overload

A short,Qvervicw,of Object
....Il.mlenletl-Soﬂw 3 Design

OE)"JectL L,,m-"‘-""--j.o'-* I [ﬁuj manyapninciples.
We d monsiratelgeod @9@1:)&11 ifireugh a
fofs [0llz1/Inie) Claimie.

Ilow tn erle a Programming
Language: Part 1 @e’lexe '

We startwiitingia simple pr@gram INGE |

Iang‘lﬁg‘enf scratch - .
~nﬁﬁrwooll

Design: Pete Goodliffe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

@ 6 copies of C Vu a year

@ 6 copies of Overload a year

@ The ACCU handbook

@ Reduced rates at our acclaimed annual
developers' conference

@ Access to back issues of ACCU periodicals via
our web site

@ Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills

@ Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information

@ The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join

You can join the ACCU using
our online registration form.
Go to www.accu.org and
follow the instructions there.

Also available

You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site
for details.

OVERLOAD 145

June 2018
ISSN 1354-3172

Frances Buontempo
overload@accu.org

Andy Balaam
andybalaam @ artificialworlds.net

Balog Pal
pasa@lib.h

Ben Curry
b.d.curry@gmail.com

Paul Johnson
paulf.johnson @gmail.com

Klitos Kyriacou
klitos.kyriacou @ gmail.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero @howzatt.demon.co.uk

Philipp Schwaha
<philipp@schwaha.net>

Anthony Williams
anthony @ justsoftwaresolutions.co.uk

Advertising enquiries

ads@accu.org

Printing and distribution
Parchment (Oxford) Ltd

Pete Goodliffe
pete @ goodliffe.net

All articles intended for publication in
Overload 146 should be submitted by
1st July 2018 and those for
Overload 147 by 1st September
2018.

The ACCU

The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

8 CONTENTS

4 How to Write a Programming Language:
Part1, The Lexer

Andy Balaam starts his series on writing a
programming language.

6 Type-agnostic Tracing Using {fmt}
Mike Crowe demonstrates how to use {fmt} for
tracing compound and custom types.

9 A Short Overview of Ohject Oriented
Software Design

Stanislav Kozlovski demonstrates good OO
design through a role playing game.

16 Afterwood

Chris Oldwood finds agile gets in the way of
listening to music.

Copyrights and Trade Marks

Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

| Overload | 1

EDITORIAL »

Automation can speed things up. Frances Buontempo
considers how it can make things worse.

Preparing for the ACCU conference and making a few

tweaks to my up-coming book in-line with some

feedback, I haven’t had a chance to write an editorial.

I still dream of creating an automatic editorial

generator, but need to learn a lot more about natural

language processing to make any progress with that.
So what has been eating my time?

At work, I am trying to rejuvenate and repurpose some old FORTRAN
code. Originally, it was used to model software reliability. In fact, there
are several models with the subtle differences in approach, but on a high
level, they each take a list of event times and use these to predict when
future events might happen. In terms of software reliability, these events
mean finding a bug in a code base, or other fault, and fixing it. Realists
may say you can’t find and fix a bug instantaneously. In modelling terms,
you should never let reality get in the way, so could use the time when the
bug fix is committed to the code base instead. If the event times are
getting further apart, things are improving. In theory, you can fit these to
some statistical models and decide how likely it is that all the bugs have
been removed from a code base. Overviews are available, for example,
Reliability Growth: Enhancing Defense System Reliability has a chapter
giving an overview of the models [NRC]. Our team is trying to find ways
to apply these models to cybersecurity. The theory is a security problem
is an event with a timestamp, so sending in event times to the models
allows you to predict when the next events might happen.

I have eight models, with over fifteen data sets along with previously
generated output files for some of these inputs. There are no unit tests,
which is no surprise, however the expected outputs for given inputs
provide a way to test the code. I wrote a script to build the models and run
them against all the inputs. When I ran this, several of the models
exploded in various exciting ways. My instinct to automate this first left
me drowning in error messages. A smaller script to check how many
input files have corresponding outputs would have been revealing.
Several inputs did not having matching outputs. It turns out those without
outputs were crashing and causing my well-intentioned script to fail.
Once I limited the inputs to those that didn’t explode, I ended up with
different formats in the output, so a simple diff wouldn’t work. Queue
another script to compare files of numbers. The generated files have rows
of numbers for each event. The original files have blocks of up to four
numbers on a row, so you need a bit of guess work to figure out when you
are actually on a new event. The numbers don’t match exactly either,
which will need a meeting to discuss. I haven’t yet checked running the
same code on the same input provides the same output. That’s another
story. The highlight here is writing scripts to automate this seemed like a
good idea. If I had tried one or two things by hand first, I may have
noticed the missing outputs for some of the inputs and actually made
progress quicker by slowing down. I may have
found my superhero name by doing this. I
recently found out that ‘kilogirl’ was an
early unit of computing power, equivalent

2| Overload | June 2018

to a thousand hours of manual computing labour. This seems to come
from a book called Broad Band: The Untold Story of the Women Who
Made the Internet by Claire L Evans [Evans18]. Manually comparing the
columns in the output files would probably be a thousand hours. Kilogirl
it is.

At the recent ACCU conference, Daniele Procida advocated a Zen
approach to problem solving, saying “Don’t just do something. Sit there.”
[Procidal8]. Charging straight in without thinking first is often asking for
trouble. In Overload 128, 1 considered what you should automate.
[Buontempol5]. The origins of computers and fear of machines taking
over the world, or at least taking people’s jobs is old. And yet, history
repeats itself. And indeed, my errors of signalling NaNs also repeated
themselves when I ran my automatic script. If I had listened to my own
advice, I would have tried one input at a time for a while to get a feel for
the unfamiliar code base and file format, before writing a script.
Automate all the things, but not yet.

I am not the only person wondering if I have too much automation. A
recent article claims Elon Musk regards too much automation at Tesla Inc
as a mistake [Hull18]. He says, “We had this crazy, complex network of
conveyor belts, and it wasn’'t working, so we got rid of that whole thing.”
My unfamiliar FORTRAN code base feels like that and I am tempted to
ditch it and re-write it in another language. I might do that as a learning
exercise; however, my mission is to make this work, so can’t get rid of
the whole thing. Musk also said, “Humans are underrated” [Musk18] in
response to the discussion. Automation is supposed to save humans form
error-prone, boring repetitive tasks that machines are more suited for,
however the article points out, automation can be:

Expensive and is statistically inversely correlated to quality. One
tenet of lean production is ‘stabilize the process, and only then
automate.’ If you automate first, you get automated errors.

You always need to think about what you are trying to achieve and
measure to check this is happening. A brief discussion around this
[Malone18] was nailed on the head:

I think they’re saying too much automation too soon is an expensive
mistake that the Germans and Japanese have learned. But they still
automate when products mature.

Some of us know more about the manufacturing processes than others,
but most of us have encountered interviews. Can that process be
automated? Have you ever have been sent a Hackerrank or Codility test
as a pre-screen? Or a coding exercise that you suspect gets sent through
a test suite? These take time; you are often given 90 minutes to complete
the online exercises. Do you have 90 minutes spare where you can be
certain no one will interrupt? Maybe, maybe not. What happens if you
fail the automatic tests? Furthermore, why don’t these websites allow you
to use a test suite? Or version control? Whatever the reason, this means
writing code in a strange way for many of us. Some companies will still
look at your submissions even if you don’t get 100%, and use your
solutions as a basis for discussion. There’s a tension between companies

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about Al and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo @ gmail.com.

avoiding wasting their employees’ time when recruiting and them
wasting interviewees time. There’s also a need to make sure the process
is ‘fair’ by ensuring everyone has been asked the same questions. On
paper that sounds sensible, but different people have different skill sets.
Some people are quicker than others too. I was quicker when I was
younger, and am beginning to wonder how much of the lack of diversity
in some organisations is down to their recruitment process. Do you want
a quickly coded, hand-rolled algorithm, or easy-to-follow code in version
control complete with unit tests? Or someone who is good at bug
hunting? Or team building and mentoring? How would you test these
skills automatically?

Before you get as far as being tested, you usually submit a CV. A script
can search for skills in this, which leads to suggestions of hiding buzz
words in white on a white background to get picked out by the bots.
Automatic CV screening can exclude people who may not have followed
a conventional route. I do not have a Comp. Sci. degree so some
automatic process will instantly exclude me. Some may insist on straight
As at school. I got half As and half Cs. Again, #fail. I do have a PhD, but
an automated process may not value this. Some people do not have a
degree but can still code.

I understand that some British universities are dropping a requirement for
‘A’ level physics as a prerequisite to study engineering, in order to
encourage diversity. The theory is that some girls avoid physics classes
since they would be the only female in the room. That doesn’t mean they
aren’t interested or capable, just that they don’t want to be the odd one
out. One gentleman, prior to a diversity and inclusion in STEM talk I
attended, informed me that women aren’t interested in science. He was
partially right; many men aren’t in the slightest bit interested either. If
women instantly get excluded in the UK because they can’t face being the
odd one out at school, claiming they are not interested enough in the
subject is missing the point. Our bias and assumptions do filter into our
processes and can make the situation worse if the process is automated.
As Musk said, humans are underrated. Sometimes. Ms Teedy Deigh
mentioned ‘BIBO’; bias in, bias out, in her article for our last issue
[Deigh18]. I used this phrase in my keynote to the ACCU conference last
year, so am pleased she was there listening. I am always amused that
feedforward neural networks usually have a bias neuron. Its purpose is to
allow all zero inputs to map to non-zero outputs, or more generally shift
the inputs up or down [Stackoverflow]. Yet there it is, right in the middle
of a common Al technique: bias, built in.

A recent post on Medium by Michael Jordan considers Al [Jordan18]. He
tells a concerning tale of his pregnant wife’s ultrasound test revealing
markers for Down syndrome. They were told the risk of the baby having
the syndrome had increased to 1 in 20, but the risk of an amniocentesis
test killing their baby was 1 in 300. Being a statistician, he dug into the
numbers, and concluded the increased number of pixels on current
machines meant the health care officials might be modelling white noise,
since the original numbers were based on white spots showing up on
older displays. Using old data and models as the world changes,
especially if you bring automation into the mix, is asking for mistakes. He
notes that before civil engineering, people still built bridges and some
collapsed. He sees the need for a new engineering discipline around Al,
requiring human perspectives. He notes some early neural networks were
used to optimise the thrust of the Apollo spaceships and are now used to
power decisions Amazon, Facebook and other large tech companies
make. Amazon didn’t realise the London Marathon runs along the end of
my road, so their clever logistic algorithm didn’t pick a different day to
make a delivery for me. Sometimes, humans need to call out that new
information has changed the situation. Furthermore, a narrow set of
voices might be causing bias in the topics researched and the outcomes.
He says, “There is a need for a diverse set of voices from all walks of life,
not merely a dialog among the technologically attuned. Focusing
narrowly on human-imitative Al prevents an appropriately wide range of
voices from being heard.” He ends by saying, “Let’s broaden our scope,
tone down the hype and recognize the serious challenges ahead.”

Al seems like the ultimate way to automate all the things, but various the
scripts and tooling we write ourselves takes us part-way there. My scripts

1 EDITORIAL

to attempt to verify the modelling code are one small, slightly failed part.
Online coding tests to filter candidates are arguably another. Automating
a build is more sensible. Having scripts to deploy releases is wise.
Encouraging a QA department to automate some of the process is a good
idea. Automating all the things can slow you down and introduce bias.
Inclusivity and diversity matter. This means different things to different
people. Different countries have differing problems. One keynote at this
year’s conference was about diversity and inclusivity. It became
apparent, at least to me, that attendees from some countries don’t believe
there is a problem with few women studying or involved with STEM. A
lightning talk by Robert Smallshire showed the variation between
countries, in particular mentioning 49% of STEM students being women
and shared a graph of the global index gender gap against the percentage
women among STEM graduates [Sossamon18]. What happens after
graduation is another matter [UNESCO]. We need to be careful about
context and assumptions when we talk to each other. There is a problem
in the UK. Particularly with guys, and I mean guys, turning up to
inclusivity talks telling me women don’t like tech subjects.

Automating everything is asking for trouble. Being aware of context and
doing some fact finding is important. The ACCU conference also
mentioned the Include CPP group [IncludeCpp]. I’ve

joined their discord chat channel, which is another

excuse for failing to write an editorial. However, if

you want people to chat to and some support or

encouragement, do get involved.

References

[Buontempo15] Frances Buontempo (2015) ‘Semi-automatic Weapons’,
Overload 128, Aug 2015 https://accu.org/index.php/journals/2133

[Deigh18] Teedy Deigh (2018) ‘Ex Hackina’, Overload 144,
https://accu.org/index.php/journals/2484

[Evans18] Claire L. Evans (2018) Broad Band: The Untold Story of the
Women Who Made the Internet, Portfolio, ISBN 9780735211759

[Hull18] Dana Hull (2018) ‘Musk Says “Excessive Automation Was My
Mistake™’, Bloomberg 13 April 2018, https://www.bloomberg.com/
news/articles/2018-04-13/musk-tips-his-tesla-cap-to-humans-after-
robots-undercut-model-3

[IncludeCpp] http://www.includecpp.org/

[Jordan18] Michael Jordan (2018) ‘Artificial Intelligence — The
Revolution Hasn’t Happened Yet’, https://medium.com/
(@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-
yet-5e1d5812ele7

[Malone18] Dylan Malone (2018) https://twitter.com/dylanmalone/
status/986321420761235456, posted 17 April 2018

[Musk18] Elon Musk (2018) https://twitter.com/elonmusk/statuses/
984882630947753984, posted 13 April 2018

[NRC] National Research Council (2015) Reliability Growth: Enhancing
Defense System Reliability. Panel on Reliability Growth Methods
for Defense Systems, Committee on National Statistics, Division of
Behavioral and Social Sciences and Education. Washington, DC:
The National Academies Press. https://www.nap.edu/read/18987/
chapter/11#122

[Procidal8] Daniele Procida (2018) ‘Fighting the controls: tragedy and
madness for pilots and programmers’, presentation at the ACCU
Conference 2018: https://conference.accu.org/2018/sessions.html
#XFightingthecontrolstragedyandmadnessforpilotsandprogrammers

[Stackoverflow] ‘Role of Bias in Neural Networks’
https://stackoverflow.com/questions/2480650/role-of-bias-in-
neural-networks

[Sossamon18] Jeff Sossamon (2018) ‘In countries with higher gender
equality, women are less likely to get STEM degrees’, World
Economic Forum, https://www.weforum.org/agenda/2018/02/does-
gender-equality-result-in-fewer-female-stem-grads

[UNESCO] UNESCO (2018) ‘Improving access to engineering careers
for women in Africa and in the Arab States’, http://www.unesco.org/
new/en/natural-sciences/science-technology/engineering/infocus-
engineering/women-and-engineering-in-africa-and-in-the-arab-
states/

June 2018 | Overload | 3

http://www.unesco.org/new/en/natural-sciences/science-technology/engineering/infocus-engineering/women-and-engineering-in-africa-and-in-the-arab-states/
http://www.unesco.org/new/en/natural-sciences/science-technology/engineering/infocus-engineering/women-and-engineering-in-africa-and-in-the-arab-states/
https://www.weforum.org/agenda/2018/02/does-gender-equality-result-in-fewer-female-stem-grads
https://www.weforum.org/agenda/2018/02/does-gender-equality-result-in-fewer-female-stem-grads
https://stackoverflow.com/questions/2480650/role-of-bias-in-neural-networks
https://conference.accu.org/2018/sessions.html#XFightingthecontrolstragedyandmadnessforpilotsandprogrammers
https://conference.accu.org/2018/sessions.html#XFightingthecontrolstragedyandmadnessforpilotsandprogrammers
https://www.nap.edu/read/18987/chapter/11#122
https://www.nap.edu/read/18987/chapter/11#122
https://twitter.com/elonmusk/statuses/984882630947753984
https://twitter.com/elonmusk/statuses/984882630947753984
https://twitter.com/dylanmalone/status/986321420761235456
https://twitter.com/dylanmalone/status/986321420761235456
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
https://medium.com/@mijordan3/artificial-intelligence-the-revolution-hasnt-happened-yet-5e1d5812e1e7
http://www.includecpp.org/
https://www.bloomberg.com/news/articles/2018-04-13/musk-tips-his-tesla-cap-to-humans-after-robots-undercut-model-3
https://www.bloomberg.com/news/articles/2018-04-13/musk-tips-his-tesla-cap-to-humans-after-robots-undercut-model-3
https://accu.org/index.php/journals/2133
https://accu.org/index.php/journals/2484

FEATURE »

Language: Part 1,

The Lexer

Writing a programming language might sound very difficult.
Andy Balaam starts his series with a lexer.

&

& Behaviour

programming language is a
nprogram that converts text

(source code) into behaviour.
Because it’s a program that works :€> ?
with other programs, it can sound
complicated — even something that shouldn’t be attempted by mere
mortals — but really, programming languages are relatively simple
programs, often much simpler than the programs they are used to write.

—
%

e

In this series we will be writing an interpreter for our own programming
language, called Cell. Cell is a proper language, with strings and numbers,
if statements, for loops, functions and things that work like objects. If you
follow this series you will get a feel for what a programming language is,
and be ready to start designing your own!

Most programming languages are designed to make life easy for
someone: usually that person is the programmer who will be writing
programs in the language. Different languages have different designs
based on the needs of that person — for example, Python is designed
(among other things [Peters04]) to make code easy to read, and Rust is
designed (among other things [Rust]) to make it easy to avoid certain
kinds of mistakes.

Cell is unusual because it is designed to make life easy for us: the people
who are writing it. Lots of things about its design mean that we can write
less code when we are implementing it. Sometimes, this will make life a
bit more difficult for the person writing programs in Cell. We will have to
live with that: Cell is a toy language, not a hardened tool.

First, let’s look at an example of a program written in Cell.

A Cell program

This program shows how to make variables and call functions in Cell:
x = 3;
y=x+ 2;
print(y);

When you run it, this program will print out the value of y, which is 5.

Cell programs should be relatively familiar to people who have used a
curly-brace language like C, C++ or Java, and also takes inspiration from
dynamic languages like Python and Ruby. (In fact, under the covers, the
language Cell looks most like is Lisp, but its syntax is different.)

The Cell interpreter we will be writing is written in Python, which was
chosen because Python programs tend to be short and easy to read.

Most programming languages are built from several parts: the lexer takes
in the source code and converts it into tokens, the parser understands the

Andy Balaam Andy is happy as long as he has a programming
language and a problem. He finds over time he has more and more
of each. You can find his open source projects at
artificialworlds.net or contact him on

4 | Overload | June 2018

def lex(chars_iter):
chars = PeekableStream(chars_iter)
while chars.next is not None:
c = chars.move next()
if ¢ in " \n": pass
Ignore white space
elif c in "(){},;=:":
Special characters
elif ¢ in "+-*/": yield ("operation", c)
elif ¢ in ("'", '""'): yield ("string",
_scan_string(c, chars))
elif re.match("[.0-9]", c): yield ("number",
_scan(c, chars, "[.0-9]"))
elif re.match("[_a-zA-Z]", c):
yield ("symbol", _scan(c, chars,
"[_a-zA-Z0-9]"))
elif ¢ == "\t": raise Exception(
"Tabs are not allowed in Cell.")
else: raise Exception(
"Unexpected character:

Listing 1

yield (¢, "")

"4 e+ n|‘u)

structure described by the tokens
and builds them into a syntax | €X
tree, and then the evaluator uses ——
the syntax tree to decide what to

Y& YA
do. (Of course, real languages

Parser
have other parts including things Lexer 37
like compilation, optimisation, g

and bytecode generation.) Behaviour

Tokens Syntax

F

€]l

Evaluator

The Lexer

In this article we will look at the lexer — the first part of our program. The
lexer takes in text (source code) and transforms it into tokens. Tokens are
things like a number, a string, or a name.

In cell, the types of tokens are:
Numbers, e.g 12 or 4.2
Strings, e.g. "foo" or 'bar’

Symbols, e.g. baz or qux_Quux

Operators, e.g. + or —
} and ;

So, the lexer is really just a function that takes in a string (some Cell
source code) and returns all the tokens it finds in that string. The main
function is shown in listing 1.

® Special punctuation, including (,

The lex function takes in an argument called chars_iter that provides
the characters of the code we are lexing. This can be anything that gives
us single characters if we loop through it, for example an ordinary string.
We immediately wrap chars_iter in a PeekableStream, which is a

class PeekableStream:
def init (self, iterator):
self.iterator = iter (iterator)
self. fill()
def _fill (self):
try:
self.next = next(self.iterator)
except StopIteration:
self.next = None
def move next (self):
ret = self.next
self. fill()
return ret

Listing 2

little class (shown in listing 2) that allows us to check one character ahead
in the stream of characters we are receiving.

The lex function returns a stream of tokens using Python’s yield
keyword to provide them one by one. Each token is a Python tuple
containing two things: a type, which tells us what kind of token we are
dealing with, and the value, which is the contents of the token (for
example, a number, a string, or the name of a variable).

The main body of the 1ex function is a while loop stepping through the
characters one by one, and for each one doing something based on what
type of character it is. When we are in this part of the code, we know we
are looking for the beginning of a new token, and the first character of that
token will help us decide what type of token it is.

The first line of the i f allows us to skip over any white space (spaces or
newlines) we find. The second line identifies any special characters. The
values yielded by the 1ex function are pairs that look like (TYPE,
VALUE), for example ("string", "Hello")would represent a string
token that contains the word ‘Hello’. The special characters are slightly
different — we treat each character as a unique type, so when we find a ;
character, we yield (" ; ", ""). This means the parser (which we will see
in the next article in this series) can treat each special character
differently. Because in Cell special characters are always exactly one
character long, we can immediately yield a token when we find one.

The next part (elif ¢ in "+-*/") identifies arithmetic operations.
Again, these tokens are always one character long, so we can immediately
yield a token with type "operation", and value the actual symbol the
user typed.

Now we move on to more interesting tokens. If the first character of a
token is a single or double quote, we know we are dealing with a string.
We must scan forwards through the characters until we find a matching
close quote, and then yield a token with type string. To scan forwards we
call the function _scan_string, which is shown in listing 3.

_scan_string moves through the characters of the string, and stops
when it reaches a matching quote. The characters between the quotes are
returned, and this is the value of the token that is yielded from the lex
function. Unlike most programming languages, Cell does not provide a
way of ‘escaping’ a quote symbol by writing \" or similar. This is a
limitation we have chosen to accept to keep our lexer simple.

def _scan_string(delim, chars):
ret = ""
while chars.next != delim:
c = chars.move next()
if c is None:
raise Exception(\
"A string ran off the end of the program.")
ret += ¢
chars.move next ()
return ret

Listing 3

n FEATURE

def scan(first_char, chars, allowed):
ret = first_char
p = chars.next

while p is not None and re.match(allowed, p):
ret += chars.move_next()
p = chars.next

return ret

Listing 4

Continuing through the big i £/e1if block in the 1ex function (listing 1),
next we come to numbers. The first character in a number will always be
a number or a decimal point, so when we see one of those we call the
_scan function, telling it to keep consuming characters while it can see
numbers or decimal points. The _scan function is shown in listing 4.

_scan is similar to _scan_string, but instead of continuing until it
reaches a closing quote, it continues reading characters until it finds one
that is not allowed. It uses a regular expression to handle this, and for a
number, the regular expression is [.0-9], which just means only numbers
and decimal points are allowed. Notice that "0.4.3" would count as a
number here, or even "....". It would certainly be nice to tell the
programmer that they made a mistake like this, but we don’t necessarily
need to do this in the lexer — we might choose to check this in the parser,
or in a later validation stage.

The next elif in the lex function (listing 1) checks for a symbol like a
variable name. These must start with a letter or an underscore. Once we
have found a letter or an underscore, we call the _scan function again,
and the characters that are allowed include numbers as well as letters and
underscores. Notice that at this point, the lexer does not care at all whether
this is a variable name, a function name, or something else. In fact it
doesn’t even care whether you are allowed to write a symbol at this point
in the program — all it cares about is that the characters it found make a
symbol. It’s the parser’s job to care about what is allowed where.

It is common in lots of programming languages to allow numbers in
symbols, but not for the first character. If you ever wondered why that is,
this might help to explain — by disallowing numbers as the first character,
we make it easy for the lexer to tell the difference between numbers and
symbols, without having to scan through the whole token first.

The last two branches of the if/elif structure in the lex function
handle tab characters (which are simply never allowed in Cell programs)
and anything else that was unexpected. Both of these produce (fairly
unhelpful) error messages.

We have now talked about the entire source code of Cell’s lexer — that is
all there is, so if you understand it, you have a good chance of
understanding the lexer in your favourite programming language, or of
writing your own.

You can find the whole source code for Cell at https://github.com/
andybalaam/cell along with articles and videos explaining more about
how it works.

Lexers do a very simple job: read in the text version of a program, and
break up the parts of it into separate tokens that make sense to the next
part: the parser.

Next time, we’ll look at Cell’s parser, and how it takes in tokens and
arranges them into a tree shape reflecting the actual structure of the
instructions we are giving to the computer. After that we’ll look at how
the evaluator turns that tree into actual behaviour, making a real, working
programming language. B

References
[Peters04] Tim Peters (2004) ‘PEP 20 — The Zen of Python’,
https://www.python.org/dev/peps/pep-0020/, posted 19 August 2004

[Rust] The Rust Programming Language, available at https://doc.rust-
lang.org/book/second-edition/index.html

June 2018 | Overload | 5

https://www.python.org/dev/peps/pep-0020/
https://doc.rust-lang.org/book/second-edition/index.html
https://doc.rust-lang.org/book/second-edition/index.html

FEATURE »

pe-agnostic Tracing

Using {fmt}

Tracing compound and custom types is a challenge. Mike Crowe
demonstrates how {fmt} provides a safe alternative to printf.

looked a bit like Listing 1 to a young C++ code base that lacked a

standard way to do tracing for debugging. The implementation of
AlwaysTrace: :operator () wrote the trace message to an
appropriate place.

n bout eleven years ago, I was responsible for adding types that

struct NeverTrace {
void operator() (const char *, ...)
__attribute__ ((format(printf, 2, 3))) {}
}i

struct AlwaysTrace {
void operator () (const char *, ...)
__attribute_ ((format(printf, 2, 3)));
};

#if DEBUG>0

typedef AlwaysTrace DebugTrace;
#else

typedef NeverTrace DebugTrace;
#endif

Listing 1

The intention was that each file could declare one or more instances of
these types and use it throughout the code:

static DebugTrace TRACE;

void my function(int i)

{

TRACE ("A helpful message:

}
The real classes had various other helpful functions of course, and
eventually we ended up with a global TRACE _ERROR instance that would
always be emitted.

%d\n", 1i);

This worked reasonably well, and although we always had plans to
improve the mechanism, we’ve never really got round to it. Some
adornments to enable GCC’s print£ format string checking and using
-Werror meant that the risk of getting the format string wrong was low.
It was annoying to have to use c_str () when tracing std: :string
instances, but we just lived with that.

I’d always planned to support tracing compound and custom types by
adding some iostreams-like functionality but I never got round to it. In any
case, my coworkers and I were generally not keen on iostreams for its
verbosity and other reasons recently well described in [Ignatchenko18].

Mike Crowe Mike became a C++ and embedded Linux developer
by accident twenty years ago and hasn’t managed to escape yet.
Working for small companies means that he gets to work on a wide
range of high and low-level software, as well as release processes
and build tools to stop him getting bored. He can be reached at
accu@mcrowe.com.

6 | Overload | June 2018

#include <inttypes.h>

void foo(uint64_t value)

{
TRACE ("foo passed %1llu\n", value);
/] ...

}
void bar(size_t length)

TRACE ("bar passed %zu\n", length);
YV

Listing 2

We continued to use these tracing classes for many years whilst targeting
32-bit MIPS and later ARM targets. We ended up with code like Listing 2.

This all worked fine, until we tried to compile for our first 64-bit target.

The ugliness of <inttypes.h>

The <inttypes.h> header (along with the <cinttypes> that we
probably ought to have been using from C++) contains handy definitions
for types with specific numbers of bits. It contains declarations like:

#if defined(__LP64)

typedef unsigned long uint64_t;

typedef long int64_t;

#else

typedef unsigned long long uinté4_t;

typedef long long int64_t;

#endif
Unfortunately, this means that when compiling for a 32-bit target the
%11u and %$11d format specifiers are correct, but when compiling for a
64-bit target $1u and $1d must be used. <inttypes.h> provides the
PRIu64 and PRId64 macros that expand to the correct form.
Unfortunately, since they need to be used in a string literal, they are
extremely ugly to use. (The full set of macros is at [CppRef].)
The relatively sensible:

void ReportProgress(uinté4_t current,

uint64_t max)

{
TRACE ("Progress %1lu/%1lu %11lu%%\n", current,

max, current * 100 / max);
}
becomes the hard-to-read, hard-to-type and hard-to-maintain:
void ReportProgress (uint64_t current,
uint64_t max)

{
TRACE ("Progress %" PRIu64 "/" PRIu64 " " PRIué64

"$%\n", current, max, current * 100 / max);

}

So I went looking for an alternative and I found {fmt}.

{fmt}

The {fmt} library [fmt] provides a safe alternative to printg£. It provides
a Python-like formatting mechanism for C++, taking advantage of C++
type safety:

fmt: :print("The {} is {}{}\n", "answer", 42L, '.');
But for me, the most interesting feature was its print£-compatible
interface. When using this interface it will parse print£ format strings,

but mostly disregard the type information. This means that you can write:

void ReportProgress(uinté64_t current,
uint64_t max)
{
TRACE ("Progress %u/%u %u%%\n", current, max,
current * 100 / max);

}

without caring whether the three integers are unsigned long or
unsigned long long, or any other integer type for that matter. This
turned out to be the solution to my 64-bit tracing problem without needing
to change all my code.

The first step was to implement AlwaysTrace: :operator () in terms
of fmt: :printf (see Listing 3).

Catching exceptions

This worked, but if I accidentally wrote:

void ReportProgress (uinté64_t current,
uint64_t max)
{
TRACE ("Progress %d/%d%%\n", current);
}

then GCC’s format string checker was no longer there to generate a
compilation error; {fmt} would instead throw a FormatError
exception. If there are too many parameters then it silently ignores the
extra ones.

struct NeverTrace {
template <typename... Args>
void operator () (const char *format,
Argsé&é&... args) {}
};
struct AlwaysTrace {
template <typename... Args>
void operator () (const char *format,
Argsé&&... Args) {
fmt: :printf (format,
std: : forward<Args>(args)...);

Listing 3

n FEATURE

solution to my 64-hit tracing prohlem

namespace wrapped {
template <typename... Args>
inline void printf (const char *format,
Argsé&é&. .. args) {
try {
fmt: :printf (format,
std: : forward<Args>(args) ...);
}

catch (const std::exception &e) ({

fmt: :printf ("Message '%s' threw '%s'\n",
format, e.what());
}
}
}
struct AlwaysTrace {
template <typename... Args>

void operator () (const char *format,
Argsé&&... Args) {
wrapped: :printf (format,
std: : forward<Args>(args) ...);

Listing 4

Tracing isn’t important enough for us to want to risk terminating the
program. This is especially important if tracing is not always enabled. I
considered modifying {fmt} itself to stop it throwing, but that would
mean disabling exception throwing even if we were to make use of the
library in normal code too.

The simplest solution is to just catch exceptions and emit an error message
along with the format string so that the offending line can be found and
fixed (see Listing 4).

Just before this article went to print, version 5 of {fmt} was released. This
version supports compile-time verification of Python-style format strings
[Zverovich17]. I look forward to being able to take advantage of this to
support both the Python-style format strings and validation whilst keeping
the existing printf-compatible functions for existing code.

Tracing errors

In many places we’d taken advantage of glibc’s $m format specifier to
print the error message associated with the current value of errno. The
upstream maintainer didn’t want to support such an extension
[Crowel7a], so I applied a local patch to do so. I hope to come up with
something similar that will be acceptable upstream in the future.

Tracing pointers

In certain sections of the code there were a large number of places where
the this pointer was emitted as part of a trace message. This helped to
tie the tracing from multiple instances together when reading the logs. It
used the $p format specifier for this.

June 2018 | Overload | 7

FEATURE »

have to care

The {fmt} library supports the $p format specifier, but the corresponding
parameter must be of const void * or void * type. It has good
reasons for this, at least some of which are described in [Wilson09]. On
its branch hopefully destined for standardisation, it provides a
fmt: :ptr’ helper to cast arbitrary pointers to an acceptable type.

Unfortunately, I had lots of code using %p and casting all the
corresponding parameters was painful. I decided to patch {fmt} locally to
support arbitrary pointers [Crowel7b], despite the downsides. The
upstream maintainer seems favourable to supporting this in the print£-
compatible case only, if only I can find a clean way to do so.

Effect on compilation time and hinary size

Of course, all this magic has to come at a cost. In my not-hugely-scientific
experiments, on a project that contained about 7500 trace statements,
compilation and linking with GCC of debug builds (with -g3) took about
5% longer. The same with -02 and -g3 only took about 1% longer. So,
whilst there is an effect, it’s not huge.

This code runs on an embedded system, albeit one with over a gigabyte of
memory, but nonetheless the size of the generated code was a concern.
Without making any attempt to catch exceptions the stripped binary was
about 0.75% bigger. When catching exceptions it was about 1.5% bigger.

Enabling new hehaviours

Now that we’re using the library, we no longer have to care about the
exact types of integers we’re tracing, and can pass std: :string
without calling c¢_str (), which is a bonus. We no longer have to be
picky about the exact type of integers either. In new code we don’t have
to remember to say $zu when tracing a size_t.

Tracing custom types

We end up tracing std: : chrono types in quite a few places. We can
define a custom formatter with something like Listing 5, then write code like:

void £() {
auto start = std::chrono::steady clock::now();
do_something_time_consuming() ;
auto duration =

std: :chrono: :steady clock::now() - start;
TRACE ("It took %ldms\n", duration);
}
The future

Victor Zverovich, the primary author of the {fmt} library, has proposed
the Python-style format strings subset of the library for standardisation
and presented his work at the Jacksonville WG21 meeting [WG21]. 'm
keen to see how it can be used to improve our tracing in the future. ®

8 | Overload | June 2018

types of integers

Thanks

Thanks to Victor Zverovich, the primary author of {fmt}, for reviewing
draft versions of this article and for helping with my attempts to mould it
to our needs.

Thanks to Frances Buontempo and the Overload reviewers for their
suggestions and advice.

[CppRef] ‘Fixed width integer types’ available at:
http://en.cppreference.com/w/cpp/types/integer

[Crowel7a] Mike Crowe (2017) ‘printf: Add support for glibc’s %m
format’ at https://github.com/fmtlib/fmt/pull/550, posted 22 July
2017

[Crowel7b] Mike Crowe (2017) ‘What are the downsides to disabling the
private MakeValue::MakeValue<T*> overloads?’ at
https://github.com/fmtlib/fmt/issues/608, posted 11 November 2017

[fmt] The {fmt} library http://fmtlib.net

[Ignatchenko18] Sergey Ignatchenko (2018) “This is NOT yet another
printf-vs-cout debate’ in Overload 144, April 2018, available at:
https://accu.org/index.php/journals/2486

[WG21] ‘Text Formatting at the ISO C++ standards meeting in
Jacksonville’, available online at http://www.zverovich.net/2018/03/
17/text-formatting-jacksonville.html

[Wilson09] Matthew Wilson (2009) ‘An Introduction to Fast Format (Part
1): The State of the Art’, Overload 89, available at https://accu.org/
index.php/journals/1539

[Zverovich17] Victor Zverovich (2017) Verification of Python-style
format strings: http://zverovich.net/2017/11/05/compile-time-
format-strings.html

namespace fmt {
/// Displays in microseconds or seconds
template <typename Rep, typename Period>
void format_ arg(fmt::BasicFormatter<char> &f,
const char *&format str,
const std::chrono: :duration<Rep,
&duration)

Period>

{

if (duration < std::chrono::seconds(1l))
f.writer() .write("{}us",
std: :chrono: :duration<double,
std: :micro>(duration) .count()) ;

else
f.writer() .write("{}s",
std: :chrono: :duration<double> (duration)

.count());

http://en.cppreference.com/w/cpp/types/integer
https://github.com/fmtlib/fmt/pull/550
https://github.com/fmtlib/fmt/issues/608
http://fmtlib.net
https://accu.org/index.php/journals/2486
http://www.zverovich.net/2018/03/17/text-formatting-jacksonville.html
http://www.zverovich.net/2018/03/17/text-formatting-jacksonville.html
https://accu.org/index.php/journals/1539
https://accu.org/index.php/journals/1539
http://zverovich.net/2017/11/05/compile-time-format-strings.html
http://zverovich.net/2017/11/05/compile-time-format-strings.html

n FEATURE

Object oriented design has many principles. Stanislav Kozlovski
demonstrates good design through a role playing game.

oriented programming (OOP). Even though lately we seem to be

seeing a slight shift away from this, as people start using languages
which are not heavily influenced by OOP (such as Go, Rust, Elixir, Elm,
Scala), most still have objects. The design principles we are going to
outline here apply to non-OOP languages as well.

M ost modern programming languages support and encourage object-

To succeed in writing clear, high-quality, maintainable and extendable
code you will need to know about design principles that have proven
themselves effective over decades of experience.

Disclosure: The example we are going to be going through will be in
Python. Examples are there to prove a point and may be sloppy in other,
obvious, ways.

Object types

Since we are going to be modelling our code around objects, it would be
useful to differentiate between their different responsibilities and
variations.

There are three type of objects:

1. Entity object

This object generally corresponds to some real-world entity in the
problem space. Say we’re building a role-playing game (RPG), an entity
object would be our simple Hero class (Listing 1).

These objects generally contain properties about themselves (such as
health or mana) and are modifiable through certain rules.

2. Control ohject

Control objects (sometimes also called Manager objects) are responsible
for the coordination of other objects. These are objects that control and
make use of other objects. A great example in our RPG analogy would be

class Hero:
def _ init (self, health, mana):
self. health = health
self. mana = mana

def attack(self)

[IRIR1]

-> int:

Returns the attack damage of the Hero

[IRIR1]

return 1

def take damage (self, damage: int):
self. health -= damage

def is_alive(self):
return self. health > 0

Listing 1

class Fight:
class FightOver (Exception) :
def __ init (self, winner, *args,
**kwargs) :
self.winner = winner
super (*args, **kwargs)

def _ init (self, hero_a: Hero,
hero_b: Hero):
self. hero a = hero_a
self. hero b = hero b
self.fight ongoing = True
self.winner = None

def fight(self):
while self.fight ongoing:
self. run_round()
print(
'The fight has ended! Winner is #{}'.\
format (self.winner))

def run round(self):
try:
self. run_attack(self._hero_a,
self. hero_ b)
self. run attack(self. hero b,
self. hero_a)
except self.FightOver as e:
self. finish round(e.winner)

def run attack(self, attacker: Hero,
victim: Hero):
damage = attacker.attack()
victim. take_ damage (damage)
if not victim.is_alive():
raise self.FightOver (winner=attacker)
def finish round(self, winner: Hero):
self.winner = winner
self.fight ongoing = False

Listing 2

the Fight class, which controls two heroes and makes them fight
(Listing 2).

Stanislav Kozlovski has been programming since the age of 19 —
and is now 21. He spent a year racing through some coding
academies and bootcamps, where he aced all of his courses, and
took a job at a Berlin company aiming to become the first ever
global card acceptance brand. Contact him on github (where he’s
enether) or at Stanislav_Kozlovski @ outlook.com

June 2018 | Overload | 9

FEATURE »

Encapsulating the logic for a fight in such a class provides you with
multiple benefits: one of which is the easy extensibility of the action. You
can very easily pass in a non-player character (NPC) type for the hero to
fight, provided it exposes the same API. You can also very easily inherit
the class and override some of the functionality to meet your needs.

3. Boundary object

These are objects which sit at the boundary of your system. Any object
which takes input from or produces output to another system — regardless
if that system is a User, the internet or a database — can be classified as a
boundary object (Listing 3).

These boundary objects are responsible for translating information into
and out of our system. In an example where we take User commands, we
would need the boundary object to translate a keyboard input (like a
spacebar) into a recognizable domain event (such as a character jump).

Bonus: Value object

Value objects [Wikipedia-1] represent a simple value in your domain.
They are immutable and have no identity.

If we were to incorporate them into our game, a Money or Damage class
would be a great fit. Said objects let us easily distinguish, find and debug
related functionality, while the naive approach of using a primitive type —
an array of integers or one integer— does not (Listing 4).

They can be classified as a subcategory of Entity objects.

Key design principles

Design principles are rules in software design that have proven
themselves valuable over the years. Following them strictly will help you
ensure your software is of top-notch quality.

class UserInput:
def _ init (self, input parser):
self.input_parser = input parser

def take_ command (self):
Takes the user's input,
parses it into a recognizable command
and returns it
command = self. parse_input(
self. take_input())
return command

def _parse input(self, input):
return self.input parser.parse (input)

def _take_ input(self):

raise NotImplementedError ()

class UserMouseInput (UserInput):
pass

class UserKeyboardInput (UserInput) :
pass

class UserJoystickInput (UserInput):
pass

Listing 3

10 | Overload | June 2018

class Money:
def _ init_(self, gold, silver, copper):
self.gold = gold
self.silver = silver
self.copper = copper

def _ eq_ (self, other):
return self.gold == other.gold and \
self.silver == other.silver and \
self.copper == other.copper
def gt (self, other):
if self.gold == other.gold and \
self.silver == other.silver:
return self.copper > other.copper
if self.gold == other.gold:
return self.silver > other.silver

return self.gold > other.gold

def _ _add_(self, other):
return Money (
gold=self.gold + other.gold,
silver=self.silver + other.silver,
copper=self.copper + other.copper)

def _ str_ (self):
return 'Money Object(' + \
'Gold: {}; Silver: {}; Copper: {})'.\
format (self.gold,
self.silver,
self.copper)
def _ repr_ (self):
return self. str ()
print(Money(l, 1, 1) == Money(1l, 1, 1))
=> True
print (Money (1, 1, 1) > Money(l, 2, 1))
=> False
print(Money (1, 1, 0) + Money(l, 1, 1))

=> Money Object(Gold: 2; Silver: 2; Copper: 1)

Listing 4

Abstraction

Abstraction is the idea of simplifying a concept to its bare essentials in
some context. It allows you to better understand the concept by stripping
it down to a simplified version.

The examples above illustrate abstraction — look at how the Fight class
is structured. The way you use it is as simple as possible — you give it two
heroes as arguments in instantiation and call the £ight () method.
Nothing more, nothing less.

Abstraction in your code should follow the rule of least surprise
[Wikipedia-2]. Your abstraction should not surprise anybody with
needless and unrelated behavior/properties. In other words — it should be
intuitive.

Note that our Hero#take_damage () function does not do something
unexpected, like delete our character upon death. But we can expect it to
kill our character if his health goes below zero.

Encapsulation

Encapsulation can be thought of as putting something inside a capsule —
you limit its exposure to the outside world. In software, restricting access
to inner objects and properties helps with data integrity.

Encapsulation black-boxes inner logic and makes your classes easier to
manage, because you know what part is used by other systems and what

isn’t. This means that you can easily rework the inner logic while
retaining the public parts and be sure that you have not broken anything.

class Hero:
def _ _init (self, health, mana):

self. health = health
self. mana = mana
self. strength = 0
self. agility =0
self. stamina = 0
self.level = 0
self. items = {}
self. equipment = {}
self. item capacity = 30
self.stamina_buff = None
self.agility buff = None
self.strength_buff = None
self.buff duration = -1

def level up(self):
self.level +=1
self. stamina += 1
self. agility +=1
self. strength +=1
self. health += 5

def take_buff(self, stamina_ increase,
strength_increase,
agility increase):
self.stamina buff = stamina_increase
self.agility buff = agility increase
self.strength buff = strength increase
self. stamina += stamina_increase
self. strength += strength_increase
self. agility += agility_ increase
self .buff duration = 10 # rounds

def pass_round (self):

if self.buff duration > 0:
self .buff duration -=1

if self.buff duration == # Remove buff
self. stamina -= self.stamina buff
self. strength -= self.strength buff
self. agility -= self.agility buff
self. health -= self.stamina buff * 5
self.buff duration = -1
self.stamina buff = None
self.agility buff = None
self.strength_buff = None

def attack(self)

nn

-> int:

Returns the attack damage of the Hero
return 1 + (self. agility * 0.2) + (
self. strength * 0.2)

def take_damage (self, damage: int):
self. health -= damage

def is_alive (self):
return self. health > 0

def take_item(self, item: Item):
if self._item capacity ==
raise Exception('No more free slots')

self. items[item.id] = item
self. item capacity -= 1
Listing 9

n FEATURE

As a side-effect, working with the encapsulated functionality from the
outside becomes simpler as you have less things to think about.

In most languages, this is done through the so-called access modifiers
(private, protected, and so on) [Wikipedia-3]. Python is not the best
example of this, as it lacks such explicit modifiers built into the runtime,
but we use conventions to work around this. The _ prefix to the variables/
methods denote them as being private.

For example, imagine we change our Fight# run_attack method to
return a boolean variable that indicates if the fight is over rather than raise
an exception. We will know that the only code we might have broken is
inside the Fight class, because we made the method private.

Remember, code is more frequently changed than written anew. Being
able to change your code with as clear and little repercussions as possible
is flexibility you want as a developer.

Decomposition

Decomposition is the action of splitting an object into multiple separate
smaller parts. Said parts are easier to understand, maintain and program.

Imagine we wanted to incorporate more RPG features like buffs,
inventory, equipment and character attributes on top of our Hero (see
Listing 5).

I assume you can tell this code is becoming pretty messy. Our Hero
object is doing too much stuff at once and this code is becoming pretty
brittle as a result of that.

For example, one stamina point is worth 5 health. If we ever want to
change this in the future to make it worth 6 health, we’d need to change
the implementation in multiple places.

The answer is to decompose the Hero object into multiple smaller objects
which each encompass some of the functionality (Figure 1, overleaf, and
Listing 6).

Now, after decomposing our Hero object’s functionality into
HeroAttributes, HeroInventory, HeroEquipment and
HeroBuff objects, adding future functionality will be easier, more
encapsulated and better abstracted. You can tell our code is way cleaner
and clearer on what it does.

There are three types of decomposition relationships:

B association: Defines a loose relationship between two components.
Both components do not depend on one another but may work
together.

Example: Hero and a Zone object.

B aggregation: Defines a weak ‘has-a’ relationship between a whole
and its parts. Considered weak, because the parts can exist without
the whole.

Example: HeroInventory and Item.

A HeroInventory can have many Items and an Item can
belong to any HeroInventory (such as trading items).

B composition: A strong ‘has-a’ relationship where the whole and the
part cannot exist without each other. The parts cannot be shared, as
the whole depends on those exact parts.

Example: Hero and HeroAttributes.

These are the Hero’s attributes — you cannot change their owner.

def equip item(self, item: Item):
if item.id not in self. items:
raise Exception (
'Item is not present in inventory!'
)
self. equipment[item.slot] = item
self. agility += item.agility
self. stamina += item.stamina
self. strength += item.strength
self. health += item.stamina * 5

Listing 3 (cont'd)

June 2018 | Overload | 11

FEATURE »

Before
Decomposition

After

Decomposition

Generalization might be the most important design principle — it is the
process of extracting shared characteristics and combining them in one

place. All of us know about the concept of functions and class inheritance

—both are a kind of generalization.

A comparison might clear things up: while abstraction reduces
complexity by hiding unnecessary detail, generalization reduces

from copy import deepcopy

class AttributeCalculator:
@staticmethod
def stamina_to_health(self, stamina):
return stamina * 6

@staticmethod
def agility to_damage (self, agility):
return agility * 0.2

@staticmethod

def strength_to_damage (self, strength):
return strength * 0.2

class HeroInventory:

class FullInventoryException (Exception) :

pass

def _ init (self, capacity):
self. equipment = {}
self. item capacity = capacity

def store_item(self, item: Item):
if self._item capacity < 0:

raise self.FulllnventoryException ()

self. equipment[item.id] = item
self. item capacity -=1

def has_item(self, item):
return item.id in self._ equipment

Listing 6

12 | Overload | June 2018

Hero Class Hero Class
Functionali U U \u U
unctionality ses ses ses ses

= Apply buffs
« Handle attribute HeroAttributes HeroEquipment Herolnventory HeroBuff

mutation logic = Handle attribute = Equip items = Handle inventory = Apply itself
= Calculate attribute mutation logic management = Track buff duration

damage/health bonuses I
= Handle inventory Usves

management
« Equip items (+ modify AttributeCalculator

attributes) .

= Calculate attribute
= Track buff duration damage/health
bonuses
Figure1

class HeroAttributes:
def _ init_(self, health, mana):

self.health = health
self.mana = mana
self.stamina = 0
self.strength = 0
self.agility = 0
self.damage =1

def increase(self,

stamina=0,
agility=0,
strength=0) :
self.stamina += stamina
self.health += \
AttributeCalculator.stamina_to_health(
stamina)
self.damage += \
AttributeCalculator.strength_to_damage (
strength
) + AttributeCalculator.agility to_damage (
agility)
self.agility += agility
self.strength += strength

def decrease (self,

stamina=0,

agility=0,

strength=0) :
self.stamina -= stamina
self.health -= \
AttributeCalculator.stamina_to_health(

stamina)
self.damage -= \
AttributeCalculator.strength_to_damage (
strength
) + AttributeCalculator.agility to_damage (
agility)
self.agility -= agility
self.strength -= strength
Listing 6 (cont'd)

class HeroEquipment:
def _ init_ (self,
hero_attributes: HeroAttributes) :
self . hero_attributes = hero_attributes
self. equipment = {}

def equip item(self, item):
self. equipment[item.slot] = item
self . hero_attributes.increase(
stamina=item.stamina,
strength=item.strength,
agility=item.agility)

class HeroBuff:
class Expired (Exception) :
pass

def _ init_(self, stamina, strength, agility,
round duration):
self.attributes = None
self.stamina = stamina
self.strength = strength
self.agility = agility
self.duration = round duration

def with_attributes(
self,
hero_attributes: HeroAttributes):
buff = deepcopy (self)
buff.attributes = hero_attributes
return buff

def apply(self):
if self.attributes is None:
raise Exception ()
self. attributes.increase (
stamina=self.stamina,
strength=self.strength,
agility=self.agility)

def deapply (self):
self.attributes.decrease (
stamina=self.stamina,
strength=self.strength,
agility=self.agility)

def pass_round(self):
self.duration -= 0
if self.has_expired():
self.deapply ()
raise self.Expired()

def has_expired(self):
return self.duration ==

complexity by replacing multiple entities which perform similar functions
with a single construct (Listing 7).

In the given example, we have generalized our common Hero and NPC
classes’ functionality into a common ancestor called Entity. This is
always achieved through inheritance.

Here, instead of having our NPC and Hero classes implement all the
methods twice and violate the DRY principle [Wikipedia-4], we reduced
the complexity by moving their common functionality into a base class.

As a forewarning — do not overdo inheritance. Many experienced people

recommend you favor composition over inheritance [StackExchange]
[Stackoverflow] [Wikipedia-5].

n FEATURE

class Hero:
def _ init_(self, health, mana):

self.attributes = HeroAttributes(
health, mana)

self.level = 0

self.inventory = HeroInventory (
capacity=30)

self.equipment = HeroEquipment (
self.attributes)

self.buff = None

def level up(self):
self.level += 1
self.attributes.increase(1l, 1, 1)

def attack(self) -> int:

nun

Returns the attack damage of the Hero

wn

return self.attributes.damage

def take_damage (self, damage: int):
self.attributes.health -= damage

def take buff(self, buff: HeroBuff):
self.buff = buff.with_attributes(
self.attributes)
self.buff.apply()

def pass_round (self):
if self.buff:
try:
self.buff.pass_round()
except HeroBuff.Expired:
self.buff = None

def is_alive (self):
return self.attributes.health > 0

def take_ item(self, item: Item):
self.inventory.store_item(item)

def equip_item(self, item: Item):
if not self.inventory.has_ item(item):
raise Exception (
'Item is not present in inventory!'
)
self.equipment.equip item(item)

Listing 6 (cont'd)

Inheritance is often abused by amateur programmers, probably because it
is one of the first OOP techniques they grasp due to its simplicity.

Composition is the principle of combining multiple objects into a more
complex one. Practically said — it is creating instances of objects and using
their functionality instead of directly inheriting it.

An object that uses composition can be called a composite object. 1t is
important that this composite is simpler than the sum of its peers. When
combining multiple classes into one we want to raise the level of
abstraction higher and make the object simpler.

The composite object’s API [Gazarov16] must hide its inner components
and the interactions between them. Think of a mechanical clock, it has
three hands for showing the time and one knob for setting — but internally
contains dozens of moving and inter-dependent parts.

As I said, composition is preferred over inheritance, which means you
should strive to move common functionality into a separate object which
classes then use — rather than stash it in a base class you’ve inherited.

June 2018 | Overload | 13

l FEATURE = STANISLAV KOZLOVSKI

Two methods which share common characteristics
def take physical_ damage (self, physical_damage) :
print('Took {} physical damage'.format (

physical damage))
self. health -= physical_damage

def take spell damage (self, spell damage):
print('Took {} spell damage'.format (
spell_damage))
self. health -= spell damage

vs.

One generalized method
def take_ damage (self, damage, is_physical=True):
damage_type = 'physical' if is_physical \
else 'spell'
print ('Took {} {damage_ type} damage'.format (
damage))
self. health -= damage

class Entity:
def _ init (self):
raise Exception (
'Should not be initialized directly!')

def attack(self)

-> int:

Returns the attack damage of the Hero

return self.attributes.damage

def take damage (self, damage: int):
self.attributes.health -= damage

def is_alive (self):
return self.attributes.health > 0

class Hero(Entity):
pass

class NPC(Entity):
pass

Listing 7

Let’s illustrate a possible problem with over-inheriting functionality:
We just added movement to our game (Listing 8).

As we learned, instead of duplicating the code we used generalization to
put the move_right and move_left functions into the Entity class.

Okay, now what if we wanted to introduce mounts into the game?
Figure 2 shows a good mount :)

Mounts would also need to move left and right but do not have the ability
to attack. Come to think of it — they might not even have health!

I know what your solution is:

Simply move the move logic into a separate MoveableEntity or
MoveableObject class which only has that functionality. The Mount
class can then inherit that.

Then, what do we do if we want mounts that have health but cannot
attack? More splitting up into subclasses? I hope you can see how our

14 | Overload | June 2018

class Entity:
def _ init_(self, x, y):
self.x = x
self.y =y
raise Exception (
'Should not be initialized directly!')

def attack(self)

nun

-> int:

Returns the attack damage of the Hero

return self.attributes.damage

def take_damage (self, damage: int):
self.attributes.health -= damage

def is_alive (self):
return self.attributes.health > 0

def move left(self):
self.x -=1

def move_right (self):
self.x +=1

class Hero(Entity):
pass

class NPC(Entity) :
pass

class hierarchy would begin to become complex even though our business
logic is still pretty simple.

A somewhat better approach would be to abstract the movement logic into
a Movement class (or some better name) and instantiate it in the classes
which might need it. This will nicely package up the functionality and
make it reusable across all sorts of objects not limited to Entity.

Hooray, composition!

Critical thinking disclaimer

Even though these design principles have been formed through decades of
experience, it is still extremely important that you are able to think
critically before blindly applying a principle to your code.

Like all things, too much can be a bad thing. Sometimes principles can be
taken too far, you can get too clever with them and end up with something
that is actually harder to work with.

Figure 2

As an engineer, your main trait is to critically evaluate the best approach
for your unique situation, not blindly follow and apply arbitrary rules.

Cohesion, coupling and separation of concerns
Cohesion

Cohesion represents the clarity of responsibilities within a module or in
other words — its complexity.

If your class performs one task and nothing else, or has a clear purpose —
that class has high cohesion. On the other hand, if it is somewhat unclear
in what it’s doing or has more than one purpose — it has low cohesion.

You want your classes to have high cohesion. They should have only one
responsibility and if you catch them having more — it might be time to split it.

Coupling captures the complexity between connecting different classes.
You want your classes to have as little and as simple connections to other
classes as possible, so that you can swap them out in future events (like
changing web frameworks). The goal is to have loose coupling.

In many languages this is achieved by heavy use of interfaces — they
abstract away the specific class handling the logic and represent a sort of
adapter layer in which any class can plug itself in.

Separation of Concerns

Separation of Concerns (SoC) is the idea that a software system must be
split into parts that do not overlap in functionality. Or, as the name says,
each ‘concern’ — a general term about anything that provides a solution to
a problem — must be separated from the others and handled in different
places.

A web page is a good example of this — it has its three layers (Information,
Presentation and Behavior) separated into three places (HTML, CSS and
JavaScript respectively) [Pocklington13].

If you look again at the RPG Hero example, you will see that it had many
concerns at the very beginning (apply buffs, calculate attack damage,
handle inventory, equip items, manage attributes). We separated those
concerns through decomposition into more cohesive classes which
abstract and encapsulate their details. Our Hero class now acts as a
composite object and is much simpler than before.

Payoff

Applying such principles might look overly complicated for such a small
piece of code. The truth is it a must for any software project that you plan
to develop and maintain in the future. Writing such code has a bit of
overhead at the very start but pays off multiple times in the long run.

These principles ensure our system is more:

m Extendable: High cohesion makes it easier to implement new
modules without concern of unrelated functionality. Low coupling
means that a new module has less stuff to connect to therefore it is
easier to implement.

B Maintainable: Low coupling ensures a change in one module will
generally not affect others. High cohesion ensures a change in
system requirements will require modifying as little number of
classes as possible.

The restriction imposed by the physical column width in a printed
journal means that we have had to wrap some of the lines of code
in ‘unusual’ ways. We apologise to Stanislav for ruining his code
layout, and to anyone else who finds this makes it more difficult
to follow the examples.

n FEATURE

B Reusable: High cohesion ensures a module’s functionality is
complete and well-defined. Low coupling makes the module less
dependent on the rest of the system, making it easier to reuse in other
software.

We started off by introducing some basic high-level object types (Entity,
Boundary and Control).

We then learned key principles in structuring said objects (Abstraction,
Generalization, Composition, Decomposition and Encapsulation).

To follow up we introduced two software quality metrics (Coupling and
Cohesion) and learned about the benefits of applying said principles.

I hope this article provided a helpful overview of some design principles.
If you wish to further educate yourself in this area, here are some
resources I would recommend. B

Design Patterns: Elements of Reusable Object-Oriented Software —
Arguably the most influential book in the field. A bit dated in its examples
(C++ 98) but the patterns and ideas remain very relevant.

Growing Object-Oriented Sofiware Guided by Tests — A great book which
shows how to practically apply principles outlined in this article (and
more) by working through a project.

Effective Sofiware Design — A top notch blog containing much more than
design insights.

Software Design and Architecture Specialization — A great series of 4
video courses which teach you effective design throughout its application
on a project that spans all four courses.

References

[Gazarov16] Petr Gazarov (2016) ‘What is an API? In English, please.’,
https://medium.freecodecamp.org/what-is-an-api-in-english-please-
b880a3214a82, posted 13 August 2016

[Pocklington13] Rob Pocklington (2013), ‘Respect the Javascript’,

https://shinesolutions.com/2013/10/29/respect-the-javascript/,
posted 29 October 2013

[StackExchange] ‘Why is inheritance generally viewed as a bad thing by
OOP proponents’, https://softwareengineering.stackexchange.com/
questions/260343/why-is-inheritance-generally-viewed-as-a-bad-
thing-by-oop-proponents

[Stackoverflow] ‘Prefer composition over inheritance?’,
https://stackoverflow.com/questions/49002/prefer-composition-
over-inheritance/53354#53354

[Wikipedia-1] ‘Value object’, https://en.wikipedia.org/wiki/Value object

[Wikipedia-2] ‘Principle of least astonishment’, https://en.wikipedia.org/
wiki/Principle of least astonishment

[Wikipedia-3] ‘Access modifiers’, https://en.wikipedia.org/wiki/
Access_modifiers

[Wikipedia-4] ‘Don’t repeat yourself’, https://en.wikipedia.org/wiki/
Don%27t_repeat_yourself

[Wikipedia-5] ‘Design Patterns’, https://en.wikipedia.org/wiki/

Design Patterns#Introduction, Chapter 1

June 2018 | Overload | 15

https://medium.freecodecamp.org/what-is-an-api-in-english-please-b880a3214a82
https://medium.freecodecamp.org/what-is-an-api-in-english-please-b880a3214a82
https://shinesolutions.com/2013/10/29/respect-the-javascript/
https://softwareengineering.stackexchange.com/questions/260343/why-is-inheritance-generally-viewed-as-a-bad-thing-by-oop-proponents
https://softwareengineering.stackexchange.com/questions/260343/why-is-inheritance-generally-viewed-as-a-bad-thing-by-oop-proponents
https://stackoverflow.com/questions/49002/prefer-composition-over-inheritance/53354#53354
https://en.wikipedia.org/wiki/Value_object
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://en.wikipedia.org/wiki/Principle_of_least_astonishment
https://en.wikipedia.org/wiki/Access_modifiers
https://en.wikipedia.org/wiki/Access_modifiers
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Design_Patterns#Introduction,_Chapter_1
https://en.wikipedia.org/wiki/Design_Patterns#Introduction,_Chapter_1

FEATURE »

Afterwood

The curse of Agile. Chris Oldwood outlines

how it affects his day at work.

that was true back in the late 1970s but today it’s ‘Agile’ that’s

killing her instead. Time was when you could nestle into your office
chair, slip on a monster pair of noise-cancelling headphones (the ones that
made you look like a Cyberman) and then really get deeply embroiled in
a spot of coding whilst being surrounded by your favourite tunes! There
was no chance of any interruptions either as long as you didn’t open your
email client.

T he Buggles once informed us that video killed the radio star. Maybe

Not anymore, not now that we’re all Agile. Such anti-social behaviour is
considered verboten in this new world of total collaboration and ‘value
driven development’. There is no room for music and isolation in a team
which thrives on pairs or mobs of developers huddling around a single
machine all focused on the singular problem of highest worth. Deodorant
is an absolute essential throughout the day and any thoughts of eating
garlic for lunch will be met with an afternoon of faux hand-wafting
gestures and nose pegs.

If you’re partial to a nice large lunch and the occasional cheeky pint or two
in the hopes that the afternoon can largely drift past as you drag out the
low hanging fruit which you saved for such a special occasion, think
again. The afternoon continues on from where the morning left off, albeit
in a different huddle of people embracing the change in dynamic that
keeps the energy flowing all throughout the day until knocking off time.
If Spm comes and you’ve not already left — exhausted from hours of
collaborative designing, coding and testing — then your ‘value generation’
meter can’t be full.

Energised work is the name of the game. It’s not just lunchtime drinking
that you’ll knock on the head but a solid evening out drinking in the pub
seems great at the time but the following morning when you’ve got a
stinking hangover and you’re looking to just muddle through the day you
can forget it. The rest of your team will have had their full quota of 8 hours
sleep and be buzzing, ready to push another handful of user stories
through the pipeline and out to your loyal band of customers. Time waits
for no man, and neither does the release train either.

Good old fashioned tasks used to take weeks or months, not days or even
just a few hours! If you had to estimate, you had so much leeway you
could easily factor in some extra hours over-and-above any genuine
contingency to include personal administration time as well. We may
have a day job but we also need car and home insurance, there are
holidays to book, and who risks appearing absent by going out to an actual
physical supermarket when you can shop online and appear to be working
at the same time? If you only ever learned one keyboard shortcut I can
almost guarantee it was Alt+Tab — the ‘boss’ key-combo.

While it’s no longer possible to pad out the estimate for your latest feature
to include time sorting out this summer’s touring holiday around Europe,
you’d still hope to squeeze in the odd household chore here and there. But
no, it’s not just you giving estimates these days; the whole team gets to
add their tuppence worth in a planning poker session. Assuming you can
even engineer being the (only) one to implement any particular feature,
any attempt to game the system by giving an overly pessimistic estimate
will be met with a public inquiry from your teammates to understand why

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80’s writing assembler on 8-bit
micros. These days it’s enterprise grade technology in plush corporate offices. He also commentates on the
Godmanchester duck race and can be easily distracted via gort@cix.co.uk or @chrisoldwood

16 | Overload | June 2018

your opinion sits out on the periphery of the Normal curve. Sprint
planning is a well-intentioned exercise but it makes holiday planning an
absolute nightmare.

Everything has to be transparent nowadays; the stakeholders get to see
where their money is being spent and they’re also allowed to decide on a
daily basis whether it’s still going in the direction they want it to. The
morning stand-up is just another example of the do-gooders getting to put
their oar in and disrupt the traditional art of procrastination. If you failed
at the planning session to broaden the timescales enough then don’t expect
to simply eat into any contingency during implementation without anyone
noticing. You can almost guarantee some busybody will spot at the stand-
up that you’re ‘stuck’ and will then play the ‘swarming’ card by
sacrificing their own opportunity to arrange an appointment with the
dentist by getting your ‘more valuable” work back on track instead.

We now live in a world of software development that refuses to tolerate
any waste; our entire process is predicated on trimming the fat to keep the
team lean and nimble. Your pairing or mobbing buddies won’t even let
you put a single keystroke out of place without calling it out, let along
managing to slip your own pet feature in under the radar. Instead of a
metaphorical Jiminy Cricket [Wikipedia] keeping you on the straight and
narrow you’ve now got real ones. The codebase is a meritocracy and
every single line has to earn its keep.

None of this should be a surprise, though. Back in the early 70s, long
before The Buggles even existed, Gerry Weinberg published his seminal
book about the psychology of computer programming [Weinberg71] in
which he identified the social nature of programming and how teams need
to have collaboration as a cornerstone of their behaviour.

Yes, I'm sad that my fancy headphones mostly lay dormant in my bag
along with a stack of CDs from Christmas and birthdays that I’ve still yet
to find time to listen to. My desk is largely empty and chair configuration
is far from optimal but I spend so much time at the whiteboard and at other
people’s desks that it hardly seems to matter. Yes, I could shave valuable
time off my morning routine by short-circuiting my personal hygiene if I
didn’t have to share office space with my colleagues.

So would I want to go back to the way things were? No way! Maybe I’'m
just a Millennial who was born a decade too early but I’m relishing this
ever decreasing feedback loop and I’m sure that as a result my
programming output will only get better. B

Reference

[Weinberg71] Gerry Weinberg (1971) The Psychology of Computer
Programming, Dorset House Publishing Co Inc.,U.S.; Silver
anniversary edition (29 April 1998) ISBN 978-0932633422

[Wikipedia] ‘Jiminy Cricket’, https://en.wikipedia.org/wiki/
Jiminy Cricket

https://en.wikipedia.org/wiki/Jiminy_Cricket
https://en.wikipedia.org/wiki/Jiminy_Cricket

code?

programming?

Join ACCU www.accu.org

Software

N ~ PARALLEL

m— e

FTOOLS THAT EXTEND MOORE'S LAW
. CREATE ASTERCODE~FASTER

Tn\kﬂ your results to the next level witl
e 2aming-fast code. e

I s
R T

QBS Software Ltd is an award-winning software reseller and Intel Elite Partner

To find out more about Intel products please contact us:

020 B733 7101 | enquiries@qgbssoftware.com
www.gbssoftware.com/parallelstudio “n d "“'E

	Overload145.pdf
	Automate all the things
	How to Write a Programming Language: Part 1, The Lexer
	Type-agnostic Tracing Using {fmt}
	A Short Overview of Object Oriented Software Design
	Afterwood

	2009-07-01 Care About Code - online.pdf
	Slide 1

