
3

overload issue 67 june 2005

contents credits &
contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Advisors:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@gmail.com

Pippa Hennessy
pip@oldbat.co.uk

Advertising:

Thaddaeus Frogley
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Letters 6

Can C++ Learn From Generics in Ada?

Peter Hammond 7

Microsoft Symbol Engine

Roger Orr 9

The C++ Community - Are We Divided by a

Common Language? Alan Griffiths 14

The Trial of the Reckless Coder

Phil Bass 18

Taming Complexity: A Class Hierarchy Tale

Mark Radford 24

Grain Storage MIS: A Failure of

Communications Phil Bass 30

overload issue 67 june 2005

Editorial: Does all this help
make better software?

But was the purpose of the conference to have fun? (We did!)
Or were we there to learn to make better software? (Did we?)
Judging from the topics of conversation there, people went to learn
about producing software, and the fun was a byproduct of an
effective learning strategy.

In a talk by Allan Kelly (on learning) I learnt a name for a
concept I’ve sometimes struggled to convey: a “community of
practice”. This, at least the way I interpret it, is a collection of
individuals that share experiences, ideas and techniques in order to
develop their collective knowledge. What better description of the
group of people that read each other’s articles, attend each other’s
presentations and provide feedback in the pub (or on mailing lists)
afterwards?

Does it help to have a name for this? To be able to say “the
ACCU is a software development community of practice”? Yes,
it does. There is power in names: we can ask, “do you know other
software development communities of practice?” far more
effectively than “do you know other organisations like the ACCU?”

And recognising that the ACCU is about mutual learning makes
it a lot easier to explain the value of participating in its activities.
Why go to the conference? To learn what others have discovered!
Why write for the journals? To get feedback on what you have
discovered! With a community one gets back what one puts into it.

Does Being Part of a Learning
Community Help Us Make Better
Software?

One of the characteristics of group learning is the way that ideas
build upon one another. Some years ago a discussion of
optimising assignment operators led to Francis Glassborow
writing an article “The Problem of Self-Assignment” (Overload
19). An editorial comment about the exception-safety of one
approach to writing assignment operators led to articles by
Kevlin Henney “Self Assignment? No Problem!” (Overload 20
& 21). One could trace the development of this idea further. For
example, in “Here be Dragons” (Overload 36) I incorporated a
generalisation of the principal idea into an exception-safety
pattern language as the “Copy-Before-Release” idiom (and
current discussions of “move semantics” are also related).

Over the course of a few articles the canonical form of the
assignment operator was rewritten and the C++ community (or part
of it) has adjusted its practice accordingly. But where did the idea
come from? Francis was describing a method of writing an
assignment operator that didn’t require a branch instruction to deal
with self-assignment - he wasn’t writing about exception safety
and, as far as I am aware, took no account of this aspect of the form

he described. The editor’s remark recognised the exception-safety
aspect, but didn’t seek to revise the “right way” to write assignment
operators. It was left for Kevlin’s articles to address the issues with
earlier practice directly and make the case for change.

Naturally, this is just one example of the way in which
participation in a community of practice helps advance the frontiers
of knowledge. The exchange of ideas within the community was
what led to the recognition of the importance of this idiom - no one
person deserves all the credit. As a result, the programs being
written by members of this community became just a little bit more
reliable and easier to maintain.

The Business Value of Better
Software

Do the ideas developed within the community help us deliver
more valuable software? Or to be specific, how much difference
does knowing how to write an exception-safe assignment
operator make to the average program?

If one can judge by the quantity of code that, on successful
projects, reaches production with exception-unsafe assignment
operators, not a lot! On the other hand, not having exception-safe
assignment presents a demonstrable risk of obscure, hard to
reproduce problems. I’ve worked on several systems whose
delivery schedule has been seriously disrupted by avoidable
problems that required significant effort to diagnose.

One system I worked on lost a number of days when an
intermittent problem was found that only occurred on Win2K (or
maybe it was NT4 - one appeared to work reliably, the other failed
at random intervals of up to a couple of hours). After the project
missed a milestone I was asked to take over the investigation, as
both the developer that identified the problem and the project lead
had run out of ideas. I spent two days isolating an “undefined
behaviour” problem that, once diagnosed, was clearly the result of
a coding style that was not as robust as one might expect from
ACCU members. (OK, in this example it wasn’t actually an
assignment operator, it was a “one definition rule” violation, but
an exception-unsafe assignment could easily have the same effect
on a project.)

There is an obvious cost to the business of developers spending
time learning new techniques, not just the time spent learning, but
also ensuring that “shiny new hammers” are kept in the toolbox
and not the hand. The savings are not always so obvious. In the
above example I know how much the client paid for the time I spent
diagnosing the problem, and roughly how much time I spent
explaining to team members what had gone wrong (and how I’d
figured out a problem that had baffled them). What I don’t know

I’m writing this in the second week after the ACCU Spring conference where I met many
of the contributors whose articles have appeared in these pages. I enjoyed putting
faces to names and the many conversations that ensued. I also enjoyed meeting all

the others of you that attended and, judging from all of the feedback that has come my
way, all of you enjoyed the conference too.

4

5

overload issue 67 june 2005

is the opportunity cost of delivering the software late, or the value
of the work that would otherwise have been produced by the
developers that tried to solve it. Whatever the cost was, it would
have paid for a lot of learning!

Managers (at least the good ones) do understand the concept
of insurance, paying small premiums in terms of learning
activities to avoid the risk of the occasional, but very expensive,
search for obscure problems that completely invalidate the
planned delivery. Indeed, many of the practices being promoted
by the “Agile” development community (frequent deliverables,
continuous integration, automated acceptance test suites, ...) can
be viewed as ways to minimise the risk of the project drifting off
course.

Of course, there is a balance to be found - a point at which the
additional cost of further improving the developers, or development
process, or tools would exceed the added value delivered. This is
clearly not an easy assessment to make. This process of assessment
is frequently hindered by developers failing to demonstrate that they
understand the need to deliver business value - which makes it
appear that they are simply “seeking new toys”.

Demonstrating Business Value

It is hard to relate improved design idioms or more effective tools
to the value they bring to the project or organisation. And herein
lies part of the difficulty in assessing the value of the ideas we
exchange and develop in such forums as the conference. Many of
them seem to merely reduce the size of that vast pool of
infrequently manifesting bugs that seems to exist in most
codebases. (The existence of this pool of bugs and the
appropriate way to manage it was another discussion at the
conference - is it worth putting any effort into diagnosing and
correcting a problem that may only manifest once a century?) A
very substantial proportion of the infrequently manifesting bugs
needs to be removed before any benefit can be perceived - and, as
we don’t know the size of this pool, it is hard to know in advance
what impact reducing it can have.

Demonstrating that one approach to developing software is better
than another is hard, there are lots of variables and people will
interpret the evidence in accordance with their preconceptions. I
once ran one of three teams producing parts of a project. My team
put into practice all the best ideas I knew from my reading: daily
builds, automated test suites, reviews of designs and code. Another
team divided up the functionality and each team member coded
their own bit. The process the third team adopted revolved around
a self appointed expert programmer (who rewrote any code that

wasn’t “up to standard”). My team didn’t suffer the time pressure
seen on the other two (no need for overtime) and delivered software
that had an order of magnitude fewer defects discovered in
integration testing than either of the other two. I thought I’d done
a good job and demonstrated the effectiveness of my approach.
However, rather than my approach being adopted by the other
teams, my “idle” developers were moved to the “more dedicated”
teams that were working overtime to fix bugs and were soon as
dedicated as the rest.

I learnt from the experience (even if the organisation that was
employing me didn’t) that it is not enough to succeed, it is more
important to be seen to succeed. While my team had always had
a clear idea of what functionality was completed (and was
confident that it worked) there was very little visibility elsewhere.
What was visible to everyone was my team was going home on
time, sitting around chatting in front of PCs and having no
difficulty in producing its deliverables. We were having fun while
the other groups were making heroic efforts to deliver! I should
have made sure that there was much more visibility of the
progress we were making. It doesn’t take much effort to present
a list of the intended functionality on a whiteboard, pin-board or
similar and to check off the items that have been verified as
having been completed. A visible indicator that progress was
being made would have done a lot to reassure other parts of the
business that we knew what we were doing and to justify our
apparently relaxed attitude. (There were other things to learn too:
from inexperience in introducing ideas into a team or
organisation, I kept too much control of the team practices - the
team members didn’t feel that they “owned” them and, in
consequence, didn’t promote them in the teams they were moved
to.)

Having Fun

“Having fun” is an indicator that things are going well. Any time
you’re not having fun writing software, or learning, (or anything
else) then it is time to assess the reason for it. That isn’t to say
that there are not occasions where rote learning and repetitive
practice are effective: most software developers I know would
benefit from learning to touch-type, which involves a lot of
repetition to (re)form habits. (And even in these cases, it helps to
introduce a fun element.)

There is nothing wrong with having fun: just consider how to
show that you’re delivering value at the same time!

Alan Griffiths
overload@accu.org

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trade mark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines
All articles intended for publication in Overload 68 should be submitted to the editor by July 1st 2005, and for Overload 69 by
September 1st 2005.

6

overload issue 67 june 2005

PHP-Related Letter to the Editor –
Overload 66

Terje,
I have recently found time to learn PHP, which is something I

had been meaning to do for a while, and my response to the
dynamic typing is the complete opposite of yours; I found it quite
refreshing.

Provided that you have sufficient tests, such as those you get
from doing TDD, the dynamic typing can be liberating rather
than a cause for concern. After all, it’s not as if it’s something
new – Smalltalk is dynamically typed, for example. In fact, I
often find myself using templates in C++ precisely because the
implicit interfaces give me some of the freedom of dynamic
typing.

I found that the lack of explicit types made refactoring easier,
as I did not have to change variable declarations or function
signatures, and I didn’t need to explicitly declare interfaces.

You only have to look over on comp.object to find a horde of
people who swear by dynamic typing, including respectable
authors such as Ron Jeffries and Robert (Uncle Bob) Martin.

I’m not yet willing to say I prefer dynamic typing to static
typing, but I can certainly see the benefits. I had a discussion
with someone recently about naming conventions, arguing that
including information about the type in variable names (such as
with Hungarian Notation) was a waste of bandwidth, as the name
and usage of the variable should provide the necessary
information. Dynamic typing goes a step further, and says that
the actual type is really quite irrelevant, it’s what you do with it
that counts. Of course, it does mean that good naming and clean
design are all the more important.

That’s not to say that PHP is perfect, though – you can’t
overload functions, for starters, though I guess that’s a
consequence of them not having a fixed signature. The limiting
factor here is that it can make it hard to extend existing code; I
can’t provide alternate implementations of functions that work on
new classes.

Following this line of thought to its natural conclusion drives
me to the “everything is an object” stance of Smalltalk – if
everything is an object, then you can extend behaviour just by
writing a new class which derives from, or even just wraps, an
existing class (after all, we don’t need inheritance for the
interface), and passing instances of the new class instead of
instances of the old one.

I guess that this actually demonstrates that C++ is evolving in
a direction that works – if you’re going to have non-member
functions, then for maximum extensibility, you need static typing
and overloading, including operator overloading. You also need
generics (templates), and the ability to deduce types from
expressions (the auto and typeof proposals). It’s just a different
way of providing freedom of expression, and the ability to write
clean abstractions.

PHP therefore lives in a sort of never-never-land, where you
can write code with everything being an object, but you can write
free functions too, and the language ships with rather a lot of
them. It is neither one thing, nor the other, which makes for
plenty of opportunities for poor coding. That just makes it all the
more important to strive for clean design, using refactoring and

plenty of tests to help along the way. I welcome the addition of
exceptions to PHP 5; having to work with error codes in PHP 4
reminded me how hard that can be. PHP 5 also adds destructors,
which fire when the last reference to an object is destroyed; much
better than Java’s finalization mechanism.

That’s my thoughts for now,

Anthony Williams
anthony.ajw@gmail.com

And Terje’s Reply:

Anthony,
Thanks for your thoughtful reply. Yes, I know that quite a few

proponents of agile development like dynamic typing. Before
going further, perhaps establishing some terminology might be in
order. Often, dynamic and implicit typing is lumped together in
discussions, while they are really orthogonal. One classification
I’ve read and found useful is: implicit vs explicit typing (whether
or not the type is declared), and static vs dynamic typing
(whether or not types of values are determined and checked at
compile time or run time). With this, we can classify some
languages:
● C++: Explicit and statically typed
● Haskell: Implicit (with optional explicit) and statically typed
● PHP: Implicit (with optional explicit for user-defined types in

signatures) and dynamically typed

In languages like Haskell, if you don’t specify the types, they are
inferred from the expressions at compile-time. Something similar
happens with C++ templates, as you mention. However, Haskell
has type classes, giving a form of constrained genericity (as in
Java 5.0 and C# generics, and the concept proposals for C++ [1]),
whereas parameters to C++ templates, as they are today, are
pretty unconstrained. This tends to lead to hard-to-understand
error messages, when the program crashes deep inside a function
(rather than giving an error at the call site about parameter
mismatch). The same kind of problem, only worse, may happen
in dynamically typed languages. Worse, because:

1. Being dynamically type-checked, you don’t get any errors before
that particular piece of code is executed with those particular
parameters, and

2. Every variable and parameter is basically a variant - being able
to take on a value of any type, including null

I find it interesting that in C++, unlike the current state of
scripting languages (although there’s some movement in that
direction for them as well), there’s a tendency towards getting a
language where you can be more explicit about your intent [1].
Proposals such as “Explicit Class” (N1702 - being able to decide
which, if any, default member functions are provided), “Explicit
Namespace” (N1691 - being able to turn ADL off, and selectively
enable it), “Explicit Conversion Operators” (N1592 - having to
explicitly request a conversion), as well as the mentioned concept
proposals (N1758, N1782, et. al. - enabling you to state the
concepts that the template parameters have to model), “Design by
Contract” (N1773), etc. all facilitate expressing our intent more

[concluded at foot of next page]

Letters to the Editor

7

overload issue 67 june 2005

clearly in the code (and being able to be checked by the
compiler/runtime).

By expressing our intent explicitly in the code (using type
declarations, concepts, contracts, or whatever), the compiler is
better able to sanity-check the code, and in the case of static type
checking, even before the program is run. Moreover, it provides
documentation for the users and maintainers of the code, as you
can see what is expected, and what is guaranteed. In contrast,
languages like PHP hardly lets you specify anything up front, and
thus it defers any error detection to runtime (if even then). A
couple of common arguments for dynamic typing are that a) static
typing doesn’t necessarily find all errors, and b) with unit tests,
you can perform similar checks, and more. I feel that a) is a kind
of straw man (as it can be said about most good practices), and it
doesn’t mean that static type checking isn’t useful. As for b), yes,
you can do it with tests (or using asserts in the function definition,
checking the types manually), but why would you? By using static
type checking (whether or not the types are declared) you’re
assured that the program makes at least some kind of sense. Why
anyone would want to do manually what the compiler can do
automatically is beyond me. Yes, unit tests are useful, and they

complement type checking (and DbC, etc.) nicely, rather than
displacing it.

Static checking (any kind of checking) enables you to detect any
bugs early, and that’s a good thing, as it gives rapid feedback. As
mentioned, with a dynamically typed language, you risk getting
type-related errors in code that is only executed rarely, perhaps a
long time after it’s written, or worse, you get silent errors, unless
you’re sure you’ve covered all the possible cases with tests,
including values coming from outside.

If you want to be able to avoid specifying types, unless you
explicitly want to, then, as you mentioned, type inference with
templates (as well as the auto/decltype proposal (N1607)) enables
this, and good generic code typically contains few explicit type
declarations. This way, you get the “agility” of dynamic typing,
with the type safety of statically checked types.

Regards,
Terje Slettebø

tslettebo@broadpark.no

References

[1]http://www.open-std.org/JTC1/SC22/WG21/docs/
papers/

Can C++ Learn from
Generics in Ada?

by Peter Hammond

Introduction

Although C++ templates afford great flexibility and power in the
language, it is widely recognised that the widespread adoption of
modern template techniques is hampered by “features” of the
implementation of templates [Heinzmann, 2004a, b]. At the
recent ACCU, conference Stroustrup [2005] described two
proposals currently before the C++ standards committee for
implementing Concepts in C++. Concepts seek to alleviate the
difficulties of template programming by separating the definition
of the template from its instantiation to a certain extent, in as
much as the contract placed on the types used to instantiate the
contract is explicitly stated, so it can be checked and more
meaningful diagnostics given.

In a question at the end of this presentation, Coplien suggested
that other languages may have models that C++ templates could
learn from, and specifically mentioned Ada generics. This paper
will give an overview of the features of the Ada generics model,
from a personal perspective of a programmer with some experience
of Ada, rather than a language designer. It will show why the author
believes C++ has little to gain from Ada generics.

Rationale of Ada

The design of the Ada language puts a very strong emphasis on
safety and integrity. It is a language that is particularly tractable
to static analysis by abstract interpretation [Chapman, 2001].
The design of the generic model carries this on, aiming to
provide “the security that is present for ordinary, unparameterized
program units; in particular the degree of compilation-time error
checking” [Ada83].

The main forces in the design of C++ are significantly different.
While no language deliberately courts run time errors, C++ puts the

emphasis more on flexibility and expressiveness [Stroustrup, 2000].
As a consequence of these differences, the Ada generic model is
very different from the template model of C++.

The Ada Generic Model

The model of generic units in Ada allows a high degree of static
type checking to be applied to the generic body alone,
independent of its instantiation. It imposes a contract on the types
that can be used to instantiate the unit. This is a very attractive
idea, and is the reasoning behind the proposals for Concepts in
C++. However, the use of generics in Ada will not fit well with
the kind of ad-hoc specialisation and template reuse that is
common in modern C++.

Two features of the Ada generics mechanism would be
particularly unsuitable for C++, and they are also key to the way
Ada achieves the goal of separating definition and instantiation:
1. The need for explicit instantiation;
2. The limited set of formal types that can be used.

Furthermore, Ada’s very strict type model leads to additional
generic parameters being needed that at first sight seem
redundant.

Explicit Instantiation

The first of these is a tiresome burden for the programmer but
probably not inherent in the generic model. Given the overheads
implied by the syntax, this can be as much typing (and therefore
reading) as writing out the body in full. For example, whereas in
C++ we might do this:

int x, y;

some_big_struct a, b;

. . .

swap (x, y);

swap (a, b);

[continued from previous page]

[continued on next page]

8

overload issue 67 june 2005

The Ada equivalent would be:

X, Y : integer;

A, B : Some_Big_Struct;

procedure swap is new swap (integer);

procedure swap is new swap (Some_Big_Struct);

. . .

swap (a, b);

swap (x, y);

This is generally a minor hassle in the idioms of Ada. However, it
clearly makes the idioms of modern C++ impractical.

Limitations on Formal Types

The most significant drawback of the Ada generics mechanism is
the restrictions on what the generic body can assume from the
type provided to it. The declaration and instantiation of a generic
in Ada takes the following form:

generic

Type T is X;

Package Foo;

Package MyFoo is new Foo (Y)

Where X is one of the keywords listed in the following table and
Y is an actual type argument as listed:

The only other permitted types are access (pointer) to one of
those types, or an array of one of those types. As well as
packages, functions and procedures can be declared using the
same syntax. For example, the swap procedure might be declared
in Ada as:

generic

type T is private;

procedure swap (X, Y : in out T);

There is no way to access arbitrary components of a record (struct),
nor to call overloaded subprograms1 by name matching. The “new
subtype_mark” form does allow access to arbitrary members and

subprograms of the base subtype; this achieves approximately the
same effect as passing an object by base-class reference in C++,
which of course does not require a template at all.
As an example of the limitations this imposes, consider two
record types:

Type rec1 is record

X : Integer;

Y : Integer;

Some_Other_Stuff : Foo;

End record;

Type rec2 is record

Y : Integer;

X : Integer;

More_Stuff : Bar;

End record;

This is roughly equivalent to the C++:

struct Rec1 {

int X;

int Y;

Foo some_other_stuff;

};

struct rec2 {

int y;

int x;

bar more_stuff;

};

Now imagine that the X and Y members are semantically
equivalent in both structs, and some duplication is discovered
which can be refactored. In C++, the following is possible:

template <typename XandY>

void do_common_thing (XandY& obj) {

obj.X = getX();

obj.Y = getY();

}

This is not possible in Ada; “something with members called X
and Y” is not in the list above, so when you try to write:

Generic

Type XandY is ???

Procedure do_common_thing (obj : in out

XandY);

There is nothing that can be put in the ???. The same problem
extends to calling subprograms using arguments of the
parameterised type (the Ada equivalent of calling member
functions). The only way for the generic body to call a
subprogram with the parameter type as an argument is to declare
each subprogram required as an additional generic parameter.
Clearly this can become very long-winded if there are several
subprograms called from one generic.

Keyword (X) Actual parameter (Y)

Digits<> Any floating point type

Range<> Any integer type

Delta<> Any fixed point type

[tagged] Private Any type, but objects can only be
copied and compared

[tagged] limited private Any type, but objects can only be
compared

New subtype_mark Any type derived from
subtype_mark

1 Ada distinguishes between Functions, which return a value and may take only input
parameters, and Procedures, which do not return a value and may take input, output
and in-out parameters. Together they are termed subprograms. [concluded at foot of next page]

9

overload issue 67 june 2005

The Ada standard [Ada95] sec 12.1 gives the following example:

generic

type Item is private;

with function "*"(U, V : Item) return Item

is <>;

function Squaring(X : Item) return Item;

which has to be instantiated like this, assuming that the package
contains an overloaded operator for its user-defined type:

function square is new squaring

(My_Package.My_Type, My_Package."*");

Apparently Redundant Parameters

Another source of syntactic tedium is the lack of inference of
parameterized types. This is not actually a result of the generic
model, but arises from the strict type model in Ada. As an
illustration, this code fragment is taken from the Ada 95 reference
manual [Ada95], section 12.5.4:

generic

type Node is private;

type Link is access Node;

package P is

...

end P;

Access is the Ada keyword for pointer; the programmer is forced
to tell the compiler what synonym for “pointer to Node” is going
to be used. Compare this with what might be used in C++:

template <typename Node>

class P {

public:

typedef Node* Link;

...

};

To a C++ programmer’s eyes, the Link parameter in Ada looks
redundant. However, it is not; a new type created as a synonym

for “access Node” is a distinct type and cannot be implicitly
converted from any other similar type. The programmer thus has
to tell the generic in case there is already a new type name in use.
In C++ of course, typedef does not have this effect; it merely
introduces a new spelling for the same type. While there are pros
and cons for this approach, it does impose some lack of
flexibility on the use of generics.

Conclusions

The Ada generics model has always been contract based, as
befitting the origins and idioms of the language. This provides for
a high degree of early checking, at the expense of flexibility.
While there may be some general lessons to be drawn from this
approach, the specifics of the mechanism make it far too
restrictive to be of any direct use in C++.

Peter Hammond
pdhammond@waitrose.com

Acknowledgements

The author wishes to thank the reviewers for their helpful
comments.

References

[Ada83] “Rationale for the Design of the Ada Programming
Language”, http://archive.adaic.com/standards/
83rat/html/ratl-12-01.html

[Ada95] http://www.adaic.com/standards/ada95.html
[Chapman, R 2001] “SPARK and Abstract Interpretation - a

white paper”, http://praxis-his.com/pdfs/
spark_abstract.pdf

[Heinzmann, S 2004a] “The Tale of a Struggling Template
Programmer”, Stefan Heinzmann, Overload 61 June 2004.

[Heinzmann, S 2004b] “A Template Programmer’s Struggles
Resolved”, Stefan Heinzmann and Phil Bass, Overload 61 June
2004.

[Stroustrup, B 2000] The C++ Programming Language, Special
Edition, Bjarne Stroustrup, pub Addison Wesley.

[Stroustrup, B 2005] “Better Support for Generic Programming”,
http://www.accu.org/conference/accu2005/kd9fc73

n3uj94krmnfcj383jhpaduyivby/Stroustrup%20-

%20Better%20Support%20for%20Generic%20

Programming.pdf

[continued from previous page]

Microsoft Symbol Engine
by Roger Orr

Introduction

Last year, I wrote an article detailing some code to provide a
stack trace with symbols in Microsoft Windows. [Orr2004]

On reflection, I think the Microsoft symbol engine deserves
greater explanation so this article discusses more about the symbol
engine, what it does and where to get it from. The ultimate aim is
to provide useful information which helps you diagnose problems
in your code more easily.

What Are Symbols?

When a program is compiled and linked into executable code, a
large part of the process is turning human readable symbols into

machine instructions and addresses. The CPU, after all, does not
care about symbolic names but operates on a sequence of bytes.
In systems that support dynamic loading of code, some symbols
may have to remain in the linked image in order for functions to
be resolved into addresses when the module is loaded. Typically
though, even this is only a subset of the names appearing in the
source code.

When everything works perfectly this is usually fine; the
difficulties occur when the program contains a bug as we would
like to be able to work back from the failing location to the relevant
source code, and identify where we are, how we got there and what
are the names and locations of any local variables. These pieces of
information can all be held as symbol data and interrogated, usually
by a debugger, to give human readable information in the event of
a problem.

[continued on next page]

10

overload issue 67 june 2005

Most programmers using Microsoft C++ on Windows are
familiar with the Microsoft Debug/Release paradigm (many other
environments have a similar split). In this model of development,
you begin by compiling a ‘Debug’ build of the code base in which
there is no optimisation and a full set of symbols are emitted for
each compiled binary. This generally gives the debugger the ability
to work backwards from a logical address and stack pointer to give
the source line, stack trace and contents of all variables. Later in
the development process you switch over to building the ‘Release’
version of the code which typically has full optimisation and
generates no symbolic information in the output binaries.

There are several pitfalls with this approach. In my experience
the most serious is when you have problems which are only
reproducible in the release build and not in the debug build. Since
there are no symbols in the release build it can be very hard to
resolve the problem.

Fortunately this is easily resolved. It is relatively easy to change
the project settings to generate symbolic information for the release
build as well as for the debug build. An alternative approach is to
abandon (or at least modify) the Debug/Release split, perhaps
material for another article!

For Microsoft.NET 2003 C++ you enable symbols in release
build by setting options for the compile and link stages. First set
‘Debug Information Format’ to ‘Program Database’ in the C/C++
‘General’ folder. Then set the linker settings Generate Debug Info
to ‘Yes’ in the ‘Debugging’ folder, and specify a .PDB filename for
the program database file name. Finally you must set ‘References’
to ‘Eliminate Unreferenced Data’ and ‘Enable COMDAT Folding’
to ‘Remove redundant COMDATs’ in the ‘Optimization’ folder
because the Microsoft linker changes its default behaviour for these
two options when debugging is enabled. (Settings exist in other
versions of the Microsoft C++ compiler, and also for VB.NET and
C#. See [Robbins] for more details.)

I also recommend removing other one optimisation setting, that
of stack frame optimisation, to greatly improve the likelihood of
being able to get a reliable stack trace in a release build. If
performance is very important in your application, measure the
effect of this optimisation to see whether it makes a sufficient
difference to be worth retaining.

With these settings applied to a release build the compiler
generates a PDB file for each built EXE or DLL, in a similar
manner to the default behaviour for a debug build. The PDB file,
also known as the symbol file, is referred to in the header records
in the EXE/DLL but none of the symbols are loaded by default, so
there is no impact on performance simply having a PDB file.

The Symbol Engine

Microsoft do not document the format of the PDB file and it
often seems to change from release to release. However they do
provide an API for accessing most of the information held in the
PDB file and the key to this is a file DbgHelp.dll. This
library contains functions to unpack symbol information for
addresses, local variables, etc. A version of this DLL is present
in Windows 2000, XP and 2003 but Microsoft make regular
updates available via its website as ‘Debugging tools for
Windows’ [DbgHelp]. Note that if you want to write code using
the API you need to install the SDK (by using the ‘Custom’
installation).

However it is hard to update DbgHelp.dll in place in a
running system (and attempts to do so can render some other

Windows tools inoperable) so it is recommended that you either:
● ensure the correct version of the DLL is placed with the EXE

which is going to use it , or
● load the DLL explicitly from a configured location.

Personally, I find both these solutions cause unnecessary
complications so I simply copy the DLL to DbgCopy.dll and
generate a corresponding Dbgcopy.lib file from this DLL,
which is included at link time. The makefile included in the
source code for this article has a target dbgCopy which builds
this pair of files.

The debug help API usually expects to find the PDB file for a
binary EXE/DLL by looking for the file in its original location, or
along the path. However the Debugging Tools for Windows
package also contains a DLL that can connect to a so-called
‘Symbol Server’ to get the PDB file. Microsoft provide a publicly
accessible symbol server containing all the symbols for the retail
versions of their operating system, which lets you get symbolic
names (and improved stack walking) for addresses in their DLLs.
This is invaluable when you get problems inside a system DLL;
usually, but not always, caused by providing it with bad data!

This DLL, SYMSRV.DLL, is activated by setting the
environment variable _NT_SYMBOL_PATH to tell DbgHelp to use
the symbol server. Note that this only works correctly if the
DbgHelp.DLL and SymSrv.DLL are both loaded from the same
location and are from the same version of ‘Debugging Tools’.

The environment variable can be set from the command line for
the current windowed command prompt, or more typically set via
the control panel for the current user or even for the current
machine. An example setting to load symbols from the Microsoft
site is using a local cache in C:\Symbols is:

set _NT_SYMBOL_PATH=SRV*C:\Symbols*

http://msdl.microsoft.com/download/symbols

There are a couple of problems with this simple approach.
Firstly, the Microsoft site may not be available (for example, a
company firewall may not grant access to the location
specified) so the symbols for system DLLs are inaccessible to
the symbol engine. Secondly, the symbol engine tries to
access the Microsoft site for every EXE or DLL that it loads
for which it cannot find local symbols. This can take quite a
long time if have many DLLs that do not have any debugging
information.

As an alternative you can set up the path as above and use the
Symchk program to load symbols for a number of common DLLS
(for example KERNEL32, MSVCRT, NTDLL), and then remove the
http://... portion of the environment variable to just access
the local cache.

A more advanced technique which is also available is to set up
a symbol server, running on your own network. You can then
publish symbol files, built in-house or arriving with third party
libraries, to this symbol server for use throughout your company
without needing to explicitly install them on every machine.

Using the Symbol Engine

I present some basic code to use the symbol engine, show how to
convert an address to a symbol and show a simple example of the
stack walking API. Please refer to the help for the debugging
DLL (provided with the Debugging Tools SDK - DbgHelp.chm)

11

overload issue 67 june 2005

for more information and description of other methods that I am
not covering in this introductory article.

The symbol engine needs initialising for each process you wish
to access. Each call to the symbol engine includes a process handle
as one of the arguments, this does not actually have to be an actual
process handle in every case but I find it much easier to stick to that
convention. Calls to initialise the symbol engine for a given process
‘nest’ and only when each initialisation call is matched with its
corresponding clean up call does the symbol engine close down the
data structures for the process.

Note: there are a small number of resource leaks in
DbgHelp.dll, some of which are retained after a clean-up, so I
would advise you to try and reduce the number of times you
initialise and clean up the symbol engine. My simple example code
uses the singleton pattern for this reason.

Here is a class definition for a simple symbol engine:

/** Symbol Engine wrapper to assist with

processing PDB information

*/

class SimpleSymbolEngine

{

public:

/** Get the symbol engine for this process

*/

static SimpleSymbolEngine &instance();

/** Convert an address to a string */

std::string addressToString(

void *address);

/** Provide a stack trace for the

specified stack frame

*/

void StackTrace(

PCONTEXT pContext,

std::ostream & os);

private:

// not shown

};

This class can be used to provide information about the calling
process like this:

void *some_adress = ...;

std::string symbolInfo=

SimpleSymbolEngine::instance().

addressToString(some_address);

I’ve picked a simple format for the symbolic information for an
address - here is an example:

0x00401158 fred+0x56 at

testSimpleSymbolEngine.cpp(13)

The first field is the address, then the closest symbol found and
the offset of the address from that symbol and finally, if
available, the file name and line number for the address.

Using the stack trace is more difficult as you must provide a
context for the thread you wish to stack trace.

The context structure is architecture-specific and can be obtained
using the GetThreadContext() API when you are trying to
debug another thread.

CONTEXT context = {CONTEXT_FULL};

::GetThreadContext(hOtherThread, &context);

SimpleSymbolEngine::instance().

StackTrace (&context, std::cout);

You have to be slightly more devious to trace the stack of the
calling thread since the GetThreadContext() API will return
the context at the point when the API was called, which will no
longer be valid by the time the stack trace function is executed.

One approach is to start another thread to print the stack trace.
Another approach, which is architecture-specific, is to use a small
number of assembler instructions to set up the instruction pointer
and stack addresses in the context registers. You have to be careful
if you wish to provide this as a callable method to ensure the return
address of the function is correctly obtained, for this article I simply
use some assembler inline.

Here is a simple way (for Win32) to use the symbol engine to
print the call stack at the current location:

CONTEXT context = {CONTEXT_FULL};

::GetThreadContext(

GetCurrentThread(), &context);

_asm call $+5

_asm pop eax

_asm mov context.Eip, eax

_asm mov eax, esp

_asm mov context.Esp, eax

_asm mov context.Ebp, ebp

SimpleSymbolEngine::instance().

StackTrace(&context, std::cout);

In this case the tip of the call stack will be the pop eax
instruction since this is the target of the call $+5 which I use to
get the instruction pointer.

Implementation Details

The constructor initialises the symbol engine for the current
process and the destructor cleans up.

SimpleSymbolEngine::SimpleSymbolEngine()

{

hProcess = GetCurrentProcess();

DWORD dwOpts = SymGetOptions();

dwOpts |=

SYMOPT_LOAD_LINES |

SYMOPT_DEFERRED_LOADS;

SymSetOptions (dwOpts);

::SymInitialize(hProcess, 0, true);

}

SimpleSymbolEngine::~SimpleSymbolEngine()

{

::SymCleanup(hProcess);

}

12

overload issue 67 june 2005

I am setting the flag to defer loads which delays loading symbols
until they are required. Typically symbols are only used from a
small fraction of the DLLs loaded when the process executes.

The code to get symbolic information from an address uses two

APIs: SymGetSymFromAddr and SymGetLineFromAddr.
Between them these APIs get the nearest symbol and the closest
available line number/source file information for the supplied
address.

std::string SimpleSymbolEngine::addressToString(void *address)

{

std::ostringstream oss;

// First the raw address

oss << "0x" << address;

// Then any name for the symbol

struct tagSymInfo

{

IMAGEHLP_SYMBOL symInfo;

char nameBuffer[4 * 256];

} SymInfo = { { sizeof(IMAGEHLP_SYMBOL) } };

IMAGEHLP_SYMBOL * pSym = &SymInfo.symInfo;

pSym->MaxNameLength = sizeof(SymInfo) - offsetof(tagSymInfo, symInfo.Name);

DWORD dwDisplacement;

if (SymGetSymFromAddr(hProcess, (DWORD)address, &dwDisplacement, pSym))

{

oss << " " << pSym->Name;

if (dwDisplacement != 0)

oss << "+0x" << std::hex << dwDisplacement << std::dec;

}

// Finally any file/line number

IMAGEHLP_LINE lineInfo = { sizeof(IMAGEHLP_LINE) };

if (SymGetLineFromAddr(hProcess, (DWORD)address, &dwDisplacement, &lineInfo))

{

char const *pDelim = strrchr(lineInfo.FileName, '\\');

oss << " at " << (pDelim ? pDelim + 1 : lineInfo.FileName) << "(" <<

lineInfo.LineNumber << ")";

}

return oss.str();

}

The main complication with the two APIs used is that both need
the size of the data structures to be set up correctly before the call
is made.

Failure to do this leads to rather inconsistent results. Particular
care is needed for the IMAGEHLP_SYMBOL since the structure is
variable size.

Note too that the documentation for DbgHelp refers to some

newer APIs (SymFromAddr, SymGetLineFromAddr64)
which do the same thing as these two.

I have used the older calls here since they are available on a much
wider range of versions of the DbgHelp API.

The stack walking code sets up the structure used to hold the
current stack location and then uses the stack walking API to obtain
each stack frame in turn.

All the source code for this article is available at:
http://www.howzatt.demon.co.uk/articles/SimpleSymbolEngine.zip

Copyright (c) Roger Orr - rogero@howzatt.demon.co.uk $Revision: 1.11 $ $Date: 2005/05/07 17:13:50 $

13

overload issue 67 june 2005

void SimpleSymbolEngine::StackTrace(PCONTEXT pContext, std::ostream & os)

{

os << " Frame Code address\n";

STACKFRAME stackFrame = {0};

stackFrame.AddrPC.Offset = pContext->Eip;

stackFrame.AddrPC.Mode = AddrModeFlat;

stackFrame.AddrFrame.Offset = pContext->Ebp;

stackFrame.AddrFrame.Mode = AddrModeFlat;

stackFrame.AddrStack.Offset = pContext->Esp;

stackFrame.AddrStack.Mode = AddrModeFlat;

while (::StackWalk(

IMAGE_FILE_MACHINE_I386,

hProcess,

GetCurrentThread(), // this value doesn't matter much if previous one is a real handle

&stackFrame,

pContext,

NULL,

::SymFunctionTableAccess,

::SymGetModuleBase,

NULL))

{

os << " 0x" << (void*) stackFrame.AddrFrame.Offset << " "

<< addressToString((void*)stackFrame.AddrPC.Offset) << "\n";

}

os.flush();

}

The code provided here is specific to the x86 architecture - stack
walking is available for the other Microsoft platforms but the
code to get the stack frame structure set up is slightly different.

The context record is used to assist with providing a stack trace
in certain ‘corner cases’. Note that the stack walking API may
modify this structure and so for a general solution you might take
a copy of the supplied context record.

The stack walking API has a couple of problems. Firstly, it quite
often fails to complete the stack walk for EXEs or DLLs compiled
with full optimisation. The presence of the PDB files can enable
the stack walker to continue successfully even in such cases, but
this is not always successful. Secondly, the stack walker assumes
the Intel stack frame layout used by Microsoft products and may
not work with files compiled by tools from other vendors.

Conclusion

I hope that this article enables you to get better access to
symbolic information when diagnosing problems in your code.

Various tools in the Windows programmer’s arsenal use the
DbgHelp DLL. Examples are: the debugger ‘WinDbg’ from the
Microsoft Debugging Tools, the pre-installed tool ‘Dr. Watson’, and
Process Explorer, from www.sysinternals.com.

If you build symbol files for your own binaries, tools like these
can then provide you with additional information with no additional
programming effort.

You can also provide symbolic names for runtime diagnostic
information in a similar manner to these tools with a small amount

of programming effort. I have shown here a basic implementation
of a symbol engine class you can use to map addresses to names or
provide a call stack for the current process.

I intended it to be easy to understand both what the code does
and how it works. This example can be used as a basis for more
complicated solutions, which could also address the following
issues:
● the code is currently not thread-safe since the DbgHelp APIs

require synchronisation.
● the code only handles the current process, it can be generalised

to cope with other processes. Incidentally this provides a good
example of why the singleton is sometimes described as an anti-
pattern!

● no use is made of the APIs giving access the local variables in
each stack frame.

Happy debugging!
Roger Orr

roger0@howzatt.demon.co.uk

References

[Orr2004] ‘Microsoft Visual C++ and Win32 Structured Exception
Handling’, Overload 64, Oct 2004

[DbgHelp] http://www.microsoft.com/whdc/devtools/
debugging/default.mspx

[Robbins] Debugging Applications for Microsoft .NET and Microsoft
Windows, John Robbins, Microsoft Press

14

overload issue 67 june 2005

“The C++ Community”
- Are We Divided by a
Common Language?

by Alan Griffiths

Recent discussions on the WG2 “core” reflector1 have involved
considerable speculation about the proportions of the C++
community that employ different memory management
strategies. While the comparative sizes of their constituencies
are unclear it was apparent that both “smart pointers” and
“garbage collection” have adherents and also that users of each
approach had limited experiences of designs that deploy the
other strategy.

Over the last month or so there has also been a newsgroup thread
on c.l.c++.m - “Smart Pointers” - where there are clearly parts of
the community on both sides of the question “are reference counted
smart pointers a useful design option”? (And at the time of writing
“garbage collection” isn’t one of the alternatives that has been
presented.)

There is a difference between these discussions - the protaganists
on the “core” reflector appear to be intent on learning from each
other’s experience, those on the newsgroup in evangelising. (Guess
which is the more interesting to follow.)

There are many problems that must be addressed by C++ developers
and, while the issues faced will vary from developer to developer,
memory management is an issue that must be addressed by almost all.

The example set by the “core” working group is too little and
too late: that the C++ community is failing to share and to build
upon the experience of employing different memory management
strategies signifies that there is something wrong.

It Matters That Developers Can’t
Talk to Each Other

A passage from “The IT Team” [Lees03], reproduced in Figure 1,
illustrates why it matters that developers communicate ideas.
A project balkanised according to the dialects its codebase is
being written in isn’t going to run as smoothly or efficiently as
one that is unified in its approach. The costs are often hidden -
developers may be reluctant to touch “foreign” code, reuse

Adaptation of the stage model of team development (Tuckman and Jensen 1977)

There is an ability to avoid or work through group conflict and
an understanding of the strengths and weaknesses of team
members. People adapt for the betterment of the team.

Conflict is avoided. There is a sense of cohesion. More
realistic parameters are set for behaviour and performance.

There is a conflict amongst group members, choosing sides
and bids for power. Goals may be unrealistic.

The team goes through an orientation phase in which people
famiilarise themselves with the task and acceptable group
behaviour is established.

1 “Core” is the group working on the part of the C++ standard that defines the
language.

“Tuckman (1965) identified four developmental stages for a team to which Tuckman and Jensen (1977) added a final stage of adjourn.
The figure provides an adaptation of that model which attempts to illustrate that:-

☛ A team may spend an undetermined and variable amount of time at each stage
☛ May not reach all stages
☛ May regress to previous stages.
“It is estimated that three fifths of the length of any team project, from start to finish, is taken up with the first two stages, Forming

and Storming.”
(Robbins, Finley 1996 p.191).
“As these stages are non-productive the ease with which a team moves through them will have significant impact on the team’s

productivity.”

Figure 1 - A Passage from “The IT Team”

opportunities may be missed, barriers are raised to refactoring -
all things that can be attributed to other causes.
I’ve seen it - in a codebase of only 50KLOC I’ve seen four
date+time classes, three classes for parsing XML and a mass of
utilities for converting strings from one implementation to another.

C++ Dialects

The C++ language deliberately sets out to support a wide range
of usage styles, and a number of usage styles are easily
identifiable:
● Procedural programming (“a better C”)
● Object based programming (“Data abstraction”)
● Object-Oriented programming
● Generic programming
● Embedding of domain specific languages
● Template metaprogramming

Even aspects of functional or generative programming can be
tackled, although these are generally deployed to support the
above approaches. While this flexibility provides the opportunity
to select the most appropriate and effective approach in any given
context, it also provides plenty of scope for selecting an
inappropriate approach for the problem in hand.

The downside to this wide ranging support for different styles
of use is that the developer community has split into groups using
distinct dialects. Does this matter? I think it does, because it impacts
the ability of C++ users to communicate with one another. While
dialects do develop in other languages, C++ seems to be unique in
its propensity for them to wreck a project, dividing developers into
groups that do not communicate well.

In “Is high-church C++ fair?”[Kelly01] Allan Kelly describes his
experience of multiple dialects in the organisation he was working in.
Allan describes four dialects (I’m sure we’ve all seen them) as follows:

“High-church – “the kind of C++ you see in C++ Report” : as I
said above, templates, standard library, interface inheritance more
important than implementation inheritance, full use of language
features and new keywords

Low-church – “the kind of C++, C programmers write up to the
kind of C++ in the MFC” : few templates, roll your own data
structures, lots of void casts, implementation inheritance more
important than interface inheritance

C – “the kind of C++ which is just C with classes” : we can
probably all recognise this, and probably wrote a bit of it ourselves
in the early days. However, after a short while we are either high-
church C++, low-church C++ or, last but not least.....

Bad C++ - “where the developer writes C and has picked up a
few bits of C++ and doesn’t realise what they are doing” : no
understanding of copy constructors, inheritance (of all kinds!) used
without a clear reason, destructors releasing resources before they
are finished with, no standard library, lots of void casts, unnecessary
and inappropriate file dependencies.”

Allan goes on to discuss the impact these have on his work.

“Once again it has come time for me to hand over a project and
move on. This is a fairly big project, very important to the company,

and, as I’m leaving the company it’s important that the hand-over
goes smoothly.

The code should be readable to most Overload readers (sorry, no
examples), and most would not look out of place in C++ Report, in
other words, it’s what I call “high-church C++”, it uses the language
to the full, is littered with design pattern references (indeed, the main
loop is a command pattern), a few templates, plenty of standard
library, and inheritance is used mainly for interface not
implementation inheritance.

…
I have deliberately used the terms high-church and low-church,

not only because of well know religious programming wars but
because both sides have their arguments (high-church claims to be
more object oriented, while low-church claims to be more
understandable to average programmers) and because it is easy for
high-church to look down on low-church as less than true, while
low-church regards high-church as fanatical.

…
Returning to my own project, if I where to take over a similar one,

or someone of my experience where to take over this project I do
not think they would have a problem. Indeed, they would probably
pick up the code and understand it quiet quickly, the abstractions
should mean you can understand the high-level side without
understanding the details. Only when the details change do you need
to understand them.”

While these comments focus on only two of the dialects they
do illustrate the divisions that can occur between the
corresponding congregations Not only does each group have
difficulty understanding the other, each also believes that theirs
is the correct way to use the language. What is also interesting
from this description is the implication that the team in which
Allan was working does not seem to have resolved these
differences and remains in the “storm” phase of team
development.

The Origin of Dialects

I hope that I’ve demonstrated that C++ dialects matter - because
they can dramatically reduce the effectiveness of the team. But
where do these dialects come from? And why is C++ particularly
prone to these problems?

Developers frequently move to C++ from another language and
bring with them an approach that fits that language well. By design
C++ allows them to do this - and, in doing so, fails to encourage an
evaluation of the appropriateness of their approach in C++. As a
result the developer works in a creole2 formed of these two
languages. In the early days of C++ the C/C++ creole was
commonplace, but Java/C++ has gained recently.

Even developers coming first to C++ are not immune to this
effect - they can inherit it from authors, trainers and colleagues.
Kevlin Henney in “The miseducation of C++” [Henney01]
identifies three families of C++ dialects and goes on to relate them
to the way that C++ is taught.

“Early C++: The first public incarnation of the language formed
part of a growing interest in the use of object-oriented development

15

overload issue 67 june 2005

2 A creole is a language descended from a pidgin that has become the native language
of a group of people.
http://en.wikipedia.org/wiki/Creole_Language

16

overload issue 67 june 2005

in industry. Early C++ was a minimal language, extending C with a
stronger type system, and the notion of classes with public and
private access, single inheritance and operator overloading.

Classic C++: This is the C++ that many long-time C++
programmers know, and many new C++ programmers are still
effectively being taught. It brought abstract classes, multiple
inheritance and further refinements into the language. Classic C++
also introduced templates and exceptions, although they took longer
to mature than other, more obviously evolutionary features. Where
templates are used, it’s normally to articulate container classes and
smart pointers. Classic C++ saw the greatest proliferation in dialects
as it was in this period that the language underwent standardisation.
Changes ranged from the trivial to the major, from bool to
namespace, from the proper incorporation of the standard C library
to the internationalisation overhaul of I/O. Many projects still bear
the scars of this portability interregnum.

Modern C++: This is where we are now. The language was
standardised in 1998, providing a fixed target for vendors and a
consolidation in thinking and practice. Exception safety is now a well
understood topic and the Standard Template Library (STL) part of the
library has introduced the full power of generic programming to the
language, raising templates from being merely a way to express
containers to an integral part of design expression in C++.”

Despite the implication of a timeline in this classification, the
dialects of Early C++ have not been assigned to the dustbin of
history. They are still living languages: I’ve recently had reports
of a heavily MACRO based style of C++ in one organisation that
sounds as though it belongs to this group.

And “Modern C++” isn’t the final, definitive way to use the
language: there are also dialects that move beyond the scope of
Modern C++ and into generative techniques. These have their place
but, like anything else, when seen as a “shiny new hammer” the
effect is to introduce complexity that serves only to postpone
necessary design decisions and introduce uncertainty.

What the “timeline” does reflect is that there has been an
evolution in the thinking regarding effective ways of using C++:
the “later” dialects are the result of learning from the use of the
earlier ones. As a consequence they generally avoid problems that
arise in using the “earlier” dialects and, in consequence, are more
capable of handling complexity. Thus resource management is
problematic in Early C++ dialects, requiring constant attention,
while Classic and Modern dialects incorporate idioms that free the
developer from this constant distraction. (While this evolution of
the idioms in contemporary usage provides for better solutions to
harder problems it also creates a difficulty - a style that was
considered “best practice” a few years ago might now be dismissed
as misguided or sub-optimal.)

C++ Accents

There are also some more superficial elements that contribute to
the separation of dialects in C++. Unlike the factors that separate
Early, Classic and Modern C++ (or High Church/Low Church
C++) these don’t have a direct impact on the technical
effectiveness of the language - and they can be found in dialects
of all eras. But they are highly visible, and present a barrier to
communication between their adherents:
● lower_case or CamelCase
● brace placement

● prefixes and suffixes
● …

I’m sure we all have preferences - mine is for consistency. (As I
like to use the standard library and boost, I like to be consistent
with the style these adopt.)

Solutions

The range of C++ dialects is vast - Allan describes four major
groupings and Kevlin three, but a closer examination would
probably find at least one for every C++ project in the world. If
different developers in a team are comfortable with different
dialects then these incompatibilities between them can make it
very hard for the team to reach the performance levels it would
otherwise be capable of.

Later in “Is high-church C++ fair?” Allan addresses one
“solution”:

“So may be my question is should really be turned onto
management, the developers they hire, appoint to projects and
training courses they use. But, most manages [sic] (well those I have
encountered) gave up programming when they got the keys to the
company car. If I actually asked them what I should write, I think I
would be told to write low-church C++, but this would take me
longer (more code would need to be written and more testing) and
I do think it would be less maintainable in the long run. But without
two individuals writing the same project in low and high C++ how
can we quantify this?”

Allan returns to the subject in Overload 65: his article “The
Developers New Work” [Kelly05] examines a number of non-
solutions:

“We could “dumb down” our code, make it really simple. Trouble
is, we have real problems and we need real solutions. To tackle the
same problem with “low Church code” just moves the complexity
from the context to an overly verbose code base.

We could just hire real top-gun programmers. This isn’t really
a solution; once again we’re pushing the problem down in one
place and seeing it come up in another. Since there aren’t that
many super-programmers in the world finding them is a problem,
keeping them a problem, motivating them is a problem and even
if we overcome these problems it’s quite likely that within our
group of super-programmers we would see an elite group emerge.

Hiring a group of super-programmers is in itself an admission
of defeat, we’re saying: We don’t know how to create productive
employees; we’re going to poach people from companies who
do. In doing so we move the problem from our code to
recruitment.

So, maybe the solution is to get management to invest more in
training. But this isn’t always the solution. The mangers I had when
I wrote High Church C++ tried to do the right thing. Is it not
reasonable to assume that someone who has been on a C++ course
can maintain a system written in C++? As Alan Griffiths pointed
out, this is about as reasonable as expecting someone that has been
on a car maintenance course to change the tires during an F1
pitstop.

17

overload issue 67 june 2005

The answer of course is: No, knowing C++ is a requirement for
maintaining a C++ based system but it isn’t sufficient of itself. One
needs to understand the domain the system is in and the system
architecture - this is why Coplien and Harrison say you need a whole
year to come up to speed.

How do we communicate these things? The classical answer is
“write it down” but written documentation has its own problems:
accuracy, timeliness, readability, and memorability to name a few.
In truth, understanding any modern software system is more about
tacit knowledge than it is about explicit knowledge.”

Well, that tells us a lot about what not to do, but in real projects
we still need an answer.

Given my metaphor, dialects of spoken languages, I’m sure that
my solution won’t be a surprise to you. One can learn something
of a language from dictionaries and grammars, but the only way to
become fluent is to use it to communicate with others. That means
reading and writing code - in the appropriate dialect - and
discovering if it is understood by other developers.

Allan’s answer [Kelly05] is similar:

“It is no longer enough to just cut-code. Sure you may need to
do this too, but if you want to use modern C++ (or modern Java,
Python, or what ever) it is your job to lead others in a change. And
change doesn’t happen without learning. Indeed, learning isn’t really
happening if we don’t change, we may be able to recite some piece
of information but unless we act on it we haven’t really learnt
anything.

So, when it comes to improving your code it isn’t enough to sit
your colleagues down and tell them that a template-template
function is the thing they need here and expect them to make it so.
You’ve imparted information, you may even have ordered them to do
it, but they haven’t been led, they haven’t learnt and they won’t have
changed - they’ll do the same thing all over again.

Simply informing people “This is a better way” doesn’t cut it. You
can’t lecture, you can’t tell, you can’t enforce conformance. You need
to help others find their own way to learn. Helping them find that
way goes beyond simply giving them the book, they need to be
motivated, people who are told aren’t motivated, people who are
ordered aren’t motivated; motivating people requires leadership.

…
Hope lies not in code, not in machines but in people. If we believe

that Modern C++ is best - and I truly, rationally, believe it is - then I
have no choice other than to develop the people around me - and
that belief is rational too.”

I’ve more experience with this approach than Allan appears to
have, and there is a problem that he appears unaware of: ten years
(or so) ago I introduced my colleagues to elements of the latest
thinking on how to use C++ - they were new to the language and
I followed the literature. They adopted many of these idioms -
things like “smart pointers” to managed object persistence, even
some bits of STL. Then I left the organisation.

I’m still in touch with the development group and some of the
developers there. Ten years ago “Classic C++” was the best way
we knew to use the language, but C++ is a living breathing language
and new idioms are being formed all the time. When I left these

developers were no longer exposed to the “latest thinking” - like
most of the industry they didn’t “do books” (DeMarco and Lister -
in “Peopleware” - report that the typical developer reads fewer than
one technical book a year). They were not motivated to seek out
new solutions in a subject where they were not experiencing
problems. Nowdays a dialect of Classic/Low Church C++ is deeply
entrenched and Modern/High Church C++ has passed them by. By
failing to engage them directly in the wider community I left a
situation where a local dialect was going to develop over time.

The lesson I take from this is that the goal should be more
ambitious than ensuring a lingua franca within the team, more than
introducing a contemporary dialect of C++. Developers must be
exposed to developing ideas and engaged in the community
developing them.

So What Works?

I don’t have a magic bullet - I doubt that one exists. The different
dialects of C++ have developed in response to genuine
circumstances.

However, in the context of an individual project or team there is
a range of things that, if employed sensibly, can make things better
rather than worse:

● Coding guidelines? - These are safe if they deal with “accents”,
but can entrench obscure and obsolete dialects unless they are
carefully reviewed, living documents that change as ideas are
revised. See http://groups.yahoo.com/group/boost/
files/coding_guidelines.html for a good example.

● Training courses? - These can expose those that attend to new
idioms, but they cannot ensure they are either internalised or
adopted by others.

● Code Reviews? - If properly conducted these can help the team
settle on a common dialect, or at least become familiar with those
in use. On the other hand they can be a cause of friction and
entrenchment.

● Pair programming? - I’ve heard good reports of this - and bad.
My experience does not include it working as a routine practice
but I’ve been convinced that it can produce good results “when
done properly”.

● Coaching/mentoring? - Good coaches/mentors are hard to find.
Bad ones are worse than useless.

● Reading and writing about C++? - People that read books and
other publications are aware of wider community, but only those
that participate (in newsgroups, at conferences, or writing books
or for magazines) are truly involved in the community.

Conclusion

Divisions in the C++ community can cost in a number of ways,
the most obvious being the inability of team members to
communicate in the language. Another cost, that is easier to
overlook, is that as techniques are developed to address the
problems that developers face, they are not known outside the
part of the community that develops them. This can lead to the
“re-inventing of wheels” - I’ve lost count of the different smart
pointers I’ve encountered (most of them with avoidable bugs).
Even worse, it can lead to “living with” avoidable problems - the
typical C++ program leaks resources despite the fact that RAII
(and the techniques for implementing it) have been known to
some parts of the community for a long time.

[concluded at foot of next page]

18

overload issue 67 june 2005

Naturally, everyone that reads this is making an effort to be part
of the solution instead of being part of the problem. However, I urge
you to make an effort to be more involved and to seek ways to
involve your colleagues in the wider community.

Alan Griffiths
alan@octopull.demon.co.uk

References

[Kelly01] “Is high-church C++ fair?”, Allan Kelly,
http://www.allankelly.net/writing/WebOnly/

HighChurch.htm

[Lees03] The IT Team, Sarah Lees 2002
[Henney01] “The miseducation of C++”, Kevlin Henney,

Application Development Advisor, April 2001,
http://www.two-sdg.demon.co.uk/curbralan/

papers/TheMiseducationOfC++.pdf

[Kelly05] “The Developers New Work”, Allan Kelly, Overload
65:
Tuckman B (1965) in Rickards (2000). ‘Development
Sequence in Small Groups’. Psychological Bulletin Vol.63/6
pp.384-399.
Tuckman B and Jensen M (1977) in Rickards (2000). ‘Stages of
Small Group Development Revisited’. Group and
Organizational Studies, Vol.2 pp.419-427.

class Observer
{
public:

Observer(Event<int>& event)
: callback(bind_1st(memfun(&Observer::handler), this))
, connection(event, &callback)

{}

private:
void handler(int)
{

clog << "Observer’s event handler." << endl;
}

typedef
Callback::Adapter<void (Observer::*)(int)>::type
Callback_Type;

Callback_Type callback;
Callback::Connection<int> connection;

};

Exhibit 1 - The evidence for reckless coding.

The Trial of the
Reckless Coder

by Phil Bass

An Arrest Is Made

“Joe Coder, I’m arresting you on suspicion of coding without due
care and attention, and with reckless disregard for the welfare of
other code users.” I had said this many times before, but this time
I was uneasy. Something in Joe’s eyes suggested there might be
more to this case than I’d imagined.

I hesitated, suddenly unsure of the words of the standard caution.

“You do not need to say anything, but anything you do say will be
written down and may be used in evidence against you.” It was the
old caution, the one you heard in films and T.V. programmes. I
blundered on, hoping no-one would notice. “Take him away,
sergeant”, I said a little too loudly. At least I’d resisted the
temptation to say “Book ‘im, Danno!”

Interrogation

My head was still a little fuzzy from the previous night. Not
enough water in my nightcap, probably; or too much whisky. As
we prepared to interrogate Joe I had forgotten my qualms about
the Bound_Callback<Pmf> class template [1]. “Did you
write this?” I asked, showing Joe the following code:

“What if I did?” said Joe. “Look, son”, I said gently, “the
copyright notice has your name on it and the version control log
says you checked it in, so there’s no use denying it.” Joe
shrugged. He wasn’t going to make it easy for me, but the

evidence was solid. “That’s a lot of boilerplate code”, I
continued. “Is it?” Joe responded. His voice sounded innocent,
but his eyes were defiant. I wasn’t going to waste time in a verbal
sparring match, so I showed him a shorter, simpler alternative:

[continued from previous page]

19

overload issue 67 june 2005

Joe humphed. He was obviously unimpressed. It was a puzzling
reaction, but I pressed on. “That Bound_Callback template
makes things much easier for the author of the Observer class,
doesn’t it?” Joe said nothing, but the expression on his face
challenged me to prove my point. “Doesn’t it?” I yelled, banging
the desk with my fist. “Perhaps”, said Joe, unflustered.

“Perhaps?” I exclaimed. “There’s no ‘perhaps’ about it, my
lad...” Joe interrupted me. “Look, granddad, you haven’t given me
a specification for the Bound_Callback template, so how can I
tell whether it’s useful?”

I had to admit he had a point and wrote this on the whiteboard:

class Observer
{
public:

Observer(Event<int>& event)
: callback(event, &Observer::handler, this)

{}

private:
void handler(int)
{

clog << "Observer’s event handler." << endl;
}

Bound_Callback<void (Observer::*)(int)> callback;
};

Exhibit 2 - Showing consideration for other code users.

Intent
A bound-callback is a callback that is bound to an event for the whole of its life. The Bound_Callback<Pmf> class
template implements the bound-callback concept for the common case in which the callback invokes a member function.

Synopsis

template<typename Pmf>
struct Bound_Callback
: Callback::Function<typename argument<Pmf>::type>

{
typedef typename argument<Pmf>::type Arg;
typedef typename result<Pmf>::type Result;
typedef typename class_<Pmf>::type Class;

Bound_Callback(Event<Arg>&, Pmf, Class*);
~Bound_Callback();

Result operator()(Arg);
};

Note: Here, argument<Pmf>, result<Pmf> and class_<Pmf> are simple class templates with a nested typedef. They
are known as meta-functions because they take a type parameter (the pointer-to-member-function type) and ‘calculate’
another type (the argument type, result type and class of the member function). Further information on meta-functions in
general and these meta-functions in particular can be found in [1].

Types

Pmf is the type of a pointer to the member function to be invoked.
Arg is the type of the parameter of the member function to be invoked.
Result is the type of the result of the member function to be invoked.
Class is the class of which the function to be invoked is a member.

20

overload issue 67 june 2005

// Try to connect handler(int) to Event<short>

class Observer

{

public:

Observer(Event<short>&)

: callback(event, &Observer::handler, this)

{} // error!

private:

void handler(int);

Bound_Callback<void (Observer::*)(int)> callback;

};

Exhibit 3 - Implicit conversions not supported.

Constructor

Bound_Callback(Event<Arg>& event, Pmf pmf, Class* ptr);
Stores a reference to event; copies and stores the pointer-to-member-function pmf and the pointer ptr; connects *this to
event.

Destructor

Disconnects *this from event.

Function Call Operator

Result operator()(Arg arg);
Invokes the member function pointed to by pmf on the object pointed to by ptr passing the value arg and returning any
result.

“The event publishes short values, the handler function accepts
int values and there’s an implicit conversion from short to
int. You’d expect it to work, but it doesn’t.” There was a hint of
triumph in Joe’s voice. He must have seen the puzzled look on
my face because he carried on, patronisingly. “Look, granddad,
the Bound_Callback<Pmf> constructor takes an Event<int>&
as its first argument and we’re giving it an Event<short>&.
There’s no implicit conversion from Event<short>& to
Event<int>&, so you get a compilation error.”

He was right. I’d been drawn into an intellectual boxing match
and I was losing on points. Instinctively, I began to defend the
Bound_Callback<Pmf> code. “Yeah, but that’s outside the
scope of the Bound_Callback<Pmf> specification”, I
countered. Joe smiled smugly. “My point, precisely”, he sneered.

The Case for the Defence

I remembered Joe’s smugness when the case came to trial and his
defence counsel addressed the jury. “You have heard the
prosecution allege that the defendant has been coding with
reckless disregard for the welfare of other code users. By their

own admission, their case rests almost entirely on the evidence
presented in Exhibit 1 and the alternative interface in Exhibit 2
that they have described as more “user friendly”. The defence,
however, will show that Exhibit 2 is only useful in a rather narrow
range of programs - much narrower, in fact, than Exhibit 1. It is
our contention that a tool of limited applicability shows greater
disregard for code users than one that, in the spirit of C++, allows
the user full freedom of expression.”

The defence barrister was George Sharpe, an old adversary, and
he was revelling in the usual obscure style of language used in
courtrooms across the world. My attention began to wander. I
couldn’t help feeling sorry for the jury. Did they understand what
the lawyer was saying? Did they care? Perhaps they were thinking
about what they would have for lunch or whether the neighbour
had remembered to take their dog for a walk. Suddenly, I realised
I had been called for cross-examination.

“Detective Inspector Blunt, how would you define an Event?”
Sharpe always starts with an easy question. I gave the stock
answer, “An Event is a sequence of pointers to functions.” The
barrister repeated my answer as a question. “A sequence of

I was quite pleased with myself. Joe, however, remained
unimpressed. “Doesn’t seem very flexible”, he remarked. “What
do you mean?” I said tetchily, “There’s nothing inflexible about
that!”

It was a mistake. Joe stood up, his eyes sparkled and he attacked

my whiteboard specification with vigour. “Well, for a start”, he said,
“the callback function’s argument has to be exactly the same type
as that published by the event.”

He scrawled the following example on the whiteboard:

21

overload issue 67 june 2005

pointers to functions?” He says he does this for the jury’s benefit
– to be sure they understand. But I think it’s just to annoy me.
“That is the standard definition”, I said. “I see. And this covers
all kinds of sequence, all kinds of pointer and all kinds of function,
does it?” I answered in the affirmative and Sharpe’s questions
flowed smoothly on. “So, for example, a sequence might be a list
or a set or an array?” Before I could answer Sharpe fired another

salvo. “A pointer might be a built-in pointer, an auto_ptr or a
shared_ptr? And a function might be a member function, a non-
member function or a function object?” He wasn’t giving me time
to think and I sensed he was preparing a trap. I responded with a
cautious, “In principle, yes.”

There was a pause while Sharpe presented Exhibit 4 to the court.

// A bound callback that calls a member function.
template<typename Pmf>
class Bound_Callback
: public Callback::Function<typename argument<Pmf>::type>

{
public:

typedef typename result<Pmf>::type Result;
typedef typename class_<Pmf>::type Class;
typedef typename argument<Pmf>::type Arg;

Bound_Callback(Event<Arg>& e, Pmf f, Class* p)
: event(e), function(f), pointer(p),
position(event.insert(event.end(), this))

{}

~Bound_Callback() {event.erase(position);}

virtual Result operator()(Arg arg)
{

return (pointer->*function)(arg);
}

private:
Event<Arg>& event;
Pmf function;
Class* pointer;

typename Event<Arg>::iterator position;
};

Exhibit 4 – A bound callback for member functions.

“Now, Detective Inspector, I am sure you recognise this piece
of code.” Sharpe placed a sheet of paper in front of me and
continued, “It is the code you wrote to demonstrate that a
bound callback with a user-friendly interface can be
implemented, is it not?” I nodded and Sharpe pressed on before
the judge could remind me to answer so that the court could
hear.

Turning to the jury he explained that the test program for
Exhibit 4 used an Event<int> that is a list of built-in pointers
to the abstract base class Callback::Function<int>. Then,
turning back to me, he asked “Does this code work for Events
that are sets of pointers to functions?” “No” I replied steadily.
“No? Well then, does it work for arrays of pointers to functions?”
I did not respond. “Does it work for lists of smart pointers to
functions? Does it work for lists of pointers to ordinary C++
functions, or function objects not derived from
Callback::Function<int>? Does it work in any of these

situations, Detective Inspector?” I started to say that it was never
intended to be that general, but Sharpe cut me off. “Yes or no”
he demanded. I looked to the prosecution team for support, but
they didn’t stir. I turned towards the judge to appeal against this
line of questioning, but he was entirely unsympathetic. “Yes or
no, Detective Inspector Blunt?” thundered Sharpe. “No, it doesn’t
support those uses.” I confessed.

A Brief Interlude

I was livid. It looked as though Joe Coder might get off on a
technicality. More importantly, I had been made to look a proper
Charlie. At the next recess I called the team together and
demanded to know why no-one had anticipated Sharpe’s under-
hand tactics. There were no answers. There were plenty of
sheepish faces and lots of excuses, but no answers.

There was an awkward silence. A young police constable tried
to cheer me up. “Sir?” I turned and raised an eyebrow, inviting her

22

overload issue 67 june 2005

to continue. “Sharpe was talking about auto_ptr and
boost::shared_ptr - smart pointers that manage the lifetime of
their target object.” I didn’t see how this was helping. “Well, sir,
that makes no sense. The Bound_Callback<Pmf> classes are
designed to be members of the Observer class, so their lifetime is
tied to the Observer’s. And, anyway, you can’t put auto_ptrs in
standard library containers.” “I know that, Jenkins”, I snapped,
“you, know that and Sharpe certainly knows that, but do you think
the jury realises it?”

The Judge’s Summing Up

Justice Bright is renowned for his clear and insightful summing
up. He reminded the jury that the charge was coding without due
care and attention and with reckless disregard to the welfare of
other code users. “In this case, the intentions of the defendant are
crucial.” he explained. “If he believed his fellow programmers
would be best served by generic, but somewhat verbose facilities
for bound callbacks you must find him not guilty. If, on the other
hand, he thought that a more limited, but more user-friendly
facility was better you must find him guilty as charged. In
reaching your verdict you do not need to consider the defendant’s
competence as a programmer. Better and worse solutions to the
bound callback problem undoubtedly exist, but we can not
condemn a man for failing to reach perfection nor is it the
responsibility of this court to apply remedies for lack of ability or
training.”

The Jury Retires

The judge’s words were going round in my head as we waited for
the jury to consider their verdict. The case would be decided by
the jury’s assessment of the defendant’s character, but the
technical question behind the trial remained unresolved. Exhibit 1
illustrates a general, but verbose mechanism for implementing
bound callbacks; Exhibit 2 shows a more limited, but easier-to-
use alternative. Could there be a bound callback that is both fully
generic and easy to use?
I tried to imagine what that perfect bound callback would look
like, but it was too big a problem to solve all at once.
Then I considered some specific Event types:
1 a list of pointers to abstract function objects (the common case),
2 an array of pointers to simple functions (the simplest case) and
3 a set of shared pointers to function objects (associative container

+ user-defined pointer).

What would callbacks bound to these types of Event have in
common? How would they differ? And how would they invoke
handler functions of any compatible type? I fell into deep
thought…

In case 1 the bound callback has to provide a concrete
implementation of the abstract function, its constructor should insert
a new pointer into the list and its destructor should erase the pointer
from the list. This is a generalisation of the code shown in Exhibit
4. Sketch 1 illustrates the idea.

Here, adapter is a meta-function that generates the type of a
concrete function object and iterator is a meta-function that
generates the list iterator type. This much was clear to me while
waiting for the jury’s verdict; the precise details could be worked
out later.

Case 2 is very different. No function object is necessary and
arrays do not support insert or erase operations. Instead, the
callback’s constructor could assign a function pointer to an array
element and the destructor could reset that array element to a pointer
to a no-op function. This would look something like Sketch 2:

template<typename Event, typename Function>
class Bound_Callback
{
public:

Bound_Callback(Event& e, const Function& function)
: event(&e)
, adapter(function)
, position(event->insert(event->end(), &adapter))

{}

~Bound_Callback() {event->erase(position);}

private:
Event* event;
typename adapter<Event,Function>::type adapter;
typename iterator<Event>::type position;

};

Sketch 1 – A bound callback for a list of pointers to abstract functions.

23

overload issue 67 june 2005

template<typename Position >
class Bound_Callback
{
public:

typedef typename target<Position>::type Pointer;
typedef typename target<Pointer >::type Function;
typedef typename result<Function>::type Result;
typedef typename argument<Function>::type Arg;

static Result no_op(Arg) {}

Bound_Callback(Position p, const Function& f)
: position(p)

{
*position = &f;

}

~Bound_Callback() {*position = no_op; }

private:
Position position;

};

Sketch 2 – A bound callback for an array of pointers to functions.

Although they are small class templates there are several
differences between Sketches 1 and 2. In particular, the
template parameter lists are completely different. The data
storage requirements and the constructor parameters are
different, too. In fact the differences are large enough to call

into question the whole idea of a single fully generic bound
callback.

In case 3 a concrete function object may need to be created, the
constructor would create a shared pointer and insert it into the set,
and the destructor would erase the shared pointer.

template<typename Event, typename Function>
class Bound_Callback
{
public:

typedef typename element<Event>::type Pointer;

Bound_Callback(Event& e, const Function& f)
: event(&e),
position(event->insert(make_pointer<Pointer>(f)))

{}

~ Bound_Callback() {event->erase(position);}

private:
Event* event;
typename iterator<Event>::type position;

};

Sketch 3 – A bound callback for a set of shared pointers to abstract functions.

This is similar to Sketch 1 except that a function object is
created on the heap; the make_pointer function template
creates the function object and returns a shared pointer to the
new object. An intelligent make_pointer function could select
an intrusive shared pointer if the user supplies a reference-
counted function object, or a non-intrusive shared pointer
otherwise.

In all three cases the bound callback might need to provide a
function adapter to convert the value published by the Event to the
type required by the user-supplied handler function. Sketches 1 and
3 already use a function adapter, so it can be extended for this
purpose. In Sketch 2, a function adapter would have to be
introduced specially.

[concluded at foot of next page]

24

overload issue 67 june 2005

Taming Complexity:
A Class Hierarchy Tale

by Mark Radford

Introduction

Some years ago, I was involved in the design of the software for
a security system1. The software had to process events from
various sensor devices detecting motion in the building.
However, consider the operation of such a system installed in a
typical office building: obviously alarms shouldn’t ring when
people are in the building during normal working hours. Actually
that’s not strictly correct: there may be areas of the building that
are normally off limits, and so should be monitored in normal
working hours. Further, there may be cases when people are
working during the night in certain parts of the building. Clearly
this security system needed to be flexible – i.e. it needed a lot of
configurability designing into it. To this end I had the task of
designing a logic engine in support of configurability far beyond
the simple description given above.

From this design comes the class hierarchy shown in Listing 1.
The trigger class represents a trigger event, i.e. an event that

potentially participates in the triggering of an alert. Motion being
detected in a certain area and a door that should be closed being
open, are both examples of triggers going active. Further, a trigger
can be a simple time interval, 1800-0800 for example – i.e. not
during daytime office hours. In the domain terminology, such
events are said to cause a trigger to “go active”. It is possible that
a single trigger event could trigger an alarm, motion being detected
in an off-limits part of the building, for example. However, motion
detected in certain (most) parts of the building between 1800 and
0800 – i.e. a combination of two trigger events – is the kind of
combination of events requiring an alert to be raised. This is where
the evaluator class hierarchy comes in. I don’t propose to go any
further into the problem domain analysis, but it turns out that when
two trigger events are of interest, there are two cases where it may
be necessary to raise an alert:
● The case where both triggers need to be active (logical AND),

and
● The case where either or both triggers need to be active (logical

OR)

The evaluator hierarchy shown in Listing 1 facilitates this, and
also leaves open the possibility of extending the system to handle
the logical XOR case. Note in passing, that I’m ignoring cases
where an alert is raised if only a single trigger goes active – these
do not form part of this illustration.

The C++ Three Level Hierarchy

I’ve used the evaluator class hierarchy and spent some time
explaining it, because I like the idea of a realistic example to
work with. The above comes from a real project, although what
I’ve shown is a simplified version for illustration purposes.

I’m using this hierarchy as an example of the three level
structures that are idiomatic in C++ class hierarchy design: interface
class (see [Radford] for an explanation of the term) at the top,
common (but abstract) implementation in the middle, and the most
derived classes forming the (concrete) implementations.

However the tale of this hierarchy has a slight twist in it. Let me
just digress for the moment and look at another three level hierarchy
– one I trust will need no explanation.

The circular_shape hierarchy, shown in Listing 2 on page 26,
uses the three level approach already discussed. However in this
case, the common_circular_shape class (the middle class)
captures state common across the concrete (most derived) classes,
while the derived classes themselves have their own specific state.
Also, note the constructors: there is a lot of repetition of code here,
in fact the constructors of circle and ellipse differ in name only.

Compare the circular_shape and evaluator hierarchies. In
the latter case, the concrete (most derived) classes have no state of
their own – all state is common and captured in the common
implementation. However, there is something and_evaluator and
or_evaluator have in common with circle and ellipse: they
are saddled with the repetitive constructor baggage. That is to say,
the derived classes must each have an almost identical constructor
just to initialise state that is kept entirely in a base class. The areas
of variability in and_evaluator and or_evaluator are:
● The name of the constructor – everything else about the

constructors is the same for both classes
● The two characters denoting logical operation in evaluate()–

other than that, the implementation of this virtual function is
exactly the same for both classes, and the same would apply if
an xor_evaluator were ever to be added

I began to think about merging these sketches into a single, truly
generic bound callback. The three possibilities took on geometric
shapes in my mind. They seemed to float before me, drifting around
like globules of oil in a lava lamp, rising, falling, merging, splitting.
It was relaxing, soothing.

Verdict

I woke up with a start. My sergeant’s hand was shaking my
shoulder. “Inspector, Inspector”, he was saying. “They’ve
reached a verdict.” I roused myself and went back into the
courtroom. The judge and jury filed in. The clerk of the court
went through the ritual of asking if the members of the jury were
all agreed. They were. “Do you find the defendant guilty or not
guilty?” Perhaps it was my imagination, but the foreman of the

jury seemed to pause for dramatic effect and then said in a clear
and confident voice, “Not guilty.”

So that was it. The prosecution I’d worked hard on for most of
the last 6 months had failed to achieve a conviction. It seemed a
waste. It wasn’t a big case, but it had given my team a purpose, a
reason to press on through the humdrum routine of police work, a
feeling of doing something worthwhile. “Oh well, you win some,
you lose some.” I told myself and turned to leave.

Phil Bass
Phil@stoneymanor.demon.co.uk

References

[1] Phil Bass, “The Curious Case of the Compile-Time Function”,
Overload 62, August 2004.

Acknowledgements

I would like to thank Mary Opie for suggesting the names Blunt
and Sharpe.1 That is, security of buildings, as opposed to networks.

[continued from previous page]

25

overload issue 67 june 2005

class evaluator

{

public:

virtual ~evaluator();

virtual bool evaluate() const = 0;

...

};

class common_evaluator : public evaluator

{

protected:

common_evaluator(const trigger* t1, const trigger* t2)

: one(t1), two(t2)

{}

const trigger& trigger_1() const { return *one; }

const trigger& trigger_2() const { return *two; }

private:

const trigger* const one;

const trigger* const two;

};

class and_evaluator : public common_evaluator

{

public:

and_evaluator(const trigger* t1, const trigger* t2)

: common_evaluator(t1, t2)

{}

private:

virtual bool evaluate() const

{

return trigger_1().active() && trigger_2().active();

}

};

class or_evaluator : public common_evaluator

{

public:

or_evaluator(const trigger* t1, const trigger* t2)

: common_evaluator(t1, t2)

{}

private:

virtual bool evaluate() const

{

return trigger_1().active() || trigger_2().active();

}

};

Listing 1: evaluator Class Hierarchy

Everything else is the same between these two classes (and this
also applies to a future xor_evaluator).

This suggests a need to investigate ways of simplifying the
design. Herein is the subject matter for the rest of this article.

I will investigate two ways to separate the commonality and
variability: one using delegation, and the other using static
parameterisation using C++ templates.

Approach Using Delegation

This approach draws on the STRATEGY design pattern [Gamma et
al]. First, let’s deal with the evaluate() virtual function – I’m
going to factor out and_evaluator and or_evaluator’s
implementations into and_operation and or_operation
respectively, and derive these from the interface class operation.
The resulting hierarchy is shown in Listing 3 on page 27.

26

overload issue 67 june 2005

class circular_shape
{
public:
virtual ~ circular_shape();

virtual void move_x(distance x) = 0;
virtual void move_y(distance y) = 0;

...
};
class common_circular_shape : public circular_shape
{
protected:
circular_shape(const point& in_centre)
: centre_pt(in_centre)
{}
point centre() const;

...

private:
point centre_pt;

};

class circle : public common_circular_shape
{
public:
circle(const point& in_centre, const distance& in_radius)
: common_circular_shape(in_centre), radius(in_radius)
{}

virtual void move_x(int x);
virtual void move_y(distance y);

...
private:
distance radius;

};

class ellipse : public common_circular_shape
{
public:
ellipse(const point& in_centre, const distance& in_radius)
: common_circular_shape(in_centre), radius(in_radius)
{}

virtual void move_x(distance x);
virtual void move_y(distance y);

...
private:
distance radius_1, radius_2;

};
Listing 2: circular_shape Class Hierarchy

The evaluator class no longer needs to be in a hierarchy. It
now looks like Listing 4. This design has the benefit that there is
no need for repetitive constructor code (the operation
hierarchy is stateless). However there is a disadvantage – the
lifetimes of operation objects must now be managed.

This can be addressed by taking the evolution of this design one step
further – i.e. operations being stateless can be taken advantage of
and, instead of using classes, function pointers can be used, as shown
in Listing 5 on page 28.

However even at this stage in the evolution of the design, a
crucial piece of commonality remains to be dealt with: the
operation::result() virtual function implementations still
differ only in the two characters denoting the logical operation.

Approach Using C++ Templates

This approach mixes run time polymorphism with static
parameterisation. In C++ terms, it mixes classes that have virtual
functions, with templates. (See Listing 6 on page 28).

27

overload issue 67 june 2005

class evaluator
{
public:
evaluator(
const trigger* trigger_1, const trigger* trigger_2, const operation* op_object)

: t1(trigger_1), t2(trigger_2), op(op_object)
{}

private:
bool evaluate() const
{
return op->result(*t1, *t2);

}

const trigger* const t1;
const trigger* const t2;
const operation* const op;

};
Listing 4: Non-Hierarchical evaluator Class

class operation
{
public:
virtual ~operation();

private:
virtual bool result(const trigger& one, const trigger& two) const = 0;

...
};
class and_operation : public operation
{
private:
virtual bool result(const trigger& one, const trigger& two) const
{
return one.active() && two.active();

}
};

class or_operation : public operation
{
private:
virtual bool result(const trigger& one, const trigger& two) const
{
return one.active() && two.active();

}
};

Listing 3: operation Class Hierarchy

The evaluator interface (base) class is just the same as it was in
the original three level hierarchy we started with, and this design does
not introduce a second hierarchy. The part that’s changed is the derived
classes – these have been replaced by a single class template called
evaluator_implementor, derived (publicly) from evaluator.
The evaluator_implementor class contains the state and
implements the evaluate() virtual function using a function object
supplied as a template parameter.

The idea is that and_evaluator and or_evaluator can now be
implemented in a very straightforward manner using the standard
library’s logical_and<> and logical_or<> function object
templates as template arguments:

typedef evaluator_implementor<std::
logical_and<bool> > and_evaluator;

typedef evaluator_implementor<std::
logical_or<bool> > or_evaluator;

Advantages:
● The hierarchy is much simplified. A three level hierarchy has

been collapsed into a two level hierarchy and there is only one
class at each level!

● There is only one implementation of evaluate() and only one
derived class constructor – thus eliminating the repetition of code
sharing much commonality.

28

Overload issue 67 april 2005

● The separation between commonality and variability is much
more clearly stated. C++ templates have been used to very
effectively express this separation of concerns. The structure is
expressed in a base class with one class template derived from
it. The implementation specifics are factored out into the
template parameter.

Disadvantages:
● With evaluator_implementor being a class template, there

is no way to avoid the implementation of evaluate() leaking
into the client code. This is not a major disadvantage and is
unavoidable in some template code. Nevertheless, I regard it as
being more desirable for such implementation leaks to be
avoided if possible. There is a straightforward mechanism for
dealing with this, which I’ll come back to in a moment.

class evaluator
{
public:
virtual ~evaluator();
virtual bool evaluate() const = 0;
...

};

template <typename relational_function> class evaluator_implementor
: public evaluator

{
public:
evaluator_implementor(const trigger* trigger_1, const trigger* trigger_2)
: t1(trigger_1), t2(trigger_2)
{}

private:
virtual bool evaluate() const
{
return relational_function()(t1->active(), t2->active());

}

const trigger* const t1;
const trigger* const t2;

};
Listing 6: evaluator Class Using Templates

bool and_function(const trigger& one,const trigger& two)

{

return one.active() && two.active();

}

...

class evaluator

{

public:

evaluator(

const trigger* trigger_1, const trigger* trigger_2, bool (*eval_op)(const trigger&,

const trigger&))

: t1(trigger_1), t2(trigger_2), op(eval_op)

{}

private:

bool evaluate() const

{

return op(*t1, *t2);

}

const trigger* const t1;

const trigger* const t2;

bool (*op)(const trigger&, const trigger&);

};

Listing 5: Function Pointers Replacing Classes

29

overload issue 67 june 2005

● The final disadvantage is very much one of pragmatics. There are
still very few programmers out there who are comfortable with
templates and template techniques. Although more and more are
becoming familiar with the STL, this only requires the knowledge
to use a template, whereas the design under discussion requires the
confidence to write one. In practice this usually means that if a
development group has a programmer who is happy to design/write
this sort of code, the programmer may be discouraged from doing
so because other members of the group will not be comfortable with
the code. It is sadly ironic that most working C++ programmers are
likely to be happier with a design containing the noise of more
repetition of code (and hence more opportunity to make a mistake)
and less clarity of intent, just because it doesn’t use a template.

Just before moving on, I need to illustrate the mechanism I
alluded to in the first disadvantages point above.

Rather than following the traditional approach of placing the
evaluator_implementor class template in a header file, it can
be placed in an implementation (typically .cpp) file. The
and_evaluator and or_evaluator typedefs can also be
placed in this implementation file. Client code does not need to see
the class template definition, or the typedefs, because all use of
objects is intended to be via the evaluator interface class. This
still leaves us with a slight problem – how can client code create
and_evaluator and or_evaluator objects? Well, they can’t
do so directly, but simple factory functions making it possible can
be provided. The code fragment in Listing 7 illustrates this.

The definitions of the factory functions are in the same
implementation file as evaluator_implementor. Therefore, both

implementation and instantiation of this class template are in the same
file, and its definition is never required anywhere else in the code.

Finally

When complexity occurs in design, attempts to pretend it isn’t
there lead inevitably to trouble. Complexity can’t be eliminated,
it must be managed.

While the delegation based approach had to be explored, it didn’t
really buy us very much. It solved only the problem of constructor
code repetition, but introduced the extra problem of managing more
objects. Taking the approach one step further – i.e. using function
pointers – eliminated this problem but the problem of repetitive
constructor code remained.

The approach using C++ templates, however, is an excellent
illustration of managing complexity by moving it out of the code and
into the programming language. In stating the advantages and
disadvantages of this approach I made the point about most
programmers still not being happy to write templates. Templates are
actually a complex feature of the C++ language, and no doubt this
accounts for the reluctance of programmers to adopt them. However,
the benefit of including a complex feature in the language is borne out
in the design using templates – it is an excellent illustration of the C++
language absorbing complexity, rather than allowing the complexity
to manifest itself in the actual code. This is the approach I adopted for
the design of the security system described in the introduction.

Mark Radford
mark@twonine.co.uk

// evaluator.h

class evaluator

{

public:

virtual ~evaluator();

virtual bool evaluate() const = 0;

...

};

evaluator* create_and_evaluator(const trigger* trigger_1, const trigger* trigger_2);

...

// evaluator.cpp

template <typename relational_function> class evaluator_implementor

: public evaluator

{

public:

evaluator_implementor(const trigger* trigger_1, const trigger* trigger_2)

: t1(trigger_1), t2(trigger_2)

{}

...

};

typedef evaluator_implementor<std::logical_and<bool> > and_evaluator;

typedef evaluator_implementor<std::logical_or<bool> > or_evaluator;

evaluator* create_and_evaluator(const trigger* trigger_1, const trigger* trigger_2)

{

return new and_evaluator(trigger_1, trigger_2);

}

...

Listing 7: Factory Functions

[concluded at foot of next page]

30

overload issue 67 june 2005

Grain Storage MIS:
A Failure of Communications
by Phil Bass (27 March 1998)

Introduction

In the early 1980s I was given full responsibility for a software
development project for the first time. A Northumbrian farmer
bought, sold and stored grain on behalf of other farmers. The
Sunday colour supplements were writing about the new “micro-
computers” and this farmer saw an opportunity to automate the
administration of his business. It was my job to find out what he
needed and build a suitable software system. The project was a
nice little earner for my employer, but in every other respect it
must be regarded as a failure. The rest of this paper examines
what went wrong.

The Client’s Concept of “Computer”

From the farmer’s point of view a computer was a box with lots
of flashing lights which, by some technical wizardry, performed
all the administrative functions of a business. A micro-computer
with a floppy disk or two and a printer would do everything his
business needed. And all he had to do was buy one.

The Client’s Concept of “Software”

We tried to explain that it wasn’t quite as simple as that.
Computers need software to tell them what to do. He would need
to choose what software to use. In particular, he would need to
decide whether to use an off-the-shelf package, have something
tailored to his needs or have some software written specifically
for his business. He looked at us as if to say, “It didn’t sound that
complicated in the Sunday Times”.

The Client’s Concept of “Consultant”

Of course, we could advise him, but expert advice wasn’t cheap
even then. The farmer suspected he was being conned, but he had
to trust us. His discomfort was almost tangible.

We tried to allay his fears by explaining the process of selecting
an appropriate computer system. First, we would need to know
something about his business so that we could assess how it could
benefit from a computer system. We would then present a number
of options and he, the client, could choose one.

His response was somewhat pained. He couldn’t understand why
the farmer, who knew nothing about computers, should have to
decide what hardware and software to buy. That was the job of the
consultant. That was what he would be paying for.

Clinching the Deal

Wearing our salesman’s hats we seized the opportunity. “All
right”, we said. “We will make the technical decisions. All you
have to do is to tell us how you run your business”. We had a deal.

The First Big Mistake

Up to this point I was a technical expert providing support to the
sales team. From then on it was my responsibility to keep the
client satisfied. It was the first time I had dealt directly with the
client and the first time I had been asked to develop a business
administration system. It was new territory, but the way forward was
clear enough. The farmer would describe the processes involved in
buying, selling and storing grain; I would translate his description
into software. He knew the business, I knew about software and we
both spoke English. All the essential ingredients were there. I
anticipated no significant problems. This was, of course, a big
mistake - the biggest mistake of my career to date.

The Custom-Built Solution

It quickly became apparent that standard software packages would
not meet the customer’s requirements. The farmer entered into
various contracts with other farmers. Under the storage contracts
grain was charged by weight and period stored. There were also sale
and purchase contracts with provisions specific to the type of
business. The client wanted these various contracts to be at the heart
of the computer system and no standard package would handle them.

Defining the Scope of the Software

We offered the prospect of a cheaper system based on a standard
database package, but the client preferred a fully customised
solution. So I started to ask how the business operated. The
farmer mentioned a few salient points and assumed that I would
be able to fill in the details from my general knowledge of
commercial computer systems. I didn’t like to tell him that my
experience of such systems was negligible. In the hope of hiding
my ignorance I nodded knowingly and went away to start on the
design. Perhaps I could get the information I needed about the
requirements by discussing some specific design suggestions.

The Moral

The project tottered along in this vein for some time. We wrote
some code, but we never seemed to be getting any closer to
delivering something useful. There was more than one crisis
meeting with the client. Eventually, I moved on to other projects.
Two years later my employer was still writing software for the
farmer. To this day I do not know if he ever saw any benefit.

There are many lessons that can be learned from stories such
as this. I learned how important it is to define the requirements,
to do it properly and to do it before the design. But above all, I
learned that good communications are essential to successful
collaboration between a client and his consultant.

One final thought. Sadly, it is my experience that these things
can only be learned by experience. How else can we explain why
the software industry continues to make the same mistakes over
and over again?

Phil Bass
phil@stoneymanor.demon.co.uk

Acknowledgements

Many thanks to Phil Bass and Alan Griffiths for their helpful
comments.

References
[Gamma et al] Erich Gamma, Richard Helm, Ralph Johnson and

John Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[Radford] Mark Radford, “C++ Interface Classes - An
Introduction”, http://www.twonine.co.uk/articles/
CPPInterfaceClassesIntro.pdf

[continued from previous page]

