

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

Overload | 1

4 Pooled Lists
Christopher Baus looks at pooled memory
allocation.

8 The Singleton in C++ – A force for good?
Alexander Nasonov addresses some problems
that arise when using Singleton in C++.

11 C++ Interface Classes: Strengthening
Encapsulation
Mark Radford looks at how the separation of
interface and implementation in C++ helps to
strengthen encapsulation.

13 A Drop in Standards?
Paul Johnson asks why recent graduates seem
less capable than their predecessors.

OVERLOAD 76

December 2006

ISSN 1354-3172

Editor

Alan Griffiths
overload@accu.org

Contributing editors

Mark Radford
mark@twonline.co.uk

Paul Johnson
paul@all-the-johnsons.co.uk

Advisors

Phil Bass
phil@stoneymanor.demon.co.uk

Richard Blundell
richard.blundell@gmail.com

Alistair McDonald
alistair@inrevo.com

Anthony Williams
anthony.ajw@gmail.com

Simon Sebright
simon.sebright@ubs.com

Paul Thomas
pthomas@spongelava.com

Ric Parkin
ric.parkin@ntlworld.com

Roger Orr
rogero@howzatt.demon.co.uk

Advertising enquiries

ads@accu.org

Cover art and design

Pete Goodliffe
pete@cthree.org

Copy deadlines
All articles intended for publication in
Overload 77 should be submitted to
the editor by 1st January 2007 and
for Overload 78 by 1st March 2007.

EDITORIAL ALAN GRIFFITHS
How Overload Comes to You
You look forward to Overload arriving in the mail
every couple of months. This time it came very close
to not arriving at all.
What we did well
At the moment it seems like it was a long time ago and
in a galaxy far, far away that lots of material was
submitted to Overload by enthusiastic authors, an
enthusiastic team of volunteer advisors reviewed it all,

the editor swiftly passed their comments back to the authors who produced
a new, much improved draft of the article which then was seen to be good
by all and put in the magazine for your reading pleasure.
OK, that was a “typical golden age” story – it never really went quite that
smoothly, but it has often been pretty close. Articles sometimes had to go
around the loop several times before being deemed good enough.
Sometimes there has been a shortfall in the material submitted – but a
couple of the advisors (Phil Bass and Mark Radford) were pretty good at
producing material at the last minute. Sometimes all the advisors had other
commitments and failed to review an article or two – but this was rare and
the editor found time to cover the gaps. Sometimes the editor was busy,
but then the contributing editor (or one of the advisors) found time to do
a little extra (like passing review comments back to the author directly).
And of course, there were occasional articles that required special
handling (most often reworking the English of an author who was not
writing in his or her native tongue) and someone was always there to do
this.

What we could have done better
But time goes by, and the time people are able to give varies. (Have I
mentioned we are all volunteers, working on Overload because we think
it is worth doing?) Some of the advisors have taken up new responsibilities
in their non-ACCU lives and cannot commit the time they used to, others
have changed their focus to C Vu as a result of recent changes there. I first
mentioned the need for you (anyone that agrees that Overload is
worthwhile) to get involved a couple of editorials ago (Overload 74):

A second reason is that recently several of the current advisors
have taken on new commitments in their lives. (Some of these
commitments have to do with ACCU, some are personal, but
all have the effect that the editorial team has reduced capacity
and would welcome some new blood.)

This hasn't, however, addressed the problem: the only volunteer to join
the Overload team this year (Tim Penhey) has since

moved on to edit C Vu. In the run up to the current
issue I too have found that recent commitments
have taken more of my time than I anticipated.

The result of these changes was that when articles were submitted and I
circulated them to the advisors nothing happened. For a while I thought
that I would soon have time to review them myself, but as time went on
and this time continued to recede I eventually realised that this wasn't
going to happen. What is more, with only a couple of weeks to go I also
discovered that nowhere near enough material had been submitted.
At this point I called for volunteers to help on ACCU-general. There were
a number of people who volunteered their time to review the two articles
I had (thanks are due to Paul Thomas, Ric Parkin, Simon Sebright and
Roger Orr). In addition there was a very welcome offer from Paul Johnson
(who recently gave up the editorship of C Vu) to take over all the editing
of the articles and also to write a couple of articles himself.
Help was also forthcoming from our reliable Contributing Editor – Mark
Radford – who, in addition to any help he has provided Paul in handling
the articles submitted, once again performed his magic to produce an
article when the shortage became apparent.
That left me with the editorial to write – and has made this issue of
Overload possible. It also means that for the first time in years I'll be able
to join you in reading the articles in Overload for the first time when it
arrives through the post.
Please note however, that while it is good to have material to fill the pages,
writing articles isn’t the role of the editorial team. Earlier this year I
considered that the biggest problem was the shortage of articles being
submitted. In Overload 72 Editorial (April) I wrote:

The team of advisors listed at the front of Overload are not here
to write the magazine for you, they are here to help with the
selection of the best stories to publish and to work with the
authors to ensure that their stories are told well. And after the
advisor's efforts to fill the pages of Overload this time I'm going
to enforce a rest. I will not be accepting any articles from the
advisors for the next issue of Overload. (If the next issue
consists only of an editorial then you'll know why.)

After the efforts by Paul and Mark for this issue I will be giving serious
consideration to reinstating this ban for the next issue.

What we’d like to try
I know that my situation for the next issue will not be much improved and
that finding time will remain difficult. But messages of support from a
number of you have addressed any thoughts that I had about it being time
for me to step down. I’ve discussed this with the Publications Officer and
I will remain with overall responsibility and ensure that the character of

Alan Griffiths is an independent software developer who has been using “Agile Methods” since
before they were called “Agile”, has been using C++ since before there was a standard, has been
using Java since before it went server-side and is still interested in learning new stuff. His homepage
is http://www.octopull.demon.co.uk and he can be contacted at overload@accu.org
2 | Overload | December 2006

EDITORIALALAN GRIFFITHS
December 2006 | Overload | 3

Overload is preserved. However, if Overload is to carry on, it cannot be
dependent on vast amounts of my time.
The current team of volunteer advisors is in a similar position to the one
that I find myself in (not being able to contribute the time we’d like), so
while you may see that familiar names cease to appear I have hopes that
some of you, perhaps the volunteers who have helped out by reviewing
(and editing) articles for the last couple of issues, will volunteer again –
but on a more permanent basis.
Thankfully, the first volunteer to was not hard to find: Paul Johnson is keen
to do “whatever he can” – so beginning with this issue Overload now has
two “Contributing Editors”. No-one (not even they themselves) knows
exactly what a “Contributing Editor” is supposed to do in the context of
Overload, but we will sort that out amongst ourselves. Whatever we
decide, it includes soliciting articles, parts of the editorial process, and
sometimes contributing articles.

What you’d like to do
I know that you have heard this before, but it remains true. Overload is
your magazine and it needs your support.
Also, one volunteer does not make a team. If you appreciate the writing
in Overload you can help make it happen. You don’t need to be an expert
on the English language – much of the reviewing is “this point needs
explaining because...” or “this explanation doesn't make sense because...”
and, of course, deciding whether the article covers material that belongs
in Overload. There is no limit to the number of helpers we can use – the
more people that contribute to this work, the less each has to do.
Let me repeat the invitation from Overload 74:

If you have a clear idea of what makes a good article about
software development and would like to help authors polish their
writing then now is the time to get involved – while the old hands
are here to “show the ropes” (and before some of them find their
new commitments push contributing to Overload every issue
out of their lives). It isn’t hard – and the authors do appreciate
the work done reviewing their articles.

It is not just reviewing that is needed though. Last issue however, we
lacked contributions and were below our minimum length for the first time
since I took over as editor, and this issue again we have had problems. (I
guess that some of this can be laid at my door since I’ve not been as active
as usual in asking people to write up the things they have been telling me
about.) This changes quickly: in Overload 74 things the supply of articles
seemed to be good and I wrote:

Once again I’m pleased with the response from authors – for
the second issue running the advisors have been able to
concentrate on providing assistance to the authors and to the
editor and have not found it necessary to write articles to reach
our minimum length. As you can see, we have comfortably
achieved that again. Thanks to everyone that submitted an
article! (I know some were redirected to C Vu, but the effort is
appreciated.) I trust that those of you who have been thinking
of writing will be inspired by this example and do so next time.

Everyone in ACCU has a unique perspective and experience and knows
things that others do not. Writing about them not only helps those that lack
your knowledge, but also helps you understand and value what you do
know.

It can be hard to identify something worth writing about – after
all we all tend to think things we understand are obvious. But
one doesn’t have to interact with many people to discover that
there are “obvious” things that other people don’t understand.
You don’t want to keep explaining, so write it up and send it in
– then, instead of going over the same old ground, you can say
“here’s a good article about it” (and wait for them to notice the
author’s name).

Overload on the web
Since Allan Kelly wrote about putting Overload onto the ACCU website
a number of you have written to me with enthusiasm for the idea – a task
that I’ve taken on in my capacity as Publicity Officer. As you may have
guessed from what I’ve written about this issue of Overload, I’ve yet to
make time to progress this (and, to be honest, some other things the
Publicity Officer should be doing). I still think making Overload publicly
available is a good idea (and there are no technical issues to overcome)
but it has to take its place behind family and social commitments, work,
and editing Overload. I’m sorry, but this isn’t likely to happen before the
conference – not much to show for a year in the post. Naturally, if someone
would like to help out then I might be able to report progress at the AGM.

In Conclusion
I cannot claim any credit for this issue of Overload – it is all the work of
others, principally Paul Johnson. But, while I cannot claim credit, I have
to take the blame for anything that is wrong as I allowed a very difficult
situation to develop and then left others to sort it out. I will be feeling rather
nervous when I open this issue of Overload.

FEATURE CHRISTOPHER BAUS
Pooled Lists
Christopher Baus explains the advantages of
using a pooled memory allocation strategy for
high performance applications.
Motivation
y default, the C++ list container allocates memory with the global
operator new when elements are added to the list, and frees memory
with the global operator delete when elements are removed. While

this provides a convenient interface for most applications, high
performance and long lived applications could benefit from a pooled
memory allocation strategy, where all memory used by the list is
preallocated at list creation time.
Most default implementations of the operators new and delete resolve
to a direct call to the underlying system heap. This has the following
drawbacks:

List insertion operations may throw indeterminately.
System heap operations create contention between otherwise
unrelated threads.
System heap operations require an often expensive system call.
Frequent allocations and deallocations of small objects can result in
fragmentation, and inefficient use of memory.

Kevlin Henney [Henney] says this regarding collection memory
management:

If you are serious about managing the allocation of a container,
then get serious and manage it: Write your own container type.

The standard list allocator interface is the logical starting point for
implementing a pooled list container, but as Pablo Halpern noted in his
proposal to the C++ standards committee [Halpern, 2005], there some
inconsistencies in the standard. The handling of allocators which compare
unequal is currently under specified in C++, as is noted in issue 431 of the
C++ Standard Library Active Issues List [C++ Active Issues]. While
Howard E. Hinnant [Hinnant] provides guidance for a solution, it currently
is not part of the standard library. Instances of pool allocators of the same
type compare unequally when they allocate from different memory pools,
hence it isn’t possible to implement satisfactory pooled allocators given
the current standard. This leaves Kevlin’s suggestion to implement a
custom container.
This article investigates implementing a pooled list container using the
C++ standard list as the underlying data store. The objective is to
provide pooling whilst delegating most functionality to the standard
library.

The Interface
The pooled_list class provides a simple and familiar interface to C++
developers. With a few exceptions, pooled_lists behave similarly to
standard lists. When using pooled_list, the user must first create a
pool as follows:
size_t pool_size = 256;
pooled_list<int>::pool list_pool(pool_size);

The pool allocates memory for both the element data and the list’s
internal structure. No additional allocations will be made after the
list_pool has been constructed.
One or more lists are attached to the pool:

pooled_list<int> my_list(list_pool);

The user can then operate on the list just as a standard list. For
instance:

my_list.push_back(5);
my_list.pop_front();

Exceptions and error handling
Using the standard list container insert operations can fail
unpredictably. If memory is not available to complete the operation they
will throw std::bad_alloc. In comparison, the pooled_list
container provides deterministic failure. Insert operations only throw on
a pooled_list with a depleted pool. Since the pooled_list takes a
reference to a pool, pools must have a lifetime greater than all the lists
from which they are created. If a pool is destroyed before the lists which
are created from it, the behaviour is undefined.
Since memory is allocated from the C++ runtime heap to create pools,
pool construction may throw std::bad_alloc.
The semantics of operations which act upon multiple lists are affected by
pooling. The operations including the overloading of merge() and
splice() require that pooled_lists are allocated from the same pool.
The condition is checked with an assert and violation results in
undefined behaviour. These semantics are borrowed directly from Howard
E. Hinnant’s recommendation for swapping containers with unequal
allocators [Hinnant].
To provide the strong exception guarantee, the assignment operator is
implemented by creating a temporary copy of the right hand list, and then
swapping the temporary with the left hand list. The pools of the left hand
side and right hand side are also swapped (again as recommended by
Hinnant). This requires that the right hand side list’s pool contains at least
as many free elements as are used by the right hand side list, even though
fewer elements maybe required upon completion of the operation.
In explicit terms, the assignment operation involves three lists: the list
being assigned from (right), the initial list being assigned to (left), and
the final state of the list being assigned to (left'). Following the
operation both left' and right will use the same pool, even if left
has used a different pool. All elements will be allocated from the pool
used by right. The assignment operator, again, to provide the strong
exception guarantee, creates left' (as a copy of right) before left is
destroyed. For the operation to succeed, the pool used by right must
contain at least the number of elements in right. When right contains
more elements than left, and uses the same pool as left, it is not
sufficient for the pool used by right to contain right minus left

B

Christopher Baus can be contacted at christopher@baus.net
4 | Overload | December 2006

FEATURECHRISTOPHER BAUS

Heap access causes contention between
threads which would otherwise be

unrelated
number of elements, even though that number of elements will be used (in
conjunction by left' and right) after the operation completes.

Concurrency
The global heap is a resource which is shared among all threads, and access
to the heap is often serialized by the underlying operating system to prevent
corruption. Microsoft [Microsoft] describes the problem and offers the
following with respect to Windows:

A single global lock protects the heap against multi threaded
usage... This lock is essential to protecting the heap data
structures from random access across multiple threads. This
lock can have an adverse impact on performance when heap
operations are too frequent.

In a l l the server sys tems (such as I IS , MSProxy ,
DatabaseStacks, Network servers, Exchange, and others), the
heap lock is a BIG bottleneck. The larger the number of
processors, the worse the contention.

Heap access causes contention between threads which would otherwise be
unrelated. The standard lists insert() and erase() operations
require heap access, and hence can cause contention. Consider the
following example: a program contains two threads in which each thread
creates a list which is only accessed by that thread. While it is safe for
either thread to insert or erase elements from its respective list, access
to the heap is serialized by those operations. The result is reduced
performance even though there is no data shared between the threads. A
pooled_list does not access the heap directly after the pool is created,
so there is no contention between lists.
Like the STL, the pooled_list class makes few guarantees about thread
safety. There is no thread synchronization in the pooled_list class,
hence multiple threads can not concurrently insert or erase elements
in lists which share the same pool. This requires that users externally
synchronize list operations when one or more lists which use the same pool
are accessed from multiple threads. If pooled_lists do not share pools,
there is no need to synchronize access to pooled_lists.

The implementation
Linked lists impose storage overhead beyond contiguous arrays due to
their node structure. Typically a list node holds pointers to the next node
in the list and the previous node in the list. A list node could be
defined as shown in Listing 1.
List allocation requires not only memory for the element data, but the list
node structure as well. This is why the specification requires that allocators
provide a rebind() [Rebind] implementation, which allows them to
allocate node types. Providing allocators that only return elements of type
T is insufficient. In classical C linked list implementations, such as the one
provided by the Linux kernel [LinkedList], the user provides user allocated
nodes at insertion time. With the C++ standard list, nodes are abstracted
from the user.

The goal of the pooled_list implementation was to preallocate not only
element data, but the node data, and hence all the memory used by the
list. This can be achieved by implementing the list from scratch –
creating new node types and implementing all the list operations. For
the sake of expediency and correctness, I chose a hybrid approach which
uses the standard list itself as the underlying structure for the
pooled_list.
The pooled_list implementation uses two standard lists: the free and
active lists. When created, the free list contains n number of elements and
the active list is empty. When elements are inserted, the required nodes are
moved from the free list to the active list. When elements are erased, the
released nodes are moved from the active list to the free list. This is
accomplished with the standard list’s splice() operation, which allows
lists to be combined in constant time without memory allocation. While
this is a rudimentary implementation, it does offer some challenges in
correctly providing value semantics.

A naive implementation
The structure of my first attempted implementation was similar to
Listing 2.
While it will work for built-in types and PODs [POD], it results in the
constructors for objects being called when the free list is created, not
when elements are inserted. Likewise, destructors for the elements are
called when the free list is deleted and not when elements are erased.
To solve this problem the underlying lists must contain unstructured data,
which leads to the next attempt, Listing 3.
By using standard lists of arrays of char the construction/destruction of
elements can be constrained to insert and erase operations, properly
implementing value semantics. Unfortunately this leads to some subtle

Listing 1

template<typename T>
struct node {
 node(T initial_value):element_(initial_value){}
 node* next_;
 node* previous_;
 T element_;
}

Listing 2

template<typename T>
class pooled_list
{
 ...
private:
std::list<T> free_list_;
std::list<T> active_list_;
};
December 2006 | Overload | 5

FEATURE CHRISTOPHER BAUS

destructors for the elements are called
when the free list is deleted and not when
elements are erased
alignment problems. Internally to the standard list, the char array is
a member of the node, as shown in the node code example in Listing 3,
and C++ does not guarantee all types T will be properly aligned. Stephen
Cleary [Cleary] provides further discussion of alignment in his
documentation for the boost pool library.
Lists of type std::list<char*> are used by the final implementation
which is based on the following from Cleary’s discussion:

Any block of memory allocated as an array of characters through
operator new[] (hereafter referred to as the block) is properly
aligned for any object of that size or smaller

For an example, see Listing 4.
The final implementation differs slightly in that the free_list_ is
moved to a separate pool class which allows it to be shared by multiple
pooled_lists. The alignment workaround does impose one pointer’s
worth of space overhead per element for each node used in free and active
lists. This could be avoided by developing a custom list rather than using
the standard list as a base implementation.

List iterators
Since the underlying list is of type std::list<char*> and not
std::list<T>, iterators to the active list can not be used directly. The
data must be dereferenced and cast to the type T. The boost iterator library
is employed to perform the operation. This greatly simplifies the

implementation at the cost of a dependency on the boost iterator library
(see Listing 5).

Potential enhancements
As noted in the threading section, multiple threads can not concurrently
insert or erase elements in lists which share the same pool. I chose
to not impose the overhead of thread synchronization by default. I do not
recommend sharing pools across threads, but this could be supported by
adding a synchronization policy to the pool with no additional overhead
for the default case.
Element data is allocated by the pool using new[]. This might not be
sufficient for all use cases (for instance if the user wants to allocate
elements from an arena or global pool). This could be also be addressed

Listing 3

template<typename T>
class pooled_list
{
...
 iterator insert(iterator pos, const T& value)
 {
 if(!free_list_->empty()){
 // use inplace new on the raw data
 // and splice from the free list to
 // the active list
 ...
 }
 else{
 throw std::bad_alloc();
 }
 return --pos;
 }
...
private:

std::list<char[sizeof(T)]> free_list_;
std::list<char[sizeof(T)]> active_list_;
};

Listing 4

template<typename T>
class pooled_list
{
...
 pooled_list():free_pool_(pool_size, 0)
 {
 std::list<char*>::iterator cur;
 std::list<char*>::iterator end
 = free_list_.end();

 for(cur = free_list_.begin(); cur != end;
 ++cur){
 *cur = new char[sizeof(T)];
 }
 }
...
 iterator insert(iterator pos, const T& value)
 {
 if(!free_list_->empty()){
 // use inplace new on the raw data,
 // and splice from the free list to the
 // active list
 ...
 }
 else{
 throw std::bad_alloc();
 }
 return --pos;
 }
...

private:

std::list<char*> free_list_;
std::list<char*> active_list_;
};
6 | Overload | December 2006

FEATURECHRISTOPHER BAUS

if you are serious about memory
management, you must rely on custom

containers
by adding an allocation strategy to the pool. It should be noted that
because the standard list is used as the underlying data structure, it
would be difficult to change the allocation strategy of the node structures.
Providing an alternate strategy to allocate list nodes would require a
reimplementation of the list structure.

Conclusion
The C++ library specification currently requires developing custom
containers to implement allocators with shared state. While it might be
possible to develop pool allocators which work with existing standard
library implementations, it is not be possible to guarantee that the pool
allocators would work correctly across library implementations. As Kevlin
says, if you are serious about memory management, you must rely on
custom containers. Pool allocation is a proven strategy for many long lived,
concurrent applications with high reliability and performance
requirements such as network servers. The provided implementation
provides a simple solution which successfully leverages the standard
library for most operations. The result is a pooled list container that is
compat ib le wi th any s tandard compl ian t s tandard l ib ra ry
implementation.

Acknowledgements
Thanks to C++ guru Thomas Becker for discussion on data alignment and
help with const_iterator syntax.

References
[C++ Active Issues] Issue 431, C++ Standard Library Active Issues List

: http://www.open-std.org/JTC1/SC22/WG21/docs/lwg-
active.html#431

[Cleary] Stephen Cleary : http://www.boost.org/libs/pool/doc/
implementation/alignment.html

[Halpern, 2005] Proposal to the C++ standards committee : http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2005/n1850.pdf

[Henney] Dr Dobb’s Journal : http://www.ddj.com/dept/cpp/184403779
[Hinnant] Hinnant, H.E. : http://www.open-std.org/jtc1/wg21/docs/

papers/2004/n1599.html
[LinkedList] Classical C linked list : http://isis.poly.edu/kulesh/stuff/src/

klist/
[Microsoft] Microsoft : http://msdn2.microsoft.com/en-us/library/

ms810466.aspx
[POD] PODs : http://www.fnal.gov/docs/working-groups/fpcltf/Pkg/

ISOcxx/doc/POD.html
[Rebind] Rebind documentation : http://msdn2.microsoft.com/en-us/

library/5fk3e8ek.aspx

Listing 5

template<typename T>
class pooled_list
{
...

// Functor to convert iterator to underlying data type to type T.
class reinterpret_raw_data_ptr
{
public:
 typedef T& result_type;

 T& operator()(raw_data_type& raw_data) const
 {
 return *reinterpret_cast<T*>(raw_data);
 }
};

typedef char* raw_data_type;
typedef std::list<raw_data_type> raw_data_ptr_list;
typedef typename std::list<raw_data_type>::iterator raw_data_ptr_list_it;
typedef boost::transform_iterator<reinterpret_raw_data_ptr, typename raw_data_ptr_list::iterator,
 T&, T > iterator;
...
};
December 2006 | Overload | 7

FEATURE ALEXANDER NASONOV
The Singleton in C++
– A force for good?

Alexander Nasonov addresses some problems that arise
when using Singleton in C++.
ccording to [Alexandrescu], the Singleton pattern has a very simple
description but can have complex implementations. Indeed, [GoF]
states that this pattern limits an object to one instance in the entire

application, then they give an example. It doesn’t seem very complex but
it isn’t that simple (see Listing 1).
Actually, the _instance doesn’t always point to one object. Before a first
call to Singleton::Instance, there is no Singleton object. And
this they call Singleton???
You may argue that this mechanism is completely transparent to a user but
that’s not quite correct.
Systems with tight time-constraints would suffer from the fact that calling
this accessor function may take as long as the longest execution path in
Singleton constructor. This time should be added to every function that
calls Singleton::Instance even though this long path is executed
only once1.
There is another visible effect in multi-threaded programs caused by
unprotected concurrent access to Singleton::Instance. Refer to
[DCLocking] for more details.
What’s more, the object is never deleted!
Why did the authors select this approach if they could just wrap a global
variable to ensure one instance of a Singleton, as shown in Listing 2?
The authors should have had a very strong reason to prefer the first
solution. Unfortunately, the book doesn’t explain it well.
Modern C++ Design has a special chapter about singletons. It answers
what’s wrong with the second code snippet. The order of initialisation of
objects from different translation units is unspecified. It’s possible to
access an uninitialised object during the initialisation of another object as
demonstrated by this code:

// Somewhere in other TU:
int undefinedBehavior =
Singleton::instance.getAccess();

The [GoF] version fixes this problem because the Singleton instance is
automatically created when Singleton::Instance is called for the
first time:

// Somewhere in other TU:
int goodBehavior
 = Singleton::Instance()->getAccess();

The question is, does this really make it better?

First of all, it doesn’t completely define an order of initialisation. Although
dependencies at initialisation time are tracked correctly, they define only
a partial ordering. It’s worthwhile to note that these dependencies are built
at run-time, that is, they may vary from run to run. Often these
dependencies are not clear to developers (they tried to manage them
automatically, after all!).
You may wonder why track the dependencies if all singletons are
initialised correctly. Don’t forget that the program should stop its
execution correctly as well. Singletons not only depend on other singletons
at initialisation time but also when they are destroyed.
One fundamental principle of C++ is “first initialised, last destroyed”. It
helps to maintain a list of objects that can be used in a destructor of some

A

Listing 1

// Declaration
class Singleton {
public:
 static Singleton* Instance();
protected:
 Singleton();
private:
 static Singleton* _instance;
};

// Definition
Singleton* Singleton::_instance = 0;
Singleton* Singleton::Instance() {
 if(_instance == 0) {
 _instance = new Singleton();
 }
 return _instance;
 }

Listing 2

// Declaration
class Singleton : private boost::noncopyable {

public:
 static Singleton instance;

private:
 Singleton();
 ~Singleton();
};

// Definition
Singleton Singleton::instance;

Alexander Nasonov has been programming in C++ for over
8 years. Recently his interests expanded to scripting
languages, web technologies and project management. A
few months ago he became an occasional blogger at
http://nasonov.blogspot.com. Alexander can be contacted at
alexander.nasonov@gmail.com. 1. It can be proved that some functions are never the first to call Singleton::Instance

and discount them, but this distinction would complicate the matter even further.
8 | Overload | December 2006

FEATUREALEXANDER NASONOV

Memory zero-initialised at the static
initialisation phase may be accessed even

though an object is not yet constructed
global object. That list contains only global objects constructed earlier than
this object.
The [GoF] solution doesn’t rely on this principle of C++ because objects
are created on the heap. They don’t explain how to destroy these objects,
though. You can read Modern C++ Design for a good explanation of
managing singleton lifetimes.
All these problems keep me away from using this code unless a framework
as good as the boost libraries appears on my radar screen. Until then I stick
to global variables with uniqueness guarantees (if affordable) and rely on
compilers that allow me to specify an order for non-local objects
initialisation.
I found the following principle very useful:

Minimise global variables to a bare minimum
Minimise dynamic initialisation of global variables

Static initialisation doesn’t have a dependency problem because all objects
are initialised with constant expressions. Compare:
 pthread_mutex_t g_giant_mutex
 = PTHREAD_MUTEX_INITIALIZER;

with
 boost::mutex g_giant_mutex;
 // User-defined constructor

The former guarantees initialisation before dynamic initialisation takes
place. The latter does not. Please note that private constructors required to
ensure uniqueness enforce dynamic initialisation.

Protect yourself from access to uninitialised objects
Memory zero-initialised at the static initialisation phase may be accessed
even though an object is not yet constructed. Sometimes it crashes the
program but it can also yield surprising results.
For example:

 // TU 1
 money dollar(1.0, "USD");

 // TU 2
 double valueOfDollar = dollar.getValue();

If initialisation starts with valueOfDollar, dollar.getValue()
may return 0.0 instead of 1.0.
To protect yourself from this kind of access, you can use a boolean global
variable constructed during the static initialisation phase. This variable is
true only if an object it controls is alive. See Listing 3.

Control dependencies in constructors of global
variables
My preferred method is not to use any global variables directly. It’s best
demonstrated by example:

Singleton Singleton::g_instance(Logger::instance(),
 Factory::instance());

All Singleton’s dependencies are visible at the point of definition. They
are easily accessible inside the Singleton constructor as actual arguments.
You don’t need to access them through the instance functions.

Don’t introduce more dependencies in a destructor
In general, you should use only dependencies defined at construction time.
This ensures that those objects are not destroyed (remember the first
constructed, last destroyed rule).
However, there is one exception; some singletons such as Logger should
be accessible from all other singletons. You can implement a technique
similar to iostream objects initialisation or use non-virtual functions that
don’t access member variables if Logger is already destroyed2 (see
Listing 4).

Listing 3

// Declaration
class Singleton : private boost::noncopyable {
public:
 static Singleton* instance();
private:
 Singleton();
 ~Singleton();

 static bool g_initialised;
 static Singleton g_instance;
};

// Definition
bool Singleton::g_initialised;
 // static initialisation
Singleton Singleton::g_instance;
 // dynamic initialisation
Singleton::Singleton()
{
 g_initialised = true;
}

Singleton::~Singleton()
{
 g_initialised = false;
}

Singleton* Singleton::instance()
{
 return g_initialised ? &g_instance : 0;
}

2. Strictly speaking, calling any function of a dead object is bad. In practice, calling
non-virtual function is safe if it doesn’t access memory pointed to by this pointer.
December 2006 | Overload | 9

FEATURE ALEXANDER NASONOV
Build your program in more then one way
Nowadays, people rarely link statically. However, many loaders manage
dependencies among shared libraries automatically and hide potential
problems. It’s harder to setup a static build but it’s usually worth it.

Conclusion
I recently came across an interesting blog entry of Mark Dominus. He says:
Patterns are signs of weakness in programming languages. I don’t
completely agree with this statement because even if you put all patterns
in a language you’ll soon discover other patterns. But I agree with Mark
that the Singleton pattern is a sign of weakness of the C++ language.
Whilst there are many ways to implement a singleton, the method provided
in Listing 5 fulfils the criteria presented in this article.

References
[Alexandrescu] Andrei Alexandrescu. Modern C++ Design
[DCLocking] Scott Meyers and Andrei Alexandrescu. C++ and the

Perils of Double-Checked Locking, Doctor Dobb’s Journal, 2004.
http://www.aristeia.com/Papers/DDJ_Jul_Aug_2004_revised.pdf

[Dominus] Mark Dominus. Design patterns of 1972.
http://www.plover.com/blog/prog/design-patterns.html

[GoF] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Software.
Addison-Wesley, 1995.

Listing 5

// Singleton.hpp
#ifndef FILE_Singleton_hpp_INCLUDED
#define FILE_Singleton_hpp_INCLUDED
#include <boost/noncopyable.hpp>

class Singleton : private boost::noncopyable
{
 public:
 static Singleton* instance();
 void print(char const* str);
 private:
 Singleton();
 ~Singleton();
 static bool g_initialised;
 // static initialisation
 static Singleton g_instance;
 // dynamic initialisation
 char m_prefix[32]; // to crash the program
};

#endif // FILE_Singleton_hpp_INCLUDED

// Singleton.cpp
#include "Singleton.hpp"
#include <ostream>
#include <iostream>
#include <cstring>

bool Singleton::g_initialised;
 // static initialisation
Singleton Singleton::g_instance;
 // dynamic initialisation

Singleton::Singleton()
{
 g_initialised = true;
 std::strcpy(m_prefix, ">>> ");
}

Singleton::~Singleton()
{
 g_initialised = false;
}

Singleton* Singleton::instance()
{
 return g_initialised ? &g_instance : 0;
}

void Singleton::print(char const* str)
{
 std::cout << m_prefix << str;
}

// main.cpp
#include "Singleton.hpp"

struct X
{
 X() { Singleton::instance()->print("X\n"); }
 ~X() { Singleton::instance()->print("~X\n");
}
} x;

int main()
{
 Singleton* p = Singleton::instance();
 p->print("Hello, World!\n");
}

Listing 4

void Logger::log(char const* message)
{
 if(!g_initialised)
 std::cerr << "[Logger is destroyed] "
 << message << '\n';
 else
 // Put your cool logger code here
}

10 | Overload | December 2006

FEATUREMARK RADFORD
C++ Interface Classes –
Strengthening Encapsulation
Mark looks at the separation of interface and implementation in
C++, and how the separation helps to strengthen encapsulation.
eparating a class’s interface from its implementation is fundamental
to good quality object oriented software design/programming.
However C++ (when compared to, say, Java) provides no indigenous

mechanism for expressing such a separation. Therefore, a number of
idioms supporting this separation have evolved in C++ practice, and was
the subject of an article in Overload 66 I co-authored with Alan Griffiths
[Radford-Griffiths]. The idioms covered in that article do not just cover
object oriented programming, but other approaches (such as value based
programming) as well.
For object oriented programming, the principle mechanism of separation
is the Interface Class. An Interface Class contains only a virtual destructor
and pure virtual functions, thus providing a construct analogous to the
interface constructs of other languages (e.g. Java). I discussed Interface
Classes in C++ Interface Classes: An Introduction [Radford:1] and
explored an example of their application and usefulness in C++ Interface
Classes: Noise Reduction [Radford:2] (published in Overloads 62 and 68
respectively).
In this article I would like to discuss the role played by Interface Classes
in strengthening encapsulation. In doing so, I hope to extend the discussion
to use unit testing as an example of how Interface Classes underpin
encapsulation (while taking a swipe at the Singleton design pattern
[Gamma et al, 2005] in the process).

A motivating example
Consider a GUI based drawing program, where the user manipulates
shapes – such as lines and circular/elliptical arcs – within a window. It is
an old chestnut that serves well as a motivating example.
First, we have a class hierarchy for the shapes. This will be headed up
by an Interface Class called (guess what) shape – see Listing 1.
Second, the shapes are stored in a drawing, let’s represent this
programmatically with an Interface Class called drawing – see Listing 2.
Please take note of the drawing::save(repository& r) member
function – specifically, its repository& parameter. This means we need
a definition for repository, as shown in Listing 3.

The repository class is a programmatic representation of the repository
where drawings are kept when not in memory, i.e. the storage (e.g. a
database).
Having introduced the participants in this example, it is time to move on.
Before I do though, there are a couple of things I would like to point out:

1. I have introduced the participants only as Interface Classes, without
any implementation classes. This example does not require all of
them to have implementations shown. Therefore, implementations
will be introduced as (and if) needed.

2. In reality, the shape class would need member functions for the
extraction of its state; this is so its state can be stored in a database
(or other storage mechanism used in the implementation of
repository). However these are (once again) not needed for this
example and are therefore omitted for brevity.

Repository as a singleton
Presumably there will only be one instance of repository needed by the
drawing program, and in this example, I am assuming this is the case.
Therefore, it seems reasonable (or does it? – but I’m coming to that) to
apply the Singleton design pattern – i.e. to make it such that:

There can be only one instance of repository in the program
The one instance is globally accessible wherever it is needed

S

Mark Radford is a freelancer with nearly twenty years
experience in software development. His current main
interests are in design and programming in (among other
languages) C++, C#, Python, Perl and PHP. He can be
contacted at mark@twonine.co.uk

Listing 1

Listing 2

Listing 3

class shape
{
public:
 virtual ~shape();

 virtual void move_x(distance x) = 0;
 virtual void move_y(distance y) = 0;
 virtual void rotate(angle rotation) = 0;

...
}

class drawing
{
public:
 virtual ~drawing();
 virtual void save(repository& r) const = 0;
...
};

class repository
{
public:
 virtual ~repository();
 virtual void save(const shape* s) = 0;
...
};
December 2006 | Overload | 11

FEATURE MARK RADFORD
There are many ways to implement Singleton, but the one used in Listing 4
to implement repository is quite a common one.
Now for the part played in this article by unit testing – it is time to write
a (single) unit test for the drawing::save member function. I’m going
to assume we have a drawing instance that contains five shapes. The unit
test I want to write saves a drawing object in the repository, and then
verifies that the number of shapes actually saved is equal to five:
void unit_test(const drawing& d)
{
 d.save(repository::instance());
 ...
}

As you may have noticed, there is no such test in the above function. This
is because it suddenly becomes apparent that some work needs to be done.
For this test, what I need is a repository implementation that can count
shapes.
With the Singleton approach to repository’s implementation, there are (at
least) the following associated issues:

In order to use repository implementations specialised for unit tests,
it is necessary to link in a specialised test version of repository.
As repository is – and with this approach, must be – hard coded
in the test by name, it is not possible to have more than one
repository implementation to test different things. Therefore,
one test version of repository must support all tests, and must be
modified when a new test is added.
As a result of one test repository implementation supporting all tests,
it is more difficult to test specific pieces of code. That is,
implementing unit tests becomes more difficult.

The above issues are a direct result of accessing the repository in a global
context – that is, a consequence of bypassing unit_test’s programmatic
interface.
This approach can be made to work. However, at this point, I’m suggesting
there is a simpler method.

Using mock object
Let’s put repository back the way it was when first introduced:
class repository
{
public:
 virtual ~repository();
 virtual void save(const shape* s) = 0;
...
};

It is now, once again, an Interface Class, and this means different
implementations are possible. The unit test under discussion requires a
repository implementation that can count shapes stored in it – see Listing 5.

There you have it: counting_repository::save does not (in this
particular test implementation) actually save anything, it just increments
a counter. This approach is known as Mock Object (sometimes known as
Mock Implementation). It’s time to take stock of how the unit test now
looks:
void unit_test(const drawing& d)
{
 counting_repository counter;
 d.save(counter);

 assert(counter.num_saved() == 5);
}

Note that because counting_repository is specific to this particular
unit test, it can be defined within the unit test’s code (e.g. within the same
source file as the unit_test function). As a (pleasant) consequence,
there is no need to link in any external code, and the unit test assumes full
control over the test to be performed.

Finally
The approach of using Mock Object with unit_test is an example of a
pattern known as Parametrise From Above. One perspective on
Parametrise From Above is that it is the “alter-ego” of Singleton (and other
approaches involving globally accessible objects). Singleton is a
dysfunctional pattern – one that transforms the design context for the
worse, rather than for the better. Parametrise From Above is a pattern that
is “out there”, but for which (to the best of my knowledge) there is (so far)
no formal write up.
Encapsulation is fundamental to object oriented design – and Interface
Class is an idiom that can underpin the strengthening of encapsulation. The
Mock Implementation of repository is possible because repository is an
Interface Class. Observe how unit_test can use different repository
implementations, without unit_test’s implementation being affected.

References
[Gamma et al, 1995] Erich Gamma, Richard Helm, Ralph Johnson and

John Vlissides, Design Patterns: Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[Radford/Griffiths] Mark Radford and Alan Griffiths, Separating
Interface and Implementation in C++, Overload 66
(www.twonine.co.uk/articles/
SeparatingInterfaceAndImplementation.pdf)

[Radford:1] Mark Radford, C++ Interface Classes – An Introduction,
Overload 62 (www.twonine.co.uk/articles/
CPPInterfaceClassesIntro.pdf)

[Radford:2] Mark Radford, C++ Interface Classes – Noise Reduction,
Overload 68 (www.twonine.co.uk/articles/CPPInterfaceClasses-
NoiseReduction.pdf)

Listing 4

class repository
{
public:
 static repository& instance()
 {
 static repository inst;
 return inst;
 }
 void save(const shape* s);
...
};

Listing 5

class counting_repository : public repository
{
public:
 counting_repository() : count(0) {}
 virtual void save(const shape* s)
 { ++count; }
 unsigned int num_saved() const
 { return count; }
...
private:
 unsigned int count;
};
12 | Overload | December 2006

FEATUREPAUL JOHNSON
A Drop in Standards?
Paul Johnson asks why, with the increase in numbers of
those passing school-based examinations, today’s graduates
are less able than in previous times. What is going wrong?
n the UK, examinations are taken at 16 (GCSE) and 18 (A Level) before
progressing onto a degree. In recent years, there has been an obsession
with the annual increase in those passing exams at 16 and 18. According

to the statistics, examination results from C to A* have been increasing
year on year [BBC] and yet the quality of students going into (and more
importantly, coming out of) both Further and Higher Education is on the
decrease. If the official statistics are correct, why is there such a difference
in the standards between now and 10 years back?
Or is it as cited by Baz Luhrmann in his song Everybody’s free (to use
sunscreen) [Luhrmann]:

Accept certain inalienable truths, prices will rise, politicians
will philander, you too will get old, and when you do you’ll

fantasize that when you were young prices were reasonable,
politicians were noble and children respected their elders.

While this article is not so much about programming, it may cause some
to sit up and question what is going on – especially to those who are
professional mentors to newly qualified graduates in a company and
wonder why their knowledge and key skills are not as high as expected.

The debate and ACCU
In 2004, I presented to the ACCU annual conference a talk on teaching
platform independent code. While the talk was possibly not as good as it
could have been (one of my failings is that I frequently completely re-write
my presentations within a very short time-frame as they are possibly not
quite what is expected by myself or the potential audience), the questions
at the end did raise some interesting topics.
It had been noticed by recruitment agencies and employers present that
while candidates came from Higher Education with the usual spread of 1st

to 3rd class honours in Computer Sciences, they had difficulty with
threading models, their knowledge of the STL varied from being able to
use it at a basic to medium level (they could understand a template, but
possibly could not construct one) to having been taught C++ using C-Front
(so it was effectively a very old implementation) and key skills such as
numeracy and literacy should a distinct lack of understanding or
application.
There was a difference if the student came from Oxbridge, but it was not
as much as would have traditionally been expected.
Some complained that those mentoring had now to put in more time in
doing what the education system should have done than at any other time
in their careers. To paraphrase one person in the discussion: There is
something rotten in education and it is compounded the further up the scale
they go.
Having worked in Further and Higher education since 1992, this
revelation, while not completely unexpected, was interesting to say the
least. It was further compounded by my teaching experience of 1st and 2nd

year students on BSc programming courses.
Was the assertion that the compounding was happening further up or was
it a case of an institution only being able to work with the materials
provided?

Rationale for this article
Recently, I left my otherwise completely secure position at the University
of Salford to commence teacher training at a local school. I already have
my teaching qualifications for teaching in a college of F.E. and in
universities and wanted to round it off with being able to teach 11 to 16
year old children.
I had been at Salford since 1995 and had witnessed a decrease in ability
over my 11 years there. It was not only the actual knowledge side which
was not as high, but also the attitude of the students. I will admit that I
finished my first degree in 1998, but the prevailing attitude was that if I
missed some work, it was not up to the lecturer to pass me the notes, but
that I had to make the effort to obtain them from one of my fellow students.
This especially applied when taking higher degrees.
During my final year of lecturing at Salford (2005), the attitude was no
longer that they had to work, but I had to spoon feed them. The upshot was
a degradation of the final worth of their degree.
My question though was with the constant claims of improvement at GCSE
and A level, why were students coming to university sometimes unable to
string a single cohesive argument together and why could they not
understand the need for something as pointer checking when allocating
memory?
Were was education failing?
Let’s start off this trek by going backwards from degree to college level.
For this, I have had the assistance of two lecturers at a local college. Due
to the nature of their comments and the state of colleges within the UK
currently, they will remain anonymous as will the names of their
institutions.

Colleges of Further Education or Colleges of Getting
Them In?
Colleges, in the UK, are run as businesses and have been since 1992
[FHEA 1992].

The more bums there are on seats, the happier the bean
counters are. Staffing levels aren’t that important as they don’t
always seem to realise that without enough staff, money walks
out of the door. They do realise though that we cost money.

While this is not always a bad thing, it does raise the question of the
suitability of students coming in and going out. It is certainly the case that
in the mid 1990s, colleges would take anybody in, irrespective of their
ability and the way the funding councils worked was that the more that

I

Paul Johnson is a qualified lecturer (HE and FE) as well as a
programmer. Until September 2006, he worked at the
University of Salford. He is currently on an agency lecturing
contract in a college of FE. He can be contacted at:
paul@all-the-johnsons.co.uk
December 2006 | Overload | 13

FEATURE PAUL JOHNSON

There is something rotten in education and
it is compounded the further up you go
entered, the more money the college received. It was therefore in the
interest of the colleges to spoon feed.
Happily, this has changed now – it is now roughly 10% on enrolment, the
rest when they qualify. The benefit is that colleges now do not have to take
everyone.
This sounds far more like it – they are working on true business lines of
performance related earnings.
At this point, I will let my narrative move to the questions I asked of my
colleagues.

Is FE today geared more towards a product [ProdLearn] rather than
a process model [ProcLearn]? In other words, the students are spoon
fed and it's pretty near impossible for them to fail rather than when
we did a course, we had to work to get the grade.
The passing everyone thing happened because the funding
model was shifted from we pay you in full for every one that
enrols to you get a bit and the rest when they pass though a
certain amount of it goes on in recent years there has been a
move towards what has been termed recruitment with integrity)
so we are not forced to pass everyone.

Over the years that you’ve been in FE, would you say that the level
of student coming in (academically) has dropped, stayed the same or
improved. I'm gearing this towards the annual statistical figures the
government release.
Currently students seem to be coming in with weaker skills in
the areas of writing, reading and maths which leads to much
higher amounts of support being required; in some cases
ridiculous levels of help are required just to achieve a passing
grade.
The abilities in maths and English do appear to be lower than
in the past and in some noticeable cases, lower than expected
over all academic ability.

I would put this down to the schools obsession with targets. Let
me illustrate: let's say the government target is 4 GCSE's at C
or better. Some schools use a GNVQ intermediate which is
equivalent to that to make up the numbers.

Is the approach taken at FE failing the student in that because of the
method of teaching taken at school and college level, their ability to
think and work independently has been diminished to such an extent
that they are not really that suitable for the outside world of work.
I do feel that at our institution at least we try to promote their
ability to think and work independently in there chosen
academic field this is made difficult some times by the mentality
they come out of school with (this depends on school).

Is there an undue bias when students come in and leave to particular
software and/or operating systems and hardware architectures and at
the end of the day, is this really a bad thing? Remember though when
answering this the major problems with any and all mono-cultures.

It is true that nearly all computer systems in use in teaching in
schools and colleges is the old Microsoft/lintel platform not
really a bad thing in a way as that is the kind of equipment the
students are likely to have at home, this can be bad if they
become faced with an entirely different platform when they
enter employment.

In specialist subject areas however other platforms /
architectures are in use more than Intel/Windows, for instance
Art and media departments use more Macintosh computers as
they are more favoured by the digital art and design
community.

In what I will call “technical computing” (How computers work,
Writing programs, networking and file servers) Microsoft Intel
does play a large part but other platforms such as Unix/Linux
do feature prominently in teaching about the some subjects
with in this area.

In an area I will call “applied computers”, not computing,
computers. things like engineering, computer aided design
and manufacture there is a tendency towards technology
unique to a piece of equipment, some based on Intel/windows
some based on computer ised contro l uni ts cal led
Programmable logic controllers (PLC's).
More generally in what I will call “IT” - using computers (word
processing , spreadsheet use, data entry etc.) the Microsoft/
Intel is all pervasive in with this group i would also place all
teaching areas out side of the specified areas above.

Given and depending on the above, is it your professional opinion
that education (or the method of education) is failing those it aims to
help?
I feel that the following things have a detrimental effect on the
education system particularly the further education system that
could be described as aspects leading to the system failing
people who want an education.
Governments unrealistic ideas e.g 50% of the population will
go to university [DfES 2002].
Funding geared to passing students this means there is heavy
pressure to get students through this leads to some students
receiving undue help to complete when they should be leaving
with a fail grade. In the eyes of employers this leads to a
devalued qualification and may lead to a college leaver being
sacked for not being able to do what the qualification says they
can.

Schools disadvantaging the school-leavers with the range of
easy subjects they are taught in preference to the more difficult
subjects that can lead to better jobs. There was an article in
the Times Ed. supplement [Tiimes] not too long back that
course work is to be dropped from some GCSEs.

The content of GCSE and A levels has been watered down
over time. The marking of these is just as rigorous as it has
14 | Overload | December 2006

FEATUREPAUL JOHNSON

The more bums there are on seats, the
happier the bean counters are
always been – the criteria has been changed and how grades
are derived from marks out of 100.
There is now almost no funding for adult courses for people to
reskill for a new career or help get them off Benefits and into
work for good or into university erm what was that about 50%
of the population again?

So, it’s not all the colleges fault then?
Certainly food for though. A college is only able to deal with what comes
through their doors and if a good chunk of that time is spent in bringing
the student up to the level required for them to be able to understand the
basics, then it is of little wonder that those moving up to Higher Education
aren’t able to cut it. The problem there though is that by the time students
reach HE, educationally, they’re probably only at what would be
considered FE level 6 years ago.
This certainly adds strength to the argument that students coming through
are not up to the same standards as they were in the mid to late 1990s.

Let’s go back to school
Schools are obsessed – and not directly with the education of children.
They want to be at the top of their respective league tables. It doesn’t matter
that the statistics don’t tell the whole truth (some schools improve their
results by not entering pupils who are likely to fail or not achieve a C, and
rarely take into account local demographics such as unemployment and the
effect[LitTrust] that has on learning). If they can be close to the top of the
league, they are able to fill their classrooms far easier and attract lucrative
grants.
To counter this, the government launched their “Every Child Matters”
initiative [ECM]. This is a very well meaning and, if it works, an attempt
to tailor learning to each child. There is only one problem – schools do not
exercise this correctly, it is commonly referred to (by teaching staff) as
“Every Child Matters as long as they get a C or above”. The league table
mentality still applies.
If we ignore this for the moment, can the problem really be placed as far
down as secondary education? Are pupils coming out of schools really any
worse than in the late 1980s academically? It is not a good idea to compare
the examination results at either GCSE or A Level for this either. On a BBC
Five Live interview (2004) at the time of the A level results coming out,
when asked by Nicky Campbell, the education minister admitted on air that
A levels had become easier!

Examining the exams
Exams are still marked as rigorously as they were 20 years ago. This has
not changed. What has changed though is what is on the paper. Take the
example of a question on a GCSE 2005 Maths [AQA] paper shown in the
sidebar.

If we ignore the poor English used on the paper, this is one of the harder
questions in the traditionally harder section B. In total, 50 minutes is
allowed for the paper with a break in between each section.
I will assume for the time being that you’ve managed to stop laughing at
this question. You’ll need to have stopped otherwise you'll have a wet
patch after this one – when A level is reached, a modular exam can be taken
as many times as a student wants to (even if they have passed) and only
the highest mark is the mark which is put forwards!
If gaining the mark means that the teacher spoon feeds or tailors the
teaching to purely teach to the syllabus with very little time for much else,
then that is what happens. This is probably going to be as close to the
Utopian dream of factory style education. With all that has been said of
Every Child Matters, it is impossible to reconcile the two.
This “pass whatever comes” attitude is costing us dearly. Not just
educationally, but also economically as we produce graduates who are
unable to compete with our European neighbours when it comes to what
they come out of our education system with.
At this point, the words of Baz come to mind again. Do we not have this
“it was easier in my day” point not apply here? It’s a fair comment – most
generations consider examinations harder in their day, however....
In 1994, I was part way through my HNC. I was teaching some bright 2nd

year A level students Chemistry. They were full of themselves having just
passed with flying colours another module test. I set them a challenge as
it was close to Christmas. They were to sit the GCE paper I sat in 1987.
Those who gained C or above, I’d buy drinks for on a night out – those
who failed bought me the drinks.
Needless to say, I was very drunk that weekend!
Yes, this is anecdotal, but it did show something. These students, all of
whom were heading for an A could not pass a GCE paper set 7 years earlier.

The time taken, in minutes, by each of 15 pupils to travel to school, is
shown in the ordered stem-and-leaf diagram.

Key 3 | 2 represents 32 minutes

a. One of these pupils is chosen at random. What is the probability
that this pupil took less than 20 minutes to travel to school?

b. What was the median number of minutes taken to travel to
school

c. Another people takes 37 minutes to school. Tick the correct box
to show, if any, this has on

the median (decreases/same/increases)

the range (decreases/same/increases)

0 5 5 8

1 0 2 4 5 9

2 3 5 6 6

3 2 4

4 6

GCSE Maths Paper – 2005
December 2006 | Overload | 15

FEATURE PAUL JOHNSON

The culture of statistics and unachievable
targets in schools seems to be the main
driver of a lower set of standards
Back to University
We have gone full circle now with each step down the education path
showing that the failing comes from the one preceding it and at the end,
the culture of statistics and unachievable targets in schools seems to be the
main driver of a lower set of standards.
What does this mean to universities?
Other than having to include remedial English and Maths to enable
students to write their final dissertations, we have second year students on
programming courses who have never come across new, delete,
calloc, malloc or free, never check to see if a pointer has a value
allocated to it and who have such a mediocre grasp of the STL as to make
you cringe [C++]. The use of debuggers is almost unheard of in some
establishments!
Is it little wonder that companies rarely trust graduates? Sure, there is a
variance across the university sector as well as a variance across year
groups, but the trend is still downward irrespective of the establishment
attended.
Can there be a value placed to a degree or any formal certificate obtained
via the traditional education route when the quality at the end is
demonstrably lower than it was even 10 years back? The popularity of the
BCS examinations with employers has been growing in the past 6 to 7 years
as they are seen to still be at the same level of difficulty as they have been
for many years. The likes of the BCS can do this as they are not restricted
by the whims and caprices of the ruling party of the time.

Conclusion
If you've come this far, you're probably feeling somewhat incensed.
Different political parties have done nothing other than destroy our once
great education system. Since the inception of the GCSE in 1988, there has
been (on average) 2 education bills or reforms each year; some are larger
than others. The constant fiddling has eroded what we once had.
Sure, the examination system had to be changed as it had become
recognised that the different style of learners [LearningStyles] responded

differently to exams and that in order for everyone to have a fair crack,
something had to change. However, since that time, the constant messing
has changed the award of a GCSE as being nothing sellable in the
employment market with even an A Level not having the clout it once had.

Credits and disclaimers
I must thank my friends at colleges and schools around the UK who have
helped me with this feature. Without them, I would have not had half of
the material needed to construct such a commentary.

References
[AQA] AQA, Mathematics (MODULAR) (SPECIFICATION B).

Module 1 Intermediate Tier Section B.
[BBC] BBC website : http://news.bbc.co.uk/1/hi/education/5278774.stm
[C++] Possibly the worst C++ course in the world – EVER :

http://www.all-the-johnsons.co.uk/cpp-worst-index.shtml
[DfES2002] 2002 Spending Review :

http://www.dfes.gov.uk/2002spendingreview/06.shtml
[ECM] Every Child Matters : http://www.everychildmatters.gov.uk/
[FHEA 1992] Further and Higher Education Act 1992 (c.13) :

http://www.opsi.gov.uk/acts/acts1992/Ukpga_19920013_en_1.htm
[LearningStyles] Learning styles :

http://www.ldpride.net/learningstyles.MI.htm
[LitTrust] The link between poverty and exam results :

http://www.literacytrust.org.uk/Database/stats/poorexam.html
[Luhrmann] Baz Luhrmann: Everybody’s free (to wear sunscreen) –

http://www.generationterrorists.com/quotes/sunscreen.html
[ProcLearn] Process learning : http://www.infed.org/biblio/b-

learn.htm#process
[ProdLearn] Product learning : http://www.infed.org/biblio/b-

learn.htm#product
[Times] QCA report on cheating (linked from the TES website) : http://

www.qca.org.uk/2586_15523.html
16 | Overload | December 2006

	How Overload Comes to You
	Pooled Lists
	The Singleton in C++
	- A force for good?
	C++ Interface Classes - Strengthening Encapsulation
	A Drop in Standards?

