

February 2021 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 A Case Against Blind Use of
C++ Parallel Algorithms
Lucian Radu Teodorescu reminds us we need to
think when we use parallel algorithms.

8 C++ – an Invisible Foundation
of Everything
Bjarne Stroustrup answers the questions ‘What is
C++ and why do people still use it?’

12 Test Precisely and Concretely
Kevlin Henney reminds us that assertions should
be necessary, sufficient, and comprehensible.

16 Afterwood
Chris Oldwood reminds us that unlearning
becomes our next problem.

OVERLOAD 161

February 2021

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover art and design

Pete Goodliffe
pete@goodliffe.net

Photo by Paweł Czerwinski on
Unsplash

Copy deadlines

All articles intended for publication
in Overload 162 should be
submitted by 1st March 2021 and
those for Overload 163 by
1st May 2021.

https://unsplash.com/@pawel_czerwinski?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText
https://unsplash.com/s/visual/09557e38-0069-4455-91a7-6cd9c1276c91?utm_source=unsplash&utm_medium=referral&utm_content=creditCopyText

EDITORIAL FRANCES BUONTEMPO
In. Sub. Ordinate.
Mindless rebellion is mindless. Frances Buontempo
encourages mindful consideration of when to refuse.
Yet again no proper editorial from me. I just won’t do
the thing. Oh well. Not everyone does what they are
told. Whether we’re talking rebellious children,
defiant pensioners, eco-warriors or the population at
large picking and choosing what advice they are
willing to follow, everyone is insubordinate from time

to time. Why do we obey any laws or suggestions? Many philosophers
have asked this question, including Hobbes, Locke and Kant. They
suggest some form of social contract, whereby people give up freedoms
either for absolute government avoiding the prospect of anarchy or less
extremely than Hobbes’ view, increasing the chance of respect and a
quieter life [Wikipedia-1] What would happen if all laws were abolished
is an interesting, but ultimately unanswerable, question. Laws are laid
down, and often, though not always, obeyed.

Some laws are more observations than laws. Moore’s ‘law’ springs to
mind. His observation that the number of transistors tended to double
every two years captures a trend in data which seems unlikely to continue
forever [Moore]. There are many similar observations in computing,
regarding storage and so on. These are not laws. They are neither enforced
nor does anyone run the risk of incarceration if they disobey. On the other
hand, many outfits have coding ‘guidelines’ which are more like actual
rules, either officiously enforced or automatically applied. I recently set
up the Python formatter Black [Black] on CI for a new repo because our
coding guidelines say ‘We use Black’. It describes itself as an
uncompromising formatter, so that “Formatting becomes transparent after
a while and you can focus on the content instead.” What has in fact
happened is a whole slew of commits with messages like “Black, oh why?
Oh why?” or “Black. Again. Grr”. If I change the CI step from just checking
the formatting to reformatting, or set up pre-commit hooks, that would
avoid the agro. Black could then silently do its thing with whitespace so
we can concentrate on the code in between the spaces. Or I could remove
the step from the CI build in a small act of rebellion. Little victories.

The UK had all kinds of guidelines and rules to attempt to keep us safe
from COVID-19 over the Christmas holidays. How obedient was your
break, if you had one? Did you stay indoors, video conference your family,
say hello to neighbours from two metres away and above all costs only
sing if you were in a choir, or alone in a shower? Our mixture of rules and
guidelines are somewhat confusing and prone to last minute change. Some
are using this as an excuse for disobedience. Many are trying their best,
though under a little duress. Where the rules seem to make no sense, it’s
useful to be able to discuss why and what the alternatives might be. With
difficult political situations that’s not always possible. Having a

discussion about code format and formatters
seems likely. Asking our parliament why

they issue the guidance they have seems
less so.

Now, insubordination and disobedience differ. The former involves a
refusal to be lorded over, rejecting submission to a supposed higher
authority. To disobey, in contrast, is a more direct refusal to comply with
a given instruction. The diktat is snubbed not the dictator. It is possible to
do exactly as you have been told and, while not disobeying, you can
nonetheless be insubordinate. Your computer may well obey you, but may
appear to be attempting some kind of insurrection or at least
insubordination at times. Upon the bash instruction echo variable the
defiant machine will echo variable verbatim to the screen, rather than
the contents of the variable, since you forgot the dollar sign. Flip. It could
be worse though; sometimes computers try to guess what you really
meant. Don’t get me started on autocorrect. Undefined behavior is neither
insubordinate nor disobedient. Walking off the end of an array allows your
compiler to do whatever it feels like, if you believe computers have
feelings. Obedience isn’t always helpful.

Furthermore, doing exactly what you are told can cause all kinds of
trouble. The phrase ‘work to rule’ springs to mind. Rather than striking,
employees may take to doing exactly what the rules say, as a “form of
industrial action where the employee will follow the rules and hours of their
workplace exactly in order to reduce their efficiency and output.” [Voice]
So often, extra voluntary duties keep the wheels moving. By calling this
form of action work to rule, the degree of spikiness is obvious, pointing
out that much of the day to day work involved is above and beyond written
and signed off contracts. Let’s avoid devolving into discussions of
workers’ rights: that strays far too close to me writing opinions and puts
this in danger of becoming an editorial. Totally unacceptable.

Doing exactly what you are told can get you into trouble, even if you are
really not trying to be insubordinate. My special superpower is following
instructions, often to others’ bemusement, with unexpected
consequences. This probably means I should go into software testing
when I grow up. Have you ever read instructions and followed them
precisely? Try it on a document you have written, or a recipe or DIY
instructions. Don’t do what you think you wrote, do what you actually
wrote, or at least consider what that might involve. Writing clear
instructions is a hard technical job that few of us are any good at. Though
I could relay many personal stories, I shall stick to one. For a practical
science exam, the first instruction was to find the volume of a cylinder.
To my mind, the capacity was the amount of volume of a liquid I could
fit inside the cylinder, so it stood to reason that the volume of the
aforementioned cylinder was precisely that. I therefore set about trying to
find how much volume the walls of the cylinder would displace, much to
the consternation of my teacher. Having noticed her facial expression, I
read the subsequent instructions and concluded I would need to know the
capacity of the container in order to proceed. Lesson learnt. The
instructions are usually wrong – read them all first to decide how
insubordinate you need to be to accomplish your mission. How many

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | February 2021

EDITORIALFRANCES BUONTEMPO
times have I followed steps one at a time, to find the next sentence says
don’t carry out the last step under some specific circumstances? If you
write up instructions please, please, please put the instructions inside an
“If” so Fran doesn’t break stuff. Glancing ahead, and wondering “Why am
I being told to do this?” helps one to discern the actual instructions or indeed
alternatives. A small degree of disobedience might genuinely be in the best
interests of all involved: no insubordination intended.

Trying the software you have written and discovering what happens when
you stray off the ‘happy path’ can be illuminating too. What happens if
you press the same button twice? What happens if you don’t enter your
date of birth? If you don’t have the imagination, try sitting with someone
else using your creation. No matter how obvious or clear you think
something is, there is always a chance someone else may have different
ideas. In fact, you sometimes look back at notes you have previously made
and either can’t read your own hand-writing or have no idea what you were
driving at originally. Sometimes things don’t pan out, despite an attempt
to follow instructions.

Following instructions can even cause no end of trouble. There’s a long
standing tension around the subject of tax avoidance and tax evasion. I
have to concentrate on which is which. One involves obedience, sticking
to the law, doing as instructed and thereby paying less tax than you would
have had you not stopped to think through which numbers to put in which
boxes or paid an accountant enough to put the right numbers in the right
boxes. The other involves lying and not owning up to cash-flows you owe
tax on. So often big tech companies have been called out for ‘not paying
their tax’, though they seem to be sticking to the rules on the face of it.
They don’t seem to be money laundering, though by registering different
parts of their business in different countries, they do seem to have managed
to optimise their bill. Is this a crime? Probably not. Does it seem unfair?
Well, maybe. Many criticisms are levelled against big tech companies,
variously referred to as FAANG (Facebook, Amazon, Apple, Netflix and
Google) or the Four (Horsemen (of the apocalypse implied here)),
stretching far beyond questions about tax payment and accounting. ‘Avoid
taxes, invade privacy, and destroy jobs’ according to some [CNBC].
Whatever you think, I suspect no company would have that as their mission
statement. I suspect many of us have a ground state of suspicion of those
who are incredibly rich. Forbes announced that Jeff Bezos became the
richest person ever last year [Forbes], worth over two hundred billion
dollars. I suspect it’s very hard to put anyone’s true worth into dollars, but
you can look up stock prices and that is a mind-boggling amount of money.
Does wealth imply criminality? Nope. Does criminality imply wealth?
Again, nope. Are any companies disobedient or insubordinate? That might
imply a company has a mind of its own, which seem unlikely. I’ll leave
you to decide for yourself if huge wealth leaves you feeling slightly queasy
though.

Should we pay our tax? Both Matthew and Mark’s gospels say “Render
unto Caesar the things that are Caesar’s.” This may well not mean you
must pay tax, since there are various ways to interpret the text. Tax revolts,
including at the time of Jesus, have been common throughout history.
Wikipedia offers a list of what it calls tax resistance [Wikipedia-2],
pointing out it has been suggested that such resistance has caused the
collapse of empires. The resistances often involve refusing to pay part of

a tax which is considered unfair or even immoral. The Quakers refused to
pay taxes for equipping soldiers, according to the aforementioned
Wikipedia site. Many other examples are listed. Other times people do
obey the law, at least to the letter, if not the spirit. At one point in British
history, a tax was introduced on windows; the building rather than
computing kind. You still see many bricked up windows on old houses.
You can’t be taxed on a window that’s no longer there. Insubordination?
Yep, why not. This reminds me, I really should pay my self-assessment
tax shortly.

We have seen that some laws are neither legal nor scientific laws, more
observations of trends over time. We have observed that some guidelines
are more like laws, for example strictly enforced coding standards. I
mentioned Python formatters. It amuses me that Python uses whitespace
rather than braces to avoid arguments about brace placement and other
layout discussions, the idea being there should be one true way so we can
concentrate on code. And yet, here we are, with a choice of Python
formatters. The PEP8 guidelines [PEP8] point out style guides are about
consistency, assuming that a lack of consistency harms readability. The
guide reminds us, “A foolish consistency is the hobgoblin of little minds.”
To some Hobgoblin is an ale, to others a Marvel character, but the Emerson
quote refers to a fairy creature that lives in the hob or fireplace. It seems
Emerson, in fact, was encouraging non-conformity [Stanford] and perhaps
some form of insubordination in order to become truly self-reliant.
Guidelines and rules may be there to try to keep things running smoothly
and to keep us safe. Sometimes mindless obedience
makes things worse, though. A spot of anarchy once in
a while never hurt anyone. Rules should make life
better and easier; if they don’t, question them. In an
article in this edition, Bjarne Stroustrup says “Design
and programming are human activities; forget that and
all is lost”. Let’s not get lost.

References
[Black] Python formatter, Black – https://github.com/psf/black

[CNBC] Four – https://www.cnbc.com/2017/10/02/scott-galloway-the-
four-amazon-apple-google-facebook.html

[Forbes] Riches Billionaire – https://www.forbes.com/sites/
jonathanponciano/2020/08/26/worlds-richest-billionaire-jeff-bezos-
first-200-billion/

[Moore] Moore’s Law – https://en.wikipedia.org/wiki/Moore%27s_law

[PEP8] PEP8 Guidelines – https://www.python.org/dev/peps/pep-0008/
#a-foolish-consistency-is-the-hobgoblin-of-little-minds

[Stanford] Stanford Encyclopedia of Philosophy: Ralph Waldo Emerson
– https://plato.stanford.edu/entries/emerson/

[Voice] Working to rule – https://www.voicetheunion.org.uk/working-
rule

[Wikipedia-1] Social contract – https://en.wikipedia.org/wiki/
Social_contract

[Wikipedia-2] Tax resistence – https://en.wikipedia.org/wiki/
List_of_historical_acts_of_tax_resistance
February 2021 | Overload | 3

https://github.com/psf/black
https://www.cnbc.com/2017/10/02/scott-galloway-the-four-amazon-apple-google-facebook.html
https://www.cnbc.com/2017/10/02/scott-galloway-the-four-amazon-apple-google-facebook.html
https://www.forbes.com/sites/jonathanponciano/2020/08/26/worlds-richest-billionaire-jeff-bezos-first-200-billion/
https://www.forbes.com/sites/jonathanponciano/2020/08/26/worlds-richest-billionaire-jeff-bezos-first-200-billion/
https://en.wikipedia.org/wiki/Moore%27s_law
https://www.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds
https://www.python.org/dev/peps/pep-0008/#a-foolish-consistency-is-the-hobgoblin-of-little-minds
https://plato.stanford.edu/entries/emerson/
https://www.voicetheunion.org.uk/working-rule
https://www.voicetheunion.org.uk/working-rule
https://en.wikipedia.org/wiki/Social_contract
https://en.wikipedia.org/wiki/Social_contract
https://en.wikipedia.org/wiki/List_of_historical_acts_of_tax_resistance
https://en.wikipedia.org/wiki/List_of_historical_acts_of_tax_resistance

FEATURE LUCIAN RADU TEODORESCU
A Case Against Blind Use of
C++ Parallel Algorithms
C++17 introduced parallel algorithms. Lucian Radu Teodorescu
reminds us we need to think when we use them.
e live in a multicore world. The hardware free lunch is over for
about 15 years [Sutter05]. We cannot rely on hardware vendors
to improve the single-core performance anymore. Thus, to gain

performance with hardware evolution we need to make sure that our
software runs well on multicore machines. The software industry started
on a trend of incorporating more and more concurrency in the applications.

As one would expect, the C++ standard has also started to provide higher
level abstractions for expressing parallelism, moving beyond simple
threads and synchronisation primitives. Just for the record, I don’t count
std::future as a high-level concurrency primitive; it tends to
encourage a non-concurrent thinking, and, moreover, its main use case
almost implies thread blocking. In the 2017 version of the standard, C++
introduced the so-called parallel algorithms. In essence, this feature offers
parallel versions of the existing STL algorithms.

This article tries to cast a critical perspective on the C++ parallel
algorithms, as they were introduced in C++17, and as they are currently
present in C++20. While adding parallel versions to some STL algorithms
is a good thing, I argue that this is not such a big advancement as one might
think. Comparing the threading implications of parallel algorithms with
the claims I’ve made in [Teodorescu20a] and [Teodorescu20b], it seems
that the C++ additions only move us half-way through.

A minimal introduction into C++ parallel algorithms
To form some context for the rest of the article without spending too much
time on this, let’s provide an example on how to use a parallel STL
algorithm.

Let’s assume that we have a transform algorithm, and we want to
parallelise it. For that, one should write something like the code in
Listing 1. The only difference to a classic invocation of transform is the
first parameter, which, in this case, tells the algorithm to use parallelisation
and vectorisation.

This parameter is called execution policy. It tells the algorithm the type of
execution that can be used for the algorithm. In the current C++20 standard
there are four of these parallel policies, as explained below:

 seq: it will use the serial version of the algorithm, as if the argument
was missing

 par: the algorithm can be parallelised, but not vectorised

 par_unseq: the algorithm can be parallelised and vectorised

 unseq: the algorithm can be vectorised but not parallelised
(introduced only in C++20)

So, to transform an existing algorithm into a parallel (or vectorised)
version, one just needs to add an argument to specify the parallel policy;
the effort is minimal.

Please note that the library is allowed to completely ignore the execution
policy and fall back to the serial execution. Thus, this execution policy
provides just a hint for the library, or the maximum parallelisation/
vectorisation level allowed.

Most STL algorithms take the execution policy parameter and can be
instructed to run in parallel. There are also some new algorithms that were
added to overcome the fact that existing algorithms have constraints that
forbid parallelising them, or that there are better ways to express some
parallel algorithms: reduce, exclusive_scan, inclusive_scan,
transform_reduce , transform_exclusive_scan ,
transform_inclusive_scane.

For a better introduction and explanation of C++ parallel algorithms, the
reader should consult [Lelbach16] [Filipek17a] [Filipek17b] [ONeal18].

Most of our discussion will be focusing on the parallel execution (par
policy), the one that aims to utilise all the cores available to increase
efficiency. Vectorisation (unseq policy) will be briefly touched towards
the end of the article.

Problem 1: no concurrency concerns
The first thing to notice is that it’s straightforward to adapt existing
algorithms and make them parallel. This probably partially explains the
success of parallel algorithms (at least at the perception level).

But this ease of use also has a negative side effect. The astute reader might
have noticed that we are talking about parallelism, and not about
concurrency. See [Pike13] and [Teodorescu20c] for the distinction. Very
short, concurrency is a design concern, while parallelism is a run-time
efficiency concern.

It is ok, for limited domains, to focus more on efficiency than design, but
that’s typically not the case with concurrency. Unless one pays attention
to concurrent design, one will get suboptimal efficiency. In other words,
multicore efficiency is a global optimisation problem, not a local one.

C++ parallel algorithms don’t allow a global concurrency design. It allows
only local optimisations, by making some algorithm calls parallelisable.

Considering this, things are awful from a didactical point of view: the C++
standard might teach people that one needs not to pay attention to
concurrency issues; these would be magically solved by using STL. I hope
that it’s clear by now that this is not the case.

If we generalise a bit, we may come to the conclusion that this is the same
problem that led us to bad concurrency design in the first place. Instead of
recognising that concurrency needs a completely new type of design, we
tried to ‘patch’ the old imperative and serial thinking by adding the ability

W

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro

Listing 1

std::transform(std::execution::par_unseq,
 // parallel policy
 in.begin(), in.end(), // input sequence
 out.begin(), // output sequence
 ftor); // transform fun
4 | Overload | February 2021

FEATURELUCIAN RADU TEODORESCU

While adding parallel versions to some STL
algorithms is a good thing, I argue that this is not

such a big advancement as one might think
to run on multiple threads; see also Kevlin Henney’s discussion on
synchronisation quadrant [Henney17]. To do proper concurrency, we need
to drop the old ways of writing software, and adopt a new paradigm.

But maybe the C++ committee never intended to solve the concurrency
problem, they only wanted to solve some local efficiency problems, and
it’s just a misunderstanding of their goal. Let’s tackle efficiency concerns.

Problem 2: applications have more than algorithms
Remember Amdahl’s law? To have speed improvements from parallelism,
one needs to have a significant part of the code that is parallelisable. In the
case of Parallel STL1, one needs to have significant parts of the application
using such STL algorithms.

Let me repeat this: in order to have relevant performance benefits, the vast
majority of the time needs to be spent in STL algorithms.

This is somehow hard to achieve for a lot of the applications. Not every
program consists just in STL algorithm calls. Actually, many programs out
there have flows that it are very hard to reduce to STL algorithms, if it’s
even possible. Lots of these applications can only expose control flow
concurrency, making them unsuitable for using parallel algorithms.

One example that I have in mind is applications that do a lot of graph
processing. For most of the cases, there aren’t any STL algorithms ready
to be used.

Problem 3: multiple algorithms introduce serial
behaviour when combined
Let’s assume that to solve a particular problem one needs to call multiple
STL algorithms. If the algorithms were to interact, then they need to be
called in a serial fashion; i.e., call one algorithm, then call another, etc. The
scenario is illustrated in Figure 1.

As one can see in the picture, there are three parts of the flow that are bound
to execute serially: before the first algorithm, between the algorithm calls
and at the end of the second algorithm. And, no matter how good the
implementation is, there is some time spent in synchronising and starting
tasks; thus, according to Amdahl’s law this will put an upper bound of the
performance improvement.

But this is not even the worse part. Whenever the algorithm ends, it will
have to wait for all the threads to finish executing. This is a consequence
of the fact that the amount of work cannot be perfectly distributed between
threads, and some threads will process more than others. Typically, this

will make the threads stop executing real work, reducing the parallelism
capacity of the machine.

To counter this behaviour, one must do one or more of the following:

 start algorithms from multiple threads

 ensure that algorithms have continuations, avoiding serially calling
algorithms

 tune the parallel algorithms to ensure that the work split if even.

The first item can be doable outside parallel STL but with no direct support.
However, the current design of the standard library does not allow one to
implement any of the following two items.

Problem 4: small datasets are not good for
parallelisation
Considering Amdahl’s law and the overhead one gets from synchronising
the exit of an algorithm, let us investigate when it makes sense to parallelise
an algorithm. To make it worthwhile for an algorithm to be parallelised,
the execution time of the algorithm needs to be somehow large. See my
analysis in [Teodorescu20a]. On the type of applications I typically work
on, I would say as a rule of thumb that the algorithm needs to take more
than 100 milliseconds for being worthwhile to be parallelised.

Please excuse my over-generalisation, but it doesn’t seem too rewarding
to try to parallelise a 100 millisecond algorithm. Obtaining a linear
speedup on a 6-core machine would save 83.3 milliseconds on the
completion time, and will fully utilise all the cores. Probably there are
better optimisation opportunities.

For an algorithm to take a long time to execute, one of the following
conditions must be true:

 the number of elements in the collection that the algorithm operates
on needs to be sufficiently large

 the operation given to the algorithm needs to take a long time.

While the second condition can be true in many applications, the first one
(numerous elements) is typically not true.

Before we move on, I would beg the reader to consider most of the
applications that one worked on. How many of them had algorithms
operating on too many elements (e.g, millions of elements), and how many
of them had algorithms that are given operations that are long to execute
(more than 100 milliseconds per functor call). I bet that there aren’t that
many applications, especially in the first case.

Now, I’ve been saying numerous elements, but I haven’t been too precise.
How many elements count as numerous?

To give an order of magnitude for this, let’s take the examples from
[Filipek17b]. The first example considers a simple transform operation,
with the functor just doubling the value received as a parameter; the
algorithm is run over a vector of double numbers. For 100k elements, on
his more powerful machine (i7 8700, 6 cores), the execution times goes
down from 0.524 to 0.359 seconds. That’s just a 1.46x improvement for
6 cores. For this type of operation, it’s not worth parallelising it.1. I’m using Parallel STL interchangeably with C++ parallel algorithms.

Figure 1
February 2021 | Overload | 5

FEATURE LUCIAN RADU TEODORESCU
After this test, Bartlomiej writes [Filipek17b]:

As you see on the faster machine, you need like 1 million elements
to start seeing some performance gains. On the other hand, on my
notebook, all parallel implementations were slower.

Let’s consider his real world example: computing the Fresnel transform
on pairs of position and normal vectors. On this example, it takes 100k
elements to have the transformation go from 1.697 to 0.283 (that’s a 5.996x
improvement; this is good).

Here, we need 100k elements for the performance improvement to be in
the order of hundreds of milliseconds.

But, maybe Bartlomiej was having some odd and biased tests. Let’s also
look at the benchmark that Billy O’Neal made [ONeal18]. After all, Billy
implemented parallel algorithms in Microsoft Visual Studio’s standard
library, so he must know better. His article presents multiple benchmarks
on a sort algorithm. And in all the cases he uses 1 million (with all times
reported for release configuration less than 100 ms).

So, as a rule-of-thumb, to see significant performance improvements from
parallelising STL algorithms, one needs to have containers with a rough
order of magnitude of 1 million elements. From my experience, this
doesn’t happen too often.

Problem 5: cannot tune the algorithms
Although this problem applies to all the algorithms, let’s take the sort
algorithm as a running example.

Sorting 100 integers is faster with a linear algorithm than with a parallel
sorting algorithm. So, the algorithms typically have a cutoff point; if the
number of elements is below this cutoff point, then the algorithm simply
calls the serial version.

In the parallel sort implementation of Intel TBB, this cutoff point is 500
elements. In GCC implementation of parallel algorithms the cutoff point
is still 500 elements. My own concore library [concore] also has a cutoff
of 500 elements for the sort implementation. This is a common pattern.

But it’s not the same thing to sort integers, to sort strings or to sort some
complex objects. The cutoff points need to be different. But the C++
standard doesn’t allow any tuning of the algorithms.

That is, either the cutoff point is too small for sorting integers, or too large
to sort complex objects in parallel. One size does not fit all.

Similarly, let’s assume a simple for_each operation. For some cases, if
the algorithm needs to call a heavy function, it’s ok to have each element
mapped into a task. On the other hand, if the transformation is simple (i.e.,
an arithmetic operation) then, creating one task per element will be bad
for performance. Thus, algorithms may need tuning to accommodate
different input patterns.

Listing 2 presents a small snippet using concore library [concore] showing
how one can set hints to parallel algorithms.

As mentioned above, the current C++ standard doesn’t allow any tuning
of the algorithms. This leads to suboptimal performance.

Other notes

Compile time regressions
All the algorithms in the standard library are heavily templatised, and thus
so are the parallel versions of the algorithms. They all need to be
implemented in C++ headers. But, implementing these parallel versions
is far more complicated than implementing the serial versions. Thus, the
parallel versions of the algorithms add significant compile-time overhead.

See [Rodgers18] for some GCC implementation notes, mentioning this
problem.

This is not a problem to be taken lightly. It seems that it takes more and
more to compile C++ programs. In a lot of code-bases that I’ve seen the
compilation cycles are extremely demoralising; not to mention how bad it
is to apply Test-Driven Development in projects that take forever to
compile.

Luckily for us, there are a few tricks that library implementers can employ
to save part of this problem. For example, GCC will not compile the
parallel versions of the library if <execution> is not included
[Rodgers18].

More work to finish faster
This might surprise some readers, but the parallel versions of some
algorithms need more work than their serial counterpart to achieve the
same results. That is, we do more work in the hope that parallelisation will
make the algorithms finish faster. It’s a tradeoff between throughput and
latency. exclusive_scan and inclusive_scan are prime examples
of such algorithms.

This is not a weakness of the C++ parallel algorithms, but a fundamental
limitation of these parallel algorithms.

Quick change of policy is an advantage
The C++ algorithms are easily turned on by changing (or adding) a
parameter to the function call. So, an easy switch can improve the
performance of some applications. This is a good thing.

Vector level parallelism is OK
All the discussion so far was focused on parallel algorithms that perform
work on multiple cores. I.e., the par execution policy. Let’s briefly turn
our attention to the vectorisation (unseq policy).

If one cannot achieve good parallelism without having a more global
perspective, to efficiently use vectorisation, one typically must focus on
the local computations. This local focus makes it perfect for vectorisation
to be applied at the STL algorithms level.

This can potentially unlock a larger portion of the computation power
available on modern computers [Parent16].

Conclusions
C++ parallel algorithms bring vectorisation to common algorithms,
without requiring a lot of effort from the user. This is great! C++ parallel
algorithms also bring parallel versions of the algorithms without requiring
a lot of effort from the user. However, this is not that great. It is a tool that
can be useful in some cases, but it’s not great.

First, there is a central design issue. Moving to multicore programming
requires a somehow-global concurrency design. C++ parallel algorithms
don’t offer any support for this. Moreover, the standard sends a bad signal
to all the C++ programmers that somehow parallelism can be achieved
without concurrent thinking. I can’t stress enough how bad is this.

As applications have more than just algorithms, we argue that using C++
parallel algorithms is not enough to achieve good speedups to most of the
applications.

Then, we walk over some other problems, related to lower-level
performance issues: multiple algorithms are serialised, typical small
datasets make performance gains small, impossibility of tuning the
algorithms. So, besides the high-level concurrency design issue, we have
efficiency hurdles at low-level too.

It is true that it’s easy for a user to quickly change the policy of the STL
algorithms and maybe get some performance benefits. But my focus in this
article is on the empty half of the glass. I’m arguing that the benefits are
not as big as one could obtain with a proper concurrency design. In some
limited cases (i.e., many elements, or functors that are too complex) one
might get some speedups for one’s algorithms. But even in these cases, the
costs of spiking into using multiple cores may have an overall negative
performance costs.

Listing 2

concore::partition_hints hints;
hints.granularity_ = 100;
 // cannot process less than 100 elements in
 //a single task
concore::conc_for(itBegin, itEnd, operFtor,
 hints);
6 | Overload | February 2021

FEATURELUCIAN RADU TEODORESCU
All these make C++ parallel algorithms not such a great addition in the
concurrency toolkit. They are ok, they are needed, but it’s still not enough.
I would argue that basic executors support would have been a better
addition to the standard. But the executors didn’t make it into the 2020
standard. So, let’s wait to see what the future will reserve us. 

References
[concore] Lucian Radu Teodorescu, Concore library, https://github.com/

lucteo/concore

[Filipek17a] Bartlomiej Filipek, C++17 in details: Parallel Algorithms,
2017, https://www.bfilipek.com/2017/08/cpp17-details-
parallel.html

[Filipek17b] Bartlomiej Filipek, The Amazing Performance of C++17
Parallel Algorithms, is it Possible?, 2017, https://www.bfilipek.com/
2017/08/cpp17-details-parallel.html

[Henney17] Kevlin Henney, Thinking Outside the Synchronisation
Quadrant, ACCU 2017 conference, 2017,
https://www.youtube.com/watch?v=UJrmee7o68A

[Lelbach16] Bryce Adelstein Lelbach, C++ Parallel Algorithms and
Beyond, CppCon 2016, 2016, https://www.youtube.com/
watch?v=Vck6kzWjY88

[ONeal18] Billy O’Neal, Using C++17 Parallel Algorithms for Better
Performance, Microsoft C++ Team Blog, 2018,
https://devblogs.microsoft.com/cppblog/using-c17-parallel-
algorithms-for-better-performance/

[Parent16] Sean Parent, Better Code: Concurrency, code::dive 2016
conference, 2016,
https://www.youtube.com/watch?v=QIHy8pXbneI

[Pike13] Rob Pike, Concurrency Is Not Parallelism,
https://www.youtube.com/watch?v=cN_DpYBzKso

[Rodgers18] Thomas Rodgers, Bringing C++ 17 Parallel Algorithms to
a Standard Library Near You, CppCon 2018, 2018,
https://www.youtube.com/watch?v=-KT8gaojHUU

[Sutter05] Herb Sutter, ‘The free lunch is over: A fundamental turn
toward concurrency in software’, Dr. Dobb’s journal, 2005

[Teodorescu20a] Lucian Radu Teodorescu, ‘Refocusing Amdahl’s Law’,
Overload 157, June 2020

[Teodorescu20b] Lucian Radu Teodorescu, ‘The Global Lockdown of
Locks’, Overload 158, August 2020

[Teodorescu20c] Lucian Radu Teodorescu, ‘Concurrency Design
Patterns’, Overload 159, October 2020
February 2021 | Overload | 7

CVu
What Is Your Number?
By Simon Sebright
CVu 32.5, November 2020

And the winners are…

From CVu:

 Adding Python 3 Compatibility to Python 2 Code
By Silas S. Brown, CVu 32.1 (March 2020)

 The Ethical Programmer
By Pete Goodliffe, CVu 32.1 (March 2020)

 Diving into the ACCU Website
By Matthew Jones, CVu 32.2 (May 2020)

 Expect the Unexpected (Part 1)
By Pete Goodliffe, CVu 32.2. (May 2020)

 The Standards Report
By Guy Davidson, CVu 32.4 (September 2020)

From Overload:

 Afterwood: Assume Failure By Default
By Chris Oldwood, Overload 159 (October 2020)

The runners-up are:

That we have such a large number of articles sharing the
runner-up position in CVu is both a testament to the high
quality of the articles in the journal and evidence of the
wide-ranging interests of our readers. Just in case you
haven’t read them, each of the article titles is a link to that
article on our website. You must be logged in to access the
articles from CVu.

Overload
C++ Modules: A Brief Tour
By Nathan Sidwell
Overload 159, October 2020

We invited you to vote for your favourite articles of 2020 in both Overload and
CVu (our sister publication for members). The results have now been counted.

https://github.com/lucteo/concore
https://github.com/lucteo/concore
https://www.bfilipek.com/2017/08/cpp17-details-parallel.html
https://www.bfilipek.com/2017/08/cpp17-details-parallel.html
https://www.bfilipek.com/2017/08/cpp17-details-parallel.html
https://www.bfilipek.com/2017/08/cpp17-details-parallel.html
https://www.youtube.com/watch?v=UJrmee7o68A
https://www.youtube.com/watch?v=Vck6kzWjY88
https://www.youtube.com/watch?v=Vck6kzWjY88
https://devblogs.microsoft.com/cppblog/using-c17-parallel-algorithms-for-better-performance/
https://www.youtube.com/watch?v=QIHy8pXbneI
https://www.youtube.com/watch?v=cN_DpYBzKso
https://www.youtube.com/watch?v=-KT8gaojHUU
https://accu.org/journals/overload/28/156/neri_2773/
https://accu.org/journals/overload/28/159/oldwood/
https://accu.org/journals/cvu/32/1/brown_2762/
https://accu.org/journals/cvu/32/1/goodliffe_2764/
https://accu.org/journals/cvu/32/2/jones_2785/
https://accu.org/journals/cvu/32/2/goodliffe_2788/
https://accu.org/journals/cvu/32/4/davidson/
https://accu.org/journals/cvu/32/5/sebright/
https://accu.org/journals/overload/28/159/sidwell/

FEATURE BJARNE STROUSTRUP
C++ – an Invisible
 Foundation of Everything
What is C++ and why do people still use it? Bjarne Stroustup
provides a short note answering these questions.
am often asked variations of the questions ‘What is C++?’ and ‘Is C++
still used anywhere?’ My answers tend to be detailed, focused on the
long term, and slightly philosophical, rather than simple, fashionable,

and concrete. This note attempts a brief answer. It presents C++ as ‘a stable
and evolving tool for building complex systems that require efficient use
of hardware’. Brief answers are necessarily lacking in depth, subtlety, and
detail – for detailed and reasoned explanations backed by concrete
examples, see ‘References and resources’ on page 10. This note is mostly
direct or paraphrased quotes from those sources.

Overview
This note consists of:

 Aims and means – the high-level aims of C++’s design and its role
in systems

 Use – a few examples of uses of C++ focusing on its foundational
uses

 Evolution – the evolutionary strategy for developing C++ based on
feedback

 Guarantees, Language, and Guidelines – the strategy for
simultaneously achieving evolution, stability, expressiveness, and
complete type-and-resource safety

 People – a reminder of the role of people in software development

 References and resources – an annotated list of references that can
lead to a deeper understanding of C++

 Appendix – a very brief summary of C++’s key properties and
features

Aims and means
C++ was designed to solve a problem. That problem required management
of significant complexity and direct manipulation of hardware. My initial
ideals for C++ included

 The efficiency of C for low-level tasks

 Simula’s strict and extensible type system

What I did not like included

 C’s lack of enforcement of its type system

 Simula’s non-uniform treatment of built-in types and user-
defined types (classes)

 Simula’s relatively poor performance

 Both languages’ lack of parameterized types (what later became
templates)

This set off a decades-long quest to simultaneously achieve

 Expressive code

 Complete type-and-resource safety

 Optimal performance

I did not want a specialized tool just for my specific problem (support for
building a distributed system), but a generalization to solve a large class
of problems:

 C++ is a tool for building complex systems that require efficient
use of hardware

That’s a distillation of my initial – and current – aims for C++. Suitably
fleshed out with details and implications, this explains much about modern
C++. That statement is not a snappy slogan of the form C++ is an
<<adjective>> language but I have never found a sufficiently accurate and
descriptive adjective for that. Shifting the focus from language use to
language technicalities, we can say:

 C++ is a general-purpose language for the definition and use of
light-weight abstractions

That leaves the definition of ‘general-purpose’, ‘light-weight’, and
‘abstraction’ open to debate. In C++ terms, I am primarily thinking about
classes, templates, and concepts; about expressiveness and efficient use of
time and space.

To elaborate a bit further:

 C++ supports building resource-constrained applications and
software infrastructure

 C++ supports large-scale software development

 C++ supports completely type-and-resource-safe code

Technically, C++ rests on two pillars:

 A direct map to hardware

 Zero-overhead abstraction in production code

By ‘zero-overhead’, I mean that roughly equivalent functionality of a
language feature or library component cannot by expressed with less
overhead in C or C++:

 What you don’t use, you don’t pay for (aka ‘no distributed fat’)

 What you do use, you couldn’t hand-code any better (e.g.,
dynamic dispatch)

It does not mean that for a more-specific need you can’t write more
efficient code (say in assembler).

Use
Many well-known applications/systems are written in C++ (e.g., Google
search, most browsers, Word, the Mars Rovers, Maya). All systems need
to use hardware and large systems must manage complexity. Supporting
those fundamental needs has allowed C++ to prosper over decades :

 C++ is an invisible foundation of everything

I

Bjarne Stroustrup Bjarne is the designer and original implementer
of C++. To make C++ a stable and up-to-date base for real-world
software development, he has stuck with its ISO standards effort
for almost 30 years (so far). You can contact him via his website:
www.stroustrup.com.
8 | Overload | February 2021

FEATUREBJARNE STROUSTRUP

C++ was designed to solve a problem. That
problem required management of significant

complexity and direct manipulation of hardware
‘Everything’ is obviously a bit of an exaggeration, but even systems
without a line of C++ tend to depend on systems written in C++.
‘Everything’ is a good first approximation.

Foundational uses of C++ are typically invisible, often even to
programmers of systems relying on C++: to be usable by many, a complex
system must protect its users from most complexities. For example, when
I send a message, I don’t want to know about message protocols,
transmission systems, signal processing, task scheduling, processor
design, or provisioning. Thus, we find C++ in virtual machines (HotSpot,
V8), numerics (Eigen, ROOT), AI/ML (TensorFlow, PyTorch), graphics
and animation (Adobe, SideFx), communications (Ericsson, Huawei,
Nokia), database systems (Mongo, MySQL), finance (Morgan Stanley,
Bloomberg), game engines (Unity, Unreal), vehicles (Tesla, BMW,
Aurora), CAD/CAM (Dassault, Autodesk), aerospace (Space-X,
Lockheed Martin), microelectronics (ARM, Intel, Nvidia), transport
(CSX, Maersk), biology and medicine (protein folding, DNA sequencing,
tomography, medical monitoring), embedded systems (too many to
mention), and much more that we never see and typically don’t think of –
often in the form of libraries and toolkits usable from many languages. C++
is also key in components and implementations of many different
programming languages (GCC, LLVM).

We also find C++ in ‘everyday’ applications, such as coffee machines and
pig-farm management. However, the role as a foundation for systems,
tools, and libraries has critical implications for C++’s design, use, and
further evolution.

Evolution
Since its inception, C++ has been evolving. That reflects both necessity
and an early deliberate choice:

 No language is perfect for everything and for everybody (that
includes C++)

 The world changes (e.g., there were no mobile apps until about
2005)

 We change (e.g., few industrial programmers appreciated generic
programming in 1985)

Thus

 C++ must evolve to meet changing requirements and uses

 Design decisions must be guided by real-world use – all good
engineering relies on feedback

To evolve, C++ must

 Offer stability – organizations that deliver and maintain systems
lasting for decades can’t constantly rewrite their systems to keep up
with incompatible changes to their foundations.

 Be viable at all times – must be effective for problems in its domain
at all times; you can’t take a ‘gap year’ from improving the language
and its implementation.

 Be directed by a set of ideals – to remain coherent, the
development of language features must be guided by a framework
of principles and long-term aims.

Why continue to evolve after years of success? There never was a shortage
of people who would prefer to stay with C or move to one of the latest
fashionable languages. People can to do exactly that if it makes sense to
them, but

 C++ is a good solution to a wide range of problems

 There are hundreds of billions of lines of working C++ code ‘out
there’

 There are millions of C++ programmers

It takes significant time for a language to mature to be adequate for a range
of uses far beyond the understanding of its original designers. Some design
tensions are inherent

 Every successful language will eventually face the problem of
evolution vs. stability

 Every general-purpose language must serve both (relative)
novices and seasoned experts

Successful language design – like all successful engineering – requires
good fundamental ideas and a careful balancing of constraints. Optimizing
for just a single desirable property can offer advantages for one application
area for one moment of time, but eventually the result dies for lack of
adaptability. By now, C++ has survived for 40 years by carefully balancing
concerns, learning from experience, and avoiding chasing fashions.

 A general-purpose language must maintain a careful balance of
user needs

Essential concerns that must be balanced include:

 simplicity, expressiveness, safety, run-time performance,
support for tool building, ease of teaching, maintainability,
composability of software from different sources, compilation
speed, predictability of response, portability, portability of
performance, and stability

‘Simplicity’ refers to how ideas are expressed in source code,
‘expressiveness’ determines the range of uses, ‘safety’ to type safety and
absence of resource leaks, and ‘predictability’ is essential for many
embedded systems.

Guarantees, language, and guidelines
C++ is complicated, but people don’t just want a simpler language, they
also want improvements and stability:

 Simplify C++

 Add these new features

 Don’t break my code

These are reasonable requests so we need a way out of this ‘trilemma’. We
cannot simplify the language without breaking billions of lines of code and
February 2021 | Overload | 9

FEATURE BJARNE STROUSTRUP
seriously disrupt millions of users. However, we can dramatically simplify
the use of C++:

 Keep simple tasks simple

 Ensure that nothing essential is impossible or unreasonably
expensive

To do that

 Provide simpler alternatives for simple uses

 Provide simplifying generalizations

 Provide alternatives to error-prone or slow features

Often, a significant improvement involves a combination of those three.

 Design C++ code to be tunable

A high-level abstraction presents a simple, safe, and general interface to
users. When needed, a user – not just a language implementer – can provide
an alternative implementation or an improved solution. This can
sometimes lead to orders-of-magnitude performance improvements and/
or enhanced functionality. By using lower-level or alternative abstractions,
we can eventually get to use the hardware directly, sometimes even to
directly access special-purpose hardware (e.g., GPUs or FPGAs).

From the earliest days, a major aim for the evolution of C++ was to deliver

 Complete type-and-resource safety

Much of the evolution of C++ can be seen as gradually approaching that
ideal, starting with adding function declarations (function prototypes) to
C. By ‘type safety’, I mean complete static (compile-time) checks that an
object is used only according to its defined type augmented by guaranteed
run-time checks where static checking is infeasible (e.g., range checking).
Simula offered that but at significant cost implying lack of applicability
in key areas.

 Making the type system both strict and flexible is key to
correctness, safety, and performance

Type-safety is not everything, though:

 Correctness, safety, and performance are system properties, not
just language features

 A type-safe program can still contain serious logic errors

 Test early, often, and systematically

To simplify use, we need tools and guidelines. The C++ Core Guidelines
(see ‘References and resources’ on page 10) offer rules for simple, safe,
and performant use:

 No resource leaks (incl. no leaks of non-memory resources, such as
locks and thread handles)

 No memory corruption (an essential pre-condition for any
guarantee)

 No garbage collector (to avoid indirections in access, memory
overheads, and collection delays)

 No limitation of expressiveness (compared to well-written modern
C++)

 No performance degradation (compared to well-written modern
C++)

These guarantees cannot be provided for arbitrarily complex C++ code.
Therefore, the Core Guidelines include rules to ensure that static analysis
can offer the needed guarantees. The guidelines are a key part of my
strategy for a gradual evolution of C++:

 Improve C++ by adding language features and libraries

 Maintain stability/compatibility

 Provide a variety of strong guarantees through selectively
enforced guidelines

The Core Guidelines are in production use, often supported by static
analysis. The guidelines can be enforced by a compiler, but the aim is not
to impose a single style of use on the whole C++ community. That would
fail because of the widely varying needs and styles of use. By default,
enforcement must be selective and optional. A separate static analyzer –

usable with any ISO C++ compatible implementation – would be ideal. If
a specific ‘dialect’ (that is, a specific set of rules and enforcement profiles)
is to be enforced, it can be done through control of the build process
(possibly supported by compiler options).

People
Code is written by people. A programming language is a tool, just one part
of a tool chain for a technical community. This was recognized from the
start. Here is the opening statement of the first edition of The C++
Programming Language:

C++ is a general-purpose programming language designed to make
programming more enjoyable for the serious programmer.

By ‘serious programmer’ I meant ‘people who build systems for the use
of others’. This concern for the human side of system development has also
been expressed as:

 Design and programming are human activities; forget that and
all is lost

C++ serves a huge community. To improve software, we need not just to
improve the language. We must also bring the community along –
supported by education, libraries, and tools. This must be done carefully
because no individual can know every use of C++ or every user need.

References and resources
B. Stroustrup: ‘Thriving in a crowded and changing world: C++ 2006-

2020’ ACM/SIGPLAN History of Programming Languages
conference, HOPL-IV. June 2020. This is the best current description
of C++’s aims, evolution, and status. At 160 pages, it is not a quick
read. Available at https://dl.acm.org/doi/abs/10.1145/3386320

H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde, M. Wong:
DIRECTION FOR ISO C++ . WG21 P2000. 2020-07-15. Outlines
the direction of C++’s evolution, co-authored and continuously
updated by the ISO C++ Standard committee’s Direction Group as a
guide to members. Available at http://www.open-std.org/jtc1/sc22/
wg21/docs/papers/2020/p2000r2.pdf

B. Stroustrup: The Design and Evolution of C++ Addison Wesley, ISBN
0-201-54330-3. 1994. This book contains lists of design rules for
C++, some early history, and many code examples.

B. Stroustrup: A Tour of C++ (2nd Edition) ISBN 978-0134997834.
Addison-Wesley. 2018. A brief – 210 page – tour of the C++
Programming language and its standard library for experienced
programmers.

B. Stroustrup: Programming – Principles and Practice Using C++ (2nd
Edition). Addison-Wesley. ISBN 978-0321992789. May 2014. A
programming text book aimed at beginners who want eventually to
become professionals.

The C++ Core Guidelines. A set of guidelines for safe and effective use
of modern C++. Many of the guidelines are enforceable through
static analysis. 2014-onwards. Available at https://github.com/
isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md

Infographic: C/C++ Facts We Learned Before Going Ahead with CLion.
A 2015 report on a survey of C++ use, estimating the C++ user
community to be 4.5 million strong and listing major industrial use.
Today, there are more users. Available at https://blog.jetbrains.com/
clion/2015/07/infographics-cpp-facts-before-clion/

B. Stroustrup, H. Sutter, and G. Dos Reis: ‘A brief introduction to C++’s
model for type- and resource-safety’. Isocpp.org. October 2015. An
early summary of the aims of the core guidelines as they relate to type
safety and resource safety. Available at https://www.stroustrup.com/
resource-model.pdf

B. Stroustrup: How can you be so certain? P1962R0. 2019-11-18. A
caution against shallow arguments for fashionable causes. Language
design requires a certain amount of humility. Available at http://
www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1962r0.pdf
10 | Overload | February 2021

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2000r2.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2000r2.pdf
https://www.stroustrup.com/tour2.html
https://www.stroustrup.com/programming.html
https://dl.acm.org/doi/abs/10.1145/3386320
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
https://blog.jetbrains.com/clion/2015/07/infographics-cpp-facts-before-clion/
https://www.stroustrup.com/resource-model.pdf
https://www.stroustrup.com/resource-model.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1962r0.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2019/p1962r0.pdf

FEATUREBJARNE STROUSTRUP
B. Stroustrup: Remember the Vasa! P0977r0. 2018-03-06. A note of
warning about overenthusiastic ‘improvement’ of the language.
Available at https://www.stroustrup.com/P0977-remember-the-
vasa.pdf

The C++ Foundation’s Website describes the organization and progress
of the standards effort. https://isocpp.org/std

www.stroustrup.com offers many of my videos, papers, interviews, and
quotes, including:

 My CppCon’14 keynote: ‘Make Simple Tasks Simple!’ at
https://www.youtube.com/watch?v=nesCaocNjtQ

 My Cppcon’17 keynote: ‘Learning and Teaching Modern C++’ at
https://www.youtube.com/watch?v=fX2W3nNjJIo

 My Cppcon’19 Keynote: ‘C++20: C++ at 40’ at
https://www.youtube.com/watch?v=u_ij0YNkFUs&t=235s

 Lex Fridman’s 2019 ‘Interview with Bjarne Stroustrup’ at
https://www.youtube.com/watch?v=uTxRF5ag27A&t=1s

Appendix: The C++ language
The description of C++ above does not mention any language features or
give any code examples. This leaves it open to serious misinterpretation.
I cannot give serious examples of good code here – see ‘References and
resources’ on page 10 – but I can summarize.

There is a reasonably stable core of ideals that guides the evolution of C++
(the references are to my 2020 ‘History of Programming Languages’ paper):

 A static type system with equal support for built-in types and
user-defined types (§2.1)

 Value and reference semantics (§4.2.3)

 Systematic and general resource management (RAII) (§2.2)

 Support for efficient object-oriented programming (§2.1)

 Support for flexible and efficient generic programming
(§10.5.1)

 Support for compile-time programming (§4.2.7)

 Direct use of machine and operating system resources (§1)

 Concurrency support through libraries (often implemented
using intrinsics) (§4.1) (§9.4)

Key language features with their primary intended roles:

 Functions – the basic way of defining a named action. Functions
with different types can have the same name. The function invoked
is then chosen based on the type of its arguments.

 Overloading – allowing semantically similar operations on
different types is a key to generic programming.

 Operator overloading – a function can be defined to give meaning
to an operator for a given set of operand types. Overloadable
operators includes the usual arithmetic and logical operators plus ()
(application), [] (subscripting), and -> (member selection).

 Classes – user-defined types that can approach built-in types for
ease of use, style of use, and efficiency, while opening up a whole
new world of general and application-specific types. Classes offer
(optional) encapsulation without run-time cost. Class objects can be
allocated on the stack, in static memory, in dynamic (heap) memory,
or as members of other classes.

 Constructors and destructors – the key to C++’s resource
management and much of its simplicity of code. A constructor can
establish an invariant for a class and a destructor can release any
resources an object has acquired during its lifetime. Systematic
resource management using constructors and destructors is often
called RAII (‘Resource Acquisition Is Initialization’).

 Class hierarchies – the ability to define one class in terms of
another so that the base class can be used as an interface to derived
classes or as part of the implementation of derived classes. The key
to traditional object-oriented programming.

 Virtual functions – provide run-time type resolution within class
hierarchies.

 Templates – allow types, functions, and aliases to be parameterized
by types and values. The workhorse of C++ generic programming.

 Concepts – compile-time predicates on sets of types and values.
Mostly used as precise specifications of a template’s requirements
on its parameters, thereby allowing overloading. A concept taking a
single type argument is roughly equivalent to a type, except that it
does not specify object layout.

 Function objects – objects of classes (often class templates)
supporting an application operator (). Acts like functions but are
objects that can carry state.

 Lambdas – a notation for defining function objects.

 Immutability – immutable objects can be defined. Access through
pointers or references can be declared to be non-mutating.

 Modules – a mechanism for encapsulating a set of types, functions,
and objects with a well-defined interface offering good information
hiding. To use a module, you import it. A program can be composed
out of modules.

 Namespaces – for separating major components of a program and
avoiding name clashes.

 Exceptions – for signaling errors that cannot be handled locally.
The backbone of much error handling. Exceptions are integrated
with constructors and destructors to enable systematic resource
management.

 Type deduction – to simplify notation by not requiring the
programmer to repeat what the compiler already knows. Essential
for generic programming and simple expression of ideas.

 Compile-time functions – part of comprehensive support for
compile-time programming.

 Concurrency – lock-free programming, threads, and coroutines.

 Parallelism – parallel algorithms.

In addition, there is a relatively large and useful standard library and loads
of other libraries. Don’t try to write everything yourself in the bare
language. 

Acknowledgements
This note is mostly direct or paraphrased quotes from the referenced
papers, so many thanks to the contributors to those as listed in their
acknowledgement sections. Also thanks to Gabriel Dos Reis, J.C. van
Winkel, Herb Sutter, J-Daniel Garcia, Roger Orr and the unnamed
Overload reviewers who made constructive comments on earlier drafts.
February 2021 | Overload | 11

https://www.stroustrup.com/P0977-remember-the-vasa.pdf
https://www.stroustrup.com/P0977-remember-the-vasa.pdf
https://isocpp.org/std
https://www.stroustrup.com/
https://www.youtube.com/watch?v=nesCaocNjtQ
https://www.youtube.com/watch?v=fX2W3nNjJIo
https://www.youtube.com/watch?v=u_ij0YNkFUs&t=235s
https://www.youtube.com/watch?v=uTxRF5ag27A&t=1s

FEATURE KEVLIN HENNEY
Test Precisely and Concretely
Tests can hit complete coverage but fail to communicate.
Kevlin Henney reminds us that assertions should be
necessary, sufficient, and comprehensible.
Kevlin Henney is an independent consultant, speaker, writer and
trainer. His development interests include programming languages,
software architecture and programming practices, with a particular
emphasis on unit testing and reasoning about practices at the team
level. Kevlin loves to help and inspire others, share ideas and ask
questions. He is co-author of A Pattern Language for Distributed
Computing and On Patterns and Pattern Languages. He is also editor
of 97 Things Every Programmer Should Know and co-editor of 97
Things Every Java Programmer Should Know.

t is important to test for the desired, essential behaviour of a unit of code,
rather than for the incidental behaviour of its particular implementation.
But this should not be taken or mistaken as an excuse for vague tests.

Tests need to be both accurate and precise.

Something of a tried, tested, and testing classic, sorting routines offer an
illustrative example – they are to computer science as fruit flies are to
genetics. Implementing sorting algorithms is far from an everyday task for
a programmer, commodified as they are in most language libraries, but
sorting is such a familiar idea that most people believe they know what to
expect from it. This casual familiarity, however, can make it harder to see
past certain assumptions.

A test of sorts
When programmers are asked, ‘What would you test for?’, by far and away
the most common response is something like, ‘The result of sorting a
sequence elements is a sorted sequence of elements.’ As definitions go,
it’s perhaps a little circular, but it’s not false.

So, given the following C function:

 void sort(int values[], size_t length);

and some values to be sorted:

 int values[length];

the expected result of sorting:

 sort(values, length);

would pass the following:

 assert(is_sorted(values, length));

for some appropriate definition of is_sorted.

While this is true, it is not the whole truth. First of all, what do we mean
when we say the result is ‘a sorted sequence of elements’? Sorted in what
way? Most commonly, a sorted result goes from the lowest to the highest
value, but that is an assumption worth stating explicitly. Assumptions are
the hidden rocks many programs run aground on – if anything, one goal
of testing and other development practices is to uncover assumptions rather
than gloss over them.

So, are we saying they are sorted in ascending order? Not quite. What about
duplicate values? We expect duplicate values to sort together rather than
be discarded or placed elsewhere in the resulting sequence. Stated more
precisely, ‘The result of sorting a sequence of elements is a sequence of
elements sorted in non-descending order.’ Non-descending and ascending
are not equivalent.

Going to great lengths
When prompted for an even more precise condition, many programmers
add that the resulting sequence should be the same length as the original.
Although correct, whether or not this deserves to be tested depends largely
on the programming language.

In C, for example, the length of an array cannot be changed. By definition,
the array length after the call to sort will be the same as it was before the
call. In contrast to the previous point about stating and asserting
assumptions explicitly, this is not something you should or could write an
assertion for. If you’re not sure about this, consider what you might write:

 const size_t expected = length;
 sort(values, length);
 assert(length == expected);

The only thing being tested here is that the C compiler is a working C
compiler. Neither length nor expected will – or can – change in this
fragment of code, so a good compiler could simply optimise this to:

 sort(values, length);
 assert(true);

If the goal is to test sort, this truism not particularly helpful. It is one thing
to test precisely by making assumptions explicit; it is another to pursue
false precision by restating defined properties of the platform.

The equivalent sort in Java would be

 ... void sort(int[] values) ...

And the corresponding tautologous test would be

 final int expected = values.length;
 sort(values);
 assert values.length == expected;

Sneaking into such tests I sometimes also see assertions along the lines of

 assert values != null;

If the criteria you are testing can’t be falsified by you, those tests have little
value – hat tip to Karl Popper:

In so far as a scientific statement speaks about reality, it must be
falsifiable: and in so far as it is not falsifiable, it does not speak about
reality.

This is not to say you will never encounter compiler, library, VM, or other
platform bugs, but unless you are the implementer of the compiler, library,
VM, or other platform, these are outside your remit and the reality of what
you are testing.

For other languages or data structure choices, that the resulting length is
unchanged is a property to be asserted rather than a property that is given.
For example, if we chose to use a List rather than an array in Java, its
length is one of the properties that could change and would, therefore, be
something to assert had remained unchanged:

 final int expected = values.size();
 sort(values);
 assert values.size() == expected;

I

12 | Overload | February 2021

FEATUREKEVLIN HENNEY

If you already have code lying around that has the
same functionality as the functionality you want

to test, you can use it as a test oracle
Similarly, where sorting is implemented as a pure function, so that it
returns a sorted sequence as its result, leaving the original passed sequence
untouched, stating that the result has the same length as the input makes
the test more complete. This is the case with Python’s own built-in
sorted function and in functional languages. If we follow the same
convention for our own sort, in Python, it would look like

 result = sort(values)
 assert len(result) == len(values)

And, unless we are already offered guarantees on the immutability of the
argument, it makes sense to assert the original values are unchanged by
taking a copy for posterity and later comparison:

 original = values[:]
 result = sort(values)
 assert values == original
 assert len(result) == len(values)

The whole truth
We’ve navigated the clarity of what we mean by sorted and questions of
convention and immutability… but it’s not enough.

Given the following test code:

 original = values[:]
 result = sort(values)
 assert values == original
 assert len(result) == len(values)
 assert is_sorted(result)

The following implementation satisfies the postcondition of not changing
its parameter and of returning a result sorted in non-descending order with
same length as the original sequence:

 def sort(values):
 return list(range(len(values)))

As does the following:

 def sort(values):
 return [0] * len(values)

And the following:

 def sort(values):
 return [] if len(values) == 0
 else [values[0]] * len(values)

Given the following sequence:

 values = [3, 1, 4, 1, 5, 9]

The first example simply returns an appropriately sized list of numbers
counting up from zero:

 [0, 1, 2, 3, 4, 5]

The second example makes even less of an effort:

 [0, 0, 0, 0, 0, 0]

The third example at least shows willing to use something more than just
the length of the given argument:

 [3, 3, 3, 3, 3, 3]

This last example was inspired by an error taken from production C code
(fortunately caught before it was released). Rather than the contrived
implementation shown here, a simple slip of a keystroke or a momentary
lapse of reason led to an elaborate mechanism for populating the whole
result with the first element of the given array – an i that should have been
a j converted an optimal sorting algorithm into a clunky fill routine.

All these implementations satisfy the spec that the result is sorted and the
same length as the original, but what they let pass is also most certainly
not what was intended! Although these conditions are necessary, they are
not sufficient. The result is an underfitting test that only weakly models
the requirement and is too permissive in letting flawed implementations
through.

The full postcondition is that ‘The result of sorting a sequence of elements
is a sequence of the original elements sorted in non-descending order.’
Once the constraint that the result must be a permutation of the original
values is added, that the result length is the same as the input length comes
out in the wash and doesn’t need restating regardless of language or call
convention.

Oracular spectacular
Are we done? Not yet.

Even stating the postcondition in the way described is not enough to give
you a good test. A good test should be comprehensible and simple enough
that you can readily see that it is correct (or not).

If you already have code lying around that has the same functionality as
the functionality you want to test, you can use it as a test oracle. Under the
same conditions, the new code should produce the same results as the old
code. There are many reasons you may find yourself in this situation: the
old code represents a dependency you are trying to decouple from; the new
code has better performance than the old code (faster, smaller, etc.); the
new code has a more appropriate API than the old code (less error-prone,
more type safe, more idiomatic, etc.); you are trying something new
(programming language, tools, technique, etc.) and it makes sense to use
a familiar example as your testing ground.

For example, the following Python checks our sort against the built-in
sorted function:

 values = ...
 original = values[:]
 result = sort(values)
 assert values == original
 assert result == sorted(values)

Sometimes, however, the scaffolding we need to introduce makes the
resulting test code more opaque and less accessible. For example, to test
our C version of sort against C’s standard qsort function, we can use
the code in Listing 1 (overleaf).

Even making the narrative structure of the test case more explicit, the code
still looks to be more about bookkeeping local variables than about testing
sort (see Listing 2).
February 2021 | Overload | 13

FEATURE KEVLIN HENNEY

the auxiliary test code – to check that a sequence is
sorted and that one sequence contains a
permutation of values in another – may quite
possibly be more complex than the code under test
And compare_ints is ours to define, so will lie outside the test case,
making the test code even harder to assimilate on reading (Listing 3).

Note that this dislocation of functionality is not the same as making test
code more readable by extracting clunky bookkeeping code into
intentionally named functions (Listing 4).

Refactoring to reduce bulk and raise intention is certainly a practice that
should be considered (much, much more often than it is) when writing test
code.

Managing expectations
One limitation of testing against an existing implementation is that it might
not always be obvious what the expected result is. It is one thing to say,

“The new implementation should produce the same results as the old
implementation”, but quite another to make clear exactly what those
results are. In the case of sorting, this is not much of an issue. In the case
of something from a more negotiated domain, such as insurance quotes or
delivery scheduling, it might not be clear what ‘the same results as the old
implementation’ entails. The business rules, although replicated in the new
implementation, may be no clearer with tests than they were without. You
may have regression, but you do not necessarily have understanding.

The temptation is to make these rules explicit in the body of the test by
formulating the postcondition of the called code and asserting its truth. As
we’ve already seen in the case of something as seemingly trivial as sorting,
arriving at a sound postcondition can be far from trivial. But now that
we’ve figured it out, we could in principle use it in our test (Listing 5).

Where extracting is_sorted and is_permutation make the
postcondition clear and the test more readable, but are left as an exercise
for the reader to implement. And herein lies the problem: the auxiliary test
code – to check that a sequence is sorted and that one sequence contains
a permutation of values in another – may quite possibly be more complex
than the code under test. Complexity is a breeding ground for bugs.

Details, details
One response to the evergreen question, “How do we know that our tests
are correct?”, it to make the test code significantly simpler. Tony Hoare
pointed out that

There are two ways of constructing a software design: one way is to
make it so simple that there are obviously no deficiencies and the other
is to make it so complicated that there are no obvious deficiencies.

Listing 1

int actual[length];
...
int expected[length];
for (size_t at = 0; at != length; ++at)
 expected[at] = actual[at];
qsort(expected, length, sizeof(int),
 compare_ints);
sort(actual, length);
for (size_t at = 0; at != length; ++at)
 assert(actual[at] == expected[at]);

Listing 2

// Given
int actual[length] = {...};
...
int expected[length];
for (size_t at = 0; at != length; ++at)
 expected[at] = actual[at];
qsort(expected, length, sizeof(int),
 compare_ints);
// When
sort(actual, length);
// Then
for (size_t at = 0; at != length; ++at)
 assert(actual[at] == expected[at]);

Listing 3

int compare_ints(const void * lhs_entry,
 const void * rhs_entry)
{
 int lhs = *(const int *) lhs_entry;
 int rhs = *(const int *) rhs_entry;
 return lhs < rhs ? -1 : lhs > rhs ? 1 : 0;
}

Listing 4

// Given
int actual[length];
...
int expected[length];
presort_expected_values(expected, actual, length);
// When
sort(actual, length);
// Then
assert_equal_arrays(actual, expected, length);

Listing 5

values = ...
original = values[:]
result = sort(values)
assert values == original,
 "Original list unchanged"
assert is_sorted(result), "Non-descending values"
assert is_permutation(result, original),
 "Original values preserved"
14 | Overload | February 2021

FEATUREKEVLIN HENNEY

If the tests are significantly simpler
than the code being tested, they are

also more likely to be correct
If the tests are significantly simpler than the code being tested, they are
also more likely to be correct. And when they are incorrect, the errors are
easier to spot and fix.

The solution to the problem has been staring us in the face. Alfred North
Whitehead observed that

We think in generalities, but we live in detail.

Using concrete examples eliminates this accidental complexity and
opportunity for accident. For example, given the following input:

 [3, 1, 4, 1, 5, 9]

The result of sorting is the following:

 [1, 1, 3, 4, 5, 9]

No other answer will do. And there is no need to write any auxiliary code.
Extracting the constancy check as a separate test case, the test reduces to
the pleasingly simple and direct

 assert sort([3, 1, 4, 1, 5, 9]) ==
 [1, 1, 3, 4, 5, 9]

We are, of course, not restricted to only a single example. For each given
input there is a single output, and we are free to source many inputs. This
helps highlight how the balance of effort has shifted. From being distracted
into a time sink by the mechanics and completeness of the auxiliary code,
we can now spend time writing a variety of tests to demonstrate different
properties of the code under test, such as sorting empty lists, lists of single
items, lists of identical values, large lists, etc.

By being more precise and more concrete, the resulting tests will both
cover more and communicate more. An understanding of postconditions
can guide us in how we select our tests, or our tests can illustrate and teach
us about the postconditions, but the approach no longer demands logical
completeness and infallibility on our part.

A concrete conclusion
Precision matters. A test is not simply an act of confirmation; it is an act
of communication. There are many assertions made in tests that, although

not wrong, reflect only a vague description of what we can say about the
code under test.

For example, the result of adding an item to an empty repository object is
not simply that it is not empty: it is that the repository now has a single
entry, and that the single item held is the item added. Two or more items
would also qualify as not empty, but would be wrong. A single item of a
different value would also be wrong. Another example would be that the
result of adding a row to a table is not simply that the table is one row
bigger: it’s also that the row’s key can be used to recover the row added.
And so on.

Of course, not all domains have such neat mappings from input to output,
but where the results are determined, the tests should be just as determined.

In being precise, however, it is easy to get lost in a level of formality that
makes tests hard to work with, no matter how precise and correct they are.
Concrete examples help to illustrate general cases in an accessible and
unambiguous way. We can draw representative examples from the
domain, bringing the test code closer to the reader, rather than the forcing
the reader into the test code. 

This article was previously published online at: https://medium.com/
analytics-vidhya/test-precisely-and-concretely-810a83f6309a

A shorter version was also published as a chapter in 97 Things Every
Programmer Should Know, which is collection of short and useful
tips for programmers.

As well as contributing a chapter, Kevlin edited the book. You may
recognise some of the other contributors to the book from the ACCU
journals. Michael Feathers, Pete Goodliffe, Seb Rose, Allan Kelly,
Giovani Asproni, Jon Jagger, Alan Griffiths, Russel Winder, Thomas
Guest, Peter Sommerlad are those I spotted on a quick glance.

You would be in good company if you wrote for us, and we would
help you every step of the way.
February 2021 | Overload | 15

https://medium.com/analytics-vidhya/test-precisely-and-concretely-810a83f6309a
https://medium.com/analytics-vidhya/test-precisely-and-concretely-810a83f6309a

FEATURE CHRIS OLDWOOD
Afterwood
Think you’ve learnt it all? Chris Oldwood reminds us
that unlearning then becomes our next problem.
fter finishing my first article for CVu just over a decade ago, I was
asked to come up with a short biography and photo to give ACCU
readers a tiny insight into the author. At that point the only thing I’d

ever written to describe myself was a CV for job applications but I’d
guessed that wasn’t really what they were looking for. Instead I had to
find a way to sum myself up in just a sentence or two.

I’m a firm believer that ‘context is king’ and therefore I decided that to
distil my essence into such a short piece I should focus on where I came
from (programmatically speaking) and where I am now so the reader
could extrapolate from that the kinds of projects and organisations that
have shaped my programming career, and consequently my writing.
Hence I arrived at the bio you now see adorning my articles to this very
day (recent pandemic-related tweak notwithstanding).

During my university years and the start of my professional programming
career, I saw being an ‘80’s bedroom coder’ as a badge of honour.
Working at a small software house writing graphics software to run on
underpowered PCs required some of the skills I had developed writing
demos in assembly during my teens, such as the ability to read what the
optimizing compiler had come up with and then find a way to make it
work when the compiler got it badly wrong. Who knew that in the real
world, though, most code is not written in assembly with speed being the
only concern...

My new found interest in networking and distributed systems caused me
to leave that behind and enter the corporate world in a freelance capacity.
Time marched on, CPUs grew faster and ever more complex, optimizing
compilers become reliable, disk and network speeds jostled for position,
memory became abundant, and the claims on my CV about my
knowledge of PC hardware become weaker as I slowly moved ‘further up
the stack’. What I once (naively) saw as the meat-and-potatoes of
programming had been downgraded to ‘mechanical sympathy’
[MechSym].

For me any appreciation of new hardware or technology has tended to
come from a single impressive moment of its application rather than a
change in numbers on a data-sheet. For instance, I had a low opinion of
the JVM in the early 2000s until I saw some Atari ST demos that Equinox
(an old Atari demo group) had ported to run as Java applets and, while it
was sluggish on the Sun JVM, they ran real-time on the Microsoft JVM.
Any performance reservations of the mundane Java project I was assigned
to at the time dropped away instantly. Sadly they were replaced by a more
unexpected time bomb – the buggy date/time class.

My jaw dropped again some years later when I got to see the Linux kernel
boot-up inside a web browser without using native code. Likewise, a
DHTML version of Lemmings and the Unreal engine helped remove any
other preconceptions I might have had around what can be achieved with
a browser and a modern JavaScript engine.

One networking epiphany came when I had to debug an occasional crash
in a C++ based service and I struggled for some time to believe what my
eventual hypothesis was suggesting – that the service could send a

financial trade to another machine, value it, and return and process the
response on another thread before the sending thread got switched back
in. As for disk I/O, which has never really been that stellar under
Windows, I sported a rather large grin the first time I experienced
compiling C++ code on an SSD.

More recently-ish I attended Jason McGuiness’s ACCU talk about the
impact of Meltdown and Spectre on high-frequency trading. Any pretence
I might still have had that my mental model of what went on inside a
modern CPU was readily dismissed; in my heart I probably knew that but
it was still a brutal awakening after all those teenage years counting
cycles. Although I still occasionally inspect modern assembly code in the
debugger it’s really the stack traces I’ve become more interested in as I try
to reason about the flow rather than question the compiler’s choice of
instructions and sequencing to get the best out of a CPU.

Now, as I write these very words, there is a flurry of excitement about
Apple’s new M1 chip and how its ability to emulate a different CPU
architecture faster than the real thing is an impressive achievement. For
those “in the know” I’m sure it’s just one more inevitable step forward,
but for me it’s yet another virtualization bubble burst. Even Knuth’s MIX
is struggling to stay relevant.

And that’s one of the downsides with being a programmer as the years
whizz past, there comes a point at which you find yourself spending more
and more time ‘unlearning’. You might say it’s really just learning
something new but unlearning is really about trying to forget what you
learned because the game has changed and you need to catch back up with
those that never learned the old ways in the first place. Unchecked, that
badge of honour is slowly turning into a millstone.

Modern C++ is yet another example. I used to have a snippet of code I
liked to chew over with candidates in an interview that encapsulated
various idioms and pitfalls when working in C++. It was a well-honed
example based on 15 years of blood sweat and tears and yet most of the
discussion points are now moot as the language has changed dramatically
since then due to move semantics, lambdas, range-based for loops, etc.
Old habits die hard and unlearning that you shouldn’t return containers by
value because it now Just Works™ is another example where years of
inertia can be difficult to overcome.

Luckily there are still some inalienable truths to keep me warm at night,
like the speed of light limiting my ping time and giving me an excuse for
why I lost at Fortnite, yet again. Having sympathy for the machine is
undeniably a valuable skill but who has sympathy for the poor
programmer that is forever learning and then unlearning to keep up with
the march of progress in an effort to stay relevant in today’s fast paced
world?

Reference
[MechSym] Mechanical Sympathy:

https://mechanical-sympathy.blogspot.com/2011/
07/why-mechanical-sympathy.html

A

16 | Overload | February 2021

Chris Oldwood is a freelance programmer who started out as a bedroom coder in the 80s writing assembler on 8-bit
micros. These days it’s enterprise grade technology from plush corporate offices the lounge below his bedroom. With no
Godmanchester duck race to commentate on this year, he’s been even more easily distracted by messages to
gort@cix.co.uk or @chrisoldwood

https://mechanical-sympathy.blogspot.com/2011/07/why-mechanical-sympathy.html

professionalism in programming
www.accu.orgD

e
si

g
n
:

P
e
te

 G
o
o
d

lif
fe

You've read the magazine, now join
the association dedicated to
improving your coding skills.

The ACCU is a worldwide non-profit organisation
run by programmers for programmers.

With full ACCU membership you get:

6 copies of C Vu a year
6 copies of Overload a year
The ACCU handbook
Reduced rates at our acclaimed annual
developers' conference
Access to back issues of ACCU periodicals via
our web site
Access to the mentored developers projects: a
chance for developers at all levels to improve their
skills
Mailing lists ranging from general developer
discussion, through programming language use,
to job posting information
The chance to participate: write articles, comment
on what you read, ask questions, and learn from
your peers.

Basic membership entitles you to the above
benefits, but without Overload.

Corporate members receive five copies of each
journal, and reduced conference rates for all
employees.

How to join
You can join the ACCU using

our online registration form.
Go to www.accu.org and

follow the instructions there.

Also available
You can now also purchase

exclusive ACCU T-shirts and
polo shirts. See the web site

for details.

PERSONAL MEMBERSHIP
CORPORATE MEMBERSHIP
STUDENT MEMBERSHIP

	In. Sub. Ordinate.
	A Case Against Blind Use of C++ Parallel Algorithms
	C++ – an Invisible Foundation of Everything
	Test Precisely and Concretely
	Afterwood

