreateFailed : public BadDOM {
public:
CreateFai |l ed(const std::string& nsg)
BadDOM msg) {}
b
cl ass BadParse : public BadDom {
public:
BadPar se(const std::string& nsg)
BadDOM msg) {}
b

The constructor and Load functionin DOM npl can now be
modified to use the new exception types and nmai n modified
to catch aBadDOMexception. For completeness sake, we also
need a third cat ch block. The COM smart pointers
generated by #i nport raisca _com error if afunction
call fails.

try {
COVRuntinmelnit conmRunti ne;
DOM dom
dom Load(" poem xm ");
}
catch(const BadCOVRuntine& e) {
std::cout << "COMinitialisation error:
<< e.what() << "\n";
}
catch(const BadDOW& e) {
std::cout << "DOM error:
<< e.what() << "\n";
}
catch(const _comerror& e) {
std::cout << "COM error:
<< e. ErrorMessage() << "\n";
}

Engineering the Exercise Solution:
Part 2

Now that the DOM is loading and validating XML the next part
of the exercise is write the elements to an output stream as an
indented tree.

17

Overload issue 62 august 2004

Writing the Element Structure

The first step in enabling the elements to be written to an output
stream is to pass onein. The obvious way to do thisistoisto add
a function to DOM npl , and a forwarding function to DOM
which takesast d: : ost r eamreference.

#i ncl ude <ostreanr
cl ass DOM npl private NonCopyabl e {

publi c:
void WiteTree(std::ostrean& out) {}

i
Modifying mai n to call the new function means that results can

be seen straight away as the Wi t eTr ee implementation is
developed.

try {
COMRuntinelnit conRunti ne;

DOM dom
dom Load("poem xm ") ;
dom WiteTree(std::cout);

In order to write the complete tree, every element must be
visited. Starting with the root element, the rest of the
elements can then be visited in a depth-first traversal. | wrote
the following function, based on some Delphi written by
Adrian Fagg, which gets a pointer to the root element and then
cals the function Wi t eBr anch which recurses the rest of
thetree.

void WiteTree(std::ostream& out) {
MBXM.2: : | XMLDOVEI enent Ptr root =
xm Doc_->docunent El enent ;
WiteBranch(root, 0, out);

}

The Wi t eBr anch function is also based on Adrian Fagg's
Delphi code. The codeis self explanatory, but basically it:

1. Getsthe tag name of the element passed to it.
2. Writestag namesto the supplied st d: : ost r eamat twicethe
specified indentation.

3. The supplied element is then used to get a pointer to its first
child.

. If the child pointer isnot 0, it is used to get the node type.

. If the node is of type NODE_ELEMENT the Wi t eBr anch
method is called again (recursion).

. The child pointer isthen used to get the next sibling.

7. If there are no more siblings, the method returns.

[R>S

(o]

void WiteBranch(

MSXML2: : | XMLDOVEI enent Ptr el enent,
unsi gned | ong indentation,
std::ostream& out) {

bstr_t cbstr el ement->t agNane;

out << std::string(2 * indentation, ' ')

<< cbstr << std::endl;
MBXML2: : | XMLDOWNodePtr child =
el enent->firstChild;

18

while(child !'=0) {
i f(child->nodeType ==
MBXM_2: : NODE_ELEMENT) {
W iteBranch(child,
indentation + 1, out);
}
child =

}

chi |l d->next Si bl i ng;

}
The result of running the program is now that the following is

written to the console:
poem
line
line
line
line
With that the exerciseis complete.

Next Step

The logica next step would of course be exercise 2. However, as

well as completing the exercises which help the students learn

about XML, one of the aims of the ACCU Mentored Developers

XML Project is to write a standard interface behind which any

parser, such as MSXML or Xerces can be used. Therefore, the
next step is to design acommon interface to the DOM.

Paul Grenyer and Jez Higgins

paul @aul grenyer. co. uk

jez@ ezuk. co. uk

Thank You

Thanksto al the members of the ACCU Mentored Developers XML
Project, especiadly Adrian Fagg, Rob Hughes, Thaddaeus Frogley
and Alan Griffithsfor the proof reading and code suggestions.

References

[boost] The boost library: ht t p: / / www. boost . or g

[DOMRec] W3C Document Object Model (DOM):
http://ww. w3. or g/ DOM

[EC++] Scott Meyers, Effective C++: 50 Specific Waystoimprove
Your Programs and Designs. Addison Wesley: ISBN 0-201-
9288-9

[ExXC++] Herb Sutter, Exceptional C++. Addison Wesley: ISBN
0201615622

[InstMsi] Windows Installer 2.0:
http://ww. m crosoft.conm downl oads/ det ai | s. aspx
?Fami | yl D=4b6140f 9- 2d36- 4977- 8f al- 6f 8a0f 5dca8f
&di spl ayl ang=en

[MDevelopers] ACCU Mentored Developers.
htt p: // ww. accu. or g/ ndevel opers/

[MSXML] Microsoft XML parser:
http://ww. m crosoft.conm downl oads/ det ai | s. aspx
?Fami | yl D=3144b72b- b4f 2- 46da- b4b6- c5d7485f 2b42
&di spl ayl ang=en

[PerfectXML] PerfectXML: www. per f ect xm . cond nexni . asp

[UsingDOM] Using DOM:
http://ww. perfectxnm .com CPPMSXM./ 20020710. asp

[Xerces] Xerces XML parser:
http://xm . apache. or g/ xerces-c

[XMLRec] Extensible Markup Language (XML):
http://wwv. w3. or g/ XM/

The Curious Case of the
Compile-Time Function
(An Exercise in Template

Meta-Programming)
by Phil Bass

A Crime Has Been Committed

18 months ago | described a version of my Event/Callback
library in an Overload article [1]. Thislibrary is used extensively
in my employer’s control systems software. A typica use looks
likethis:

/1 A class of objects that nonitor sonme event.
cl ass Cbserver ({
publi c:
Observer (Event <i nt >& event)
cal | back(bi nd_1st (nenf un(
&bserver: : handl er),
, connection(event, &callback) {}
private:
void handler(int); [// the event handl er
typedef Call back: : Adapt er<
void (Qbserver::*)(int)>: :type
Cal | back_Type;
Cal | back_Type cal | back; // a function object
Cal | back: : Connecti on<i nt > connecti on;
/] event <-> call back

this))

Exhibit 1: The event/callback library in action.

The key feature in this example is that a callback and an
event/callback connection are both stored in the Coser ver as
data members. Some attempt has been made to support thisidiom
by providing various helpers (the bi nd_1st () and menf un()
function templates! and the Cal | back: : Adapt er <Pnf > class
template). However, there is still quite a lot of rather verbose
boilerplate code. And that’sacrime.

It has been clear for some time that we should be able to
improve on this. There seems to be no fundamental reason, for
example, why we can’t combine the callback and its connection
into a single class template (Bound_Cal | back, say) and use it
like this:

/1 A class of objects that nonitor sonme event.
cl ass Cbserver ({
publi c:

Observer (Event <i nt >& event)

cal | back(event, &Observer::handler,
this) {}

private:

void handler(int); [// the event handl er

Bound_Cal | back<voi d (Cbserver::*)(int)>

cal | back;

Exhibit 2: Thegoal.

The question is how should we write the

Bound_Cal | back<Pnf > template?

1 These are not-quite-standard variations of st d: : bi nd1st () and
std:: mem_fun() developed in-house for reasons that are not important
here.

Overload issue 62 august 2004

Suspects and Red Herrings

The first thing that comes to mind is Boost [2]. There's bound to
be a Boost library that provides what we need. The trouble is |
can't find one.

Boost.Bind provides a lovely family of bi nd() functions that
generate all kinds of function objects. Unfortunately, their return
types are unspecified, so we can't declare data members of those
types.

Then there's Boost.Function, which was designed for a very
similar job and does provide types we can use as data members. |
believe we could, in fact, use the boost : : f unct i on<> template
asthe callback part of our Bound_Cal | back. What | haven't told
you, though, is that an Event <Ar g> can only be connected to
callbacksderived from Cal | back: : Funct i on<Ar g>. Clearly, as
boost : : functi on<> isn't derived from this base class it doesn’'t
provide everything we need. And, of course, it doesn’t know how
to make the event/callback connection, either.

So, what about Boost.Signals? Well, yes, we could replace
the whole of our event/callback library withboost : : si gnal s,
but I’m reluctant to do that for several (not very good) reasons.
First of all, | don’t like the names: “signal” is aready used for
something else in Unix operating systems, and “slot” is atruly
bizarre word for a callback function. Secondly, Boost.Signals
does more than we need or want. Specificaly, I’m not convinced
that a general-purpose event/callback library should do its own
object lifetime management and, anyway, we couldn’t use that
feature in common cases like Exhibit 1. Finally, if we were to
use Boost.Signals the crime would be reduced to a
misdemeanour and there would be little or no motivation for this
articlel

A Promising Lead

The astute reader may have spotted a clue in the first exhibit. The
t ypedef isn't there just to provide a reasonably short name for
the callback type — it also shows a template meta-function in
action.

A meta-function in C++ is a compile-time analogue of an
ordinary (run-time) function. Well-behaved run-time functions
perform an operation on a set of values supplied as parameters and
generate a new value as their result. Meta-functions typically
perform an operation on a set of types supplied as parameters and
generate a new type astheir result.

In its simplest form, a meta-function taking a single type
parameter and returning another type asits result looks like this:

tenpl at e<t ypenane Arg>
struct nmeta_function {
typedef <sone type expression involving Arg>
type;

Exhibit 3: A smple meta-function.

In C++, a meta-function always involves a template. The meta-
function’s parameters are the template’' s parameters and the meta-
function’s result is a nested type name or integral constant. The
Boost Meta-Programming Library adopts the convention that a
meta-function’s result is called t ype (if it's atype) or val ue (if
it'san integral constant) and that same convention is used here.
Now, suppose we had a meta-function that takes a pointer-
to-member-function type and returns the function’s parameter

type.
19

Overload issue 62 august 2004

t enpl at e<t ypenane Pnf >
/1 Result (dass::*Pnf)(Arg)
struct argunent {
t ypedef <magic involving Pnf> type;
/1 type Arg

b
Exhibit 4: A magical meta-function.

Similarly, we can imagine meta-functions that extract from a
pointer-to-member-function the function’s result type and the
class of which the function is a member. We could now write a
Bound_Cal | back<Pnf > template along the lines of Exhibit 5.

/1 A cal | back bound to an event.
t enpl at e<t ypenane Pnf >
cl ass Bound_Cal | back
public Call back:: Function<typenane
argunent <Pnf >: : type> {
publi c:
typedef typenane argunent <Pnf>::type Arg;
typedef typenane resul t<Pnf>::type Result;
typedef typenane cl ass_<Pnf>::type C ass;

Bound_Cal | back(Event <Ar g>& event, Pnf f,
Cl ass* p)
poi nter(p), function(f)

, connection(event, this) {}
Result operator()(Arg val ue) {
return (pointer->*function)(val ue);
}
private:
Cl ass* pointer;
Pnf function;
Cal | back: : Connecti on<Ar g> connecti on;
}
Exhibit 5: Using a meta-function.

This would be exactly what we need to implement the sort of class
illustrated in Exhibit 2. As Sherlock Holmes himself might say,
“Well done, Watson. Now, how can we implement the
argument <Pnf >, resul t <Pnf > and cl ass_<Pnf > meta-
functions?’

Reviewing the Evidence

The ar gunent <Pnf > meta-function shown in Exhibit 4 works
perfectly, but only if your name is Harry Potter. Plodding detectives
(and C++ compilers) can't be expected to perform magic. | was
puzzled. Then | spotted something odd among the evidence:

t enpl at e<t ypenane Result,
typenane Arg>

struct argunent {

typedef Arg type;

s

typenanme C ass,

Exhibit 6: A meta-function for clairvoyants.

Here's a meta-function that extracts the parameter type without
using magic. It just needs a little clairvoyance. If you know in
advance what the parameter type is you can use this meta-
function to generate the type you need. The heroic sleuth in
detective novels may seem to be clairvoyant at times but
programmers are not that clever (not even pizza-stuffed, caffeine-
soaked real programmers).

20

My search for thear gument <Pnf > meta-function had run up a
blind alley. It waslate. | wastired. | was getting desperate. And then
it hit me. We werelooking for ameta-function with one parameter
(likethe magical one), but to implement it we need three parameters
(like the one for clairvoyants). We need aspecialisation.

/1 Declaration of general tenplate

t enpl at e<t ypenane Pnf> struct argunent;

/1 Partial specialisation for pointers to

/'l menber functions

t enpl at e<t ypenane Result,
typenane Arg>

struct argunent<Result (Cass::*)(Arg)> {

typedef Arg type;

s

typename d ass,

Exhibit 7: Extracting the parameter type.

The specialisation tells the compiler how to instantiate
ar gunent <Pnf > when Pnf is a pointer to a member function of
any class, taking a single parameter of any type and returning a
result of any type.

The same technique works for the result<Pnf> and
cl ass_<Pnf > meta-functions, too. In each case, thegenerd template
takes one parameter, but the specidisation takes three. The compiler
performs aform of pattern matching to bresk down a single pointer-
to-member-function type into its three components. For example:

resul t<
void (Observer::*)(int)> :type Result;
Result* null_pointer = 0; // Result is void

Exhibit 8: Using ther esul t <Pnf > meta-function.

When it sees the r esul t <Pnf > template being used the compiler
compares the template argument (pointer-to-member-of-Observer)
with the template parameter of the speciaisation (any pointer-to-
member-function). In this case the argument matches the parameter
and the compiler deduces Result = void, O ass = Cbserver,
Arg = int.Thecompiler then ingtantiates the specidisation which
definesresul t <voi d (Cbserver::*)(int)>::type asvoi d.

The Case is Closed

t ypedef

So that'sit. The crimeis solved. All that’sleft isto prepare acase
for presentation in court and let justice take its course. I've had
enough for one day. “I’m off to the pub, anyone want to join
me?’, | called across the office.

“Wdll, that was the usud warm, friendly response’, | thought, as|
sat on my own with a pint. “No thanks’, “ Sorry, can't”, “Too busy”
they said. But something was till bothering me. Does
Bound_Cal | back<Pnf > till work if we try to connect a handler
functiontaking ani nt toanEvent that publishesashor t ?Andwhat
if we need to connect an Event <Ar g> to something other than a
member function —like anon-member function or afunction object?

These thoughts were still churning over in my mind when,
sometime after midnight, | tumbled into bed and soon fell into a
fitful deep.

Phil Bass
phi | @t oneymanor . denon. co. uk

References

[1] Phil Bass, “Implementing the Observer Pattern in C++",
Overload 53, February 2003.
[2] Seewww. boost . org

C++ Interface Classes — An

Introduction
by Mark Radford

Class hierarchies that have run-time polymorphism as one of
their prominent characteristics are a common design feature in
C++ programs, and with good design, it should not be
necessary for users of a class to be concerned with its
implementation details. One of the mechanisms for achieving
this objective is the separation of a class's interface from its
implementation. Some programming languages, e.g. Java,
have a mechanism available in the language for doing this. In
Java, an interface can contain only method signatures. In C++
however, there is no such first class language feature, and the
mechanisms already in the language must be used to emulate
interfaces as best as can be achieved. To this end, an interface
class is a class used to hoist the polymorphic interface — i.e.
pure virtual function declarations — into a base class. The
programmer using a class hierarchy can then do so via a base
class that communicates only the interface of classes in the
hierarchy.

Example Hierarchy

The much used shape hierarchy example serves well here. Let's
assume for the sake of illustration, that we have two kinds of
shape: arc and line. The hierarchy therefore, contains three
abstractions: the ar ¢ and | i ne concrete classes, and the
generalisation shape. From now on, I'll talk mainly about
shape and| i ne only —the latter serving as an illustration of an
implementation. These two classes, in fragment form, look like
this:

cl ass shape {

public:
virtua
virtua
virtua
virtua
/...

~shape() ;

voi d move_x(di stance x)
voi d nmove_y(di stance vy)
void rotate(angle rotation) = 0

no
ee

}s

class line :

public:
virtua
virtua
virtua
virtua

private:
poi nt end_poi nt _1

/...

i

public shape {

~line();

voi d move_x(di stance x);
voi d move_y(di stance y);
void rotate(angle rotation)

end_poi nt _2;

The shape abstraction is expressed here as an interface class —
it contains nothing but pure virtua function declarations. Thisis
as close as we can get in C++ to expressing an interface. Adding
to the terminology, classessuch asl i ne (and ar ¢) are known as
implementation classes.

Now let’s assume this hierarchy is to be used in a two
dimensional drawing package. It seems reasonable to suggest that
in this package, dr awi ng may be another useful abstraction.

Overload issue 62 august 2004

dr awi ng could be expressed as an interface class, like in this
fragment:

class drawi ng {
public:
virtual ~draw ng();
virtual void add(shape* additional _shape)
:0;
...
H

Besides the virtual destructor, only one member function of
dr awi ng —the add() virtua function — is shown. Note that
dr awi ng does not collaborate with any implementation of
shape, but only with the interface class shape. Thisis
sometimes known as abstract coupling — dr awi ng can talk to
any classthat supportsthe shape interface.

Benefits

Having explained the technique of hoigting a class's interface, |
need to explain why developers should be interested in doing
this. There are three points:

1 Hoisting the (common) interface of classes in a run-time
polymorphic hierarchy affords a clear separation of interface
from implementation. Further, doing so hel psto underpin the use
of abstraction, because the interface class expresses only the
capabilities of the abstracted entity.

2 It follows on from the above, that new implementations can
be added without changing existing code. For example, it is
most likely that drawing will initially have only one
implementation class, but because other code is dependent
only on itsinterface class, new implementationscan easily be
added in the future.

3 Consider the physical structure of C++ code with regard to the
interface class, its implementation classes, and classes (such as
dr awi ng) that use it. Assuming common C++ practiceis
followed, the definition of shape will have aheader file—let's
assumeit'scaled shape. hpp —al toitsalf, aswilldr awi ng
(i.e.dr awi ng. hpp, using the same convention). Now, owing
to the physical structure of C++ (that is, the structureit inherited
from C), if anything inthe shape. hpp header fileis changed,
anything that depends on it — such as dr awi ng. hpp — must
recompile. In large systems where build times are measured in
hours (or even days), this can be a significant overhead.
However, because shape is an interface class, dr awi ng (for
example) has no physical dependency on any of the
implementation detail, and it isin theimplementation detail that
changeislikely to occur (assuming some thought has been put
into the design of shape’sinterface).

Strengthening the Separation

Returning to the first point above for a moment, thereis away by
which we can strengthen the logical separation further: we can
make shape’simplementation classes into implementation only
classes. This means that in the implementation classes, al the
virtual member functions are made private, leaving only their
constructors publicly accessible. The |l i ne class then looks like
this:

21

Overload issue 62 august 2004

class line : public shape {

public:
I i ne(point end_point_1, point end_point_2);
/...
private:
virtual ~line();
virtual void nove_x(distance Xx);
virtual void nove_y(distance y);
virtual void rotate(angle rotation);
/...
i

Now, the only thing users can dowith | i ne is create instances of
it. All usage must be viaitsinterface—i.e. shape, thus enforcing
a stronger interface/implementation separation. Before leaving
this topic, it is important to get something straight: the point of
enforcing the interface/implementation separation is not to tell
users what to do. Rather, the objective is to underpin the logica
separation — the code now explains that the key abstraction is
shape, and that | i ne serves to provide an implementation of
shape.

Mixin Interfaces

As a general design principle, all classes should have
responsibilities that represent a primary design role played by the
class. However, sometimes a class must also express
functionality representing responsibilities that fall outside its
primary design role. In such cases, the need for partitioning of
this functiondlity is pressing, and interface classes have a part to
play.

A classthat expressesthiskind of extrafunctionality iscaled a
mixin. For example, it is easy to imagine there might be a
requirement to store and retrieve the state of shape objects.
However, storage and retrieval functionality is not aresponsibility
of shape in the application domain model. Therefore, afeasible
designisasfollows:

class serialisable {

public:
virtual void |oad(istream& in) = O;
virtual void save(ostream& out) = O;
pr ot ect ed:
~serial i sabl e();
i
cl ass shape : public serialisable {
public:
vi rtual ~shape();
virtual void nove_x(distance x) = 0;
virtual void nove_y(distance y) = 0;
virtual void rotate(angle rotation) = 0;

/1 No declarations of load() or save() in

/1l this class

I

i

class line : public shape {

public:
I i ne(point end_point_1, point end_point_2);
/...

22

private:
vi rtual
vi rtual
vi rtual
vi rtual
vi rtual
vi rtual
/...

~line();

voi d move_x(di stance x);

voi d nmove_y(di stance y);
void rotate(angle rotation);
voi d | oad(istream& in);

voi d save(ostream& out);

b
This approach is intrusve to a degree because seri al i sabl e’s
virtual member functions must be declared in | i ne’s interface.
However, a least there is a separation in that seri al i sabl e is
kept separate from the crucial shape abstraction.

Notethatseri al i sabl e doesnot haveapublicvirtua destructor
— its destructor is protected and non-virtual. It is not intended that
pointerstoseri al i sabl e areheld and passed aroundin aprogram
—i.e itisnot ausagetype, that’ stherole of the shape class. Making
the destructor non-virtual and not publicly accessible dlowsthe code
to gtate thisexplicitly, without recourse to any further documentation.

Often mixin functionality is added to a class using multiple
inheritance. Herethereisan analogy with Java, inwhich thereisdirect
language support for interfaces. In Java, aclass can inherit from one
other class, but canimplement asmany interfacesasdesired. Thesame
thing can be emulated in C++ using interface classes, but in C++ there
isan added twist — C++ hasprivateinheritanceto offer. Thisapproach
comesin handy particularly when the usage typeis outside the control
of the programmer —for example, becauseitispart of athird party API.
For example, consider asmall framework where notifications are sent
out by objectsof typenot i f i er , and received by classes supporting
an interface defined by not i fi abl e. The two interface classes (or
fragment of, inthecase of not i fi er) are defined asfollows.

class notifiable {

publi c:
virtual void update() = 0;
pr ot ect ed:
~notifiable();
s
class notifier {
publi c:
virtual void register_client(notifiable* o)
= 0;
I
s

Now consider using a GUI toolkit that provides a base class
caled wi ndow, from which al window classes are to be derived.
The programmer wishes to write a class called ny_wi ndow that
receives notifications from objects of type noti fi er —such a
classcould look likethis:

class ny_wi ndow : public w ndow,
private notifiable {
public:

voi d register_for_notifications(

notifier& n) {
n.register_client(this);

/1
b
Using private inheritance has rendered the notifiable interface
inaccessible to clients, but allowsnmy_w ndow use of it, because

like anything else that's private to my_wi ndow, its private base
classes are accessible in its member functions. This approach
helps to strengthen the separation of concerns which the use of
mixin functionality seeksto promote.

Interface Class Emulation Issues

The fact that we have to consider emulation issues at all is owing
to the fact that interfaces are being emulated rather than being a
first class language feature — al part of the fun of using C++! |
think there are issuesin two aress, i.e. those concerned with:

* Aninterface class sinterface

* Deriving from an interface class

An Interface Class’s Interface

Consider the interface class shape:

cl ass shape {

public:
virtual ~shape();
virtual void nove_x(distance x) = 0;
virtual void nove_y(distance y) = O;
virtual void rotate(angle rotation) = O;

/!l other virtual function declarations...

}s

If we write only the above, the compiler will step in and provide:
a copy assignment operator, a default constructor, and a copy
constructor. | think we can safely say that, an interface class' run
time polymorphic behaviour points to assignment semantics
being inappropriate and irrelevant. Therefore, the assignment
operator should be private and not implemented:

cl ass shape {
public:
I
private:
shape& oper at or =(const shape&);

};

Interface classes are stateless by their nature, so allowing
assignment is harmless, but prohibiting it is a simple contribution
to avoiding errors.

What about the default constructor and acopy constructor? Here
we should just thank the compiler and take what is on offer, asthis
isthe easiest way to avoid any complications. Notethat declaration
of constructors by the programmer has potential pitfalls. For
example, if acopy constructor only is declared, then the compiler
will not generate adefault constructor.

Deriving From an Interface Class
Consider the following fragment that shows | i ne being derived
from shape (as one would expect):

class line : public shape {

public:
line(int in_x1, int in_yl,
int in_x2, int in_y2)
x1(in_x1), yl(in_yl),
x2(in_x2), y2(in_y2) {}
I

Overload issue 62 august 2004

private:
int x1, yl, x2, yz,
b

The programmer has declared a constructor that initialises
| i ne’sstate, but not specified which of shape’s constructors is
to be called. As aresult the compiler generates a call to shape’s
default constructor. So far this is fine. Because shape is
statelessit doesn’t matter how it getsinitialised.

However, that’ s not the end of the story ...

It isa common design re-factoring in C++ (and several other
languages), to hoist common state out of concrete classes, and placeit
in a base class. So if common implementation is found between
shape’sderived dasses| i ne and ar c, rather than have atwo tier
hierarchy, it isreasonableto have athreetier hierarchy. For the sake of
anexample, let’ sassumethat itisnecessary for dl shapestomaintain
aproximity rectangle—i.e. if apoint fallswithin therectangle, the point
isconsdered to bein close proximity to theshape. Thisfunctionaity
can then, for example, be used to determineif ashape object should
be sdlected when the user clicks the mouse near by.

I’m going to assume a suitable r ect angl e classisin scope,
and introduce shape_i mpl to contain the common
implementation.

cl ass shape_i npl public shape {

private:
virtual ~shape_inpl() = 0;
virtual void nmove_x(distance x);
virtual void nmove_y(distance y);
virtual void rotate(angle rotation);
...
pr ot ect ed:
shape_i nmpl () ;
shape_i mpl (
const rectangle& initial_proximty);
...
private:
rectangle proximty;
11
H

Theimplementation classshape_i npl isabstract, as shown by
the pure virtual destructor. As a brief digression, it is aso an
implementation only class — its implementation of shape’s
interface has been declared as private so clients can create
instances, but can’t call any of the member functions.

Now look what happensif | i ne’s base class is changed, but
changing the constructor used to initialise the base class gets
forgotten about.

class line :
public:
l'ine(int in_x1,
int in_x2,
x1(in_x1),
x2(in_x2),

public shape_inpl {

int in_yl,
int in_y2)
y1l(in_yl),
y2(in_y2) {}
I
private:
int x1, yl, x2, yz,
b

23

Overload issue 62 august 2004

From Mechanism to Method:
The Safe Stacking of Cats

by Kevlin Henney

In spite of some obvious differences — and the similarity that
neither can be considered a normal practice — curling and
throwing have something in common: curling is a bizarre sport
played on ice; throwing in C++ is often played on thin ice. It is
the thin ice that has most often caused consternation, and the
balanced art of not falling through that has attracted much
attention.

By coincidence, curling is aso something in which cats both
indulge and excel, putting the pro into procrastination. But more
on catslater.

Taking Exception

Exceptions are disruptive but modular. The common appeal to
consider them as related to the got o is more than a little
misleading (“considering got 0” considered harmful, if you
like). That they are both discontinuous is one of the few features
they share. It is an observation that although true is not
necessarily useful: br eak, cont i nue, and r et ur n also share
this description of behavior. A quick dissection exposes the
differences:

* Transferred information:
agot o can associate only with a label whereas at hr ow
communicates with respect to both type and any information
contained in the type instance. In this sense, the t hr ow acts
morelikear et ur n, communicating an exceptional rather than
anormal result.

* Locality:

agot o hasmeaning only within afunction, labelsbeing the only
C++ entity with function scope. By contrast, exception handling
isprimarily about transferring control out of afunction. It shares
thiswithr et ur n, but potentially hasthewhole of the call stack
rather than just the immediate caller within its reach. It aso
shares with br eak and cont i nue arelationship with an
enclosing control flow primitive, so exception handling can also
be used simply at the block level.

» Degtination coupling:

the target of a got o isfixed, hardwired at compile time.
There is no way to express “the following has happened, so
whoever can sort it out, please sort it out.” Exceptions are
independent of lexical scope and do not nominate their
handlers explicitly. Instead, nomination is dynamic and by
requirement — “the first one that can handle one of these gets
to sort it out.” Exceptions can be handled or ignored at
different call levels without intervention from any of the
levelsin between. In many ways, thet r y/cat ch mechanism
resembles an advanced selection control structure — an
i f/el se with extreme attitude.

» Block structure:

Taligent’s Guide to Designing Programs pulls no punchesin
stating that “a got o completely invalidates the high-level
structure of the code” [1]. Far from being merely aprovocative
statement, this is a concise summary of fact. C++ is
essentially block structured: exceptions respect and work
within this structure, whereas got os largely ignore and
disrespect it.

The differences are thrown (sic) into sharp relief when you
attempt to refactor code. Say that you wish to factor a block
out as a function (the Extract Method refactoring [2]); it is
trivial to factor out the data flow: looking at the data that’s
used and affected in the block tells you what arguments and
results you need to pass and how. With control flow, unlessyou
flow off the bottom of a block or t hr ow, you cannot factor the
code simply. Traditional discontinuous control flow is non-
modular and requires additional restructuring to communicate
to the caller that a br eak, ret urn, conti nue, or got o
(especialy) must be effected. Thisis not the case with t hr ow:
both the overall structure and the fine-grained detail remain
unchanged.

State Corruption

This al sounds straightforward — or straight backward if you take
the call stack’s perspective — because we know about modularity,
both structured programming and object-oriented programming
are built on that foundation. However, there is still that one small

This will compile, and fal a run time. However, if in the first
place the programmer had written:

class line : public shape {

public:
line(int in_x1, int in_yl,
int in_x2, int in_y2)
shape(), x1(in_x1), yi(in_yl),
x2(in_x2), y2(in_y2) {}
I
b

In the latter case, changing the base classto shape_i npl would
cause a compile error, because shape is no longer the immediate
base class. This leads me to make the following recommendation:
always call an interface class's constructor explicitly.

24

Finally

Interface classes are fundamental to programming with run time
polymorphism in C++. Despite this, I'm all too frequently
surprised by how little they are known about by the C++
programmers out there.

This article doesn't cover everything: for example, the use of
virtual inheritance when deriving from mixins is something |
hope to get around to covering in a future article. However, |
hope this article serves as a reasonable introduction.

Mark Radford
mar K@ woni ne. co. uk

Acknowledgements

Many thanks to Phil Bass, Thaddaeus Frogley and Alan Griffiths
for their feedback.

matter of “disruption.” When an exception is thrown, the only
thing you want disrupted is the control flow, not the integrity of
the program.

Any block of code may be characterized with respect to the
program'’ s stability in the event of an exception. We can guarantee
different levels of safety, of which three are commonly recognized
[3], plusthe (literally) degenerate case:

» No guarantee of exception safety:
ensures disruption, corruption, and chaos. Code written without
exceptionsin mind often fallsinto this category, leaking memory
or leaving dangling pointers in the event of athrown exception
— converting the exceptional into the unacceptable. In short, all
bets are off.

» Basic guarantee of exception safety:
ensures that the thrower will not leak or corrupt resources.
Objectsinvolved in the execution will bein astable and usable,
albeit not necessarily predictable, state.

» Strong guar antee of exception safety:
ensuresthat aprogram’ s state remains unchanged in the presence
of exceptions. In other words, commit-rollback semantics.

» No-throw guarantee of exception safety:
ensures that exceptions are never thrown, hence the question of
how program state is affected in the presence of an exception
need never be answered because it is purely hypothetical.

The stroke of midnight separates the first, degenerate category of
exception unsafety from the last, Zen-like guarantee of benign
order through the simple absence of disruption. Code written to
achieve these guarantees may have the same structure, but will
differ in the not-so-small detail of whether or not exceptions
occur anywherein their flow.

These guarantees apply to any unit of code from a statement to
afunction, but are most commonly applied to member functions
called on objects. A point that is not often made relates exception
safety to encapsulation: not so much that exception safety can be
improved by better encapsulation, but that exception safety is one
measure of encapsulation. Prominent OO propaganda holds that
encapsulation is concerned with making object dataprivate. Whilst
this view isnot strictly false, it misses some important truths.

Encapsulation is neither alanguage feature nor a practice; rather
itisanon-functional property of code, and something that you can
have more or less of. Encapsulation describes the degree to which
something is self-contained, the degree to which its insides affect
its outsides, the degree to which internal representation affects
external usage. Encapsulation isabout usability, about not imposing
on the user. Language features and idiomatic design practices can
be used to improve encapsulation, but of themselves they are not
encapsulation. Thinking back to exceptions, you can see that
without even thinking about internal representation, an object that
offers the strong guarantee on a member function is more
encapsulated than one that offers no guarantee.

Incorruptible Style

It is one thing to have a guarantee, but quite another to fulfill it.
What is the style and mechanism of the code that allows a thrown
exception to propagate out of ablock in a safe manner? Including

Overload issue 62 august 2004

the degenerate case, there are essentially four approaches to
achieving exception safety:

» Exception-unawar e code:
codethat isnot written with exceptionsin mind isas easy to read
asit is dangerous — going wrong with confidence.

» Exception-awar e code:
code may be scaffolded explicitly witht ry, cat ch, and
t hr owto ensure that the appropriate stabilizing action is taken
inthe event of athrown exception. Alas, it isnot always obvious
that exception-aware code is safe: such codeis rarely clear and
concise.

» Exception-neutral code:

codethat worksin the presence of exceptions, but does not require
any explicit exception-handling apparatusto do so (i.e., no explicit
t ry/cat ch code). Not only isexception-neutra code briefer and
clearer than exception-aware code, but it is aso typically shorter
than exception unaware code. So, exception safety and seamless
exception propagation aside, such minimalism offers another
strong motivation for reworking code in this style.

» Exception-free code:
code that generates no exceptions offers the most transparent
fulfillment of exception safety.

When Cats Turn Bad

There is a tradition — from Schrodinger to Stroustrup — of
employing cats for demonstration purposes, and | see no reason
to stand in the way of tradition. There appears to be sufficient
prior art in the stacking of cats [4] that | will also adopt that
practice. Of course, we are only dealing with abstractions —if you
are concerned for the poor cat, keep in mind that unless we set it
in concrete no act of cruelty actually occurs.

Assuming that we have an appropriatecat classdefinition, the
following fragment demonstrates exception-unaware code:

{

*marshall = new cat;
/1 play with marshall
del ete marshal | ;

cat

}

If an exception occurs during play, there will be a memory leak:
you will forget about your scoped cat . The following fragment
demongtrates exception-aware code:

{

cat *marshal |
try {

}
catch(...) {

del ete marshal | ;
t hr ow;

}

del ete marshal | ;

= new cat;

/1 play with marshall

25

Overload issue 62 august 2004

Safe? Yes. Unreadable? Certainly. What it lacks in elegance it
more than makes up for in verbosity. The code may be safe, but it
is not obviously so [5]. The following fragment demonstrates
exception-neutral code:

{

std::auto_ptr<cat> marshal | (new cat);
/1 play with nmarshall

}

For all its faults (and they are many), this is one job that
std::auto_ptr doesdo wel. If we know that default cat
constructors do not throw exceptions, and we recognize that
mar shal | isaways bounded by scope, the following fragment
demonstrates exception-free code:

{

cat marshall;

/1 play with marshall
}

Clearly, for demo purposes, we are taking some liberties with the
common understanding of cats and their care, treating them as
disposable commodities. Taking further license with feline
appreciation and object design, let us also assume that they are
value-based rather than entity-based objects. This means that they
support copying through construction and assignment, are
generally not heap based, and are typically not deeply involved in
class hierarchies.

Modern cloning technology is imperfect, so cat copy
constructors are not always guaranteed to work. On failure they
throw an exception, but they are well behaved enough to avoid
resource leakage and to not corrupt the program'’s state.

Throwing Gauntlets

In 1994 Tom Cargill laid down a challenge — or extended an
invitation to solution, depending on your point of view —
concerning exception safety [6]. The challenge was based on a
fairly typical stack class template. There were a number of
elements to the challenge; the one | want to focus on here is how
to write the pop member function.

Hereis some code that demonstrates the challenge:

t enpl at e<t ypenane val ue_t ype>
class stack {
publi c:
voi d push(const val ue_type &ew top) {
dat a. push_back(new_t op);
}

val ue_type pop() {
val ue_type old_top = data. back();

dat a. pop_back();
return ol d_top;

}

std::size_t size() const {
return data.size();

}
private:
std::vector<val ue_type> dat a;
b
26

| have used st d: : vect or for brevity (performing manual
memory management does nothing to make the problem clearer)
and | am skipping issues related to assignment — | would
recommend looking at Herb Sutter’s thorough coverage of the
challenge to see how thisis addressed [3].

We can now recruit our favorite cat to demonstrate the issue.
First of al, pushing catsis not problematic:

st ack<cat > st acked;

st acked. push(marshal |);

std::cout << "nunber of stacked cats
<< stacked. si ze() << std::endl;

The issue arises when we pop cats.

try {
cat fender = stacked. pop();
/1 play with fender
}
catch(...) {
std::cout << "nunber of stacked cats"
<< " == " << stacked. size()
<< std::endl;
}

If the copy madein pop’sreturn statement fails, we have lost the
top cat: the cat has been removed from dat a and si ze is one
less than before. pop, therefore, cannot satisfy the strong
guarantee of exception safety, because that requires everything to
be left as it was before the exception was thrown. The stack is
still usable and its resulting state is predictable, which means that
we can promise marginally more than the basic guarantee ... but
we' ve gtill got amissing cat.

Before setting about any solution, it isimportant to remember
that designs — and therefore design problems — do not exist in a
vacuum. Design isintimately bound up with purpose and context,
and without understanding these we risk either solving the wrong
problem or, aswe so often do, solving the solution. Design isabout
balancing goals—aswell as cats.

Unasking the Question

Looking at the class interface, we might ask why two actions are
combined into one; Why does pop both return a queried value
and modify the target object? We know that such a return causes
an exception-safety problem, and we also know that it is
potentially wasteful. What if you do not plan to use the return
value? Even if you ignore it, the work that goes into copying and
returning the value still happens. Y ou are potentially paying both
acost and a pendty for something you didn’t use.

The Command-Query Separation pattern [7] — sometimes
referred to as a principle rather than a pattern [8] — resolves our
concerns by making a separation with respect to qualification:

t enpl at e<t ypenane val ue_t ype>
cl ass stack {

publi c:
v0| d pop() {
dat a. pop_back();
}

val ue_type & op() {
return data. back();
}

const val ue_type & op() const {
return data. back();
}

private:
std::vector<val ue_type> dat a;

};

The separation of modifier from query operations ensures that we
cannot make a change and lose the result. This separated
interface also supports adightly different usage model:

cat fender = stacked.top();
st acked. pop();
/1 play with fender

No copying exception can arise within the stack, so there is no
need to deal with it. This separation of concerns (and member
functions) can be seen in the design of the STL sequences and
sequence adaptors.

Rephrasing the Question

It would seem that the problem is solved, except for one thing:
we never fully established the context of execution. It is entirely
possible that the basic guarantee of the original code was
satisfactory for our purposes, so there was no problem —from our
perspective — to be solved. Either we accept the loss of a cat or,
more commonly, the element type of the stack has exception-free
copying, which would be the case for built-in types as well as a
number of user-defined types. So under some circumstances, the
stack offers us the strong guarantee. If these are your
circumstances, the original code does not strictly speaking need
to be fixed. If they are not, there is indeed a problem to be fixed,
and Command-Query Separation offers one solution.

But there are others. Command-Query Separation is attractive
because it clarifies the role of interface functions. It could be said
to offer better encapsulation and cohesion. However, such a
statement is not universally true, and understanding why will
demonstrate why we must consider Command-Query Separation a
pattern (adesign solution with consequences and a context) and not
aprinciple (an idea that expresses auniversal truth).

Consder aclarification in design context: the stack isto be shared
between multiple threads. Ideally we would like to encapsulate
synchronization detail within the stack, ensuring that primitives such
as mutexes are used safdy and correctly. Focusing just on the push
member, an exception-unaware implementation would be as follows:

t enpl at e<t ypenane val ue_t ype>
class stack {
publi c:

voi d push(const val ue_type &iew top) {
guard. | ock();
dat a. push_back(new_t op);
guard. unl ock();

}

Overload issue 62 august 2004

private:
nut abl e nut ex nonitor;
std::vector<val ue_type> dat a;

b
The exception-neutral approach is both shorter and safer:

t enpl at e<t ypenane val ue_type>
class stack {
publi c:

voi d push(const val ue_type &new top) {
| ocker <nut ex> guard(nonitor);
dat a. push_back(new_t op) ;

}
private:
nmut abl e nut ex nonitor;
std::vector<val ue_type> dat a;

b

Where | ocker is a helper class template responsible for
abstracting control flow [9]:

t enpl at e<t ypenane | ocked_t ype>
class | ocker {
publi c:
explicit |ocker(locked type & ockee)
| ockee(l ockee) {
| ockee. | ock();

}
~l ocker () {
| ockee. unl ock();
}
private:

| ocker (const | ocker &);
| ocked_type & ockee;

b

Making each public member function of st ack self-locking
would appear to preserve encapsulation. However, this works
only for usage scenarios that are based on single function calls.
For the Command-Query Separation solution, this would
introduce a couple of subtle bugs:

/1 no copying

cat fender = stacked.top();
st acked. pop();
Il play with fender

First of all, t op returns a reference. Consider the following
simple action in another concurrent thread:

st acked. pop();

Assuming that al of the member functions we are talking about
are self-locking, what is the problem? Imagine that the second
thread executes pop just after the first thread completes the call
tot op: the reference result from t op is now dangling, referring
to a non-existent element. Undefined behavior. Oops. Poor
f ender getsavery bad startin life.

27

Overload issue 62 august 2004

Returning referencesto value objects from thread-shared objects
isabad idea, solet’sfix st ack:

t enpl at e<t ypenane val ue_t ype>
cl ass stack {
publi c:

val ue_type top() const {
| ocker <nut ex> guar d(nonitor);
return data. back();

}
private:

nut abl e nut ex nonitor;
std::vector<val ue_type> dat a;

};

This solves the problem of undefined behavior, but leads us straight
into the jaws of the second problem, which is that of “surprising”
behavior. Idiomatically, we treat the following asasingle unit:

cat fender = stacked.top();
st acked. pop();
/1 play with fender

However, this usage is not cohesive in its execution. It can be
interrupted by another thread:

cat peavey;
st acked. push(peavey);

so that the push in the second thread occurs between the
initialization of f ender and the pop in thefirst thread. This means
that the wrong element is popped from the stack. Oops, again.

We could exposethel ock and unl ock featuresinst ack and
let the user sort it all out:

t enpl at e<t ypenane val ue_t ype>
cl ass stack {
publi c:
voi d | ock() {
noni tor. | ock();

}

voi d unl ock() {
moni t or . unl ock() ;

}

private:
nut ex nonitor;
std::vector<val ue_type> dat a;

b
Giving rise to the following somewhat clunky usage:

cat fender; ({
| ocker < stack<cat > > guard(stacked);
fender = stacked.top();
st acked. pop();

}
/1 play with fender

28

Let’'s compare this with the origina usage:

cat fender = stacked. pop();
/1 play with fender

There’s now more to write and more to remember — and
therefore more to forget. In addition to being more tedious and
error prone, it is easy to make the code pessimistic by forgetting
to enclose the | ocker in the narrowest scope possible, leaving
waiting threads | ocked out of st acked for far longer than
necessary.

Remember that the original design’s only safety shortcoming
wasthat it offered only the basic —rather than the strong — guarantee
of exception safety. It would take aleap of orthodoxy to say, hand
on heart, that Command-Query Separation has produced a more
cohesive and encapsulated solution — the opposite is true in this
context.

The Combined Method pattern [7] is one that sometimes finds
itself in tension with Command-Query Separation, combining
separate actionsinto asingle, transactional wholefor the benefit of
simplicity and correctness in, principally, multithreaded
environments. The original pop was an example of this tactical
pattern, but suffered from weakened exception safety. An aternative
realization that achieves strong exception safety in an exception-
neutral styleisto overload the purepop function with aCombined
Method that takes a result argument:

t enpl at e<t ypenane val ue_t ype>
cl ass stack {
publi c:

voi d pop() {
| ocker <nut ex> guar d(nonitor);
dat a. pop_back();

}

voi d pop(val ue_type &ol d_top) {
| ocker <nut ex> guar d(nonitor);
old_top = data. back();
dat a. pop_back();

}
private:

nut abl e nut ex nonitor;
std::vector<val ue_type> dat a;

};

This design tightens the screws a little on the element type
requirements, additionaly requiring assignability as well as copy
constructibility. In practice this often means that we also demand
default constructibility of the target because the overloaded pop
cannot be used in an assignment:

cat fender;
st acked. pop(fender);
/1 play with fender

Another consequence of the assignment-based approach is that
the result variable must be an exact type match for the element
type (i.e, it cannot rely on implicit conversions that would have
worked if pop’sresult had been returned by vaue).

A Transactional Approach

Staying with Combined Method, but for brevity leaving aside the
code for thread synchronization, it turns out that it is possible to
write an exception-neutral version of pop that preserves the
original value-returning interface and satisfies the strong
guarantee of exception safety in dightly different circumstances
totheorigind:

t enpl at e<t ypenane val ue_t ype>
cl ass stack {
publi c:

val ue_type pop() {
popper karl (data);
return data. back();

}
private:
cl ass popper {
publi c:
popper (st d: : vector<val ue_type> &dat a)
. data(data) {}
~popper () {
i f(!std::uncaught _exception())
dat a. pop_back();
}

private:
popper (const popper &);
std::vector<val ue_type> &dat a;
b

std::vector<val ue_type> dat a;

};

Here a small helper object, kar | , is created to commit apop
action if the copying of the return value is successful. The
popper object is passed the representation of the
surrounding stack, and on destruction, it will cause a
pop_back to be executed. If the copy is unsuccessful, the
popper destructor will not commit the intended change,
skipping thepop_back.

This approach has the benefit of preserving the signature
interface and typically reducing the number of temporaries
involved in copying. However, there is an important
precondition that must be publicized and satisfied for popper
to work as expected: pop should not be called from the
destructor of another object. Why? What if the destructor is
being called because the stack is being unwound by an
exception? The call to st d: : uncaught _exceptionin
popper’s destructor will return true even if the copy is
successful.

How you respond to this scenario isamatter of context-driven
requirement. Either you state that the behavior of ast ack is
undefined in these circumstances or you define behavior for it.
One definition of behavior is shown above —in the presence of
existing exceptions, don’'t pop — but could be considered
unsatisfactory because of its pessimism. An alternative, more
optimistic approach is to say that our pop offers a strong
guarantee of exception safety if thereis no unhandled exception
present when it is executed, but only the basic guarantee
otherwise:

Overload issue 62 august 2004

t enpl at e<t ypenane val ue_type>
class stack {

cl ass popper {

publi c:

popper (st d: : vector<val ue_type> &dat a)
dat a(data),

unwi ndi ng(
std::uncaught _exception()) {}
~popper () {

i f (unwi ndi ng
|| !std::uncaught_exception())
dat a. pop_back();
}
private:
popper (const popper &);
std::vector<val ue_type> &dat a;
const bool unwi ndi ng;

}
};....

std::uncaught _exception is afunction that is
generally not as useful asit first appears. It often leads to false
confidence in code [10], but with an understanding of its
limitations, there are a few situations in which we can press it
into useful service.

A Lazy Approach

It is possible to take the transactional idea a step further using a
technique that | first saw Angelika Langer present at C++ World
in 1999:

t enpl at e<t ypenane val ue_type>
class stack {
publi c:

val ue_type pop() {
try {
--l engt h;
return data[l ength];
}
catch(...) {
++l engt h;
t hr ow,
}
}
private:
std::size_t length;
std::vector<val ue_type> dat a;

b

Here the size of the stack is tracked in a separate variable that is
incremented and decremented accordingly. It uses an exception-
aware style to implement commit-rollback semantics, bumping
the length count back up again if the copy from the last element
fails with an exception.

The obvious benefit of this approach is that it will work
independently of whether or not the stack is already unwinding

29

Overload issue 62 august 2004

because of an exception. However, the disadvantage with this
approach is not so much with the extra piece of state that has been
introduced but that popped elements are never actually popped.
They continue to exist in the dat a member long after they have
been popped: at least up until another modification operation
requiresrationalization of dat a withl engt h, suchasapush. A
couple of minor refinements address this issue by introducing a
deferred but amortized commit operation:

t enpl at e<t ypenane val ue_t ype>
cl ass stack {
publi c:
stack()
unconm tted(fal se) {}
voi d push(const val ue_type &iew top) {

commi t();
dat a. push_back(new_t op);
}
val ue_type pop() {
commi t();
try {
uncomm tted = true;
return data. back();
}
catch(...) {
uncomm tted = fal se;
t hr ow,
}
}
std::size t size() const {
commi t();
return data.size();
}
private:

void commit () const {
i f(uncommitted) ({
dat a. pop_back();
unconmitted = fal se;

}

nut abl e bool unconmitted;
nut abl e std::vector<val ue_type> dat a;

}

Internally the committed state will be at most one element
different from the uncommitted state, but externally any
attempt to determine the state by calling an operation will
ensure that the books are kept balanced. This constraint
requires that all public functions call the commi t function as
their first act, which requires that the object’s state to be
qgualified as mut abl e to permit updates in query functions.
Thus, this design affects all member functions and imposes a
little more on the class developer. The class user is, however,
unaffected.

Conclusion

It is time to declare a moratorium on these exceptional
experiments on abstracted cats. They have served to demonstrate
that no design can be perfect, and that encapsulation is related to

30

usability; it is not just a matter of data hiding. Although we may
strive for absolute recommendations, there are times when only
relative ones can be made with confidence (and caveats). Design
is about compromise and about context, and therefore it is about
understanding consequences. Weigh up the benefits and liabilities
for a particular usage and then make your decision — what is
workable in one context may be unworkable in another, and so
what is“good” in one situation may be “bad” in another.

On the compromise of designin other fields| will leave you with
this quote from David Pye [11]:

It follows that all designs for use are arbitrary. The designer or his
client has to choose in what degree and where there shall be failure.
Thus the shape of all design things is the product of arbitrary choice.

If you vary the terms of your compromise — say, more speed, more
heat, less safety, more discomfort, lower first cost-then you vary the
shape of the thing designed. It is quite impossible for any design to
be “the logical outcome of the requirements” simply because, the
requirements being in conflict, their logical outcome is an
impossibility.
Kevlin Henney
kevl i n@ur br al an. com

References

[1] Taligent’s Guide to Designing Programs. Well-Mannered
Object-Oriented Design in C++, (Addison-Wesley, 1994),
http://pcroot.cern.ch/ Tal i gent Docs/

Tal i gent Onl i ne/ Docunent Root / 1. 0/ Docs/
books/ W WM 1. ht m

[2] Martin Fowler. Refactoring: Improving the Design of Existing
Code (Addison-Wedey, 1999), www. r ef act ori ng. com

[3] Herb Sutter. Exceptional C++ (Addison-Wedey, 2000).

[4] Bjarne Stroustrup. “ Sixteen Waysto Stack aCat,” C++ Report,
October 1990, www. r esear ch. att. coni ~bs

[5] Toquote C. A. R. Hoare:

“There are two ways of constructing a software design. One way is to
make it so simple that there are obviously no deficiencies. And the
other way is to make it so complicated that there are no obvious
deficiencies.”

[6] Tom Cargill. “Exception Handling: A False Sense of Security,”
C++ Report, November-December 1994.

[7] Kevlin Henney. “A Tale of Two Patterns,” Java Report,
December 2000, www. cur br al an. com

[8] Bertrand Meyer. Object-Oriented Software Construction, 2nd
Edition (Prentice Hall, 1997).

[9] Kevlin Henney. “ C++ Patterns. Executing Around Sequences,”
EuroPLoP 2000, July 2000, www. cur br al an. com

[10] Herb Sutter. More Exceptional C++ (Addison-Wesley, 2002).

[11] Henry Petroski. To Engineer isHuman: The Role of Failurein
Successful Design (Vintage, 1992).

This article was originally published on the C/C++ Users
Journal C++ Experts Forum in February 2002 at

http://ww:. cuj .conm experts/docunents/s=7986/

cuj cexp2002Henney/

Thanks to Kevlin for alowing usto reprint it.

