

“The conferences”
Our respected annual developers' conference is an excellent
way to learn from the industry experts, and a great opportunity to
meet other programmers who care about writing good code.

“The community”
The ACCU is a unique organisation, run by members for members.

There are many ways to get involved. Active forums flow with
programmer discussion. Mentored developers projects provide a

place for you to learn new skills from other programmers.

“The online forums”
Our online forums provide an excellent place for discussion, to ask
questions, and to meet like minded programmers. There are job
posting forums, and special interest groups.

Members also have online access to the back issue library of ACCU
magazines, through the ACCU web site.

D
e
si

g
n

:
P
e
te

 G
o
o
d
lif

fe

Invest in your skills. Improve your
code. Share your knowledge.

Join a community of people who care
about code. Join the ACCU.

Use our online registration form at
www.accu.org.professionalism in programmingprofessionalism in programming

www.accu.orgwww.accu.org

accuaccu || join: injoin: in

“The magazines”
The ACCU's C Vu and Overload magazines are published

every two months, and contain relevant, high quality articles
 written by programmers for programmers.

October 2017 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications and activities,

visit the ACCU website: www.accu.org

4 Letters to the Editor
Two letters and their replies.

5 Marking Benches
Russel Winder reminds us that benchmarking
code performance is a complicated issue.

8 The Historical Context of Technology
Charles Tolman provides a historical context for
foundational thinking.

10 ‘Speedy Gonzales’ Serializing (Re)Actors
via Allocators
Sergey Ignatchenko completes his (Re)Actor
allocator series.

14 Polymorphism in C++ –
A Type Compatibility View
Satprem Pamudurthy compiles an exhaustive
matrix of polymorphism.

18 Open Source – And Still Deceiving
Programmers
Deák Ferenc walks through the ELF format to
avoid malicious code injection.

24 C++11 (and beyond) Exception Support
Ralph McArdell gives a comprehensive overview
of C++ exception features.

32 Afterwood
Too soon! Chris Oldwood reviews
optimisation in the development process.

OVERLOAD 141

October 2017
ISSN 1354-3172

Editor
Frances Buontempo
overload@accu.org

Advisors
Andy Balaam
andybalaam@artificialworlds.net

Matthew Jones
m@badcrumble.net

Mikael Kilpeläinen
mikael@accu.fi

Klitos Kyriacou
klitos.kyriacou@gmail.com

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.demon.co.uk

Anthony Williams
anthony@justsoftwaresolutions.co.
uk

Matthew Wilson
stlsoft@gmail.com

Advertising enquiries
ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Cover art and design
Pete Goodliffe
pete@goodliffe.net

Copy deadlines
All articles intended for publication
in Overload 142 should be
submitted by 1st November 2017
and those for Overload 143 by
1st January 2018.

EDITORIAL FRANCES BUONTEMPO
This way up!
Directions in computing can be very confusing. Frances
Buontempo wonders if we know our right from left.
Following instructions can be very difficult. For
example, writing an editorial every two months with
no idea what to write about, simply having to fill two
pages, is a regular challenge. Could I get someone to
draw me a cartoon strip? (Budding artists get in
touch, please). Can I use a gigantic font? (Apparently

not.) Lacking any direction should be liberating, but can be confounding.
Even if you are given directions, things can go awry. Have you ever told
someone to go left at the next turn, only to see them indicate right? Far
too often a cry of, “No, left!” meets with “Yes, I’m going left!!” The
simplest solution is to try, “No, the other left” instead. That has worked
on several occasions for me.
Spatial awareness is vital in many situations. Even sitting at your desk all
day, you need to be able to reach out and grasp your mug of coffee –
assuming you are caffeine-powered like many programmers – or move
your fingers around a keyboard. Practising can help you improve; you
learn where the home keys are and how much to move to hit the keys you
need, rather like practising scales when you learn an instrument. Some
keys are better hit with the right hand; others with the left hand. I
constantly have to remind myself there are two shift and control keys.
Note to self; for combinations like Ctrl-A, it makes much more sense to
use the right hand Crtl key with the A.
At other times, spatial words are used arbitrarily: a binary operator can
take an lhs and a rhs – left hand side and right hand side – stemming from
how the code is written. The operator could be seen as taking a first and
second operand, avoiding the tempting and common abbreviations lhs
and rhs. Whether infix notation 3 + 4 or something like 3.operator+(4),
you have a left and right operand. If you start chaining operators – 2*3+4
– you still have a left and right, though to parse the expression you will
build an expression tree. If you evaluate this in Q you will get 14
[Q operators]. You may have been expecting 10, (2*3)+4, but Q
evaluates from right to left. Unconventional; you need braces to ensure it
follows your instincts. What about x < y < z? In some languages this
would compare the result of x < y, a Boolean, with z, which may not have
been the intention; you need to spell out (x < y) and (y < z). However, in
Python, the operators can be chained [Python operator]. For almost all
data types, you would expect transitivity to follow: that x < z. This might
not happen, either due to bugs or by design, depending on the definition
of less than. Unconventional approaches can lead to surprises. Of course,
conventions and instincts are built on top of what has happened before.
Challenging norms leads to new and interesting ideas. New branches of
mathematics often sprout this way. As Kevlin Henney recently pointed
out, “Tradition [noun]; A practice or belief that is repeated and passed on
without rationale, except that ‘We’ve always done it this way.’” [Henney]

Sticking to conventions and repeating the
way you do things is not always a bad idea.

Typing with your left hand on the left of a
keyboard and your right on the right is a

good thing. Doing touch typing drills can be a good thing, if like me you
frequently end up with a mess of typos when you write. Building up a
muscle memory makes so many things become instinctive. Rather than
sitting at your desk all day, it is good to get some physical exercise. Going
for a short walk round the block counts, though some people choose more
formal sets of exercises, possibly in a gym. Calisthenics are a way of
using your own body’s weight to exercise, without needing kit, so you
can do this in a gym or outdoors. Think sit ups or similar. If you search,
you will find lists of exercises to try that work out your whole body,
claiming to improve balance, muscle tone and the rest. If you’d rather sit
at your desk and code, try out Object Calisthenics by Jeff Bay. These are
included in the Thoughtworks anthology [Thoughtworks] and can be
found online [Object Calisthenics]. He points out that many object-
oriented examples “encourage poor OO design in the name of
performance or simple weight of history”. Tradition, as ever. They consist
of nine rules of thumb to nudge your OO code towards seven code
qualities; cohesion, loose coupling, no redundancy, encapsulation,
testability, readability, and focus. Rule six is “Don’t abbreviate”, or “Do
not abbreviate”. So, lhs and rhs mentioned above are bad parameter
names, and “Ctrl” was just careless. I apologise. In terms of code, I’m
sure you can think of many examples of abbreviations such as
getNoChildren rather than getNumberOfChildren or even
numberOfChildren. Of course, rule nine says no getters, so the
problem is nipped in the bud.
Left and right seem like obvious ideas, but I recall lots of problems trying
to remember which was which when I was a small child. Parents often
resort to writing on shoes, gloves, etc. to help reinforce the words. Can
you recall how you learnt which side was which? Do you remember when
you discovered whether you were left or right handed? Can you write
with both hands? Since more people are right handed, many things are set
up for right handed people. To scan a travel pass you usually hold it to
your right, unless you get on a bus in the UK. You may have spotted
people scanning the card on the left and then walking into a closed
barrier. Right-handed scissors don’t work if you use them in your left
hand. Other setups are purely driven by convention, including driving;
the gear stick in a car is by your left if you have a right hand drive car,
and by your right if you have a left hand drive car. The hand you use
depends on which side of the road you are supposed to be driving on. One
will seem more natural depending on your experience.
The idea of handedness, or chirality, applies to molecules as well as
people. Thalidomide, a drug produced to combat morning sickness,
caused malformation of limbs in the babies. I am not a chemist, but I
understand small batches were tested which appeared to be fine, but when
enterprise sized production batches were produced, slightly different
‘enantiomers’ or optical isomer of the chemical were manufactured. One
is a mirror image of the other; they contain the same elements arranged
similarly. The only difference is the chirality. The molecules can then slot
into different places and cause different outcomes in vivo. A warning

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad's BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | October 2017

EDITORIALFRANCES BUONTEMPO

against enterprise-grade endeavours? Maybe, maybe not. Turning to
physics, when Feynman discusses anti-matter in Six Not So Easy Pieces
[Feynman] he identifies the chiral opposite of normal matter as
antimatter. Starting with beta-decay, he considers reflective symmetry in
nature and recounts an experiment which shows decaying cobalt atoms
emitting electrons which tend to go up, under some specific conditions.
You could describe this experimental setup to a Martian, and then have a
way to describe right and left (or up and down) without pointing. A
genuine problem, assuming you can speak Martian, and find a Martian to
talk to. How do you describe left or right? In words, without pointing.
Cobalt; check. Martian; check. So far, so good. However, the ‘broken
symmetry’ – that sometimes electrons tend to spin left, or go up, with no
good reason – is curious. He encourages you to imagine antimatter, which
annihilates matter on contact. If the Martian is made of antimatter and you
talk him through the cobalt experiment to communicate left and right, and
arrange to meet, what will happen? His anti-matter cobalt will send
electrons down, so his left and right will be the other way round to yours.
Feynman says,

What would happen when, after much conversation back and forth,
we each have taught the other to make space ships and we meet
halfway in empty space? We have instructed each other on our
traditions, and so forth, and the two of us come rushing out to shake
hands. Well, if he puts out his left hand, watch out! [Feynman online]

Perhaps you can’t describe left and right in exact terms. Gisin gives a
short, though maths-heavy discussion of the same topic [Gisin], called
‘Quantum gloves’, starting “Assume that two distance partners like to
compare the chiralities of their Cartesian reference frames.” It talks
through frames of reference and information encoding, and leaves me
none-the-wiser as to which way is up; highly recommended if you like
your maths, though. Pointing is sometimes the only way. Of course, that
is something of a human convention. Some animals can understand it, but
a cat will often just look at your finger rather than what you are pointing
to.

Arbitrary assignments, such as left or right-handed applied to molecules,
apply in computing too. Algorithms, as well as design, processing,
investing or parsing can be described as top down or bottom up. The
internet tells me that top down parsing starts at the “highest level of a parse
tree” [Wikipedia]. Without following the link, I am certain the highest
part of this tree will be a root. Trees in computing are almost always
upside down. Top-down starts with the big picture moving on to details,
while bottom up figures out the details, and pieces the parts together to
make the big picture or final answer. Bottom-up can also mean capsizing
a yacht, though figuring out which way up a boat should go should be
straightforward enough, even for a Martian. Markup and markdown is a
different matter. I presume we draw the root at the top of a page to add the
details as we go down since we tend to start writing at the top of a page.
This leads to another source of confusion, at least for me. Many drawing
packages are based on printing to a screen, and tends to have 0 as the top
of the screen. In contrast, 0 is at the bottom when you plot data on axes;
for many plotting packages, going up gives bigger numbers. Watch out for
different idioms, conventions and scales as you switch contexts.

If you are told to turn something round, what do you do? Does ‘flip’
suggest something different to ‘rotate’? Can I describe what I mean
clearly using only words? Many software applications come with some
form of documentation, frequently of varying quality, and part of that
often includes some form of diagrams. I personally tend to find drawing
an architecture diagram of a complicated system by hand more useful than
attempting to decipher a diagram with hundreds of parts. Where do you
look first? A simple diagram, with a couple of blobs indicating different
parts of the system and one or two arrows showing connections, either as
data flow or processing can be helpful. More than that is often confusing.
Making clear diagrams is as much of skill as writing well. You probably
don’t need a detailed map of your software landscape, at least initially,
though a spot clearly marked ‘Here be dragons’ is useful. There is no
shame in a simple sketch on a white board, if you have a whiteboard.
Failing that a hand-drawn sketch on paper will do.

Some of the confusion we have considered is inherent in language, while
some is through ambiguities, careless abbreviations, or assumptions about
experience. Some of the issues arise from pedantry or precision. One
language will parse a statement left to right, while another might go right
to left, or special case operators. Humans do the same too. Children can
have difficulty with ambiguous statements: “the man fished from the
bank” [Rowland]… Some children get the hang of this type of statement
more quickly than others. Sometimes autism is blamed, though this book
suggests autistic children’s difficulties in communication are not purely
down to autism. The author cites various studies including ‘Barking up
the wrong tree?’ [Norbury] of language impairment in autistic children,
considering the use of metaphor and simile comprehension in a group of
children with various degrees of language impairment and autistic
symptoms. The study concludes that children with autism who struggled
with the metaphors also had language impairment, and were
indistinguishable from those without autism. It concludes that “a number
of top-down (contextual processing, world knowledge, and experience) and
bottom-up (semantic analysis) processes that work synergistically to arrive
at metaphor understanding.” Computer programmers are often claimed to
be on the autistic spectrum or have Asperger’s syndrome [Atwood]. I
suspect much of the claimed evidence is inaccurate; being absorbed in
something you find interesting is not the same as having autism, yet some
ways of measuring autism do hint at slight differences between different
groups, for example the autism-spectrum quotient [Baron-Cohen et al]. If
you can’t tell your left from right, never remember which is bottom up or
top down, find ambiguous instructions confusing, you are not alone. If it
all gets too much, step away from the keyboard and get some exercise. Or
practise scales. Loudly. Or overload some operators in unconventional
ways and write it up for Overload. And don’t forget, as Tony Hoare once
said,

You canno t teach beg inners top-down
programming, because they don’t know which
end is up.

References
[Atwood] https://blog.codinghorror.com/software-developers-and-

aspergers-syndrome/
[Baron-Cohen et al] The Autism-Spectrum Quotient (AQ): Evidence

from Asperger Syndrome/High-Functioning Autism, Males and
Females, Scientists and Mathematicians, Journal of Autism and
Developmental Disorders, February 2001, Volume 31, Issue 1, pp
5-17 https://link.springer.com/article/10.1023/A:1005653411471

[Feynman] Six Not-so-easy Pieces: Einstein's Relativity, Symmetry and
Space-time, first published in 1964 by Addison-Wesley but reissued
in 1990s.

[Feynman online] http://www.feynmanlectures.caltech.edu/I_52.html
[Gisin] https://arxiv.org/pdf/quant-ph/0408095.pdf
[Henney] https://twitter.com/KevlinHenney/status/

900598832131698688
[Norbury] ‘Barking up the wrong tree? Lexical ambiguity resolution in

children with language impairments and autistic spectrum disorders.’
J Exp Child Psychol. 2005 Feb;90(2):142-71.
See https://www.ncbi.nlm.nih.gov/pubmed/15683860 or find online
at http://www.pc.rhul.ac.uk/sites/lilac/new_site/wp-content/uploads/
2010/04/metaphor.pdf

[Object Calisthenics] https://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/
ObjectCalisthenics.pdf

[Python operator] https://docs.python.org/2/reference/
expressions.html#comparisons

[Q operators] http://code.kx.com/q4m3/4_Operators/
[Rowland] Understanding Child Language Acquisition by Caroline

Rowland via
https://books.google.co.uk/books?id=cVizAQAAQBAJ

[Thoughtworks] https://pragprog.com/book/twa/thoughtworks-anthology
[Wikipedia] https://en.wikipedia.org/wiki/Top-down_(disambiguation)
October 2017 | Overload | 3

https://en.wikipedia.org/wiki/Top-down_(disambiguation)
https://pragprog.com/book/twa/thoughtworks-anthology
https://books.google.co.uk/books?id=cVizAQAAQBAJ
http://code.kx.com/q4m3/4_Operators/
https://docs.python.org/2/reference/expressions.html#comparisons
https://docs.python.org/2/reference/expressions.html#comparisons
https://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf
https://www.cs.helsinki.fi/u/luontola/tdd-2009/ext/ObjectCalisthenics.pdf
https://www.ncbi.nlm.nih.gov/pubmed/15683860
http://www.pc.rhul.ac.uk/sites/lilac/new_site/wp-content/uploads/2010/04/metaphor.pdf
http://www.pc.rhul.ac.uk/sites/lilac/new_site/wp-content/uploads/2010/04/metaphor.pdf
https://twitter.com/KevlinHenney/status/900598832131698688
https://twitter.com/KevlinHenney/status/900598832131698688
https://arxiv.org/pdf/quant-ph/0408095.pdf
http://www.feynmanlectures.caltech.edu/I_52.html
https://link.springer.com/article/10.1023/A:1005653411471
https://blog.codinghorror.com/software-developers-and-aspergers-syndrome/
https://blog.codinghorror.com/software-developers-and-aspergers-syndrome/

LETTERS
Letters to the Editor

Silas has some comments on Deák Ferenc’s recent article:

Regarding Deák Ferenc’s interesting article in Overload #135 (October
2016), with code at https://github.com/fritzone/obfy, on the generation of
more-obfuscated binaries using C++ constructs, I think a better
application is that of decoding obfuscated data rather than a simple license
check.
Attackers tend to go for the weakest l ink. If you make the
check_license function very obfuscated, then sooner or later the
weakest link will be, not the license check itself, but the call to it. The
attacker finds the code that calls it and jumps over that call, or replaces the
first few bytes of the compiled check_license with code to return true.
Stripping out the name check_license might help, but from your code
it looks like reverse-engineering the location of check_license (or a
call to it) will become the simplest attack, unless we’re in a context where
the attacker has read-only access to the code and the only plausible attack
is a counterfeit license file (but that’s not the normal context if you’re
shipping out proprietary software to an end user).
Therefore, I suggest this code could more appropriately be used in
programs that need to ship with an obfuscated copy of proprietary data.
For example, consider a dictionary program whose publishers wish to
allow the end-user to look up individual words for display on screen, but
not to copy out the entire dictionary and print their own (at least, not
without going to the trouble of manually writing it down from the screen).
Such a publisher might wish to store their dictionary entries encrypted,
with the decryption algorithm obfuscated using your code. Unless the
attacker can figure out how the decryption algorithm works, they’d be
restricted to using the provided program to display the entries, which is
what the publisher wants.
For the dictionary example, there might still be other weak points: it might
be possible to feed keystrokes to the program, causing it to display each
entry in turn, and automatically copy the text off the screen. The program
might try to protect against this by limiting the speed at which entries can
be displayed and/or the total number of entries per session. These limits
could then be targeted in an attack. And so on. But this is all more difficult
than bypassing a yes/no license check.
Of course, if enough publishers started using Ferenc’s code, then sooner
or later somebody might try to write a decompiler for it. Such a
decompiler would be dependent on the C++ compiler that had been used,
and would be very difficult indeed to write, but once written could be used
to attack many products. The publishers might however be able to stay
ahead for a while by randomising the exact set of optimisations they allow
their compiler to use. (The use of volatile prohibits pre-computation
optimisations, but other types of optimisation could be switched on and
off for more variations.)
Thanks.
Silas S. Brown

Ferenc replies:

Hi,
I would like to thank Silas for his constructive comments. The suggestions
he made are valid: indeed, the weakest link in license checking during the
application’s lifetime is the actual call to the license checking routine. The
attacker can always ‘NOP’ out the calls to any specific routine in the
application, once that routine is identified as the one checking the license,
or just patch the method to return a valid license.
To mitigate this patching, I could recommend that several routines
perform the task of checking the license, each of them written with a
different sub-set of the obfuscation framework to generate different code.

Also, different parts of the application could perform license checking in
seemingly unrelated scenarios (for example, opening a dialog box could
trigger the license check, as well as saving the current progress) and react
accordingly. This would certainly lead to an increase of the delivered
binary, however.
The call to license checking, however, is a different problem entirely.
Gone are the DOS days when we could (easily) dynamically patch our
executable in memory by decrypting a sequence of binary commands and
jumping to them to perform operations which the disassembler cannot
see, or simply by constructing a new sequence of commands by jumping
into the middle of a carefully crafted binary opcode sequence, thus
making debugging and disassembly a real nightmare (both of these
techniques were widely used in viruses 20 years ago).
Without a further research, right now I’m only aware of a few ways (some
standard and some non-standard) to call methods in an indirect way, but
in the end they all end up in the generated binary code. For example, one
could store the addresses of several ‘facade’ methods (which call the
license checking method) in a structure, and randomly select one from
them in order to confuse the wanna-be attacker (of course, more than one
license checking methods can be there too). Another (pretty hackish, non-
portable, non-standard and definitely not recommended) method is to
carefully engineer a local stack overflow which will end up in the license
checking method, without entirely destroying the stack of the application
(again: not recommended).
In order to circumvent the Data Execution Prevention policy of some
operating systems, it is possible to execute constructed binary code by
creating specific memory areas which will be marked as executable,
where we can generate code outside of the binary and make the call to the
license checking algorithm invisible to the stored binary, thus nothing to
patch. But this topic is so wide that it deserves a dedicated article, and it
was outside the scope of the ‘Obfuscation Frameworks’ article.
Regarding the usage of code the way you suggested (ie: as a data storage
component): indeed, it is a very appropriate use case for this framework,
so please feel free to experiment with it and let me know the results.
Thank you again for your constructive ideas,
Kind regards,
Ferenc

Silas also noticed an error in the Editorial in Overload 135:

I just noticed a typo in Overload 135’s editorial.
It says AB is identical to !A!B.
This is incorrect. If A implies B, that does not mean lack of A implies lack
of B. (Fire implies smoke, but if there’s no fire there might still be smoke
from dry ice or something.)
Instead, AB is identical to !A | B.
(Either there’s no fire, or there’s fire and smoke with it, but we’re not
saying anything about the value of smoke when there’s no fire.)
Silas S Brown

And Fran agrees that Silas is right...

As you say, AB is the same as !A | B
I meant !B!A (I think).

AB !B!A

0 1 0
0 1 1
1 0 0
1 1 1

1 1 1
0 1 1
1 0 0
0 1 0
4 | Overload | October 2017

https://github.com/fritzone/obfy

FEATURERUSSEL WINDER
Marking Benches
Too slow! Russel Winder reminds us
that benchmarking code performance
is a complicated issue.
n the article ‘Mean Properties’ [Winder17] I, hopefully humorously,
but definitely contentiously, stated in a footnote:

Of course we have no real data on this hypothesis without
undertaking some sensible benchmarking activity. Which we will not
be doing in this article since it is far too much effort.

It may have been too much effort in the context of that article for that
article, but clearly measuring performance is extremely important when
performance of code execution becomes an issue.

A short rant
Far too regularly I, and I am sure all of you reading this, hear people
saying things like “but this code is much faster than that code” and leave
it at that as though saying something is the case makes it true1. If you are
involved in a conversation with someone making these sort of sweeping
judgements, you might want to ask them to rephrase. If the person
rewords to something along the lines of “I believe that, on appropriately
measuring, this code will execute faster than that code in the measurement
context” then you know they initially just mis-phrased things in the heat
of the moment, and actually have a reasonable view of software
performance. If the person persists with “but this code is much faster than
that code, just look at the code” then you may just want to shun the person
publicly till they re-educate themselves.

Repairing a previous mis-phrasing
In [Winder2017] I stated “…this code is likely to be much slower than
using NumPy.” Not an obviously outrageous phrase since it is not
claiming a performance fact, but it is raising a performance question, a
question that really should be answered.
Questions such as this, as with any hypotheses in scientific method, lead
to setting up an experiment to obtain data, experiments that are
reproducible and with good statistical backing. In essence this means
running the codes a goodly number of times in consistent and stable
settings. Doing this sort of experimentation manually is, at least for all
programmers I know, seriously tedious, leading either to short-cuts or no
experimentation. There have to be frameworks to make this sort of
experimentation easy.

The Python approach
In [Winder2017] I used [pytest] and [Hypothesis] as frameworks for
writing tests for correctness of the implementation code. The goal was to
emphasise property-based over example-based testing for correctness.
pytest also has support for benchmarking, i.e. checking the performance
of code. It is not built in to pytest as distributed, but is a trivially installable
plugin [pytest-benchmark].

pytest-benchmark provides a fixture to be used with test functions to
create benchmark code. Whilst benchmarking can (and sometimes is)
intermingled with correctness testing code, it is far more normal and
idiomatic to separate correctness testing and benchmarking.
As an example let us address the code from the previous article. Here we
will just use the Numpy version:
 # python_numpy.py
 import numpy
 mean = numpy.mean

and the corrected pure Python version:
 #python_pure_corrected.py
 def mean(data):
 if len(data) == 0:
 raise ValueError \
 ('Cannot take mean of no data.')
 return sum(data) / len(data)

omitting the original pure Python version. The hypothesis we are testing
is that: the Numpy version is faster than the pure Python version.
So how to collect data? We write what appear to be pytest tests but use the
benchmark fixture provided by pytest-benchmarking to create benchmark
executions of the functions instead of the correctness testing functions we
wrote for correctness testing.

1. OK, as from the second half of 2016 in the new ‘post-truth’ world, the
norm in society in general is for things stated to be true to be true, but
we must not let software development and programming be polluted by
this unscientific posturing.

I

Russel Winder Ex-theoretical physicist, ex-UNIX system
programmer, ex-academic, ex-independent consultant, ex-analyst,
ex-author, ex-expert witness, and ex-trainer, not yet an ex-human
being. Mostly now interested in the ACCU conference and writing
DVB-T and DAB software. Still interested in programming,
programming languages and build. May yet release the next
version of GPars. See https://www.russel.org.uk

Listing 1

import pytest

from random import random

from python_numpy import mean as mean_numpy
from python_pure_corrected import mean as \
 mean_pure

data = [random() for _ in range(0, 100000)]

def test_mean_numpy(benchmark):
 benchmark(mean_numpy, data)

def test_mean_pure(benchmark):
 benchmark(mean_pure, data)
October 2017 | Overload | 5

https://www.russel.org.uk

FEATURE RUSSEL WINDER

It appears that we can conclude that the
Numpy version is 5-ish times slower given the
mean and median values of the time taken to
execute the function
In Listing 1, pytest is imported on the assumption that the pytest-
benchmark plugin is available. the module random is imported as a
dataset has to be generated: data is a random collection of numbers in the
range (0.0, 1.0), here 100,000 items are in the dataset. Since both mean
function implementation are called mean, the alias feature of the import
statement is used to distinguish the Numpy implementation and the pure
Python implementation. Then there are the two test functions, which use
the benchmark fixture to run the benchmarks of the functions using the
dataset provided. (The output has been tabulated – see Table 1 – which
omits some information but makes it much easier to read.)
Well, that was unexpected2. It appears that we can conclude that the
Numpy version is 5-ish times slower given the mean and median values
of the time taken to execute the function.

Oh come on, this cannot be…
So we have actual data that pure Python is much faster at calculating
means on datasets than Numpy mean. It’s reproducible, and thus
incontrovertible. The original hypothesis is disproved3.
Yet our expectation remains that pure Python is interpreted Python
bytecodes, and thus slow, whereas Numpy is implemented in C and thus
fast. It is unbelievable, yet provably true, that pure Python is faster than
Numpy.

Ah, but… the input data was a Python list, Numpy works
on Numpy arrays. Mayhap we can unpack this idea with
a new benchmark. Listing 2 adds constructing a Numpy
array form of the data and then running the Numpy mean
function on the array. Note we keep the two original tests
(see Table 2).
OK, now this looks more like it: pure Python on a Python
list is 8-ish times slower than Numpy on a Numpy array.
Numpy mean on Python list remains as slow as
previously.

We have a new Quasi-Hypothesis
Passing Python data structures to Numpy functions is a
really bad idea, thus the mean implementation of the
Numpy version is a very poor implementation.
By making a Numpy function appear to be a pure Python
function, the conversion of the Python list to a Numpy
array is hidden. This conversion clearly has performance
implicat ions and so must be made explici t in
performance sensitive code. Essentially, when using

Numpy, always use Numpy data structures: do not make it convert Python
ones.
Proper benchmarking brought this to light. Now to change all the code to
avoid the problem. And then benchmark again to make sure the
suppositions and hypotheses are vindicated.

Endnote
I have glossed over many important points of data collection, samples,
statistics, and normality, in this article – the goal being to enthuse people

2. No-one expects the Spanish Inquisition.
It’s a Python thing, a Monty Python thing. https://en.wikipedia.org/wiki/
The_Spanish_Inquisition_(Monty_Python) https://www.youtube.com/
watch?v=7WJXHY2OXGE

3. Technically we need to do some analysis of variance and significance
testing to make this statement. However, for the purposes of this article,
I shall gloss over this point, even though it pains me to do so: ANOVA,
F-tests and t-tests are so much fun.

Listing 2

import pytest

from numpy import array
from random import random

from python_numpy import mean as mean_numpy
from python_pure_corrected import mean as \
 mean_pure

data = [random() for _ in range(0, 100000)]
data_as_array = array(data)

def test_mean_numpy_list(benchmark):
 benchmark(mean_numpy, data)
def test_mean_numpy_array(benchmark):
 benchmark(mean_numpy, data_as_array)
def test_mean_pure(benchmark):
 benchmark(mean_pure, data)

Table 1

Name test_mean_pure time in μs test_mean_numpy time in μs
Min 856.063 1 4461.969 5.21

Max 1079.325 1 4731.414 4.38

Mean 872.459 1 4476.2517 5.13

StdDev 8.2584 1 22.6862 2.75

Median 871.892 1 4472.543 5.13

IQR 1.4317 1 9.9422 6.94

Outliers*

*. Outliers: 1 Standard Deviation from Mean; 1.5 IQR (InterQuartile Range) from
1st Quartile and 3rd Quartile.

45;342 7;10

Rounds 1055 165

Iterations 1 1
6 | Overload | October 2017

https://en.wikipedia.org/wiki/
https://www.youtube.com/watch?v=7WJXHY2OXGE
https://www.youtube.com/watch?v=7WJXHY2OXGE

FEATURERUSSEL WINDER

pure Python on a Python list is 8-ish times
slower than Numpy on a Numpy array
into using benchmarking frameworks for gathering real, reproducible data
to back up claims of performance. Using a framework such as
pytestbenchmark has some assumptions built in that arguably may not be
formally valid, and so the results presented may not be ‘correct’ in a
formal statistical sense. However, the framework gives us data on our
code’s performance that is valid enough for us to make deductions,
inferences and corrections. Thus it is an incredibly useful tool for ‘rough
and ready’ performance checking.
Oh that all programming languages had such useful benchmarking
frameworks. Some have, e.g. Python and Java. This is an interesting
article on benchmarking frameworks for C++ [Filipek16]. 

References
[Filipek16] Micro benchmarking libraries for C++.

http://www.bfilipek.com/2016/01/microbenchmarking-libraries-for-
c.html

[Hypothesis] http://hypothesis.works/
[pytest] http://pytest.org/
[pytest-benchmark] http://pytest-benchmark.readthedocs.io/en/stable/

https://github.com/ionelmc/pytest-benchmark
[Winder17] ‘Mean Properties’, Overload 137, February 2017.

https://accu.org/var/uploads/journals/Overload137.pdf
https://accu.org/index.php/journals/2340

Table 2

Name test_mean_numpy_array time in μs test_mean_pure time in μs test_mean_numpy_list time in μs
Min 100.484 1 841.832 8.38 4572.266 45.5

Max 153.946 1 945.041 6.14 5019.503 32.61

Mean 101.8516 1 848.8424 8.33 4626.392 45.42

StdDev 3.5793 1 9.227 2.58 49.3561 13.79

Median 101.004 1 846.704 8.38 4623.92 45.78

IRQ 0.406 1 0.9293 2.29 44.3635 109.28

Outliers*

*. Outliers: 1 Standard Deviation from Mean; 1.5 IQR (InterQuartile Range) from 1st Quartile and 3rd Quartile.

324;417 62;308 26;5

Rounds 3314 1011 175

Iterations 1 1 1
October 2017 | Overload | 7

http://www.bfilipek.com/2016/01/microbenchmarking-libraries-for-c.html
http://hypothesis.works/
http://pytest.org/
http://pytest-benchmark.readthedocs.io/en/stable/
https://github.com/ionelmc/pytest-benchmark
https://accu.org/var/uploads/journals/Overload137.pdf
https://accu.org/index.php/journals/2340
https://github.com/ionelmc/pytest-benchmark

FEATURE CHARLES TOLMAN
The Historical Context of
Technology
Certainty is elusive. Charles Tolman provides a historical
context for foundational thinking.
n enlightening aspect that surprisingly pertains to the issue of
software design is the philosophical history that has led us to our
current technological society.

Looking back, we can see some origins in the Thirty Years War
[Wikipedia_01] that took place between 1618 and 1648. Some
commentators have drawn parallels with the impact of WW1 and WW2
between 1914 and 1945, saying that they could also be seen as a thirty
year war [Toulmin92]. The Thirty Years War of 1618 was a terrible war
over much of Europe that resulted in the death of a third of the German
population. It was a religious war between Protestants and Catholics, i.e.
one religion, two factions – and raised serious concerns about the
subjectivity of religious faith and the human condition. It was this that
brought the quest for certainty to a head. The underlying question was:
How can we be certain of what is happening in the world around us? And
for the faithful in the 1600s, how can we be certain of God’s plan?

Descartes
It was during this time that René Descartes [Wikipedia_02] produced his
‘Discourse on Method’ in 1637. He was the father of analytical geometry
and, of course, coined the famous phrase “I think, therefore I am”. But this
was predicated on the fact that we first doubt, thus the more correct phrase
should be “I doubt, I think, therefore I am”. He concluded that, because of
our subjectivity, we cannot trust our senses and what they are telling us
about the world, so he returned to the point of doubting. Since there was
doubt, there must be a being that is doubting. This being, this ‘I’ who is
doubting, is thinking about this so therefore I am thinking. Since I am
thinking I must exist in order to do that thinking.
Because the church was looking for certainty and because Descartes was
able to couch his thought in terms that they could accept, this provided the
foundation for the Scientific Revolution. This was followed by the
Industrial Revolution which has led us to our current modern
technological society. It is interesting to consider the fact that all that we
take for granted today represents the end of 300 years or so of work based
on Descartes’ philosophical premise: “I doubt, I think, therefore I am”
where the aim was to try and eradicate subjectivity.
It is ironic that, although the aim was to be objective, his Cartesian
coordinate system can be considered to be based on the structure of the
human being! I stand up, and my head could be considered as the Y axis.
I stretch my arms out to the side, there you have the X axis. I walk forward
and there you have the Z axis.

This points to the difficulties that are implicit in the struggle to eradicate
subjectivity – an objective (pun intended!) which I do not consider
possible.

Kant
I usually refrain from mentioning Immanuel Kant [Wikipedia_03] since I
am not a Kantian scholar, but his thinking has formed much of the basis
of modern thought. He produced the Critique of Pure Reason in 1781, and
there is one quote I wish to highlight here from his considerable body of
work. He said that “The world in itself is unknowable”. and this
strengthened Descartes’ approach of not trusting our senses. It has given
our modern scientific and technological society the excuse to allow our
thinking to run ahead of the phenomena of the world.
This activity may sound familiar if you think back to the ‘Path of the
Programmer’ [Tolman16]. It is a characteristic of the Journeyman phase.
With regard to my previous workshop on imagination [Tolman14], an
area dealing with educating our subjectivity, it is interesting to see that
one commentator, Mark Johnson, has noted that Kant had difficulty with
imagination – Johnson states that he was “not able to find a unified theory
of imagination in Kant’s writings” [Johnson87].

Goethe
The third person I want to mention, and the one I feel most drawn to, is
Goethe [Wikipedia_04]. It was Goethe who raised the warning flag to say
that there was a problem with the underlying philosophy and practice of
the scientific method. He pointed out that there was too much over-
hypothesizing and that the thinking was going ahead of the phenomena of
the world. Observation was not being given enough time.
This should ring alarm bells for any programmer because it is exactly
what happens when someone takes an undisciplined approach to
debugging.
Goethe, however, was particularly interested in understanding the growth
of plant life. He wrote the Metamorphosis of Plants in 1788 and identified
two very important activities. The first one is Delicate Empiricism (or
“Zarte Empirie” in German), i.e. carefully collecting the data, carefully
observing the world without overly disturbing its processes. [Wahl05]
The second activity, which is what gave me the impetus to give my
previous workshop on imagination in 2014, is Exact Sensorial
Imagination. This is NOT fantasy, but exact, grounded imagination
congruent with the observed phenomena. Goethe was trying to understand
how plants grew and how their forms changed during growth.
For me this links to how software projects grow over time, as if they have
a life of their own. A programmer needs to have a grasp of how the current
software forms may change over time within such a context if they are to
minimise future bugs.
The key difference between Descartes and Goethe is that Descartes was
trying to eradicate subjectivity whereas Goethe was wanting to educate
subjectivity.

A

Charles Tolman earned a degree in Electronic Engineering in the
70s, and then moved into software; progressing through assembler to
Pascal, Eiffel and eventually C++. He’s now involved in large scale C++
development in the CAE domain. Having seen many silver bullets come
and go, his interest is in a wider vision of programmer development that
encompasses more than purely technical competence. You can
contact him at ct@acm.org
8 | Overload | October 2017

FEATURECHARLES TOLMAN
The next important phase in philosophical thought is the advent of
phenomenology in the 1900s [Wikipedia_05]. The realization that the
process of coming to know something is crucial to, and as important as,
the conclusion. Goethe is not considered a phenomenologist as he focused
on specific phenomena rather than the philosophy behind what he was
doing, but he definitely prefigured some of their ideas and so could be
called a proto-phenomenologist.
We need to understand that phenomenology is a sea-change in
philosophical thought. Here we are, living in a modern technological
society based on 300 years of progress initiated by Descartes and his
subject/object duality, and now the underlying foundational thinking has
changed significantly.
The discipline of software development is in the forefront of trying to
understand what this change of thinking means in practice, though it may
not have realised it. We need to understand how we develop our ideas and
we need to understand our own cognitive biases, the subject of Dr. Marian
Petre’s keynote ‘Balancing Bias in Software Development’ [Petre16].
The point here is that we can do a certain amount in teams but there is also
some personal work to do in understanding our own learning processes.
There is a wonderful quote by Jenny Quillien who has written a summary
of Christopher Alexander’s Nature of Order books [Wikipedia_06]. She
says in a preface:

Wisdom tells us not to remain wedded to the products of thought
but to court the process. [Quillien08]

I think this is a lovely way of putting it. The process needs courting, it has
to be done carefully as with Goethe’s Delicate Empiricism.
For those who wish to understand Goethe’s work and the philosophical
issues around phenomenology, a primary source is Henri Bortoft
[Wikipedia_07]. His writing is very understandable, particularly his book
Taking Appearance Seriously [Bortoft12] and he draws on the work of
Gadamer [Wikipedia_08], one of the more recent phenomenologists. 

References
[Bortoft12] Bortoft, Henri (2012) Taking Appearance Seriously: The

Dynamic Way of Seeing in Goethe and European Thought.
See http://www.florisbooks.co.uk/book/Henri-Bortoft/
Taking+Appearance+Seriously/9780863159275

[Johnson87] Johnson, Mark (1987) The Body in the Mind: The Bodily
Basis of Meaning, Imagination and Reason, published by University
of Chicago Press
See also https://philosophy.uoregon.edu/profile/markj/

[Petre16] ‘Balancing Bias in Software Development’, talk delivered at the
ACCU conference 2016. See https://accu.org/index.php/
conferences/accu_conference_2016/accu2016_sessions#Balancing_
Bias_in_Software_Development and http://mcs.open.ac.uk/mp8/

[Quillien08] Quillien, Jenny (2008) Delight’s Muse, see
http://www.culicidaepress.com/2010/11/09/quillien-delights-muse/

[Tolman14] Workshop delivered at the ACCU conference in 2014,
https://charlestolman.com/2014/04/21/accu2014-workshop-
imagination-in-software-development/

[Tolman16] Tolman, Charles (2016) ‘The Path of the Programmer’, talk
at the ACCU 2016 conference. See also https://charlestolman.com/
2016/05/01/accu2016-talk-on-software-architecture-design/

[Toulmin92] Toulmin, Stephen (1992) Cosmopolis: The Hidden Agenda
of Modernity, ISBN 978-0226808383
See also https://en.wikipedia.org/wiki/Stephen_Toulmin

[Wahl05] Wahl, Daniel C. (2005) ‘“Zarte Empirie”: Goethean Science as
a Way of Knowing’ Janus Head 8(1) pp 58–76 Trivium Publications,
Amherst, NY. Available at http://www.janushead.org/8-1/wahl.pdf

[Wikipedia_01] ‘Thiry Years’ War’ https://en.wikipedia.org/wiki/
Thirty_Years'_War

[Wikipedia_02] https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
[Wikipedia_03] https://en.wikipedia.org/wiki/Immanuel_Kant
[Wikipedia_04] https://en.wikipedia.org/wiki/

Johann_Wolfgang_von_Goethe
[Wikipedia_05] https://en.wikipedia.org/wiki/

Phenomenology_%28philosophy%29
[Wikipedia_06] https://en.wikipedia.org/wiki/Christopher_Alexander
[Wikipedia_07] https://en.wikipedia.org/wiki/Henri_Bortoft
[Wikipedia_08] https://en.wikipedia.org/wiki/Hans-Georg_Gadamer
October 2017 | Overload | 9

Live on-site C++ Training
by Leor Zolman

www.bdsoft.com • bdsoftcontact@gmail.com • +1.978.664.4178Co
ur

se
s:

wwwww..b

Moving Up to Modern C++
An Introduction to C++11/14/17 for experienced C++
developers. Written by Leor Zolman.
3-day, 4-day and 5-day formats.

Effective C++
A 4-day “Best Practices” course written by Scott
Meyers, based on his Legacy C++ book series.
Updated by Leor Zolman with Modern C++ facilities.

An Effective Introduction to the STL
In-the-trenches indoctrination to the Standard
Template Library. 4 days, intensive lab exercises,
updated for Modern C++. bdsoftcontact@ggmamaililil c.comom •• ++11.979788.66666644.41417878

Mention ACCU and receive the U.S. training
rate for any location in Europe!

http://www.florisbooks.co.uk/book/Henri-Bortoft/Taking+Appearance+Seriously/9780863159275
http://www.florisbooks.co.uk/book/Henri-Bortoft/Taking+Appearance+Seriously/9780863159275
https://philosophy.uoregon.edu/profile/markj/
https://philosophy.uoregon.edu/profile/markj/
https://accu.org/index.php/conferences/accu_conference_2016/accu2016_sessions#Balancing_Bias_in_Software_Development and http://mcs.open.ac.uk/mp8/
https://accu.org/index.php/conferences/accu_conference_2016/accu2016_sessions#Balancing_Bias_in_Software_Development and http://mcs.open.ac.uk/mp8/
http://www.culicidaepress.com/2010/11/09/quillien-delights-muse/
https://charlestolman.com/2014/04/21/accu2014-workshop-imagination-in-software-development/
https://charlestolman.com/2016/05/01/accu2016-talk-on-software-architecture-design/
https://charlestolman.com/2016/05/01/accu2016-talk-on-software-architecture-design/
https://en.wikipedia.org/wiki/Stephen_Toulmin
https://en.wikipedia.org/wiki/Stephen_Toulmin
http://www.janushead.org/8-1/wahl.pdf
http://www.janushead.org/8-1/wahl.pdf
https://en.wikipedia.org/wiki/Thirty_Years’_War
https://en.wikipedia.org/wiki/Thirty_Years’_War
https://en.wikipedia.org/wiki/Ren%C3%A9_Descartes
https://en.wikipedia.org/wiki/Immanuel_Kant
https://en.wikipedia.org/wiki/Johann_Wolfgang_von_Goethe
https://en.wikipedia.org/wiki/Johann_Wolfgang_von_Goethe
https://en.wikipedia.org/wiki/Phenomenology_%28philosophy%29
https://en.wikipedia.org/wiki/Phenomenology_%28philosophy%29
https://en.wikipedia.org/wiki/Christopher_Alexander
https://en.wikipedia.org/wiki/Henri_Bortoft
https://en.wikipedia.org/wiki/Hans-Georg_Gadamer

FEATURE SERGEY IGNATCHENKO
‘Speedy Gonzales’ Serializing
(Re)Actors via Allocators
More speed! Sergey Ignatchenko completes
his (Re)Actor allocator series with Part III.
Start the reactor. Free Mars…
~ Kuato from Total Recall

Disclaimer: as usual, the opinions within this article are those of ‘No Bugs’
Hare, and do not necessarily coincide with the opinions of the translators
and Overload editors; also, please keep in mind that translation difficulties
from Lapine (like those described in [Loganberry04]) might have prevented
an exact translation. In addition, the translator and Overload expressly
disclaim all responsibility from any action or inaction resulting from reading
this article.

s we briefly discussed in Part I of this mini-series [NoBugs17a],
message-passing technologies such as (Re)Actors (a.k.a. Actors,
Reactors, ad hoc FSMs, and event-driven programs) have numerous

advantages - ranging from being debuggable (including post-factum
production debugging), to providing better overall performance.
In [NoBugs17a] and [NoBugs17b], we discussed an approach to handling
allocations for (Re)Actors, and then were able to achieve a safe dialect of
C++ (that is, as long as we’re following a set of well-defined local rules).
Now, let’s take a look at another task which can be facilitated by per-
(Re)Actor allocators - specifically, at the task of serializing (Re)Actors
that are later going to be de-serialized by the same executable. While one
solution for this task was provided in [Ignatchenko-Ivanchykhin16], the
proposed ‘ultra-fast’ serialization is rather cumbersome to maintain, and
in most cases it can be beaten performance-wise by serializing at the
allocator level.

#define (Re)Actors
To make this article self-contained and make sure that we’re all on the
same page with terminology, let’s repeat the definition of our (Re)Actors
from [NoBugs17a].
Let’s name a common denominator for all our (Re)Actors a
GenericReactor. GenericReactor is just an abstract class – and
has a pure virtual function, react():
 class GenericReactor {
 virtual void react(const Event& ev) = 0;
 virtual ~GenericReactor() {}
 }

Let’s name the piece of code which calls GenericReactor’s react()
Infrastructure Code. Quite often this call will be within a so-called ‘event
loop’ (see Listing 1).

Let’s note that the get_event() function can obtain events from
wherever we want; from select() (which is quite common for servers)
to libraries such as libuv (which is common for clients).
Also let’s note that an event loop such as the one above is by far not the
only way to call react(): I’ve seen implementations of Infrastructure
Code ranging from the one running multiple (Re)Actors within the same
thread, to another one which deserialized the (Re)Actor from a database
(DB), then called react(), and then serialized the (Re)Actor back to the
DB. What’s important, though, is that even if react() can be called
from different threads, it must be called as if it is one single thread. In
other words, if necessary, all thread sync should be done outside of our
(Re)Actor, so react() doesn’t need to bother about thread sync
regardless of the Infrastructure Code in use.
Finally, let’s name any specific derivative from Generic Reactor (which
actually implements our react() function) a SpecificReactor:
 class SpecificReactor : public GenericReactor {
 void react(const Event& ev) override;
 };

In addition, let’s observe that whenever the (Re)Actor needs to
communicate with another (Re)Actor then – adhering to the ‘Do not
communicate by sharing memory; instead, share memory by
communicating’ principle – it merely sends a message, and it is only this
message which will be shared between (Re)Actors. In turn, this means
that we can (and should) use single-threaded allocation for all (Re)Actor
purposes – except for allocation of those messages intended for inter-
(Re)Actor communications.

Task: Serialization for the same executable
Now, let’s define what we’re going to do with our (Re)Actor in this article
(and why). Basically, as discussed in [Ignatchenko-Ivanchykhin16], when
dealing with (Re)Actors, we often need to serialize the current state of our
(Re)Actor so that we can deserialize it in exactly the same executable
(though this executable can run on a completely different computer etc.).
Applications of such ‘serialization for exactly the same executable’ are
numerous; in particular, it is useful for (see, for example, [NoBugs17c]):
 Migrating our (Re)Actors (for example, to load-balance them)
 Low-Latency Fault Tolerance for (Re)Actors

A Listing 1

std::unique_ptr<GenericReactor> r
 = reactorFactory.createReactor(...);

while(true) { //event loop
 Event ev = get_event();
 //from select(), libuv, ...
 r->react(ev);
}

Sergey Ignatchenko has 20+ years of industry experience,
including being an architect of a stock exchange, and the sole
architect of a game with hundreds of thousands of simultaneous
players. He currently writes for a software blog (http://ithare.com),
and translates from the Lapine language a 9-volume book series
‘Development and Deployment of Multiplayer Online Games’.
Sergey can be contacted at sergey.ignatchenko@ithare.com
10 | Overload | October 2017

[Loganberry04]

FEATURESERGEY IGNATCHENKO

One very important property of such serialization
is that it is extremely difficult to beat this kind of

serialization performance-wise
 Production post-mortem debugging (serializing the state, plus all
inputs after that state, of the (Re)Actor, and then transferring them
to developer’s box in case of a crash)

‘Speedy Gonzales’ (Re)actor-level serialization
Now, as we have both our (Re)Actors and our task at hand more-or-less
defined, let’s see how well we can do with our per-(Re)Actor allocator.
Actually, it is fairly simple:
 We re-define global allocator (for example, malloc()/free(),

though depending on compiler specifics and options YMMV) so
that it acts as a bunch of per-(Re)Actor allocators (or at least per-
thread allocators) – more on it below
This means that within our (Re)Actor, we do not need to specify
allocators for each call to ‘new’ and for each collection <phew! />

 Within our per-(Re)-Actor allocator, we allocate/deallocate OS
pages ourselves (via calls such as VirtualAllocEx()or
mmap()); of course, we also keep a list of all the OS pages we’re
using.

 Whenever we need to serialize our (Re)Actor, we simply dump all
the pages used by the allocator of this (Re)Actor (with an address of
each page serialized) – that’s it!

 When we need to deserialize our (Re)Actor, we try to allocate OS
pages at exactly the same (virtual) addresses as they were originally
allocated
If such allocation succeeds for all our serialized pages (which is
common – though strictly speaking, not guaranteed – when we’re
deserializing a (Re)Actor into a dedicated-for-this-(Re)Actor
process, which in turn is common for debugging), we just need to
copy pages back from the serialized form into allocator (that’s it)
If allocation at the same address isn’t possible for whatever reason,
we have to use a process which is essentially similar to relocation
discussed in [NoBugs17a]. Very briefly:
 We have a relocation map, which gives the mapping between

‘old’ page addresses and ‘new’ page addresses.
 At OS level, we make sure the pages with ‘old’ addresses are

unreadable.
 We run traversing (as discussed in [NoBugs17a]) over the state

of our (Re)Actor. During this traversing process, we merely try
to access all the elements of the state of our (Re)Actor.
Whenever any pointer within our (Re)Actor state happens to
point to the ‘old’ page, such access will fail (causing an access
violation exception). We catch each such an exception, and
update the pointer which caused the exception to the ‘new’ value
within the corresponding ‘new’ page (calculating the ‘new’
value using the relocation map).
Note that while the traversing of our own collections can easily
be handled along the same lines as above, traversing and fixing
standard collections can be outright impossible without adding

a few lines to them . How to handle this in practice? It
depends, but one way to do it is to take a cross-platform STL
implementation (such as EASTL), and to add the few lines
implementing traversing for each collection you require (it is
NOT rocket science for any specific STL).

Bingo! After such traversing of the whole state of our (Re)Actor is
completed, we can be sure that all the pointers to the heap within our
(Re)Actor are updated with the new values. In turn, it means that all the
pointers to the state are already updated, so all the relocations due to
serialization are already handled, and we can proceed with normal
(Re)Actor processing.
One very important property of such serialization is that it is extremely
difficult to beat this kind of serialization performance-wise.
Deserialization is a slightly different story due to potential relocation, but
it is still pretty fast. Also, for several of the use cases mentioned in the
‘Task: Serialization for the same Executable’ section above, it is only the
performance of serialization which really matters. Indeed, all we need to
do is memcpy() for large chunks of RAM, and with memcpy() speeds
being of the order of 5-10 gigabytes/second at least for x64 (see, for
example, [B14]), this means that even to serialize a (Re)Actor which has
100MB state, we’re talking about times of the order of 10-20ms.
Serializing the same thing using conventional serialization methods (even
really fast ones, such as the one discussed in [Ignatchenko-
Ivanchykhin16]) is going to be significantly slower. The exact numbers
depend on the specifics of the organization of the data, but if we have a
randomly filled 100MB std::map<int>, just iterating over it without
any serializing is going to take the order of 100ms, almost an order of
magnitude longer (!).

Parallel serialization aided by (kinda-)copy-on-write
For those apps where even 10-20ms of additional latency per 100MB of
state is too much, it might be possible to reduce it further.
One of the implementations would work along the following lines (which
are ideologically similar, though not identical to, classic Copy-on-Write):
When we want to serialize, we (in our ‘main’ (Re)Actor processing
thread):
 create a list of pages to be serialized
 pre-allocate space in some other area of RAM where we want to

serialize
 for all the pages to be serialized, set an ‘already serialized’

parameter to false
 mark all the pages to be serialized as ‘no-write’ (using

VirtualAllocEx() or mprotect()).
 start another ‘serialization’ thread (use an always-existing dedicated

serialization thread, take it from thread pool, etc.)
 continue processing the (Re)Actor messages in the main thread

The ‘serialization’ thread just takes pages from the list to be serialized one
by one, and for each such page:
October 2017 | Overload | 11

FEATURE SERGEY IGNATCHENKO

we do have to copy some of the pages within the
main thread (causing some latency), for typical
access patterns, this will happen relatively rarely
 checks if it is already serialized: if yes, skips; and if not, marks it as
‘already serialized’ (which should be done using an atomic CAS-
like operation to prevent potential races with the main thread)

 if it wasn’t already serialized:
 serializes the page into pre-allocated space
 removes the ‘no-write’ protection from the page

Whenever we have write access to one of the ‘no-write’ pages, we catch
the appropriate CPU-level exception, and within the exception handler:
Check if the page being accessed is already being serialized (this can
happen due to races with the ‘serialization’ thread); this should be done in
an atomic manner similar to the ‘serialization’ thread as described above
If the page isn’t serialized yet:
 serialize it into pre-allocated space
 remove the ‘no-write’ protection from the page, so future writes no

longer cause any trouble.
That’s it. While with such a processing we do have to copy some of the
pages within the main thread (causing some latency), for typical access
patterns, this will happen relatively rarely, significantly reducing overall
serialization latency observed within the ‘main’ (Re)Actor thread. For
example, if out of our 100MB (~=25K pages) (Re)Actor state, only 1000
pages are modified during our 20ms serialization – then the latency cost
of the serialization will drop approximately by a factor of 25x, bringing
observable latency to around 1ms (which is acceptable for the vast
majority of the systems out there, even for first-person-shooter games).

Per-(re)actor allocators in a usable manner
Up to now, we are merely assuming that our allocators can be made per-
(Re)Actor; one obvious way of doing this is to have our (Re)Actor code
specify our own allocator for each and every allocation within our
(Re)Actor (we’ll need to cover both explicit calls to new, and all implicit
allocations such as collections).
While such a naïve approach would work in theory, it is way too
inconvenient to be used in practice. Fortunately, changing an allocator to
a per-(Re)Actor one happens to be possible without any changes to the
(Re)Actor code. In particular, it can be done along the following lines.
First, we replace malloc()/free() (Important: make sure that your
global ::operator new/::operator delete, and your default
std::allocator also use the replaced functions (!). The latter might
be rather tricky unless your std library already uses ::operator
new()/::operator delete(), but usually it can be take care of; in
particular, for GCC, see [GCC] and the --enable-libstdcxx-
allocator option for ./configure of libstdc++.)
To implement our own malloc(), we’re going along the lines of
Listing 2. (Of course, free() should go along the same lines.)
The point here is that our Infrastructure Code (the one which calls our
(Re)Actor) sets the current_allocator pointer before every call to
GenericReactor::react() (see Listing 3).

Of course, this is a kind of trick – but it will work. Very briefly: first, we
confine our current_allocator variable to the current thread by
using thread_local, and then within this single thread, we can easily
control which allocator is currently used by simple assignments within
our Infrastructure Code. One thing to remember when using this way is to
make sure that we set current_allocator before each and every
method call of our (Re)Actor (including its constructor and destructor(!)).
That’s it: we’ve made our (Re)Actor use a per-(Re)Actor allocator – and
without changing a single line within our (Re)Actor’s code too .

Summary
To summarize this part III of the mini-series on ‘Allocators for
(Re)Actors’:
 Allocator-based serialization for (Re)Actors is both
 Easy to implement in a very generic manner, and
 Extremely fast (for x64 – around tens of ms per 100MB of state)
If necessary, parallel serialization may further reduce latencies (in
some cases, down to – very roughly – a single digit ms of latency per
100MB of the state).

Listing 2

thread_local OurAllocator* current_allocator
 = nullptr;

void* malloc(size_t sz) {
 if(current_allocator)
 return current_allocator->malloc(sz);
 else
 return non_reactor_malloc(sz);
}

Listing 3

current_allocator = create_new_allocator();
std::unique_ptr<GenericReactor> r
 = reactorFactory.createReactor
 (current_allocator,...);
current_allocator = nullptr;

while(true) { //event loop
 Event ev = get_event();
 //from select(), libuv, ...
 current_allocator = r->allocator;
 r->react(ev);
 current_allocator = nullptr;
}

current_allocator = r->allocator;
r.reset();
current_allocator = nullptr;
12 | Overload | October 2017

FEATURESERGEY IGNATCHENKO
 The Allocators can be replaced to make them per-(Re)Actor,
without any changes to the (Re)Actor code(!)

And as this part III concludes this mini-series, let’s summarize all our
findings (from all three parts).

Part I
 (Re)Actor-based allocators allow for very efficient allocation, with

three potential modes:
 ‘Fast’ mode (no protection, but faster than regular malloc())
 ‘kinda-Safe’ mode (with protection from some of the memory

corruptions)
Here, we introduced a potentially novel method of
implementing ‘dangling’ pointer detection in runtime – the one
based on ID comparison. Compared to traditional ‘tombstones’
it has better locality, and will usually outperform it.

 ‘kinda-Safe with Relocation’ mode, with added ability to
relocate heap objects (this, in turn, allows to avoid dreaded
external fragmentation, which tends to eat lots of RAM in long-
running programs).

 Simple ‘traversing’ interface is sufficient to ensure that all the
pointers in the (Re)Actor state are updated

Part II
By adding a few more of easily understood guidelines, we can extend our
‘kinda-Safe’ mode from Part I into ‘really safe’ C++ dialect.
All the guidelines/rules we need to follow are local, which enables
reasonable tool-aided enforcement and allows to keep code maintainable.

Part III
 Custom (Re)Actor-based allocator can be used for the all-important

for (Re)Actors serialization for the same executable. It is (a) very
easy to maintain for (Re)Actor code, and (b) extremely fast.

 Per-(Re)Actor allocators can be implemented without any changes
within (Re)Actor itself (i.e. all the necessary changes can be
confined to Infrastructure Code).

Phew. It was rather long mini-series, but I hope I have made my points
about the significant advantages of allocators specialized for (Re)Actor
purposes reasonably clear. 

References
[B14] Thomas B, ‘Single-threaded memory performance for dual socket

Xeon E5-* systems’, https://software.intel.com/en-us/forums/
software-tuning-performance-optimization-platform-monitoring/
topic/509237

[GCC] ‘The GNU C++ Library Manual’, Chapter 6, https://gcc.gnu.org/
onlinedocs/libstdc++/manual/memory.html#allocator.ext

[Ignatchenko-Ivanchykhin16] Sergey Ignatchenko and Dmytro
Ivanchykhin, ‘Ultra-fast Serialization of C++ Objects’, Overload
#136, Dec 2016

[Loganberry04] David ‘Loganberry’, Frithaes! – an Introduction to
Colloquial Lapine!, http://bitsnbobstones.watershipdown.org/lapine/
overview.html

[NoBugs17a] ‘No Bugs’ Hare, ‘Allocator for (Re)Actors with Optional
Kinda-Safety and Relocation’, Overload #139, Jun 2017

[NoBugs17b] ‘No Bugs’ Hare, ‘A Usable C++ Dialect that is Safe
Against Memory Corruption’, Overload #140, Aug 2017

[NoBugs17c] ‘No Bugs’ Hare, ‘Deterministic Components for Interactive
Distributed Systems’, ACCU2017, available at
 http://ithare.com/deterministic-components-
for-interactive-distributed-systems-
with-transcript/
October 2017 | Overload | 13

https://gcc.gnu.org/onlinedocs/libstdc++/manual/memory.html#allocator.ext
https://gcc.gnu.org/onlinedocs/libstdc++/manual/memory.html#allocator.ext
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://bitsnbobstones.watershipdown.org/lapine/overview.html
http://ithare.com/deterministic-components-for-interactive-distributed-systems-with-transcript/
http://ithare.com/deterministic-components-for-interactive-distributed-systems-with-transcript/

FEATURE SATPREM PAMUDURTHY
Polymorphism in C++ –
A Type Compatibility View
Polymorphism can happen in many
ways. Satprem Pamudurthy compiles an
exhaustive matrix of approaches.
olymorphism is the provision of a single interface to entities of
different types [Stroustrup]. While there is a single interface, there
can be many possible implementations of the interface and the

appropriate implementation is selected (either explicitly by the
programmer, or by the compiler) based on the types of the arguments.
C++ supports multiple kinds of polymorphism and classifying them based
on certain common characteristics makes it easier for us to reason about
design choices. One way to classify them is in terms of when the
implementation is selected i.e. compile-time vs. runtime. In this article,
we will look at the relationship between type compatibility and
polymorphism, and see that the different kinds of polymorphism can also
be classified based on whether they require nominative or structural
compatibility between the types of arguments (actual parameters) and
parameters (formal parameters). This gives us a framework for arguing
about design choices in two dimensions.

Type compatibility and polymorphism
An important characteristic of type systems concerns the notion of type
compatibility i.e. whether the type of an expression is consistent with the
type expected in the context that the expression appears in [Wikipedia-1].
To understand the importance of type compatibility to polymorphism,
consider the following definition of polymorphism from On
Understanding Types, Data Abstraction and Polymorphism by Luca
Cardelli and Peter Wegner:

Similarity relations among type expressions that permit a type
expression to denote more than one type, or to be compatible with many
types, are referred to as polymorphism [Cardelli85].

Basically, the notion of type compatibility is at the heart of
polymorphism. The strongest similarity relation between types is
equivalence (under some rules for equivalence). Types that are equivalent
are compatible with each other. In languages with subtyping, such as C++,
a subtype is compatible with its super types. The forms of type
compatibility that are of interest to us are nominative and structural.
Nominative typing is the one that is immediately familiar to C++
programmers. In nominative typing, two variables are type-compatible if
and only if their declarations name the same type [Wikipedia-2].
Basically, types are not equivalent unless they have the same name and
are in the same scope. In C++, aliases defined using typedef are
equivalent to the original type. In nominative subtyping, such as
inheritance in C++, super type – subtype relationships are explicitly
declared. The C++ type system is primarily nominative.
In a structural type system, on the other hand, type equivalence is
determined by the type’s actual structure or definition, and not by other

characteristics such as its name or place of declaration [Wikipedia-3].
Super type – subtype relationships are also determined based on the
structures of the types. One type is a subtype of another if and only if it
contains all the properties of that type. Conversely, any type whose
properties are a subset of those of another type is a structural super type
of that type. In contrast to nominative subtyping, we can define a
structural super type of an existing type without modifying the definition
of that type. Thus, structural typing thus allows us to treat concrete types
that are otherwise unrelated by inheritance in a polymorphic manner.
Duck typing is a special form of structural typing where type
compatibility is only based on the subset of a structure used within a
particular context. Two types that are considered compatible in one
context might not be compatible in another context. C++ exhibits
structural typing with respect to type template parameters. In this article,
I use structure to mean a type’s public interface, and property to mean a
type’s public method or data.
In Listing 1, while both the Cat and the Dog classes have the same
structure, they are not considered equivalent in a nominative type system
such as C++. For instance, you cannot pass an object of type Dog to a
function that expects a Cat. However, they are structurally equivalent.
Also, in a structural type system, ThingWithName would be a super type
of both the Cat and the Dog classes. Now, let’s see the forms of type
compatibility required by the different kinds of polymorphism in C++.

Polymorphism at compile-time
C++ is a statically typed language, which means that variables have a type
(whether declared or deduced) at compile-time and they retain that type
throughout their life. Compile-time polymorphism, also known as static
polymorphism, involves selecting an implementation based on static
types of the arguments. C++ allows two kinds of compile-time
polymorphism – ad hoc and parametric.

P

Listing 1

class Dog {
public:
 const std::string& name() const;
 void moveTo(const Point& point);
};

class Cat {
public:
 const std::string& name() const;
 void moveTo(const Point& point);
};

class ThingWithName {
public:
 const std::string& name() const;
};

Satprem Pamudurthy works in the financial services industry and
has been programming professionally for over 10 years. His main
tools are C++ and Python but he will use anything that lets him get
the job done. In the past, that has meant Java, C# and even VBA.
You can reach him at satprem@gmail.com.
14 | Overload | October 2017

FEATURESATPREM PAMUDURTHY

Runtime polymorphism, also known as dynamic
polymorphism, involves selecting an

implementation based on the runtime type of
one or more arguments (dynamic dispatch)
Ad hoc polymorphism [Strachey67] in C++ is implemented using
overloaded functions. Function overloading allows us to define two or
more functions with the same name in the same scope [Wikipedia-4].
Overloaded functions are distinct and potentially heterogeneous
implementations over a range of specific types. The compiler selects the
most appropriate overload based on the number and types of the
arguments [cpp-reference]. Overload resolution requires either
nominative compatibility or implicit convertibility between the types of
the arguments and the parameters. Consider the overloaded functions in
Listing 2.
In ad hoc polymorphism, we need to provide a separate implementation
for each type. This, however, leads to code duplication if we want to
uniformly apply an algorithm to values of different types. Parametric
polymorphism, on the other hand, allows us to write generic functions and
generic data types that can handle values identically without depending on
their type [Strachey67]. In C++, parametric polymorphism is
implemented using templates – generic functions are defined using
function templates, and generic data types are defined using class
templates. For each type parameter, a template implicitly specifies the
minimum set of properties that the corresponding type argument must
have. We can use SFINAE [Vandevoorde02] and Concepts (which have
recently been merged into the C++20 draft) to explicitly add additional
requirements on the type arguments. Consider the example in Listing 3.
The printName template has one type parameter and can be instantiated
with Dog, Cat, or any type that has a name() method, irrespective of any
other methods they might have. In other words, a template can be
instantiated with any types that are structurally equivalent to, or are
structural subtypes of its type parameters. Note that this is also true of

generic lambdas. After all, the call operator of a generic lambda’s
compiler-generated type is a template.
CURIOUSLY RECURRING TEMPLATE PATTERN [Coplien95] is a technique
that uses templates and inheritance to simulate subtype polymorphism at
compile-time. In CRTP, the base class template is implemented in terms
of the derived class’s structural properties. Consider the example in
Listing 4.
Compile-time polymorphism in C++ is quite powerful and expressive, but
because implementations are selected at compile-time, it cannot depend
on information that is available only at runtime. In fact, often we only
know the type of objects to create at runtime. Let us now see how
polymorphism works at runtime.

Polymorphism at runtime
Runtime polymorphism, also known as dynamic polymorphism, involves
selecting an implementation based on the runtime type of one or more
arguments (dynamic dispatch). In C++, it is implemented using subtyping
and the most common form of subtyping for dynamic dispatch is
inheritance with virtual functions. Overrides of a virtual function
essentially overload it on the type of the implicit this argument. Virtual
function calls are resolved based on the runtime type of this (which
must be nominatively compatible with the base class) and the static types
of the rest of the arguments. Consider the example in Listing 5.
Inheritance is a form of nominative subtyping, and the printName()
method can be called with any object whose type is a nominative subtype
of Animal. However, because inheritance requires explicit declaration of
super type – subtype relationships, is not always a viable solution for
runtime polymorphism. Some of the types we need to abstract over might
be in a third-party library that we cannot modify, and thus cannot be made
to derive from a common base class. The types might not even be related
– forcing a set of unrelated types to derive from a common base class is
intrusive and does not necessarily express an is-a relationship. Inheritance

Listing 2

void printName(const Dog& v)
{
 std::cout << v.name() << std::endl;
}

void printName(const Cat& v)
{
 std::cout << v.name() << std::endl;
}

int main()
{
 Dog d;
 printName(d);

 Cat c;
 printName(c);
 return 0;
}

Listing 3

template<typename T>
void printName(const T& v)
{
 std::cout << v.name() << std::endl;
}

int main()
{
 Dog d;
 printName(d);

 Cat c;
 printName(c);
 return 0;
}

October 2017 | Overload | 15

FEATURE SATPREM PAMUDURTHY

while there is no language support in C++ for runtime
polymorphism based on structural compatibility, it
can be simulated using type erasure
also implies a tight coupling between the base and the derived classes,
which might cause scalability issues. For more details about the various
types of inheritance and their implications, please refer to John Lakos’s
presentation on inheritance [Lakos16a]. The video of his presentation is
available on the ACCU YouTube channel [Lakos16b].
The ability to select implementations based on structural compatibility of
runtime types would help overcome some of the drawbacks of using
inheritance, but how do we do that? The answer is type erasure. Type
erasure is used to create non-intrusive adapters that are implemented in

terms of the structural properties of the adapted object’s type, and some
of those adapters behave just like structural super types. Consider the
example in Listing 6.
The container (ThingWithName) can be instantiated with an object of
any type as long as it has the name() method, irrespective of any other
methods it may have i.e. any type that is structurally equivalent to or is a
structural subtype of ThingWithName. Because it is not a class template,
clients of ThingWithName do not have to know the underlying type at
compile-time. Thus, while there is no language support in C++ for
runtime polymorphism based on structural compatibility, it can be
simulated using type erasure. Runtime structural subtype polymorphism
is widely used in C++, even though we might not have thought of it as
such. For example, std::any can be seen as the structural counterpart
of an empty base class, and the std::function template can be seen as
generating structural super types of callable types (any type with an
explicit or an implicit operator()).

Listing 4

template<typename T>
class Animal {

protected:
 Animal() { }

public:
 const std::string& getName() const
 {
 return static_cast<const T *>(this)->name();
 }
};

class Dog : public Animal<Dog> {
public:
 const std::string& name() const;
 void moveTo(const Point& point);
};

class Cat : public Animal<Cat> {
public:
 const std::string& name() const;
 void moveTo(const Point& point);
};

template<typename T>
void printName(const Animal<T>& v)
{
 std::cout << v.getName() << std::endl;
}

int main()
{
 Dog d;
 printName(d);

 Cat c;
 printName(c);
}

Listing 5

class Animal {
public:
 virtual ~Animal() {}
 virtual const std::string& name() const = 0;
};

class Dog : public Animal {
public:
 const std::string& name() const override;
 void moveTo(const std::string& std::string);
};

class Cat : public Animal {
public:
 const std::string& name() const override;
 void moveTo(const std::string& std::string);
};

void printName(const Animal& v)
{
 std::cout << v.name() << std::endl;
}

int main()
{
 Dog d;
 printName(d);

 Cat c;
 printName(c);
}

16 | Overload | October 2017

FEATURESATPREM PAMUDURTHY
Nominative vs. structural typing – the trade-offs
Structural typing enables unanticipated re-use i.e. it frees us from having
to anticipate all possible types that we want to apply an algorithm to, and
from having to anticipate all possible algorithms that we want to apply to
a type. While it is more flexible than nominative typing, there are certain
drawbacks. Just because two types are structurally equivalent does not
mean they are semantically equivalent. The advantage of a nominative
system is that type names convey contracts and invariants that are not
necessarily apparent from the structure of type alone. It allows the
programmer to explicitly express her design intent, both with respect to
contracts and how the various parts of the program are intended to work
together. By allowing us to also use the ‘meaning’ of the type to select
implementations, nominative typing allows for stronger type-safety than
structural typing.

A matrix of polymorphism choices
We have seen that we can classify compile-time and runtime
polymorphism in terms the form of type compatibility they require. It is
helpful to represent these in a two-dimensional matrix. Bear in mind that
these are just building blocks and that real-world design patterns do not
neatly fall into one of these categories. For example, in the Curiously
Recurring Template Pattern the base class template requires structural
compatibility whereas the derived classes are nominative subtypes of the
base class.

The matrix shows us that the dichotomy that exists between nominative
and structural type compatibility at compile-time also exists at runtime.
The choice of the kind of polymorphism to use in C++ is often phrased as
a choice between templates and inheritance. However, as we can see from
the matrix, the journey from templates to inheritance requires two hops.
If we need runtime polymorphism but want to retain the flexibility of
structural typing, type erasure is a more natural choice. We should,
however, choose inheritance if we also want the stronger type-safety of
nominative typing. The matrix provides a framework for understanding
the implications and trade-offs of our design choices as they relate to
polymorphism.
I should point out that there are exceptions to the type-compatibility view
of polymorphism. Type casting, whether implicit or explicit, can make a
monomorphic interface appear to be polymorphic. This is sometimes
referred to as coercion polymorphism. Also, C++ allows non-type
template parameters, meaning templates can be instantiated with values in
addition to types. 

References
[Cardelli85] L. Cardelli and P. Wegner, On Understanding Types, Data

Abstraction and Polymorphism, 1985
[Coplien95] J. Coplien, Curiously Recurring Template Patterns, C++

Report: 24–27, February 1995
[cpp-reference] Overload Resolution http://en.cppreference.com/w/cpp/

language/overload_resolution
[Lakos16a] Proper Inheritance, John Lakos

(https://raw.githubusercontent.com/boostcon/
cppnow_presentations_2016/master/00_tuesday/
proper_inheritance.pdf)

[Lakos16b] Proper Inheritance, John Lakos, ACCU 2016
(https://www.youtube.com/watch?v=w1yPw0Wd6jA)

[Strachey67] C. Strachey, Fundamental concepts in programming
languages, 1967

[Stroustrup] Bjarne Stroustrup’s C++ Glossary
http://www.stroustrup.com/glossary.html#Gpolymorphism

[Vandevoorde02] D. Vandevoorde, N. Josuttis (2002). C++ Templates:
The Complete Guide. Addison-Wesley Professional

[Wikipedia-1] Type System (https://en.wikipedia.org/wiki/Type_system)
[Wikipedia-2] Nominal Type System (https://en.wikipedia.org/wiki/

Nominal_type_system)
[Wikipedia-3] Structural Type System (https://en.wikipedia.org/wiki/

Structural_type_system)
[Wikipedia-4] Overloading (https://en.wikipedia.org/wiki/

Function_overloading)

Listing 6

class ThingWithName {
public:
 template<typename T>
 ThingWithName(const T& obj)
 : inner_(std::make_unique<Holder<T> >(obj))
 {

 }
 const std::string& name() const
 {
 return inner_->name();
 }

private:
 struct HolderBase {
 virtual ~HolderBase() { }
 virtual const std::string& name() const = 0;
 };

 template<typename T>
 struct Holder : public HolderBase {
 Holder(const T& obj)
 : obj_(obj)
 {
 }
 const std::string& name() const override
 {
 return obj_.name();
 }
 T obj_;
 };
 std::unique_ptr<HolderBase> inner_;
};

void printName(const ThingWithName& v)
{
 std::cout << v.name() << std::endl;
}

int main()
{
 ThingWithName d((Dog()));
 printName(d);

 ThingWithName c((Cat()));
 printName(c);
}

Compile-time Runtime

Nominative Typing Overloaded functions Inheritance with virtual
functions

Structural Typing Templates and generic
lambdas Type erasure
October 2017 | Overload | 17

http://en.cppreference.com/w/cpp/language/overload_resolution
http://en.cppreference.com/w/cpp/language/overload_resolution
https://en.wikipedia.org/wiki/Function_overloading
https://en.wikipedia.org/wiki/Function_overloading
https://raw.githubusercontent.com/boostcon/cppnow_presentations_2016/master/00_tuesday/proper_inheritance.pdf
https://raw.githubusercontent.com/boostcon/cppnow_presentations_2016/master/00_tuesday/proper_inheritance.pdf
https://raw.githubusercontent.com/boostcon/cppnow_presentations_2016/master/00_tuesday/proper_inheritance.pdf
https://www.youtube.com/watch?v=w1yPw0Wd6jA
http://www.stroustrup.com/glossary.html#Gpolymorphism
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Nominal_type_system
https://en.wikipedia.org/wiki/Nominal_type_system
https://en.wikipedia.org/wiki/Structural_type_system
https://en.wikipedia.org/wiki/Structural_type_system

FEATURE DEÁK FERENC
Open Source – And Still Deceiving
Programmers
Malware can hijack the normal flow of your
program. Deák Ferenc walks through the ELF
format to avoid malicious code injection.
omputer viruses, trojan horses, rootkits and other pieces of
malicious software have been around for a very long time. Since the
first application that could be classified as a ‘classic’ computer virus

(based on the theory presented in [Neumann66]) appeared in 1971,
countless variations of the same construct have appeared, with more or
less destructive intentions, varying from harmless jokes to highly
specialized pieces of malicious software targeting industrial processes
and machines, while the number of them as per [BBC] has passed
1000000 (by 2008).
The threat presented by these noxious pieces of code is so significant that
a new word has emerged in order to classify them: ‘malware’. This is
short for malicious software. Malware is a collective category
encompassing several types of harmful applications from the classic virus
(ie. an application which replicates itself by modifying already existing
files or data structures on a computer) through worms (applications which
move through the network infecting computers) to trojan horses
(applications posing as something other than they are, very often
disguised as legitimate applications). Malware also covers spyware and
keyloggers (these spy on your activities, frequently registering your
keystrokes which then are sent to malicious parties), rootkits (very low-
level applications, more often found at the hardware/OS level, hidden
from user-level access) and various ransomware applications, which hold
your computer hostage by encrypting your data until you pay a ‘ransom’.
Recently, the trend in the propagation of these damaging applications has
changed. Due to the increase in the level of security features in Operating
Systems which were more traditionally affected by viruses, the number of
classical ‘viruses’ which have multiplied themselves via modifying
existing system files and spread via execution is in recess; however, there
is a sharp increase in the sighting of other types of malware which are
propagating via email attachments, malicious downloads or by simply
utilizing vulnerabilities in operating systems [Wikipedia_2].
Most of these vicious applications have, however, one thing in common:
we rarely see the original source code which led to their creation (except
for some high-profile leaks such as [TheIntercept]). Indeed, it would be
kind-of silly to ask fellow programmers to “please compile and run this
code, it is a virus, it will infect your computer and it will multiply itself in
countless pieces before rendering your machine unusable” … this would
be similar to the old joke of receiving an email with the content “Hi, this
is a manual virus. Since I am not so technically proficient as to be able to
write a real virus, please forward this email to everyone in your contact
list and delete all your files. With kind regards, Amateur Virus Writer”.
This certainly does not mean that everything you download from the
internet and compile yourself is guaranteed to be clean and harmless. The

open source community focused around various free products goes to
great lengths in order to provide a high quality application without
backdoors (ie: unofficial ways which makes access to certain systems
possible) and, considering the backdoor attempt of 2003 targeting Linux
[LinuxBackdoor], their effort invested in this direction is more than
welcome.
Considering this introduction, you might envision that this article will be
a tutorial on how to write viruses, Trojan horses and other maleficent
pieces of code in order to achieve world domination, or just simply for
fun. You couldn’t be further from the truth. On the contrary. This article
will present practical ways for defending your open source application
against hideous interventions by programmers with hidden intentions,
who would like to hijack the normal flow of your code by various means
we will discuss later.
We will see different ways of executing code, we will dig deep in the
binary section of executable files, and we will have the chance to examine
the source code of a true shape-shifting application. All of these can be
present in real life situations when you are merging code from your
contributors into the final product, and if you don’t pay attention some not
so well intended modifications will end up in the final product.

Running an application
The simple and mundane task of starting an executable application
compiled for your platform in fact involves a long list of processes from
the operating system’s side. Since the details of this topic in itself are
worth a small book, I will just provide a very high-level overview of what
happens when you start an application.

Starting a process in Linux
Applications in Linux use the so called ‘ELF’ format (Executable and
Linkable Format [Wikipedia_1], [O’Neil16]). This is a format adopted by
various Unix-like operating systems, but more recently the Linux
subsystem of Windows 10 also shows support for this type of executable.
A short overview of the steps taken when a new application is launched
(either from a shell or from somewhere else) is as follows:

1. The fork system call is used to create a new process. The fork will
create a ‘copy’ of the current process and set up a set of flags
reflecting the state of the new process [fork].

2. The execve system call is executed with the application to be
executed [execve].

3. Down in the Linux kernel, a linux_binprm [linux_binprm]
structure is being built in order to accommodate the new process,
which is passed to:
 static int load_elf_binary(struct linux_binprm
 *bprm)
in fs/binfmt_elf.c [load_elf_binary]

4. load_elf_binary does the actual loading of the ELF executable
according to the specifications and at the end it calls
start_thread, which is the platform dependent way of starting
the loaded executable.

C

Deák Ferenc Ferenc has wanted to be a better programmer for the
last 15 years. Right now he tries to accomplish this goal by working
at FARA (Trondheim, Norway) as a system programmer, and in his
free time, by exploring the hidden corners of the C++ language in
search for new quests. fritzone@gmail.com
18 | Overload | October 2017

FEATUREDEÁK FERENC

The open source community focused around various
free products goes to great lengths in order to

provide a high quality application without backdoors
For those expressing a deeper interest in this field, the excellent article
[HowKernelRuns] or Robert Love’s outstanding book Linux Kernel
Development [Love10] will provide all the details required.

The ELF format
The ELF binary in itself is a complex subject – a full description can be
found in Learning Linux Binary Analysis [O’Neil16], and a shorter one on
Wikipedia [Wikipedia_1] – so let’s summarize it briefly:

The ELF headers
The file header of the ELF file starts with a few magic numbers for
correctly identifying this as being a valid ELF file: 0x7F followed by the
characters E, L and F (0x45, 0x4c, 0x46). The architecture of the file is
specified (whether 32 or 64 bit) and whether the encoding of the file is big
endian or little endian.
In the header, a special field denotes the target operating system’s
Application Binary Interface and the instruction set of the binary. ELF
files can be of different types, such as relocatable, executable, shared or
core. This information is also stored in the elf header.
There are several fields in the header dealing with the length and format
of the ELF sections, described below.
The file header of the ELF file is followed by a program header, which
describes to the system how to create a process image, and several section
headers.

ELF sections
There are several sections in an ELF file, each containing various data,
vital to correctly understand and run the application. Among these
sections is:
 the .text section, which contains the actual code of the

application,
 the .rodata section, containing the constant strings from the

application
 the .data section, which contains for example the initialized global

variables
 the .bss section, which contains uninitialized global data
 various other sections describing how this application handles

shared libraries and also…
 sections describing application startup and destruction steps in the

.ctors and .dtors sections (correspondingly .init_array
and .fini_array). These sections contain function pointers to the
methods, which will be called on application startup and shutdown,
and we will have a more detailed look at them in later paragraphs of
this article.

There is a handy Linux utility called readelf,which displays
information about a specific ELF file’s structure. We will refer to it in this
article and will present the output of it frequently.

Deceiving techniques
So, after this short but necessary, background introduction, we have
finally arrived at the focus point of the article. We will present here
various techniques you have to carefully observe in order to keep your
source healthy and free of unwanted side effects.

Mainless application
The main function in a ‘normal’ application is the place where the
application starts [main_function]. However, be aware that C and C++
compilers handle main very differently. For example, Listing 1 will
compile flawlessly using gcc with default compilation flags even though
void main(int a) is strictly not standard compliant, but g++, being
more picky, will refuse to compile it. For gcc, you need to use
-pedantic to warn you about the return type of main not being int as
required by the standard.
But what if an attacker does not wish to provide a main function (since he
wants to pose the source code as being a part of a library)?
With gcc , there i s a lways the poss ibi l i ty of us ing the -e
<entrypoint> switch to specify a different entry point for your
application. This is very observable in the build files, and there will be
more to be dealt with, such as:

1. The need to specify -nostartfiles to the gcc command line in
order to avoid the linking error: (.text+0x20): undefined
reference to 'main'. As a short explanation to this, in the
background gcc always links to some architecture specific files
(such as crtstuff.c), which provide the application with the
required startup functionality, which will end up calling the main
[linuxProgramStartup]

2. Explicitly use the function exit(<CODE>); to properly exit the
application in order to avoid the segmentation fault at exit.

3. There is no access to the common argc and argv values passed in to
your application.

With these in mind, the source file in Listing 2, compiled with the
command below should work as expected, by totally avoiding the main
function thus deceiving you into believing the validity of the application.
Compiled with:
 gcc mainless.c -o mainless -e my_main
 -nostartfiles

Listing 1

#include <stdlib.h>
#include <stdio.h>
void main(int a)
{
 void (*fp[])(int) = {main,exit};
 printf("%d\n",a++);
 fp[a/101](a);
}

October 2017 | Overload | 19

FEATURE DEÁK FERENC

the initialization phase of the application is a
preferred place among wanna-be virus writers
to place ptrace related code
It is interesting to note that comparing the binary file produced from
compiling a ‘mainless’ program with a more standard binary – with
‘main’ and the linked-in gcc startup files – gives us the (not so) surprising
result that the ‘mainless’ file is smaller, with a difference of up to 2000
bytes. Also, the elf structure, analyzed with readelf, gives a much
simpler layout. A few differences in the header of the ELF file can also be
observed:

This all proves that the ‘mainless’ file is, indeed, much smaller that the
corresponding one with main.

Running code before main
When your targeted compiler is a C compiler, it can be really difficult to
run code before main (or as we have seen, its replacement) starts. I have
to emphasize that C++ has a dynamic initialization phase where arbitrary
code is executed in order to initialize non-local variables. However, that
comes with the well-known static initialization order fiasco: In C++, it is
unpredictable which non-local is initialized before which other, so if one
depends on the other one, the application in question may work flawlessly
in some situations, while other reincarnations may suffer from this
dependency with an uninitialized variable.

Fortunately, for C compilers, the ELF format provides extra support for
running code before application start in the so called ‘constructor’ section,
and it is also possible to hijack the .init section in order to execute code
we want using special assembly syntax.

The .init_array section of the ELF binary
The .init_array (and the .preinit_array) section of the ELF
binary contains a list of pointers (addresses of functions) called by the
code initializing the application. This code (the one calling the functions
in the .init_array section) usually resides in the .init section. The
difference between .preinit_array and .init_array is that code
in the .preinit_array is called before the .init_array.
The gcc compiler has a non-standard C extension to provide support for
defining various dedicated elf sections with user specified code via the
usage of the __attribute__ syntax. An example of is in Listing 3.
Analyzing a debug session of this application will reveal interesting
insights on the working of libc and the application startup procedure (see
Figure 1).
For further information, evaluating this information, while combining it
with the relevant section of assembly code (as the result of objdump -h
-S init_array) will give details of how the code is actually executed,

Header mainless with main
Entry point address 0x400390 0x400430

Start of section headers 5184 6624

Number of section headers 20 31

Listing 2

#include <stdio.h>
#include <stdlib.h>

int my_main()
{
 printf("Mainless\n");
 exit(2);
}

Listing 3

#include <stdio.h>

void my_main(int argc, char* argv[],
 char* envp[])
{
 printf("my main: %d parameters\n", argc);
}
int main(int argc, char* argv[])
{
 printf("main: %d parameters\n", argc);
}
__attribute__((section(".init_array"))) void
 (* p_my_main)(int,char*[],char*[]) = &my_main;

Figure 1

(linux)$ gdb ./init_array
(gdb) break my_main
Breakpoint 2 at 0x40052a
(gdb) run
Starting program: .../init_array

Breakpoint 2, 0x000000000040052a in my_main(int, char**, char**) ()
(gdb) bt
#0 0x000000000040052a in my_main(int, char**, char**) ()
#1 0x00000000004005cd in __libc_csu_init ()
#2 0x00007ffff7a2d7bf in __libc_start_main (main=0x400550 <main>, ...) at ../csu/libc-start.c:247
#3 0x0000000000400459 in _start ()
20 | Overload | October 2017

FEATUREDEÁK FERENC

It is important that you carefully observe not
only your C and C++ files, but also the

accompanying build instructions
and it is easily traceable based on how the .init_array section is
handled on application startup.
If we don’t require access to the command line parameters, gcc also has
support as an extension for specifying a function to be called before main
us ing a much l e s s c ryp t i c syn t ax : __attribute__
((constructor)), which has similar consequence to the section
initializer syntax:
 void __attribute__ ((constructor)) premain()
 {
 printf("premain called\n");
 }
An even more obscure way of defining a method to be called before main
is to rely on the ‘.init’ section of the ELF format and do some assembly
level magic (see Listing 4).
This will directly instruct the compiler to assemble the code call
my_main into the section ‘.init’ by using the assembly directive
.section .init.
And, last but not least, some proprietary compilers targeting commercial
environment (but not gcc) have support for a special compiler specific
#pragma directive: #pragma init, which has the same effect as
having __attribute__((constructor)) for the gcc.
Process tracing
Just a side note: the initialization phase of the application is a preferred
place among wanna-be virus writers to place ptrace related code. ptrace is
a mechanism offered by Linux making it possible for a parent process to
observe and influence the execution of other processes. It is mainly used
in debugging and examining the state of other processes; however, certain
anti debugging features – if compiled in into an executable – will make
the analysis of compiled application difficult.
You should be looking for the PTRACE_TRACEME, which detects if the
current application is traced by a debugger, and will act accordingly.

Running code after main
Very similar to the above scenario where we want to run code before the
main, the ELF binary comes again to our help by making it possible to run

C code after main has finished its lifetime. The ‘destructors’ section of
the ELF is named the .fini_array and we can get access to it via the
following code construct:
 void end_app(void)
 {
 printf("after main\n");
 }
 __attribute__((section(".fini_array"))) void
 (* p_end_app)(void) = &end_app;
or there is also support for the __attribute__ ((destructor))
syntax, if we find the above one very cryptic. This section comes very
handy in case we are in the situation of running some ‘last minute’
cleanup jobs.
Similarly to the .init section, we can instruct the assembler to generate
code into a .fini section, and also some proprietary compilers support
the #pragma fini directive, to mark some identifiers as a finalization
function.

A shape shifting application
It is important that you carefully observe not only your C and C++ files,
but also the accompanying build instructions. Today, there are several
tools which facilitate the management of build scripts (such as CMake,
SCons, etc...) and these tools often use very complex files, which makes
it easy to hide a few unwanted pieces of code, so be sure to check those
too – most of the time that is the location a deception begins.
So, let’s consider the following situation, where you are working on a free
and open source budget management application, and one of your
contributors submits the code in Listing 5.
Surely, this is a short unit test for some functions (supposedly
OPEN_INTEREST, READ_INTEREST, INTEREST_VALUE being the
function we ‘want’ to test), albeit a pretty poorly written one. However, it

Listing 4

#include <stdio.h>
#include <stdlib.h>

int my_main()
{
 __asm__ (".section .init \n call my_main \n
.section .text\n");
 printf("my_main\n");
}

int main()
{
 printf("main\n");
}

Listing 5

include <stdio.h>
#include <stdlib.h>
// TODO: This is still work in progress, more
// months in the test plan are required and some
// code cleanup is necessary to remove the clutter.
// Will FIX ASAP!!!
#define INTEREST void*

#ifndef DEBUG_INTEREST
 #define L (int*)
 #define TEST void
 #define OPEN_INTEREST(a) \
 printf("Opening: %s\n", #a);
 #define READ_INTEREST(a) \
 printf("Reading: %s\n", #a);
 #define CLOSE_INTEREST(a) \
 printf("Closing: %s\n", #a);
 #define INTEREST_VALUE(a,b) b
#endif
October 2017 | Overload | 21

FEATURE DEÁK FERENC
seems to be harmless for the moment, and the comment on top clearly
says it needs improvement, you decide to keep it in your source code base,
hoping that the developer who submitted the patch just had a bad day, and
he will come back with clarification lately. The code compiles, so it
represents no harm and it does not really disturb anything in the normal
flow of the application.
Soon a new patch comes in from the developer (maybe a different one,
just to cause some more confusion), intended to have been a fix for
something in the build system of the application, concerning the unit test,
it looks just like the lines of code in Listing 6.
Yes, seemingly it patches something in compiling of the unit tests, but it’s
highly complex, difficult to read (intentionally), and regardless this is not
a significant part of the application since the unit tests are just run on your
computer.
The first sign of suspicion should have come from the forced include of
/usr/include/dirent.h directly from the compiler’s command
line... So, this basically makes it possible for the malicious code writer to
include a file into the compilation process from the command line,
without appearing in the source file, thus avoiding suspicion. If we look
further the malicious make entry contains some entries, which
disturbingly resemble some commands used to handle directory structure
in linux: opendir, readdir and closedir… (And I intentionally left
it in this half-baked stage to raise awareness of this kind of issue, and the
word ‘label’ was left intentionally in the defines too...)
Other signs of malevolence are the forced redefinitions of the if and
while keywords. Unfortunately, there is nothing in the compiler to stop
you from doing this, so all this will compile and is considered valid.
Although it will only affect this file, there are numerous ifs in it so let’s
dig a bit more. Soon you realize there is something fishy going on, so you
decide to look at the preprocessed source code of this innocent looking
unit test. It is in Listing 7.
To your horror, the source code of the application has changed into
something incomprehensible, full of gotos and linux system calls
accessing directories, and it seems to be doing something totally different
now: it browses the directory structure of your computer (I took the liberty
of beautifying some of the preprocessed output, and stripped out main,
which is the same) and it prints the directories found to the console.
The evil programmer has used some of the not so well known gcc
extensions, such as storing the addresses of labels, and with a carefully
constructed array of labels and indexes, he has been able to abuse the
usage of the __COUNTER__ macro (the one which gives an increasing
sequence of numbers) in order to calculate various jump locations
together with generating labels in a coherent way to achieve his real
intentions: traversing your filesystem and performing operations on it (for
this specific scenario, just printing names).
A few very strange lines of code appear, such as *(int16_t*)(
((struct dirent*)entry)->d_name) != 11822. However,
after some thought, this is nothing but a comparison of the d_name field
of the struct dirent structure entry to "..". Because 11822 =
0x2E2E = "..".
In order to facilitate a continuous sequence provided by the
__COUNTER__ in the array indexes, and also the label counters, theListing 5 (cont’d)

TEST interest_calculator_test(char const *period)
{
 static INTEREST array[] = {
 L(26), L(2), 0, // January
 L(5), L(26), 0, // February
 L(8), L(2), 0, // March
 L(11), L(2), 0, // April
 L(14), L(14),0, // May
 L(14), L(17), 0, // June
 L(20), L(20),0, // July
 L(20), L(23), 0, // August
 L(2), L(2)}; // September

 INTEREST earning = array, *entry = array;
 char interest[1024] = {0}, *q, type = 3;
 // type 3 = Recurring
 char* c = interest; const char* name
 = "Monthly";

 OPEN_INTEREST(earning);
 if(earning == 0) READ_INTEREST(entry);
 if(entry != 0) // Do we have an interest at
 // the current point?
 {
 if(INTEREST_VALUE(entry,type) == 4)
 if((*INTEREST_VALUE(entry,name) != 46
 // 11822 minutes ~ 8 days
 && *(int16_t*)
 (INTEREST_VALUE(entry,name)) != 11822))
 c = interest; q = (char*)period;
 }
 if(*q) *c++ = *q++; // move to next period
 if(*q) {
 *c++ = 47; // 47 - a check value,
 // comes from test data
 q = (char*)INTEREST_VALUE(entry,name);
 // get its value, save it
 while(*q) *c++ = *q++; // skip period
 }
 if(*q) {
 (int16_t)c = 0x000a;
 printf("Current value: %s", interest);
 *c = 0;
 interest_calculator_test(interest);
 // advance month to next one
 }
 if(*q) CLOSE_INTEREST(entry); // Done
}
int main()
{
 const char interest_period[] = {47, 0};
 interest_calculator_test(interest_period);
 return 0;
}

22 | Overload | October 2017

Listing 6

all:
 ${CC} -UL -UOPEN_INTEREST -UREAD_INTEREST -UCLOSE_INTEREST \
 -UINTEREST_VALUE -DL\(n\)=\&\&n_label\#\#n -DD=__COUNTER__ \
 -DT\(x\,y\)=x\#\#y -include /usr/include/dirent.h -DT2\(x\,y\)=T\(x\,y\) \
 -DDO=T2\(n_label\,D\)\: \
 -DOPEN_INTEREST\(entry\)=entry\=T2\(open\,dir\)\(period\)\; \
 -Dif\(x\)=T2\(go,to\)\ *array\[x\?D\:D\]\;\ DO -include /usr/include/sys/types.h -Dwhile=if \
 -DREAD_INTEREST\(entry\)=entry\=T2\(read\,dir\)\(\(DIR*\)earning\)\; \
 -DCLOSE_INTEREST\(entry\)=T2\(close\,dir\)\(\(DIR*\)earning\)\; -include /usr/include/unistd.h \
 -DINTEREST_VALUE\(INTEREST_VALUE\,t\)=\(\(struct\ T2\(dir\,ent\)*\)INTEREST_VALUE\)\-\>d_\#\#t \
 -DTEST=void -DDEBUG_INTEREST ${SOURCE}

FEATUREDEÁK FERENC
array contains a set of unused elements, such as zeroes; however, those
values can be anything.
At this point, I have stopped, since it is not the intention of this article to
publish destructive code but to raise awareness of its existence and
provide meaningful ways for detecting and combating them.
Just a side note, for those wanting to do experiments on the code please
find below the evil defines to make your experiments easier:
 #define INTEREST void*
 #define L(n) &&n_label##n
 #define D __COUNTER__
 #define T(x,y) x##y
 #define T2(x,y) T(x,y)
 #define DO T2(n_label,D):
 #define OPEN_INTEREST(entry) \
 entry=T2(open,dir)(period);
 #define if(x) T2(go,to) *array[x?D:D]; DO
 #define while if
 #define READ_INTEREST(entry) \
 entry=T2(read,dir)((DIR*)earning);
 #define CLOSE_INTEREST(entry) \
 T2(close,dir)((DIR*)earning);
 #define INTEREST_VALUE(INTEREST_VALUE,t) \
 ((struct T2(dir,ent)*)INTEREST_VALUE)->d_##t

Conclusion
As we have seen, the threats are real, and this article can by no means offer
a full overview of all the software menaces that are present in our
everyday life. Since we focused on an open source approach to deceiving
techniques, we have tried to make the article as informative as possible
without actually turning it into a ‘how to write your own virus’ essay.
Please note that besides of presenting a few non-destructive scenarios,
there could be several more that have not yet been identified... or that have
been omitted intentionally. 

References
[BBC] http://news.bbc.co.uk/2/hi/technology/7340315.stm
[execve] http://man7.org/linux/man-pages/man2/execve.2.html
[fork] http://man7.org/linux/man-pages/man3/fork.3p.html
[HowKernelRuns] https://0xax.gitbooks.io/linux-

insides/content/SysCall/syscall-4.html
[linux_binprm] http://elixir.free-electrons.com/linux/v4.6.7/source/

include/linux/binfmts.h#L14
[LinuxBackdoor] https://freedom-to-tinker.com/2013/10/09/the-linux-

backdoor-attempt-of-2003/
[linuxProgramStartup] http://dbp-consulting.com/tutorials/debugging/

linuxProgramStartup.html
[load_elf_binary] http://elixir.free-electrons.com/linux/latest/source/fs/

binfmt_elf.c#L682
[Love10] Robert Love, Linux Kernel Development, Addison-Wesley

Professional, 2010
[main_function] http://en.cppreference.com/w/cpp/language/

main_function
[Neumann66] von Neumann, John and Arthur W. Burks. 1966. Theory of

Self-Reproducing Automata, Univ. of Illinois Press, Urbana IL.
[O’Neil16] Ryan ‘elfmaster’ O’Neill, Learning Linux Binary Analysis,

Packt, 2016
[TheIntercept] https://theintercept.com/2017/04/14/leaked-nsa-malware-

threatens-windows-users-around-the-world/
[Wikipedia_1]

https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
[Wikipedia_2] https://en.wikipedia.org/wiki/Timeline_of_computer_

viruses_and_worms
Listing 7

void interest_calculator_test(char const *period)
{
 static void* array[] = {
 &&n_label26, &&n_label2, 0,
 &&n_label5, &&n_label26, 0,
 &&n_label8, &&n_label2, 0,
 &&n_label11, &&n_label2, 0,
 &&n_label14, &&n_label14,0,
 &&n_label14, &&n_label17, 0,
 &&n_label20, &&n_label20,0,
 &&n_label20, &&n_label23, 0,
 &&n_label2, &&n_label2};

 void* earning = array, *entry = array;
 char interest[1024] = {0}, *q, type = 3;
 char* c = interest;
 const char* name = "Monthly";

 earning=opendir(period);

 goto *array[earning == 0?0:1];
n_label2:

 entry=readdir((DIR*)earning);;

 goto *array[entry != 0?3:4];
n_label5:

 goto *array[((struct dirent*)entry)->d_type
 == 4?6:7];
n_label8:

 goto *array[(*((struct dirent*)entry)->d_name
 != 46 && *(int16_t*)(((struct dirent*)entry)->
 d_name) != 11822)?9:10];
n_label11:

 c = interest; q = (char*)period;

 goto *array[*q?12:13];
n_label14:

 *c++ = *q++;

 goto *array[*q?15:16];
n_label17:

 *c++ = 47;
 q = (char*)((struct dirent*)entry)->d_name;

 goto *array[*q?18:19];
n_label20: *c++ = *q++;

 goto *array[*q?21:22];
n_label23:

 (int16_t)c = 0x000a;
 printf("Current value: %s", interest);
 *c = 0;
 interest_calculator_test(interest);

 goto *array[*q?24:25];
n_label26:

 closedir((DIR*)earning);;
}

October 2017 | Overload | 23

http://news.bbc.co.uk/2/hi/technology/7340315.stm
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://elixir.free-electrons.com/linux/v4.6.7/source/include/linux/binfmts.h#L14
http://elixir.free-electrons.com/linux/v4.6.7/source/include/linux/binfmts.h#L14
http://elixir.free-electrons.com/linux/latest/source/fs/binfmt_elf.c#L682
http://elixir.free-electrons.com/linux/latest/source/fs/binfmt_elf.c#L682
http://en.cppreference.com/w/cpp/language/main_function
http://en.cppreference.com/w/cpp/language/main_function
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
http://dbp-consulting.com/tutorials/debugging/linuxProgramStartup.html
http://man7.org/linux/man-pages/man3/fork.3p.html
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/
https://freedom-to-tinker.com/2013/10/09/the-linux-backdoor-attempt-of-2003/
https://theintercept.com/2017/04/14/leaked-nsa-malware-threatens-windows-users-around-the-world/
https://theintercept.com/2017/04/14/leaked-nsa-malware-threatens-windows-users-around-the-world/
https://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-4.html
https://0xax.gitbooks.io/linux-insides/content/SysCall/syscall-4.html
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
https://en.wikipedia.org/wiki/Timeline_of_computer_viruses_and_worms
http://man7.org/linux/man-pages/man2/execve.2.html

FEATURE RALPH MCARDELL
C++11 (and beyond)
Exception Support
C++11 introduced many new exception related features.
Ralph McArdell gives a comprehensive overview.
 added a raft of new features to the C++ standard
library and errors and exceptions were not left
out.

In this article, we will start with a quick overview of the new exception
types and exception related features. While the nitty gritty details are not
covered in great depth, in most cases a simple usage example will be
provided. The information was pulled together from various sources –
[cppreference], [Josuttis12], [N3337] – and these, along with others, can
be used to look up the in depth, detailed, specifics.
Following the lightning tour of C++11 exception support, we will take a
look at some further usage examples.

Example code
The example code is available with a Makefile for building with GNU
g++ 5.4.0 and MSVC++17 project files from: https://github.com/ralph-
mcardell/article-cxx11-exception-support-examples
It may be useful to at least browse the source as the full example code is
not always shown in the article.
For g++ each was built using the options:
 -Wall -Wextra -pedantic -std=c++11 -pthread
For MSVC++17, a Win32 console application solution was created and
each example source file added as a project using the default options, or
with no pre-compiled header option selected if a project ended up with it
turned on.

New standard library exception types
So let’s start with a brief look at the new exception types. They are:
 std::bad_weak_ptr (include <memory>)
 std::bad_function_call (include <functional>)
 std::bad_array_new_length (include <new>)
 std::future_error (include <future>)
 std::system_error (include <system_error>)
 std::nested_exception (include <exception>)

Additionally, starting with C++11, std::ios_base::failure is
derived from std::system_error.
std::bad_weak_ptr and std::bad_function_call are derived
from std::exception.
std::bad_weak_ptr is thrown by the std::shared_ptr
constructor that takes a std::weak_ptr as an argument if the
std::weak_ptr::expired operation returns true (see Listing 1),
which should produce output similar to:
 Expired or default initialised weak_ptr:
 bad_weak_ptr

I f a std::function o b j e c t ha s n o t a r ge t , std::
bad_function_call is thrown by std::function::operator()
– see Listing 2 – with expected output:
 (g++): Function wrapper is empty:

bad_function_call
 (msvc++): Function wrapper is empty:

bad function call
std::bad_array_new_length is derived from std::bad_alloc,
which means it will be caught by existing catch clauses that handle
std::bad_alloc exceptions. It is thrown if an array size passed to new
is invalid by being negative, exceeding an implementation defined size
limit, or is less than the number of provided initialiser values
(MSVC++17 does not seem to handle this case). It should be noted that
this only applies to the first array dimension as this is the only one that can
be dynamic thus any other dimension size values can be checked at
compile time. In fact MSVC++17 is able to check the validity of simple
literal constant size values for the first dimension as well during
compilation, hence the use of the len variable with an illegal array size
value in the example in Listing 3.
When run, we should see output like so:
 (g++): Bad array length:

std::bad_array_new_length
 (msvc++): Bad array length:

bad array new length
std::future_error is derived from std::logic_error and is
used to report errors in program logic when using futures and promises,

C++11

Listing 1

std::weak_ptr<int> int_wptr;
assert(int_wptr.expired());
try{
 std::shared_ptr<int> int_sptr{ int_wptr };
}
catch (std::bad_weak_ptr & e){
 std::cerr
 << "Expired or default initialised weak_ptr: "
 << e.what() << "\n";
}

Listing 2

std::function<void()> fn_wrapper;
assert(static_cast<bool>(fn_wrapper)==false);
try{
 fn_wrapper();
}
catch (std::bad_function_call & e){
 std::cerr << "Function wrapper is empty: "
 << e.what() << "\n";
}

Ralph McArdell has been programming for more than 30 years with
around 20 spent as a freelance developer predominantly in C++. He
does not ever want or expect to stop learning or improving his skills.
24 | Overload | October 2017

https://github.com/ralph-mcardell/article-cxx11-exception-support-examples
https://github.com/ralph-mcardell/article-cxx11-exception-support-examples

FEATURERALPH MCARDELL

error codes are lightweight objects
encapsulating possibly implementation-

specific error code values, while error
conditions are effectively portable error codes
for example trying to obtain a future object from a promise object more
than once (see Listing 4), which should display:
 (g++): Error from promise/future:

std::future_error: Future already
retrieved

 (msvc++): Error from promise/future:
future already retrieved

std::system_error is derived from std::runtime_error and is
used to report operating system errors, either directly by our code or raised
by other standard library components, as in the example in Listing 5,
which on running should produce output along the lines of:
 (g++): System error from thread detach:

Invalid argument
 (msvc++): System error from thread detach:

invalid argument: invalid argument

std::nested_exception is not derived from anything. It is a
polymorphic mixin class that allows exceptions to be nested within each
other. There is more on nested exceptions below in the ‘Nesting
exceptions’ section.

Collecting, passing and re-throwing exceptions
Since C++11, there has been the capability to obtain and store a pointer to
an exception and to re-throw an exception referenced by such a pointer.
One of the main motivations for exception pointers was to be able to
transport exceptions between threads, as in the case of std::promise
and std::future when there is an exceptional result set on the promise.
Exception pointers are represented by the std::exception_ptr
standard library type. It is, in fact, a type alias to some unspecified
nullable, shared-ownership smart pointer like type that ensures any
po in t e d t o exce p t ion r e ma i ns va l i d wh i l e a t l e a s t one
std::exception_ptr object is pointing to it. Instances can be passed
around, possibly across thread boundaries. Default constructed instances
are null pointers that compare equal to nullptr and test false.
std::exception_ptr instances must point to exceptions that have
been thrown, caught, and captured with std::current_exception,
which returns a std::exception_ptr. Should we happen to have an
excep t ion ob jec t t o hand a l r eady , t hen we can pass i t t o
std::make_exception_ptr and get a std::exception_ptr in
return. std::make_exception_ptr behaves as if it throws, catches
and captures the passed exception via std::current_exception.
Once we have a std::exception_ptr , it can be passed to
std::rethrow_exception() from within a try-block to re-throw the
exception it refers to.
The example in Listing 6 shows passing an exception simply via a
(shared) global std::exception_ptr object from a task thread to the
main thread. When built and run it should output:
 (g++): Task failed exceptionally:

Invalid argument
 (msvc++): Task failed exceptionally:

invalid argument: invalid argument

Of course, using global variables is questionable at best, so in real code
you would probably use other means, such as hiding the whole
mechanism by using std::promise and std::future.

Error categories, codes and conditions
std::system_error and std::future_error allow specifying an
error code or error condition during construction. Additionally,
std::system_error can also be constructed using an error category
value.
In short, error codes are lightweight objects encapsulating possibly
implementation-specific error code values, while error conditions are
effectively portable error codes. Error codes are represented by

Listing 3

int len=-1; // negative length value
try{
 int * int_array = new int[len];
 delete [] int_array;
}
catch (std::bad_array_new_length & e){
 std::cerr << "Bad array length: "
 << e.what() << "\n";
}

Listing 4

std::promise<int> int_vow;
auto int_future = int_vow.get_future();
try{
 int_future = int_vow.get_future();
}
catch (std::future_error & e){
 std::cerr << "Error from promise/future: "
 << e.what() << "\n";
}

Listing 5

try{
 std::thread().detach(); // Oops, no thread to
} // detach
catch (std::system_error & e){
 std::cerr << "System error from thread detach: "
 << e.what() << "\n";
}

October 2017 | Overload | 25

FEATURE RALPH MCARDELL
std::error_code objects, while error conditions are represented by
std::error_condition objects.
Error categories define the specific error-code, error-condition mapping
and hold the error description strings for each specific error category.
They are represented by the base class std::error_category, from
which specific error category types derive. There are several categories
defined by the standard library whose error category objects are accessed
through the following functions:
 std::generic_category for POSIX errno error conditions
 std::system_category for errors reported by the operating

system
 std::iostream_category for IOStream error codes reported

via std::ios_base::failure (which, if you remember, has
been derived from std::system_error since C++11)

 std::future_category for future and promise related error
codes provided by std::future_error

Each function returns a const std::error_category& to a static
instance of the specific error category type.
The standard library also defines enumeration types providing nice-to-use
names for error codes or conditions for the various error categories:
 std::errc defines portable error condition values corresponding

to POSIX error codes
 std::io_errc defines error codes reported by IOStreams via

std::ios_base::failure
 std::future_errc defines error codes reported by

std::future_error
E a c h o f t he e n um e ra t i o n t y p e s h a v e a s s o c i a t e d
std::make_error_code and std::make_error_condition
function overloads that convert a passed enumeration value to a

std::error_code or std::error_condition. They also have an
associated is_error_condition_enum or is_error_code_enum
class specialisation to aid in identifying valid enumeration error condition
or code types that are el igible for automatic conversion to
std::error_condition or std::error_code.
In C++11 and C++14, std::future_error exceptions are
constructed from std::error_code values. However, from C++17
they are constructed directly from std::future_errc enumeration
values.

Nesting exceptions
At the end of the ‘New standard library exception types’ section above
was a brief description of std::nested_exception, which can be
used to allow us to nest one exception within another (and another, and
another and so on if we so desire). This section takes a closer look at the
support for handling nested exceptions.
While it is possible to use std::nested_exception directly, it is
almost always going to be easier to use the C++ standard library provided
support.
To c r ea t e and t h row a ne s t e d excep t i on , we c a l l
std::throw_with_nested, passing it an rvalue reference to the outer
exception object. That is, it is easiest to pass a temporary exception object
to std::throw_with_nested. std::throw_with_nested will
call std::current_exception to obtain the inner nested exception,
and hence should be called from within the catch block that handles the
inner nested exception.
Should we catch an exception that could be nested then we can re-throw
the i nne r ne s t ed e x cep t i on by pas s in g t he excep t i on to
std::rethrow_if_nested. This can be called repeatedly, possibly
recursively, until the inner most nested exception is thrown where upon
the exception is no longer nested and so std::rethrow_if_nested
does nothing.
Each nested exception thrown by std::throw_with_nested is
publicly derived from both the type of the outer exception passed to
std::throw_with_nested and std::nested_exception, and
so has an is-a relationship with both the outer exception type and
std::nested_exception. Hence nested exceptions can be caught by
catch blocks that would catch the outer exception type, which is handy.
The example in Listing 7 demonstrates throwing nested exceptions and
recursively logging each to std::cerr.
The idea is that the code is performing some tasks and each task performs
sub-tasks. The initial failure is caused by sub-task 4 of task 2 in the
sub_task4() function. This is caught and re-thrown nested within a
std::runtime_error exception by the task2() function which is
then caught and re-thrown nested with another std::runtime_error
by the do_tasks function. This composite nested exception is caught
and logged in main by calling log_exception, passing it the caught
exception reference.
log_exception first builds and outputs to std::cerr a log message
for the immediate, outer most exception. It then passes the passed in
exception reference to std::rethrow_if_nested within a try-block.
If this throws, the exception had an inner nested exception which is caught
and passed recursively to log_exception. Otherwise the exception
was not nested, no inner exception is re-thrown and log_exception
just returns.
When built and run the program should produce:
 Outer exception: Execution failed performing tasks
 Nested exception: task2 failed performing sub
 tasks
 Nested exception: sub_task4 failed:
 calculation overflowed

Detecting uncaught exceptions
C++98 included support for detecting if a thread has a live exception in
flight with the std::uncaught_exception function. A live

Listing 6

#include <exception>
#include <thread>
#include <iostream>
#include <cassert>

std::exception_ptr g_stashed_exception_ptr;

void bad_task(){
 try {
 std::thread().detach(); // Oops !!
 }
 catch (...) {
 g_stashed_exception_ptr =
 std::current_exception();
 }
}

int main(){
 assert(g_stashed_exception_ptr == nullptr);
 assert(!g_stashed_exception_ptr);
 std::thread task(bad_task);
 task.join();
 assert(g_stashed_exception_ptr != nullptr);
 assert(g_stashed_exception_ptr);

 try{
 std::rethrow_exception
 (g_stashed_exception_ptr);
 }
 catch (std::exception & e){
 std::cerr << "Task failed exceptionally: "
 << e.what() << "\n";
 }
}

26 | Overload | October 2017

FEATURERALPH MCARDELL
exception is one that has been thrown but not yet caught (or entered
std::terminate o r std::unexpected) . Th e std::
uncaught_exception function returns true if stack unwinding is in
progress in the current thread.
It turns out that std::uncaught_exception is not usable for what
would otherwise be one of its main uses: knowing if an object’s destructor
is being called due to stack unwinding, as detailed in Herb Sutter’s N4152
'uncaught exceptions' paper to the ISO C++ committee [N4152]. For this

scenario knowing the number of currently live exceptions in a thread is
required not just knowing if a thread has at least one live exception.
If an object’s destructor only knows if it is being called during stack
unwinding it cannot know if it is because of an exception thrown after the
object was constructed, and so needs exceptional clean-up (e.g. a rollback
operation), or if it was due to stack unwinding already in progress and it
was constructed as part of the clean-up and so probably not in an error
situation itself. To fix this an object needs to collect and save the number
of uncaught exceptions in flight at its point of construction and during
destruction compare this value to the current value and only take
exceptional clean-up action if the two are different.
So, from C++17, std::uncaught_exception has been deprecated in
favour of std::uncaught_exceptions (note the plural, ‘s’, at the
end of the name) which returns an int value indicating the number of live
exceptions in the current thread.

Some additional usage scenarios
Now we have had a whizz around the new C++11 exceptions and
exception features, let’s look at some other uses.

Centralising exception handling catch blocks
Have you ever written code where you wished that common exception
handling blocks could be pulled out to a single point? If so then read on.
The idea is to use a catch all catch (…) clause containing a call to
std::current_exception to obtain a std::exception_ptr
which can then be passed to a common exception processing function
where it is re-thrown and the re-thrown exception handled by a common
set of catch clauses.
Using the simple C API example shown in Listing 8 allows us to make
widgets with an initial value, get and set the attribute value and destroy
widgets when done with them. Each API function returns a status code
meaning a C++ implementation has to convert any exceptions to
status_t return code values. The API could be exercised as shown in
Listing 9.
We could imagine a simple quick and dirty C++ implementation like
Listing 10.
Not to get hung up on the specifics of the implementation and that I have
added a check_pointer function to convert bad null pointer arguments
to exceptions just for them to be converted to a status code, we see that the
error handling in each API function is larger than the code doing the work,
which is not uncommon.
Using std::current_exception, std::exception_ptr and
std::rethrow_exception allows us to pull most of the error
handling into a single function (Listing 11).
Now each function’s try block only requires a catch (…) clause to
capture the exception and pass it to the handling function and, for
example, the set_widget_attribute implementation becomes
Listing 12.
We can see that the implementation is shorter and, more importantly, no
longer swamped by fairly mechanical and repetitive error handling code

Listing 7

#include <exception>
#include <string>
#include <iostream>
#include <stdexcept>

void log_exception(std::exception const & e,
unsigned level = 0u){
 const std::string indent(3*level, ' ');
 const std::string prefix(indent +
 (level?"Nested":"Outer") + " exception: ");
 std::cerr << prefix << e.what() << "\n";
 try{
 std::rethrow_if_nested(e);
 }
 catch (std::exception const & ne) {
 log_exception(ne, level + 1);
 }
 catch(...) {}
}

void sub_task4(){
 // do something which fails...
 throw std::overflow_error{
 "sub_task4 failed: calculation overflowed" };
}

void task2(){
 try{ // pretend sub tasks 1, 2 and 3 are
 // performed OK...
 sub_task4();
 }
 catch (...){
 std::throw_with_nested
 (std::runtime_error{
 "task2 failed performing sub tasks" });
 }
}

void do_tasks(){
 try{
 // pretend task 1 performed OK...
 task2();
 }
 catch (...){
 std::throw_with_nested
 (std::runtime_error{
 "Execution failed performing tasks" });
 }
}

int main(){
 try{
 do_tasks();
 }
 catch (std::exception const & e){
 log_exception(e);
 }
}

Listing 8

extern "C"{
 struct widget;
 enum status_t { OK, no_memory, bad_pointer,
 value_out_of_range, unknown_error };
 status_t make_widget
 (widget ** ppw, unsigned v);
 status_t get_widget_attribute
 (widget const * pcw, unsigned * pv);
 status_t set_widget_attribute
 (widget * pw, unsigned v);
 status_t destroy_widget(widget * pw);
}

October 2017 | Overload | 27

FEATURE RALPH MCARDELL
translating exceptions into error codes, all of which is now performed in
the common handle_exception function.
We can reduce the code clutter even more, at the risk of potentially greater
code generation and call overhead on the good path, by using the execute-
around pattern [Vijayakumar16] (more common in languages like Java
and C#) combined with lambda functions. (thanks to Steve Love [Love]
for mentioning execute around to me at the ACCU London August 2017
social evening).

The idea is to move the work-doing part of each function, previously the
code in each of the API functions’ try-block, to its own lambda function

Listing 9

int main(void){
 struct widget * pw = NULL;
 assert(make_widget(NULL, 19u) == bad_pointer);
 assert(make_widget(&pw, 9u) ==
 value_out_of_range);
 if (make_widget(&pw, 45u) != OK)
 return EXIT_FAILURE;
 unsigned value = 0u;
 assert(get_widget_attribute(pw, &value) == OK);
 assert(get_widget_attribute(NULL, &value) ==
 bad_pointer);
 assert(value == 45u);
 assert(set_widget_attribute(pw, 67u) == OK);
 assert(set_widget_attribute(NULL, 11u) ==
 bad_pointer);
 assert(set_widget_attribute(pw, 123u) ==
 value_out_of_range);
 get_widget_attribute(pw, &value);
 assert(value == 67u);
 assert(destroy_widget(pw) == OK);
 assert(destroy_widget(NULL) == bad_pointer);
}

Listing 10

namespace{
 void check_pointer(void const * p) {
 if (p==nullptr)
 throw std::invalid_argument("bad pointer");
 }
}

extern "C"{
 struct widget{

 private:
 unsigned attrib = 10u;

 public:
 unsigned get_attrib() const { return attrib; }
 void set_attrib(unsigned v){
 if (v < 10 || v >= 100)
 throw std::range_error
 ("widget::set_widget_attribute:
 attribute value out of range
 [10,100)");
 attrib = v;
 }
 };

 status_t make_widget(widget ** ppw,
 unsigned v){
 status_t status{ OK };
 try{
 check_pointer(ppw);
 *ppw = new widget;
 (*ppw)->set_attrib(v);
 }

Listing 10 (cont’d)

 catch (std::invalid_argument const &){
 return bad_pointer;
 }
 catch (std::bad_alloc const &){
 status = no_memory;
 }
 catch (std::range_error const &){
 status = value_out_of_range;
 }
 catch (...){
 status = unknown_error;
 }
 return status;
 }

 status_t get_widget_attribute
 (widget const * pcw, unsigned * pv){
 status_t status{ OK };
 try{
 check_pointer(pcw);
 check_pointer(pv);
 *pv = pcw->get_attrib();
 }
 catch (std::invalid_argument const &){
 return bad_pointer;
 }
 catch (...){
 status = unknown_error;
 }
 return status;
 }

 status_t set_widget_attribute(widget * pw,
 unsigned v){
 status_t status{ OK };
 try{
 check_pointer(pw);
 pw->set_attrib(v);
 } catch (std::invalid_argument const &){
 return bad_pointer;
 }
 catch (std::range_error const &){
 status = value_out_of_range;
 }
 catch (...){
 status = unknown_error;
 }
 return status;
 }

 status_t destroy_widget(widget * pw){
 status_t status{ OK };
 try{
 check_pointer(pw);
 delete pw;
 }
 catch (std::invalid_argument const &){
 return bad_pointer;
 }
 catch (...){
 status = unknown_error;
 }
 return status;
 }
}

28 | Overload | October 2017

FEATURERALPH MCARDELL
and pass an instance of this lambda to a common function that will
execute the lambda within a try block which has the common exception
catch handlers as in the previous incarnation. As each lambda function in
C++ is a separate, unique, type we have to use a function template,
parametrised on the (lambda) function type (Listing 13).
The form of each API function implementation is now shown by the third
incarnation of the set_widget_attribute implementation
(Listing 14).

Using nested exceptions to inject additional context
information
As I hope was apparent from the ‘Nesting exceptions’ section above,
nested exceptions allow adding additional information to an originally
thrown (inner most) exception as it progresses through stack unwinding.
Of course, doing so for every stack frame is possible but very tedious and
probably overkill. On the other hand, there are times when having some
additional context can really aid tracking down a problem.
One area I have found that additional context is useful is threads. You
have an application, maybe a service or daemon, that throws an exception
in a worker thread. You have carefully arranged for such exceptions to be
captured at the thread function return boundary and set them on a promise
so a monitoring thread (maybe the main thread) that holds the associated
future can re-throw the exception and take appropriate action which
always includes logging the problem.
You notice that an exception occurs in the logs, it is a fairly generic
problem – maybe a std::bad_alloc or some such. At this point, you

are wondering which thread it was that raised the exception. You go back
to your thread wrapping code and beef up the last-level exception
handling to wrap any exception in an outer exception that injects the
thread’s contextual information and hand a std::exception_ptr to
the resultant nested exception to the promise object.
The contextual information could include the thread ID and maybe a task
name. If the thread is doing work on behalf of some message or event then
such details should probably be added to the outer exception’s message as
these will indicate what the thread was doing.
Of course, the thread exit/return boundary is not the only place such
contextual information can be added. For example in the event case
mentioned above it may be that adding the message / event information is
better placed in some other function. In this case you may end up with a
three-level nest exception set: the original inner most exception, the
middle event context providing nested exception and the outer thread
context providing nested exception.

Error codes of your very own
I saw the details of this usage example explained quite nicely by a blog
post of Andrzej Krzemienski [Krzemienski17] that was mentioned on
ISO Cpp [ISO].
The cases where this is relevant are those where a project has sets of error
values, commonly represented as enumeration values. Large projects may
have several such enumeration types for different subsystems and the
enumeration values they employ may overlap. For example, we might
have some error values from a game’s application engine and its renderer
sub-system (Listing 15 and Listing 16).
Note: The error types and values were adapted from panic value types
from a simple noughts and crosses (tic tac toe) game I wrote with a friend
more than a decade ago with the goal of learning a bit about Symbian
mobile OS development.

Listing 11

namespace{
 status_t handle_exception
 (std::exception_ptr ep){
 try{
 std::rethrow_exception(ep);
 }
 catch (std::bad_alloc const &){
 return no_memory;
 }
 catch (std::range_error const &){
 return value_out_of_range;
 }
 catch (std::invalid_argument const &){
 // for simplicity we assume all bad
 // arguments are bad pointers
 return bad_pointer;
 }
 catch (...){
 return unknown_error;
 }
 }
}

Listing 12

 status_t set_widget_attribute(widget * pw,
 unsigned v){
 status_t status{ OK };
 try{
 check_pointer(pw);
 pw->set_attrib(v);
 }
 catch (...){
 status = handle_exception
 (std::current_exception());
 }
 return status;
 }

Listing 13

template <class FnT>
status_t try_it(FnT && fn){
 try{
 fn();
 }
 catch (std::bad_alloc const &){
 return no_memory;
 }
 catch (std::range_error const &){
 return value_out_of_range;
 }
 catch (std::invalid_argument const &){
 // for simplicity we assume all bad
 // arguments are bad pointers
 return bad_pointer;
 }
 catch (...){
 return unknown_error;
 }
 return OK;
}

Listing 14

status_t set_widget_attribute
(widget * pw, unsigned v){
 return try_it([pw, v]() -> void{
 check_pointer(pw);
 pw->set_attrib(v);
 }
);
}

October 2017 | Overload | 29

FEATURE RALPH MCARDELL
In such cases we can either deal in the enumeration types directly when
such error values are passed around with the effect that the various parts
of the project need access to the definitions of each enumeration type they
come into contact with. Or we can use a common underlying integer type,
such as int, for passing around such error value information and lose the
ability to differentiate between errors from different subsystems or
domains that share the same value.
Note: It would be possible to use different underlying types for each of
the various error value sets but there are only so many and such an
approach seems fragile at best given the ease with which C++ converts/
promotes between fundamental types and the need to ensure each
enumeration uses a different underlying type.
If only C++ had an error code type as standard that would allow us to both
traffic in a single type for error values and allow us to differentiate
between different sets of errors that may use the same values. If we could
also assign a name for each set and text descriptions for each error value
that would be icing on the cake. Oh, wait, it does: std::error_code.
We just have to plug our own error value enumeration types into it. The
only caveats are that all the underlying values be correctly convertible to
int and that our custom error types must reserve an underlying value of
0 to mean OK, no error. Even if our error value types do not provide an
OK enumeration value of 0 explicitly so long as a value of 0 is not
reserved for an error value then we can always create a zero valued
instance of the error enum:
 the_game::appengine_error ok_code_zero_value{};
Different error value sets or domains are called error categories by the
C++ standard library and to completely define an error code we require an
{error value, error category} pair.
To create our own error categories, we define a specialisation of
std::error_category for each error value set we have. To keep
std::error_code l i gh twe ig h t , i t d oes n o t s t o r e a
std::error_category object within each instance. Rather each
std::error_category specialisation has a single, static, instance.
std::error_code objects contain the error value and a reference
(pointer) to the relevant std::error_category specialisation static
instance. Because all references to an error category type instance refer to
the same, single instance of that type, the object’s address can be used to

uniquely identify and differentiate each specific error category and allows
std::error_code objects to be compared.
Each std::error_category specialisation provides overrides of the
name and message pure virtual member functions. The name member
function returns a C-string representing the name of the category. The
message member function returns a std::string describing the
passed in category error value (passed as an int). For example, an error
category type for the the_game::appengine_error error values
might look like Listing 17.
To create std::error_code values from a custom error (enumeration)
value in addition to the std::error_category specialisation, we
ne e d to p r o v i de t w o o t he r t h i ng s . F i r s t , an o ve r l oa d o f
std::make_error_code that takes our error value type as a parameter
and returns a std::error_code constructed from the passed error
value and the static std::error_category specialisation object. This
should be in the same namespace as our error value enum type.
In this use case, the std::make_error_code function overload is the
only thing that requires access to the custom error category static instance.
As such we can def ine the s ta t ic objec t to be local to the
std::make_error_code function overload, as in Listing 18.

Listing 15

namespace the_game{
 enum class appengine_error{
 no_object_index = 100
 , no_renderer
 , null_draw_action = 200
 , bad_draw_context = 300
 , bad_game_object
 , null_player = 400
 };
}

Listing 16

namespace the_game{
 enum class renderer_error{
 game_dimension_too_small = 100
 , game_dimension_bad_range
 , board_too_small = 200
 , board_bad_range
 , game_dimension_bad
 , board_not_square = 300
 , board_size_bad
 , bad_region = 400
 , cell_coordinate_bad = 500
 , new_state_invalid
 , prev_state_invalid
 };
}

Listing 17

struct appengine_error_category :
std::error_category{
 const char* name() const noexcept override;
 std::string message(int ev) const override;
};

const char* appengine_error_category::name()
const noexcept{
 return "app-engine";
}

std::string appengine_error_category::message
 (int ev) const{
 using the_game::appengine_error;

 switch(static_cast<appengine_error>(ev)){
 case appengine_error::no_object_index:
 return "No object index";
 case appengine_error::no_renderer:
 return "No renderer currently set";
 case appengine_error::null_draw_action:
 return "Null draw action pointer";
 case appengine_error::bad_draw_context:
 return "Draw action context has null
 graphics context or renderer pointer";
 case appengine_error::bad_game_object:
 return "Draw action context has null game
 object pointer";
 case appengine_error::null_player:
 return "Current player pointer is null";
 default:
 return "?? unrecognised error ??";
 }
}

Listing 18

namespace the_game{
 std::error_code make_error_code
 (appengine_error e){
 static const appengine_error_category
 theappengine_error_categoryObj;
 return {static_cast<int>(e),
 theappengine_error_categoryObj};
 }
}

30 | Overload | October 2017

FEATURERALPH MCARDELL
As the std::make_error_code function overload definition is the
only thing that requires the definition of the std::error_category
specialisation it is probably best if they are both placed in the same
implementation file. The declaration can be placed in the same header as
the custom error value enumeration type definition as it will be used when
converting such values to std::error_code instances – the
appengine_error.h header for the appengine_error example
case.
Se cond , we nee d to p rov i de a fu l l spec i a l i s a t i o n o f t he
std::is_error_code_enum struct template, specifying our error
code type as the template parameter. The easiest implementation is to
derive from std::true_type and have an empty definition. This
should be in the std namespace, one of the few things application code
can add to std. Listing 19 shows the std::is_error_code_enum
specialisation for the_game::appengine_error.
It is also probably best placed in the same header as the custom error
values enumeration type definition.
Subsystem API (member) func t ions can then pass a round
std::error_code instances rather than specific enumeration types or
simple integer values that loose the category information. Producers of
such error codes need to include both system_error for
std::error_code and the header containing the error value enum
definition, along with the std::make_error_code overload
declaration (only) and the std::is_error_code_enum struct
template specialisation definition. So to produce std::error_code
objects from the_game::appengine_error values, the previously
mentioned appengine_error.h header would need to be included.
Consumers need only include system_error for std::error_code
and will still be able to access the error value, category name and error
value description string.
For example some spoof game appengine implementation code for
updating the game board might complain if it does not have an associated
r ende r e r ob jec t t o pas s on the r equ es t t o b y r e tu r n ing a
the_game::appengine_error::no_renderer error converted to
a std::error_code (Listing 20).
It thus needs to include the appengine_error.h header and well as
system_error. However, the caller of this member function only sees
the returned std::error_code, and so only needs to include
system_error, as well as any appengine API headers of course. This
is demonstrated by the simple spoof usage program in Listing 21, which
shows spoof usage for both converted the_game::renderer_error
values and the the_game::appengine_error values I have shown
examples of. When built and run the output should be:
 renderer:101 Reported max. supported game grid

 less than the min.
 app-engine:101 No renderer currently set
Of course this is all about error values, codes and categories, nothing
about exceptions (other than returning std::error_code values could
allow functions to be marked noexcept). Remember however that we
can always construct a std::system_error exception object from a
std::error_code object. 

References
[cppreference] http://en.cppreference.com
[ISO] Cpp: https://isocpp.org/
[Josuttis12] Josuttis, Nicolai M. (2012) The C++ Standard Library,

second edition, Addison Wesley Longman
[Krzemienski17] Your own error code, Andrzej Krzemienski:

https://akrzemi1.wordpress.com/2017/07/12/your-own-error-code/
[Love] Steve Love: https://uk.linkedin.com/in/steve-love-1198994
[N3337] Post C++11 Working Draft, Standard for Programming

Language C++
[N4152] Herb Sutter, uncaught_exceptions: http://www.open-std.org/

jtc1/sc22/wg21/docs/papers/2014/n4152.pdf
[Vijayakumar16] Design Patterns – Execute Around Method Pattern:

http://www.karthikscorner.com/sharepoint/design-patterns-execute-
around-method-pattern/

Listing 19

namespace std{
 using the_game::appengine_error;
 template <> struct
 is_error_code_enum<appengine_error>
 : true_type {};
}

Listing 20

std::error_code appengine::update_game_board(){
 // good case demonstrates zero-initialising
 // enum class instance
 return rp_ ? appengine_error{} :
 appengine_error::no_renderer;
}

Listing 21

#include "custom_error_code_bits/the_game_api.h"
#include <system_error>
#include <iostream>
#include <string>

void log_bad_status_codes(std::error_code ec){
 if (ec)
 std::clog << ec << " " << ec.message()
 << "\n";
}

int main(){
 auto & engine{ the_game::get_appengine() };

 // Should fail as setting renderer supporting
 // invalid dimension range
 std::unique_ptr<the_game::renderer> rend{
 new the_game::oops_renderer};
 log_bad_status_codes(engine.take_renderer(
 std::move(rend)));

 // Should fail as no renderer successfully set to
 // draw board
 log_bad_status_codes
 (engine.update_game_board());

 // OK - nothing to report, this renderer is fine
 // and dandy
 rend.reset(new the_game::fine_renderer);
 log_bad_status_codes(engine.take_renderer
 (std::move(rend)));

 // OK - now have renderer to render board updates
 log_bad_status_codes
 (engine.update_game_board());
}

October 2017 | Overload | 31

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4152.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4152.pdf
http://www.karthikscorner.com/sharepoint/design-patterns-execute-around-method-pattern/
https://uk.linkedin.com/in/steve-love-1198994
https://akrzemi1.wordpress.com/2017/07/12/your-own-error-code/
https://isocpp.org/
http://en.cppreference.com

FEATURE CHRIS OLDWOOD
Afterwood
Too soon! Chris Oldwood
reviews optimisation in the
development process.
Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

he most famous quote about optimisation, at least in programming
circles, is almost certainly “premature optimisation is the root of all
evil”. When I was growing up, this was attributable to Donald Knuth,

but he ’fessed up saying that he was just quoting Sir Tony Hoare, although
Sir Tony seemed reluctant to claim ownership. According to the fount of
all knowledge, Wikipedia, things appear to have been straightened out
now and Sir Tony has graciously accepted attribution. That quote was
originally about the performance of code and should ideally be presented
in its greater detail so as not to lose the context in which it was said. The
surrounding lines “We should forget about small efficiencies, say about
97% of the time: […]. Yet we should not pass up our opportunities in that
critical 3%.” remind us that there is a time and a place for optimisation.
Of course, we’re all agile these days and do not pamper to speculative
requirements – we only consider performance when there is a clear
business need to. Poppycock! Herb Sutter and Andrei Alexandrescu
certainly didn’t believe such nonsense and popularised the antonym
‘pessimization’ in the process. Item 9 in their excellent book C++ Coding
Standards: 101 Rules, Guidelines, and Best Practices tells us not to
prematurely pessimize either; i.e. we shouldn’t go out of our way to avoid
appearing to prematurely optimise by simply writing stupid code –
choosing a sensible design or algorithm is not premature optimisation. For
most of us, the sorting algorithm was a problem solved years ago and the
out-of-the box Quicksort variation (something else attributable to Sir
Tony Hoare) that we get in our language runtime is almost certainly an
excellent starting point.
Another favourite quote on the subject of optimisation comes from Rob
Pike where he tells us “fancy algorithms are slow when N is small, and N
is usually small”. While there are many new products which aim to scale
to the heady heights of Twitter and Facebook, most are destined for a user
base many orders of magnitude lower than them. Whilst it’s all very
interesting to read up on how a company like Facebook has to design its
own hardware to deal with its scaling issues, that’s definitely something
for the back pocket in case you really do end up on The Next Big Thing
rather than an architectural stance which you should adopt by default.
On Twitter, John Carmack once extrapolated from Sir Tony and observed
that performance is not the only thing which we can be accused of
prematurely optimising: “you can prematurely optimize maintainability,
flexibility, security, and robustness [too]”. Although I didn’t realise it at
first, I eventually discovered that my own C++ unit testing framework,
which I thought I was being super clever with by eliding all those really

difficult bits, like naming, was actually a big mistake. By focusing so
heavily on the short term goals I had written a framework that was
optimised for writing tests, but not reading them. As such, many of my
earliest unit tests were shockingly incoherent mere days later and not
worth the (virtual) paper they were written on. Every time I revisited them
I probably spent orders of magnitude more time trying to understand them
than what it would have taken in the first place to slow down and write
them more lucidly.
Outside the codebase, the development process is another area where it’s
all too easy to end up optimising for the wrong audience. The primary
measure of progress should be working software, and yet far too much
effort can be put into finding proxies for this metric. Teams that choose
internally to track their work using tools and metrics to help them improve
their rate of delivery are laudable, whereas imposing complex work
tracking processes on a team to make it easier to measure progress from
afar is unproductive. For example The Gemba Walk – the practice of
management directly observing the work – allows those doing the work
to dedicate more of their time to generating value rather than finding
arbitrary ways to represent their progress.
Tooling is a common area where a rift between those who do and those
who manage arises. For example, it’s not uncommon to find effort
duplicated between the source code or version control system and the
work tracking tool because the management wants it in a form they can
easily consume, even if that comes at the expense of more developer time.
For example I’ve seen code diffs and commit comments pasted into
change request Word documents for review, and acceptance criteria in
Gherkin synchronised between JIRA stories and test code because those
in control get to call the shots on the format of any handover so they can
minimise their own workload.
Engineering is all about trade-offs, both within the product itself and the
process used to deliver it. As software engineers, we might find it easier
to trade off the dimensions of time and space in the guise of CPU cycles
and memory and find it harder to weigh-up, or more likely, control,
trading off time between our present and future selves. The increasing
recognition of metaphors like Technical Debt and management styles
such as Servant Leadership will continue to help raise the
profile of some of the more common sources of
tension, but we still need to be on the lookout for
those moments where our apparent cleverness may
really be a rod for our own backs. 

T

32 | Overload | October 2017

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	Overload_141.pdf
	This way up!
	Letters to the Editor
	Marking Benches
	The Historical Context of Technology
	‘Speedy Gonzales’ Serializing (Re)Actors via Allocators
	Polymorphism in C++ – A Type Compatibility View
	Open Source – And Still Deceiving Programmers
	C++11 (and beyond) Exception Support
	Afterwood

