
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 9
August 1995

Editorial: Subscriptions:
Sean A. Corfield Membership Secretary
13 Derwent Close c/o 11 Foxhill Road
Cove Reading
Farnborough Berks
Hants RG1 5QS
GU14 0JT pippa@octopull.demon.co.uk
sean@corf.demon.co.uk

£3.50

Contents
Editorial 3

Software Development in C++ 3

A Better C? 3

Quantum Chromo Typology 5

Seduction: The Last? – Applying the STL mindset 7

Joy Unconfined – reflections on three issues 12

The Draft International C++ Standard 14

Diary of an Observer 15

The Casting Vote 18

Uncontained – oddities and oversights in the standard library 21

C++ Techniques 23

Multiple inheritance in C++ – part II 24

On not mixing it...again 30

Another “too-many-objects” lesson 33

editor << letters; 33

Questions & Answers 35

Interviews 36

Interview with Jiri Soukup 36

Books and Journals 38

Design Patterns 38

Product Reviews 39

UTAH – a short product report 40

S-CASE 40

Fed up with people assuming that anyone who really understands C or
C++ must be a nerd who just can’t talk to people (because you aren’t and
you can)? You might be just the sort of person we need. Oxford Com-
puter Training is one of the UK’s leading training companies, specialising
in Microsoft products. We employ people who combine real smarts with
personality, and a good deal of business sense. We are looking for lec-
turers in all MS products, but particularly in the various MS C products
under any of the MS OSs. We are seeking full-time permanent employ-
ees, the work is hard, very stimulating (if you don’t match the above as-
sumption!) and rewarding.

For more info, contact:
Liz Simpson-Wells, Oxford Computer Training, Wolsey Hall, 66 Banbury Rd, Oxford, OX2 6PR

tel: +44 (0) 1865 512 675 email: LizS@ocx.com

 Overload – Issue 9 – August 1995

 Page 3

Editorial
I was planning to write about coding standards
and coding style because that is a subject close
to my heart, but I’ve heard so many people com-
plain that coding standards restrict programmer
creativity that I began to think about another,
equally “religious” discussion that I found my-
self embroiled in recently.

I’m a great advocate of free speech and freedom
of the individual. For some reason, this makes
people think that I should be standing against
government intervention in the battle over en-
cryption technology. Those people say “the gov-
ernment mustn’t be able to read our email and
decode it” – the government say that unless they
can decode email, criminals will be able to oper-
ate with total security. Those people say that
even in times of war, the government didn’t have
the power to, effectively, “open our mail”. Well,
yes and no. Whose mail do they want to open?
Yours? Why, what have you done to make them
suspicious? The authorities need the ability to
track and monitor criminals – in wartime, much
effort was expended decoded the enemy’s secret
messages, but now we are (supposedly) at peace
and the real enemy to society is crime.

Some criminals are very sophisticated and there
is suggested legislation (in England at least) that
is specifically targeted at certain criminal groups
that would like to use electronic data communi-
cations as a secure way to operate their business.
The Internet has made the possibility of secure,
global crime networks a certainty. Unless, of
course, governments are allowed to tap in and
decode everything. That really bothers some
people.

It may bother you; if it does, I expect you are
also upset by the thought of carrying national
identity cards? Presumably, your passport
doesn’t count, nor all the other paraphernalia in
your wallet or purse and they certainly don’t in-
fringe your personal liberties or restrict your
freedom of speech.

What about programming standards? Do they
bother you, too? Do they restrict your freedom of
speech in C++ and prevent you doing what you
want? They don’t bother me in the least – I have
nothing to declare officer!

Sean A. Corfield
sean@corf.demon.co.uk

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development
tools, the software process and discussions about the good, the bad and the ugly in C++.

In this issue, Francis Glassborow asks whether it is time to stop pretending that C++ is just “C with knobs
on”, George Wendle makes const sound hard, Kevlin Henney takes a look at what the Standard Template
Library might mean for the future and The Harpist contemplates some implementation quirks.

A Better C?
by Francis Glassborow

Eight or ten years ago the statement that C++
could be viewed as ‘A Better C’ was not unrea-
sonable and for many tasks the use of a C++
compiler to compile C code cleaned up a number
of problems. Understanding of the desirability of
prototypes and the weaknesses in the preproces-
sor was important. This was quite independent
of the provision of tools for data hiding, encap-
sulation of behaviour and inheritance.

There was so much good stuff in the early devel-
opment of C++ that it rapidly escaped from its
birth place. This happened not long after C had
escaped from its cradle (mainly UNIX environ-
ments) and was being implemented by too many
who did not properly understand it. Does that
matter? Yes, because many who are involved in
the development of C++ have less than a perfect
grasp of C. Those with a sound grasp of C were
pre-occupied with producing an ANSI standard
(later to become an ISO one). During the process
of that development (of a C Standard), those in-
volved found many insights and a few surprises.

 Overload – Issue 9 – August 1995

 Page 4

They were not trying to design a language but to
standardise what already existed.

On the other side, the adventurous risk takers
were designing a new language, C++. For a num-
ber of reasons it seemed desirable to bind this
language tightly to C. Though C++ was not de-
signed as an Object-Oriented language, many of
its resources seemed suitable for use in an OO
environment. Pressures arose to improve its sup-
port for this paradigm even though it was mark-
edly different from the underlying expectations
of C.

C was trying to provide maximum portability so
that it could be used on as many hardware sys-
tems as possible. Its numerical representation is
defined to be a binary one so anyone who has
hardware that works in a non-decimal fashion
will find implementing C difficult but that is
about the only limitation.

The preprocessor was a powerful tool for sup-
porting portable code and the elder statesmen of
the language knew how to use it to best effect.
Concepts of scope were developed to handle the
increasing complexity of programs. Unfortu-
nately the pre-processor was not designed for
such complexity.

I don’t think that any language designer actually
sat down to eliminate the preprocessor. I think
that one day several of them realised that various
sensible items they had in C++ were making the
preprocessor less necessary.

Let us look at one of these; inline. If inline had
been designed to eliminate preprocessor macros
it would have been more than a hint to the com-
piler, it would have been an instruction because
that is the way preprocessor macros work. The
advantage would have been to provide some-
thing that respected scope but there would have
been no conflict with the concept of ‘unique
definition’.

In fact the idea of inline was more by way of
providing support for access functions etc. The
result was that as well as having inline code, pro-
grammers might also need a single addressable
copy as well. When put like that, solutions pre-
sent themselves but without explicit specifica-
tion we finish with confusion such as inline
functions being static by default.

Francis means static in the sense of internal
linkage, here, rather than one of static’s
many other meanings – Ed.

The process of “development by response to the
current problem” is hacking. Everyone of us
knows that proper development must start with a
specification of the full problem that needs solv-
ing.

Another example of the same unfortunate think-
ing surfaces in the introduction of const. Cer-
tainly const, in the sense of read-only was a step
forward to safer programming. const as a
mechanism for providing manifest constants in-
stead of the traditional C use of #define seems
like a good idea until you start looking at the
consequences. Fix the wasted space by letting
compilers optimise away the storage if it is never
used, but what if it isn’t optimised away? What
linkage should they have? Well to fix the linker
problems, const globals will have to have inter-
nal linkage. You see the problem? Using const
to provide manifest constants is a hack, the very
fact that it nearly works, and often works to the
satisfaction of the programmer does not stop it
being a hack. We need both a read-only qualifi-
cation of variables and a scope safe mechanism
for manifest constants. My current advocacy of
using enums for the latter is still a hack, less
problematical until you need manifest constants
of a specific type, but still a hack.

Values vs. objects

The C programmer who is seduced by the attrac-
tive hacks that C++ provides, the safer use of
pointers, the pleasures of more intelligent i/o,
and so on, is in serious trouble. The language
that started out as a sensible development of C
has moved radically towards OO support. No
longer does assignment return a value, it returns
a reference to an object (well it might not in our
own user provided versions).

Support for OO suggest all kinds of modifica-
tions to the semantics of a language. At least
different syntax stands out and ignorant use will
often generate a diagnostic (“error” to you and
me). Changes in semantics are much subtler and
are very bad news. I think that C++ has moved
so far down this path that it is doing no one any
favours by continuing to talk about its use as ‘A
Better C’. Like evolution of species, there comes
a time when something has evolved to the stage
where it can no longer cross breed with the origi-

 Overload – Issue 9 – August 1995

 Page 5

nal. I suggest that that point has arrived for C
and C++. Inexperienced programmers who use
C++ for C programming are laying up a wealth
of problems for themselves.

The attempt to continue to support C directly in
C++ is damaging C++. Many of the concepts
(that were well formed and well understood in C,
such as scope) have not made the transfer from C
to C++ intact. As problems arise the language is
being tweaked (hacked) to accommodate them.

C++ has a lot to offer but ‘A Better C’ it is not.

Francis Glassborow
francis@robinton.demon.co.uk

Quantum Chromo Typology
by George Wendle

Deep in the structure of modern physics lie some
weird things called quarks out of which the
World as we know it is supposedly constructed.
What makes things particularly weird is that
these fundamental building blocks don’t just
come in such kinds as up, down, top, bottom
etc., but that each of these kinds come in both
normal and anti-form and that each of those
come in three flavours (deceptively named red,
blue and green). That is all the sub-atomic phys-
ics you are going to get from me today.

Deep inside C++ lies a system of basic types out
of which all other types are constructed. Before
we look at those, let me spend a little time sur-
veying the system as it exists in ancestral C.

Ancestral types

C provides us with a palette of built-in types
coupled with rules for deriving types and pro-
ducing compound types. There are some serious
flaws with the C system that derive from its an-
cestry and minimalist approach. Probably the
most outstanding of these is char which has a
kind of schizophrenic existence. Sometimes it
looks and behaves like a byte (I think that should
be explicitly unsigned char). Sometimes it looks
and behaves like storage for a character, that also
should be unsigned. Finally it is often used as a
minimalist integer where reason suggests it
might be signed by default. C89 allows the im-
plementor to determine the signedness of a char.
It then proceeds to provide a library where most
string functions have plain char or char* pa-
rameters. It finally shoots itself and its users by

declaring that in some circumstances (e.g.,
strcmp and strncmp) the char parameters will be
treated as unsigned regardless of the way the
implementation views char. Note that very care-
fully...the prototype for strcpy has two const
char* parameters but the actual data is com-
pared as if it is unsigned char.

There is also a problem with wchar_t in C as it is
defined via a typedef (or possibly a #define) to
an integral type. This is simply not enough be-
cause as long as the type selected will represent
the largest character set of any supported locale,
it can be any of the builtin integer types. That
means that the user does not even know enough
of the interface. I am all for hiding implementa-
tion details but only if consistent, predictable
behaviour is provided.

Because C is a value based language, the use of
storage class specifiers such as const, volatile,
register and auto may or may not provide de-
rived types. I could spend a lot of time discuss-
ing this but in the final analysis it is largely a
matter of viewpoint.

const and volatile are type-qualifiers in C,
not storage class specifiers – Ed.

Pointers are a different issue. Again, any top
level qualification may or may not be a different
type in C, but discussing it is a complete waste
of effort. However, note that we have the idio-
syncrasy that a top level pointer indistinguisha-
bly incorporates pointers to many different types
– solo types and vectors of all possible lengths.
If you have any doubt about this, consider two
arrays, one of nine ints and one of ten ints. Both
these arrays may be accessed via an int* . On the
other hand an array of five arrays of nine ints
cannot be handled via a pointer to an array five
arrays of ten ints. There are lots of subtle varia-
tions hidden behind the facade of pointers.

Of more direct importance are the differences
between int const*, int* , int volatile* and int
const volatile*. Each is a subtly different type
which manifests when you consider the rules for
passing arguments of these types to parameters.
Sure, you can pass the value of a const int to an
unqualified int parameter but you cannot pass an
int const* to a parameter of type int* . The only
way that this can be described is that the pointers
are of different (incompatible) types.

My reason for taking a little time on the C type
system is that it is poorly understood by most C

 Overload – Issue 9 – August 1995

 Page 6

programmers but this poor understanding does
not result in too much harm.

C++ typology

The picture changes dramatically when we move
to C++. Quite apart from a much stronger type
system, there are two vital extras. C++ supports
user defined types, and even more significantly it
supports two forms of overloading – operator
and function.

C++ makes a serious effort to support program-
mers in designing their own first class types. It
gets very close to empowering users to define
types that are indistinguishable from the builtin
ones. Its major failures are largely in the realm
of sequence points and overloading some opera-
tors. You cannot provide the same behaviour for
your versions of things such as logical-or be-
cause there is no mechanism in the language to
specify delaying the evaluation of a parameter.
C++ specifically prohibits your overloading the
conditional operator. I think a good case could
have been made for prohibiting overloading the
other operators that include a sequence point.

Overloading functions provides another problem
– it is the type system that is used to distinguish
overloaded functions. This means that the type
system is pushed to the forefront in C++ and
demands that C++ programmers should at least
have a good intuitive grasp of ‘type’. In my ex-
perience this grasp is missing. The big irritant is
what I have nicknamed ‘Quantum Chromo Ty-
pology’. By this I mean the subtle flavours of
types that C++ has produced in order to support
overloading (maybe the flavours – colours –
were already there, but in C++ it is essential that
the programmer recognises them).

When programmers create their own new types
by declaring classes, they actually create far
more than just a single type. I’m not referring to
the infinite regress that pointers generate but
something else that includes a builtin set of con-
version rules. Consider the following:

class T {
 int t;
public:
 T (int i=0) : t(i);
 operator int () { return t; }
}

How many types have been created? By my
count, at least eight:

T
const T

volatile T const volatile T
T&
const T&
volatile T&
const volatile T&

Now consider variables of these eight types and
parameters of the same eight types. Which of the
variables would be valid arguments for each of
the parameters. If you think that is easy, add
pointers into the mix and consider which point-
ers are compatible.

Now you have cleared up those, ask yourself
which varieties are distinguishable for the pur-
poses of overloading? Now go back to my mini-
malist class T and consider which of the eight
types can be assigned to which others, and which
can be created by copy construction from vari-
ables of the same or derived types?

Now, when you have got that clearly sorted in
your mind consider the following:

template <class Q> void f (??);

and replace the ‘??’ by each of the variations of
Q. Are all these variations legal? Of course they
are because you should be able to write a generic
version of any function. Actually you should be
considering at least the eight varieties above and
the eight pointers to such. Now for each of those
16 potential template functions which versions
of T (or pointers to T) can be used to instantiate
a function?

I make that 12, George: you can’t have
pointers to references...or are you including
references to pointers? – Ed.

For example consider:

template <class Q> void f(Q&);

Is

T t;
T& tr=t;
f(tr);

valid code?

By the way what about the following code:

volatile T vt;
const T ct=vt;

In other words, can I use a copy constructor to
create ct as a clone of vt? Is the answer the same
for:

const T ct;
volatile T vt=ct;

Now consider the following:

 Overload – Issue 9 – August 1995

 Page 7

class path {
 mutable int i;
public:
 path () : i(0) {}
 path (path&) : i(1) {}
 path (const path &) : i(2) {}
 path (const volatile &) : i(3) {}
 path (volatile &) : i(4) {}
 void print() { cout << i; i++; }
 void print() const { cout << i;
i*=3; }
 void print() const volatile
 { cout << i; i*=4; }
 void print() volatile
 { cout << i; i*=5; }

};

void fn(path & p) { p.print(); }
void fn(path const & p) { p.print(); }
void fn(path volatile & p) { p.print();
}
void fn(path const volatile & p)
 { p.print(); }

Now write some code that exercises all these
functions. When you have your code working
comment out any single function (either a mem-
ber function of class path or one of the over-
loaded versions of fn). Predict what will happen
to your test code. Now try commenting out a
second function.

That’s a bit unfair George! How many of us
have compilers that support mutable? – Ed.

Conclusion

What I have attempted to do with this item is
give you something to think about – what you
might call the ultra-fine structure of the C++
type system. I have largely set you questions
rather than attempting to give you answers be-
cause I believe that programmers need to ex-
periment to develop a good intuitive grasp of
what they are doing when they add qualification
to a member function, to a parameter, to a type
parameter in a template and so on.

Note that all flavours of a type necessarily share
two things: constructors and destructors. All
other behaviour can be made different for each
variation of cv-qualification. However refer-
ences are also sub-types (if you don’t believe it,
look back at the template cases).

Of course no sane programmer would intention-
ally mess around with creating radically different
behaviour for types that are only distinct at the
quantum chromo type level. But playing at this
level might improve your sensitivity to C++ type
problems just as the annual Obfuscated C contest
has done much to improve C coding quality.

A challenge

Write a clear explanation of what I have called
quantum chromo types (or elsewhere the ultra-
fine structure of type).

George Wendle

Poor old volatile always seems to be a sec-
ond-class citizen when people talk about cv-
qualification – everyone talks about const
member functions but, as George shows,
there are four flavours not just two. The
committee are still wrestling with the seman-
tics of volatile: they haven’t even decided yet
whether T::T(volatile T&) is a copy construc-
tor or not! – Ed.

Seduction: The Last? –
Applying the STL mindset

by Kevlin Henney

There are two things that immediately strike you
about the STL (Standard Template Library):

1. it won’t compile, and

2. it’s a very powerful way of thinking.

Developed by Alex Stepanov [1] and Meng Lee
at Hewlett Packard, the STL is a library of ge-
neric components – algorithms, functors, object
adaptors, and containers with their iterators –
based on thorough operational specifications [2].
Andrew Koenig suggested that it should be put
together as a proposal for the C++ standard li-
brary, and the rest is becoming history [3].

Library design philosophy

The STL makes heavy use of templates – in
some places using features that have been re-
cently standardised but are not yet supported by
any compilers – and no use of polymorphism.
The library’s philosophy is to make algorithm
use and design significantly easier. The non-
inheritance approach comes as a surprise to
many, but this should not be taken to mean that
the library components are inflexible. On the
contrary, components are heavily parameterised,
the difference being that most of the parameteri-
sation is at compile time. It is easy to build an
efficient polymorphic container hierarchy using
STL containers as the underlying implementa-
tion – and this is something I may return to in a
future article – but not vice-versa. As such, the

 Overload – Issue 9 – August 1995

 Page 8

STL constitutes the more fundamental approach
to library components.

The emphasis on algorithms endows the STL
with a particular flavour, once and for all giving
C++ containers and iterators a style of their own.
Of late, C++ libraries have been growing their
own standard idioms and becoming less like
Smalltalk hand-me-downs. The STL takes a new
and alarmingly simple approach to complete the
picture. Or is that old and alarmingly simple?
Choosing the data structure to simplify the algo-
rithm is hardly new advice, but it is this ap-
proach more than any other that typifies the
library. An important feature of algorithms is
their complexity, i.e., their relative performance
in terms of the number of elements they operate
on. The proposal gives the relative cost of each
operational expression. This, as well as the no-
tion of interface, is used to fully define what a
type is; although the STL is not strictly object-
oriented, it is firmly based on abstract data types.

Containers

The standard first tackles the specification of
container interface and behaviour. A number of
parameterising types are specified, such as the
reference and pointer types used for the con-
tainee type, and then a number of operations that
the container must support, e.g., default con-
struction, copy construction, equality and size
query. These operations are specified in terms of
valid expressions along with their expected be-
haviour and complexity. For instance, the com-
plexity of the equality operation is linear: the
time taken to determine equality of two contain-
ers is no worse than proportional to the number
of contained elements.

Sequences are a specialised form of container.
These are required to satisfy the constraints
placed on a container in addition to a number of
others, such as insertion and erasing of elements.
A number of optional operations are also speci-
fied:

• front and back, to query the first and last
element;

• push_front and push_back, to prepend or
append a new element;

• pop_front and pop_back, to drop the first or
last element; and

• operator[] to access an indexed element.

The library provides three standard sequence
classes:

• vector, the standard array class, which sup-
ports random access and length change at the
end in constant time;

• list, the standard doubly linked class, which
supports general insertion and erasing in
constant time;

• deque, which supports random access and
length change from either end in constant
time.

The standard also specifies the requirements, in
addition to those for containers, for associative
containers. Standard implementations are pro-
vided for set, multiset, map and multimap. The
map class is what is sometimes known as a dic-
tionary or an associative array, and the multi-
classes are bags.

Iterators

What gives the containers an extra dimension
and their flexibility with algorithms is the speci-
fication of iterators. Iterators have a straightfor-
ward pointer-like interface, going against the
trend for ever fancier and more all-knowing it-
erators. Many operations on containers are speci-
fied in terms of iterators rather than indices: find
returns an iterator to the first occurrence of the
element to be matched; insert and erase operate
either single iterators or a range specified by two
iterators. It is as if they were an abstraction of
pointers into a container, in the same way that
pointers can be used within a plain old C array.

A benefit of this is that algorithms can be written
in a generic way on iterators. They do not tie you
down to a particular implementation, e.g., you
need not inherit from VendorSpecificClass, and
they can be used with plain arrays. Both of these
points relate to efficiency which, despite C++’s
high level features, is still something that must
be considered as part of its ‘spirit’.

The standard specifies five categories of iterator,
depending on the kinds of operation supported:

• input, these are quite simple iterators for
single pass algorithms and support only
equality, increment and dereferencing for
reading;

• output, these are also single pass, like input
iterators, except that only dereference for as-
signment is supported;

 Overload – Issue 9 – August 1995

 Page 9

• forward, these have both input and output
iterator properties, and are useful for multi-
pass unidirectional algorithms;

• bidirectional, which as the name suggests
supports all the features of a forward iterator
and also the decrement operator;

• random access, this is a generalisation of
bidirectional that supports full ‘pointer’
arithmetic.

General algorithms for sorting, reversal, filter-
ing, etc. are written that require only iterators in
their interface, without any explicit mention of a
container.

So how are iterators initialised? Just as with
pointers into arrays, iterators are valid on only
one container at a time. The standard interface
for containers provides for return of an iterator at
the beginning and just past the end:

template<class value_type> // simplified
class list //
declaration
{
public:
 ...
 iterator begin();
 const_iterator begin() const;
 iterator end();
 const_iterator end() const;
 ...
};

By “just past the end” I mean that such an itera-
tor is not legally dereferenceable as part of the
container, but is notionally just after the last le-
gal element. This is used as follows:

list<int> l;
...
for(list<int>::iterator i = l.begin();
 i != l.end();
 ++i)
 *i += x;

The past-the-end marker is a useful out-of-band
value for denoting conditions like a failed find.
The other thing to notice about the declarations
is that const and non-const iteration are treated
as separate. A non-const iterator dereferences to
a modifiable lvalue, or dummy lvalue, whereas a
container cannot be modified through a const
iterator. The use of const preserving iterators
mirrors the usage for pointers and ensures com-
plete type correctness across the container and
its iterators.

Traversables

The requirements for the STL are biased towards
containers. Well of course they are! But aren’t

we missing something? Yes. There is no reason
that all iteratable entities need to be size con-
strained in any container-like way, so there is
something more general than a container that
could be defined.

The appropriate iterator category for this concept
would be the input iterator. For obvious reasons
I call this more general concept a traversable.
This covers all containers and also includes algo-
rithmic sequences such as random numbers,
ranges, filters, arithmetic and geometric progres-
sions, and almost any other read-only transient
sequence that you might care to name. This is
similar to the idea of generators [4]. However, a
generator is an iterator that does not explicitly
refer to a sequence; here I make a distinction
between the iterator and the iterand, no matter
how abstract or simple a sequence it encapsu-
lates.

I am not suggesting that this idea needs to be
expressed in the C++ standard, but you may find
it a useful design tool. As an example, I believe
that Sean’s basic outline of a lexer [5] could be
moved towards a traversable model with rela-
tively little effort. On the next CVu disk, and
then on ACCU’s ftp site at Demon [6], you
should find my implementation of a fully work-
ing non-template prototype of the random num-
ber example that I mentioned in passing [7].

On being lazy

A whole raft of lazy containers can be built on
the STL foundation, possibly reusing some of
the existing predefined classes. Generated se-
quences, as discussed above, are a form of lazily
populated list. So long as you only access from
the head forwards, i.e., via an input iterator, you
need not be any the wiser that the collection is
actually virtual (in the original sense of the
word). Evaluation on demand can also be a fea-
ture of sized containers. For instance, sparse and
growing arrays that automatically fake default
values or create elements as needed, like awk’s
associative arrays.

A sparse array can have a fixed size but with
storage allocated only for members that do not
contain the default value for the collection.
Some neat tricks with proxy classes as reference
types ensure that this illusion is smoothly main-
tained. The underlying implementation is free to
use a map class or a sequence of sequences that

 Overload – Issue 9 – August 1995

 Page 10

capitalises on contiguous groups of non-default
elements.

Auto-resizeable arrays simply grow to meet their
uppermost referenced member, e.g.

grow_vector<int> v;
cout << v.size() << endl; // prints 0
v[100] = 0;
cout << v.size() << endl; // prints 101

This class could be built from predefined com-
ponents, such as a sequence, or sequence of de-
ques, or it might take advantage of a sparse
array’s properties to avoid unnecessary alloca-
tion as a trade off for access speed. I referred to
such a type in [8], where the const version of
operator[] would not change the length, throw-
ing an exception instead.

Persisting through space and time

A persistence model might use the STL as its
foundation. It has been suggested that this can be
achieved by providing a specialised allocator for
the container. A feature I have not mentioned so
far is that the allocation strategy used by a con-
tainer is fully parameterisable. The library
classes use default template arguments to plug in
the standard allocator, which effectively corre-
sponds to the standard new and delete. At first,
you do not seem to gain much, except when you
realise that the iterator abstracts the whole proc-
ess of allocation, what a reference is, what a
pointer is, and how to convert a reference to a
pointer. By providing your own allocator not
only can you easily create your own allocation
strategy for a library class, you can also abstract
whether or not an object is actually live and pre-
sent in memory at any point. In other words, the
Holy Grail of OO: persistence.

An alternative approach is to provide a lazy con-
tainer that allows swapping of objects to disk
and relatively transparent retrieval but makes
persistence an up-front issue and an explicit fea-
ture of the container. This would be simpler to
implement than the allocator version, but would
not necessarily provide the same transparency.
Clearly the trade off between using an allocator,
a specialised container, or a hybrid of the two
must be evaluated, but this illustrates that there
is more than one way to go.

By restricting part of a vector’s interface, namely
leaving out the size changing operations, it is
possible to create a custom allocator that uses a
given fixed part of memory directly. This could

be used for mapping lower level structures from
the operating system, C libraries, other lan-
guages, or other address spaces into a convenient
object, e.g.,

vector<unsigned, direct_allocator>
 mapped(length, 0,

direct_allocator(base));
mapped[0] = a; // assigns from base for
 // sizeof(unsigned)
mapped[1] = b; // assigns from base +
 // sizeof(unsigned)
...

If the constructor to direct_allocator is a con-
verting one, this could be simplified to

vector<unsigned, direct_allocator>
 mapped(length, 0, base);

In addition to shared memory, further adapta-
tions of allocators suggest file mapped, pipe, or
message buffer approaches, depending on what
features a particular operating system offers.
Some restraint and taste is probably required in
this area – as noted by Arthur C Clarke, any
form of technology that is sufficiently advanced
is virtually indistinguishable from magic.

Wrapping up the file system

The old procedural way of thinking about APIs
endures through familiarity, but such compla-
cency can hide a better approach. Remember that
once a clean abstraction has been made and
committed to code, it need not be made again.

Directories can be viewed as containers of files.
The Posix opendir and closedir functions, on
DIR structure pointers, and the dirent structure,
with the entry name d_name, already constitute
an iteration model. Using this as a foundation it
is possible to create a directory container class
yielding iterators that dereference to pathnames.
These can be viewed as truly single pass con-
tainers, so that the DIR pointer is owned and
handled by the container. More practically they
can be implemented as re-entrant objects, so that
each iterator has its own managed DIR pointer.

A simple version of a directory listing command
could be implemented as follows, using the stan-
dard copying algorithm with output iterators on
cout and automatically inserting a newline after
every write:

int main(int argc, char *argv[])
{
 directory dir(argc > 1
 ? argv[1] : “.”);
 copy(
 dir.begin(), dir.end(),

 Overload – Issue 9 – August 1995

 Page 11

ostream_iterator<string>(cout,“\n”));
 return 0;
}

Should it be possible to erase entries from a di-
rectory container? In principle this is easy to pro-
vide, but there is a potential loss of symmetry in
that directory entries may not be inserted or cre-
ated in a symmetrical manner. Insertion using
iterators from another directory could be inter-
preted as creation using hard or soft links, as
appropriate. Encapsulating pathnames and file
types, and hence their creation method, provides
for single pathname insertion. A uniform inter-
face for insertion is possible once clearly de-
fined.

Pathname encapsulation is another interesting
container candidate. Most systems have some
kind of hierarchical or indexed file system, with
pathnames reflecting such addressing. A fairly
common requirement is to iterate through path-
name components: a pathname iterator would
automatically extract the path separator token on
iteration. In other words,

pathname path = “/home/kevlin/bin”;
for(pathname::const_iterator name =
 path.begin();
 name != path.end();
 ++name)
{
 cout << *name << endl;
}

Would print out

home
kevlin
bin

Some additional handling for prefixes could give
you relative versus absolute pathname queries,
or extended pathname encapsulation, e.g., URLs.

Saving the environment

Operating system or application configuration
files are another form of external container that
can be plugged into this approach. Windows .INI
files can be viewed as a two tier hierarchy of
sections and entries accessible by iteration or
key lookup. The features available in the Posix
<pwd.h> header – getpwnam and getpwuid func-
tions, and struct passwd – provide the basis for
an associative view container.

Should such containers be what are termed sin-
gletons [9], i.e., only a single instance can exist
per application? As their state is actually held
and managed externally the container objects can

be considered proxies of this state, and so there
is typically no need to complicate the model with
a singleton approach.

What about environment variables? There are
two kinds of environment we are interested in:
the actual current environment, as accessed by
getenv (ISO C), environ (Posix) and putenv
(common extension); a composed environment
for use in executing other processes, as used by
the Posix execle and execve calls.

One solution is to have a singleton instance rep-
resenting the actual environment, but this neces-
sitates one class for the current environment and
another for composed environments as the
mechanisms are so different. An alternative is to
treat the current environment as an implicit
global resource behind the scenes that can be
read from or written to, suggesting refresh and
apply members for environment containers.

Conclusion

Looking at some of the ideas above, some other
writings and the specifications for a couple of
commercial STL libraries – those from Object-
Space and Modena to be precise – there seems to
be a strong convergence in thinking. A lot of
other library areas seem to be undergoing the
STL treatment independently and in parallel by
vendors and individuals alike.

Finally, the seduction I am referring to in the
title is in the way of thinking, particularly as re-
gards iterators. It is a powerful tool that, in con-
junction with other powerful software
engineering concepts you may have accumu-
lated, gives you another solid design framework
within which to work. The emphasis here is on
the multiplicity of compatible techniques you
may use: it would be foolish to think that any of
them is the only or the last one.

Kevlin Henney
kevlin@wslint.demon.co.uk

Notes and references

[1] Alex Stepanov is interviewed by Al
Stevens in the March 1995 issue of Dr
Dobb’s Journal

[2] The original definition and implemen-
tation of the STL is available from
ftp://butler.hpl.hp.com/stl

[3] The STL has been incorporated into
the draft C++ standard, a copy of

 Overload – Issue 9 – August 1995

 Page 12

which is available from
ftp://research.att.com/dist/c++s
td/WP

[4] “A Little Smalltalk” by Timothy Budd
covers generators in some detail

[5] “So you want to be a cOOmpiler
writer? – Part II” by Sean Corfield ap-
peared in Overload 8

[6] ftp://ftp.demon.co.uk/pub/ACCU

[7] The random number example is to be
used (hopefully) as the basis for a fu-
ture magazine article

[8] “Overloading on const and other sto-
ries” appeared in Overload 7

[9] “Design Patterns: Elements of Reus-
able Object-Oriented Software” by
Gamma, Helm, Johnson & Vlissides
(aka the ‘Gang of Four’), is a cornuco-
pia that includes the Singleton pattern

Joy Unconfined – reflections on
three issues
by The Harpist

I have known Francis for more than half my life
because he was the one that corrupted my mind
by introducing me to the gentle art of computer
programming. He has never been one for staying
in the safe central territory of any activity. I have
seen code of his get up to just about every trick
in the book but almost always with that extra
fingerhold on safety. His implementation of
Forth on a ZX-Spectrum included much use of
self-modifying code, but to the best of my
knowledge each instance made no assumptions
as to the code’s prior state. He always taught us
to do anything as long as:

1) we could guarantee that it would work

2) we documented it

3) we were willing to maintain it

4) we were able to justify it as being an effec-
tive solution to a problem.

Now look back at his item on ‘Polymorphic Ob-
jects’ in the last issue. It fails criterion one, and
does so in a very nasty way that seems to have
been missed even by our esteemed editor.

I did say that I had no idea whether it worked
or not! – Ed.

Consider the following program based on his
code (assume that xstretch() is a polymorphic
function that stretches an ellipse (circle) in the x
dimension, i.e., it works simply with an ellipse
but will have to call change() for a circle):

int main() {
 Circle c;
 c.xstretch(2);
 (typeid(c)==typeid(Ellipse) ?
 cout << “I’ve changed” :
 cout << “I’m still a
circle”;
 cout << “.” < <endl;
 return 0;
}

What do you think running this program will
display? Think very long and hard. Certainly c
has polymorphed into an ellipse but how does
the compiler know that? Compile the above pro-
gram with no optimisations and you should get
what Francis expected. However, note that there
is absolutely no reason for the compiler to ex-
pect any form of polymorphic behaviour: c is
neither a pointer nor a reference and even if I
changed the declaration to Circle& c = *new
Circle;, there is still no way that the compiler
should expect polymorphic behaviour.

If the above program is to run the way Francis
expected, then we would have to cripple opti-
misers quite unnecessarily so that they were
forced to call virtual functions through a virtual
function table (or other device for implementing
polymorphism) even if the compiler believed it
could statically identify the required function.
This is not acceptable – indeed we should be
doing just the opposite: we should be encourag-
ing implementors to provide static binding of
virtual functions whenever it is possible. I be-
lieve that all objects should be statically bound
to their virtual member functions, in addition
references and pointers should also be so bound
whenever the compiler can determine that the
static and dynamic types must be the same (and
possibly at times where it can determine the dy-
namic type statically even if that is not the static
type).

Sorry, Francis, polymorphic objects are another
of those seductive ideas that lead to either fatally
flawed code or a permanently crippled language.

(To be fair, Francis had actually worked out
most of this for himself, before I discussed it
with him, but it is nice to be able to correct one’s
teacher sometimes)

 Overload – Issue 9 – August 1995

 Page 13

Virtually inline

I cannot remember where I saw this, but I re-
cently read a comment about Symantec’s new
compiler (well worth a look if your hardware can
cope with it) rejecting definitions of virtual func-
tions in the interface of a class (horrible thing to
do, defining functions in an interface that is).
The grounds being that inline has to be acted on
at compile time whereas virtual is the exact re-
verse, the code has to be selected at execution
time. On the surface that appears to be a justifi-
cation for not accepting virtual inline functions.
That is too superficial, and I think that any com-
piler that rejects such code needs amending (I
don’t think I would go so far as to claim it is a
bug but it is getting pretty close). Strictly speak-
ing inline is only a hint to the compiler just like
register is in C. The compiler can inline code
without your suggesting it and it can decide not
to inline code that you have marked as such.

On the other hand, as intimated above, just be-
cause a function is virtual does not mean that it
must be bound dynamically (at execution time).

While it is hard to imagine any circumstance
where a compiler could both inline code and use
dynamic binding simultaneously, it is certainly
desirable for a programmer to indicate that the
compiler can inline the code if late binding
proves unnecessary.

As I wrote the above I was thinking about the
nature of inline functions and remembered that
they are currently static functions (i.e., have only
file scope visibility) by default. I read some-
where that X3J16 was intending to deprecate the
use of static at file scope. What are they going to
do about implicit uses? Such use also applies to
file scope const variables.

The ISO C++ committee have deprecated file
scope static because unnamed namepaces
provide a ‘better’ alternative. To be precise,
file scope inline functions have internal link-
age rather than being static – the same ap-
plies to file scope const variables – Ed.

Following this flow of thought, many program-
mers are coming to realise that the idiom of us-
ing a const variable where C traditionally uses a
#define to provide a manifest constant is flawed.
It doesn’t work properly inside a class, though
this is the primary reason for introducing it in the
first place. It has to be defined out of class which

is a pain and causes problems when you need the
value in class at compile time. For example:

class T {
 const int size;
 int array[size];
// etc.
};

doesn’t work. This has led to the idiom of using
enums for such purposes so we have:

class T {
 enum{size=100};
 int array[size];
// etc.
};

Which is all right as far as it goes, but we do not
have typed enums (enums are of course types but
we have no control over their underlying storage
and conversion properties) and anyway that is
not what enums were intended for. What we
need is some new form of storage class specifier
that simply instructs the compiler to use the
value but not provide storage for it so we could
write something such as:

class T {
 nostore int size=100;
 int array[size];
// etc.

};

I guess that isn’t the best choice of keyword, but
the idea is so simple that, even at this late stage,
it could be added to C++ (actually it would be
even nicer to add it to C). The problem is that it
is so simple, so easy to fix, and so easy to under-
stand that, inevitably, it would result in hours of
discussion (lots of people understand it so they
can express an opinion – its only seemingly use-
ful things that no one understands that result in
no discussion).

Sorry, Harpist, perhaps you’d better go back
and read The Casting Vote more closely – the
committee already fixed this to allow:

class T {
 static const int size =
100;
 int array[size];
// etc.
};

Admittedly, you are still required to have a
static member definition somewhere but it
solves the problem without introducing new
keywords in an intuitive manner. And it
didn’t take hours of discussion, either – Ed.

 Overload – Issue 9 – August 1995

 Page 14

Namespaces

I tried to understand these by reading the rele-
vant part of the Committee Draft standard. I also
found a copy of Metaware High C/C++ available
at work which claimed to implement name-
spaces. I cannot find any other implementation.
That leaves me with a problem. I find the text of
the CD almost impenetrable and after much
struggle I am beginning to suspect two things.
First, I do not think that the Metaware name-
space matches the one being described in the
CD. I am not sure about this but that is my best
guess. Second, I understood that one purpose of
namespace was to support programmers synthe-
sising their own program namespace from sev-
eral external namespaces. I am absolutely sure
that this was offered as a major facility that
namespace would support. Again I could be
wrong, but what is in the CD does not seem to
offer this facility.

You’re right: Metaware implements some-
thing different to the draft and you couldn’t
synthesise namespaces. The latter is now
fixed – see The Casting Vote in this issue –
but, unfortunately, the committee can do little
about Metaware’s implementation! – Ed.

When I find text as incomprehensible as that
about namespaces in the CD and cannot find any
body of experience on which it is based, nor any
carefully worded specification of the problem it
is intended to tackle, I become deeply suspi-
cious. Who understands this? Did those who
voted for it know what they were voting for?

Not entirely, judging from the recent discus-
sion on the committee reflector about name-
spaces – Ed.

I do not need an implementation of nostore to
understand what it does and to be certain that it
will work consistently: the only cost is a little
work to the grammar of the language and a few
(probably very few) adjustments to the text of

the relevant standards documents. But when it
comes to complex proposals such as namespaces
I think that nothing less than three working im-
plementations should exist before the proposal
goes any further.

The thing that is giving me increasing concern is
that X3J16 seems to be pushing hard to get the
whole of C++ standardised while there is no
compiler in existence (well, publicly available)
that supports exception handling, templates and
namespaces as described in the CD. Without
such, we are all in a position of abstract design.
As programmers we all know just how much lies
between abstract design and concrete implemen-
tation. By the time C++ reaches a standard it is
too late – much too late. Version 2 of C++ will
not arrive until at least ten years after version 1.
By then so much code will have been written
that has to tackle any language flaws that noth-
ing less than an entire new language will fix the
problem.

Finally

As I read the article from Kevlin Henney in
Overload 8 a thought crossed my mind (they do
sometimes) – how do we get commercial library
producers to specify their products properly. If I
understand Kevlin correctly, he maintains that
there is no point in designing a class hierarchy of
Shape until you know for what purpose it is be-
ing designed. I agree, but the implication is that
reusable code needs documentation that fully
describes its design criteria.

Could we start with MFC? Microsoft have a very
specific view of the computer world and what
are desirable programs (they run under MSWin-
dows and are written by themselves ;-). Seri-
ously, a library written to support large scale
data processing for the Insurance industry will
probably be inappropriate for a developer of a
stock control application for a small business.

The Harpist

The Draft International C++ Standard
This section contains articles that relate specifically to the standardisation of C++. If you have a proposal
or criticism that you would like to air publicly, this is where to send it!

Two different views of the most recent joint standards meeting are given by Francis and myself, and Kev-
lin takes some pot-shots at some of the inconsistencies in the draft standard library.

 Overload – Issue 9 – August 1995

 Page 15

Diary of an Observer
by Francis Glassborow

Elsewhere in this issue you will find Sean’s re-
port on the technical side of the recent joint
meeting of WG21/X3J16. This item is intended
to remind readers that Standards, even Interna-
tional ones, are written by people who are not
very different from yourselves.

For those that are unfamiliar with the technicali-
ties, X3J16 do not allow a member organisation
to vote until they attend their second meeting
and they have to attend two out of three meetings
to retain voting rights – otherwise they are an
observer. This is an excellent rule as it means
that those who vote must have more than a pass-
ing interest and at least a minimal amount of
background. I was attending on behalf of Rich-
fords (who are a London based organisation that,
among other things, provides training in C++). I
was also part of the BSI’s nominated delegation
so could also describe myself by the more gran-
diose title of ‘Technical Expert’.

That is enough pre-amble.

The start

We (that is Sean Corfield, Steve Rumsby and I)
were due to fly out of Birmingham International
at 10.15 am on Saturday, 8th July. Not a problem,
you might think. Well it is if your house is effec-
tively roofless (and so needs occupation if at all
possible), your wife is in Germany and you don’t
own a car (I don’t drive, so there would be no
point in borrowing my wife’s). International
flights require you check in two hours before
scheduled departure time and British Rail seem
incapable of running trains to Birmingham Inter-
national before about 8.15 in the morning – too
tight a schedule to risk. My Bridge partner res-
cued me by driving me there, something much
beyond the call of duty.

The flight to Chicago was uneventful though it is
hard to classify the reason for the visit for the
US immigration control who only know of
‘Business’ and ‘Leisure’. They seemed to swal-
low hard at the concept of a ‘business visit’ for
which I was not earning anything.

Chicago to San Francisco is further than you
might think (unless your geographical knowl-
edge is above average) and we were on another
American Airline’s Boeing 767 (do you know

why seats C, E, G are adjacent?). The final leg of
the journey was on a Jetstream 32. Not a plane
for the nervous, or first time traveller – small
enough to be piloted in a more aggressive fash-
ion and with minimal space (carry-on luggage
gets stowed in a pod under the fuselage). While
waiting for our departure we collected Beman
Dawes, another member of X3J16. We also
found ourselves in conversation with another of
our fellow passengers. When I expressed some
surprise that the airline wanted some proof of
identity for a purely internal flight they took
great delight in telling us about the latest threat
from the ‘Uni-bomber’ but that is another story.

We arrive

A short taxi journey brought us to the hotel and
Beman paid my share as I knew I had nothing
smaller than a $20 note. I was shortly to discover
that I actually had nothing as my dollars were
safely sitting on my kitchen table some 6000
miles away. Having to start on one’s contingency
fund of travellers cheques on day one is a bit
cramping on one’s style though probably a good
way of minimising expenses.

We had twenty-four hours to socialise, play the
tourist etc. before meetings started in earnest.
Those who know me will not be surprised that I
spent some of that time browsing through the
bookshop opposite the hotel. Yes I did buy a
couple of books, but not about any aspect of
computing.

WG21 meets

Even though the two committees meet in joint
session for technical discussion and decisions,
WG21 still has some political decisions that are
handled at a meeting that starts at 6 pm Sunday.
The two main items this time were a sensitive
issue of why there had been a two week delay in
providing a distributable copy of the working
paper for the CD ballot (it wasn’t until the fol-
lowing Friday that the WG21 heads of delega-
tion let the Convenor off the hook on that one).
The other item was the anticipated votes on the
CD. Of those present only the UK was firmly
committed to voting ‘No’. However all knew
that at least four others (France, Netherlands,
Australia and New Zealand) were very unlikely
to vote ‘Yes’. As it was very probable that this
would result in SC22 requiring a second CD bal-
lot we discussed the future timetable. It looks as
if the most realistic/optimistic timetable will

 Overload – Issue 9 – August 1995

 Page 16

produce a Draft International Standard about
when the committees next visit the UK (July
1997)

Down to business

The next five days were to start at 8 am with
breakfast provided by our hosts (endless supplies
of orange juice, coffee, pastries and breads)..
The joint committees met on Monday at 8.30 to
organise the week and tackle the first round of
administration. Looking round the room I was
struck by one of the changes since I last attended
a WG21/X3J16 meeting (London 1992) – the
majority of those present had replaced the stacks
of paper with some form of portable or laptop.
Steve Rumsby’s Psion caused something of a
stir, particularly when he assured everyone that
he had the whole of the working paper on it, and
yes it could talk to other machines – more of that
later.

By mid-morning we were ready to break into the
groups where the real work gets done. This time
it was three core groups and five library groups.
That about says it all. No more extensions
(though some clean-up work is still going on in
Core III) and Environment, C compatibility etc.
were all demoted to the status of “we’ll meet ad
hoc if we need to.”

I joined Core I, or was it Core II (numbers don’t
really matter) with Josée Lajoie in charge. Josée
is Canada’s regular head of delegation, an em-
ployee of IBM working out of their Toronto
Labs and a French Canadian. She is one of those
quietly impressive people, a smile is rarely far
away and she has immense tolerance for the
misunderstandings of others. How many of the
English speakers among you could comfortably
handle meetings and technical issues in French?
Until seven years ago Josée’s English was no
more than that which she had to learn as a sec-
ond language. The priority issue for our group
was to write a formal and acceptable description
of the ‘One Definition Rule’. I am not going into
that here as that is Sean’s domain. However it
took all of Monday and part of Tuesday despite
the excellent preparatory work by Jerry Schwarz.

...and John Max Skaller – Ed.

The rest of Tuesday was spent on easier, more
tractable minor points. We still had to shelve a
ream of work for next time. Tuesday evening
was drafting time to try to get sensible words

agreed upon (actually this is a never ending
process). I managed to get lost and missed it.

Actually, Tuesday evening is when the WGs
try to draft their formal proposals, Wednes-
day evening is when the drafting committee
meet to draft the formal motions. The differ-
ence is subtle enough to be unimportant for
anyone except members of the drafting com-
mittee – Ed.

Wednesday and Thursday morning was spent in
full session while each group reported back and
we tried to decide what we would actually for-
mally vote on. This may seem like duplicated
effort but it isn’t. Sometimes a group comes up
with a bright idea that has hidden implications.
We don’t try to fix such problems in real time
but we do have to decide that we have a prob-
lem.

I was eating my lunches in the hotel as that al-
lowed me to put it on the bill that was already on
Richfords account. Various other delegates ate
there as well. We’d had little difficulty with get-
ting separate checks until Wednesday when one
of the staff informed us that there was no way
that he could keep more than two checks open on
a table. He eventually recanted when we demon-
strated that he had an alternative – we would all
sit at different tables (thereby filling all of them),
be served and then move to where we wanted to
be (sowing even more confusion). The English
don’t confine their stirring to standards issues!

A round of applause

Our proposed solution to the ODR met with
unanimous approval in the straw vote, something
so rare on a major issue that it gained a sponta-
neous round of applause. (For the record it re-
ceived similar treatment in the formal votes on
Friday). There is still some polishing and I guess
someone is going to come up with a corner case
we hadn’t thought of but I think it is now essen-
tially complete.

A Caribbean meal

On Thursday evening Sean and I were enter-
tained by Reg Charney and his wife to an excel-
lent dinner at a Caribbean restaurant in the next
town round the headland. Reg is one of US
members and a staunch supporter of ACCU. He
is also an example of the kind of committee
member that many of you do not expect. He is
one half of a partnership working in computing

 Overload – Issue 9 – August 1995

 Page 17

but not as a C++ specialist. All told about one
third of the active membership of WG21/X3J16
are either individuals or represent small busi-
nesses (with less than a dozen employees).

It was a fine evening, with pleasant conversation,
enjoyable food and finished off with a quiet
stroll by the beach. Then it was back to work for
Sean and I as we discussed the UK votes with
Steve.

I can highly recommend said restaurant: El
Cocodrilla’s in Pacific Grove. They do great
alligator tails... – Ed.

While there were few surprises at the final full
session on Friday when we voted on over thirty
motions there was still more to come. After the
end of the WG21/X3J16 meeting the US TAG
(X3J16 members representing companies domi-
ciled in the US) had to decide their vote for the
CD. A routine matter, you might think. Nearly
three hours later they had to resort to preparing
for a letter ballot because they had lost their quo-
rum. I guess that the US will vote ‘yes’ (and I am
not sure that it isn’t in the interests of the future
of C++ that they do so) but it is worth noting
that, contrary to some opinions, the issues is not
entirely cut and dried.

Editing

As soon as the US TAG was over it was down to
work for those of us who were still around. The
results of the motions had to be incorporated into
the WP. Some motions are very casual, requiring
such things as ‘include wording to the effect’.
This means that the editor (Andy Koenig) is re-
sponsible for getting it right. At other times ex-
act wording has been provided, but it is wrong.
Such circumstances require what the Americans
call wordsmithing. Then there is the general ef-
fort to improve the WP by wordsmithing to pro-
vide more accurate expression of what we mean
(so as to reduce the need to say after the WP be-
comes an IS ‘a close and careful reading of the
Standard reveals that ...’ i.e., we meant ‘...’ but
didn’t say it).

Some wordsmithing is just tedious, some is hard
work. I spent at least two hours trying to get the
paragraph on qualified name lookup in a name-
space to say what was meant. The original from
Bjarne Stroustrup was fine as an informal state-
ment but would have provided the language law-
yers with a field day. Throughout Friday evening
and all day Saturday a small band slaved away to

get as much done as possible so that Andy would
have a fighting chance of doing some of his em-
ployer’s work over the next three months. It all
has to be done using the arcane magic of troff
and careful collation of work back into the mas-
ter document. I wish I had had a camera to re-
cord the variety of equipment pressed into
service. At one extreme we had Steve’s Psion
and at the other we had a fairly old Sun SPARC
station (with a non-functioning floppy disk
drive) – both these machines had to go through
Sean’s PowerBook so that material could be
transferred via floppy to and from Andy’s lap-
top. Hardware experts may realise that some
pretty clever things were happening. We had our
moment of panic when someone’s machine re-
ported detecting a virus.

Proving once again that an Apple Mac is a
truly ‘open’ system! And I couldn’t catch the
virus which led to everyone getting me to
format PC disks and transfer files to and
from the infected machine! – Ed.

The return

The three of us departed for Monterey airport at
7 am on Sunday to find it fog-bound. American
Eagle couldn’t get a plane in to take us to San
Francisco so at 8.30 they dispatched us by taxi
on a 120 mile journey to catch our 10.38 flight
from San Francisco to Chicago. I think that it
would be only possible to do it on Sunday with a
taxi driver who completely ignored the US speed
limit of 55 mph. Fortunately the US doesn’t have
any problem with checking people’s baggage in
twenty minutes, even if it is being checked
through to the UK. Sean’s experience with inter-
national travel helped – I would never have con-
sidered checking baggage at the 1st class desk
with an ordinary coach class ticket.

And finally

It somehow reflects on British Rail that the train
I caught from Birmingham International to Ox-
ford was twenty-five minutes late. The true sig-
nificance of this is that it was a connecting train
to Gatwick. I hope no one on it had a plane to
catch.

To summarise, a hard but instructive week and
made pleasant by both the quality of the com-
pany and sense of purpose and friendship. I have
said it before but it is still worth repeating –
standards work is a very effective way of getting
to understand the language better.

 Overload – Issue 9 – August 1995

 Page 18

Francis Glassborow
francis@robinton.demon.co.uk

The Casting Vote
by Sean A. Corfield

I’m writing this on the flight from San Francisco
to Chicago after the most recent C++ meeting in
Monterey, CA. It’s been an eventful week – see
Francis’ Diary of an Observer – and many prob-
lems with the draft have been resolved. In Over-
load 8, I indicated that the ANSI public review
had begun and that other countries would also be
soliciting comments. Some of those comments
were available in Monterey, but I think many
more are yet to come: the public review period
has been extended due to an unexpected one
month slip in the ballot process. This will give
people more time to read the draft and comment
on it – keep those comments coming in!

Two years and counting...

We’ve just about reached the point now where
‘all’ we have left to do is resolve the ‘small’ is-
sues that keep cropping up. There are no major
extensions on the table, no major library addi-
tions planned and no major language changes
predicted. After a period of rapid and wide-
spread change, the draft standard is finally stabi-
lising. Whilst that may give C++ programmers
(and their managers) cause for rejoicing, it
doesn’t mean the committee’s work is nearly
done! The flow of small issues means that it will
probably take us until 1997 to arrive at a draft
standard that is precise enough to submit as a
Draft International Standard (see previous Cast-
ing Vote columns for details of the ballot proc-
ess).

That means that the UK meeting in July ‘97 may
well be the one at which we know whether or not
we will be on the brink of an official ISO C++
Standard.

Monterey was the first meeting since the Exten-
sions WG was disbanded. Some of the former
EWG members joined the Library WG (includ-
ing Bjarne Stroustrup) and the rest joined the
pool of Core WGs. I spent Monterey with Core
III which looked at templates, exceptions and
namespaces – Core III is the “not-the-Extensions
WG” – but probably the most important step
forward was taken by Core I at this meeting.

Just one definition!

The biggest definitional hole in the draft has
now been filled: the committee adopted wording
that specifies what has become known as the
One Definition Rule. The essence of this rule is
that it is OK to have two definitions of some-
thing in different translation units if those defini-
tions are ‘the same’. For the purposes of the
ODR, ‘the same’ means the token sequence is
the same and the name binding of those tokens is
the same in each translation unit. Whilst most of
the effects of the ODR are ‘obvious’ and com-
mon sense, there are a couple of ‘gotchas’. My
understanding is that an inline member function
that calls a (static) inline function will violate
the ODR if defined in more than one translation
unit:

// file.h
inline int max(int a, int b)
{
 return a > b ? a : b;
}
class A
{
public:
 // ...
 int biggest() const
 { return max(x, y); }
private:
 int x, y;
};

The member function big() has external linkage
(because it is a member function) but it calls
max() which has internal linkage and is therefore
considered ‘different’ in each translation unit
that includes file.h. I may be mistaken – I am
writing this after hearing the discussion of the
ODR proposal but before seeing the actual word-
ing in the working paper.

To specialise or not to specialise

The closest thing to an extension that was added
in Monterey was a clarification of the syntax for
declaring and defining specialisations of tem-
plates. Now that partial specialisations have been
adopted (see The Casting Vote in Overload 7),
full specialisations were the ‘odd one out’ in the
template world because they didn’t start with the
keyword template. In addition, static data mem-
bers could only be specialised as definitions be-
cause the syntax did not allow you to distinguish
between specialised declarations and definitions.
This has been addressed by requiring specialisa-
tions to be declared (and defined) with the prefix
template<>.

template<class T, class U> class A;

 Overload – Issue 9 – August 1995

 Page 19

 // primary template template<class V> class A<V*,int>;
 // partial specialisation of A
template<> class A<void*,int>;
 // full specialisation of A
A<int*,int*>* app;
 // use primary template:
 // T==int*, U==int*
A<int*,int>* api;
 // use partial specialisation:
 // V==int*
A<void*,int>* avi;
 // use full specialisation

If you don’t like this, blame me because it was
my proposal and I’ve been lobbying for it for
quite some time!

Are you pointing at me?

One of the template classes in the draft standard
library which has attracted quite a few comments
is the auto_ptr class, which allows you to wrap
pointers so that they become exception-safe (or,
at least, exception-safer). One of the members of
auto_ptr is operator–> and I have had some
mail from people who’ve tried this class and
found it doesn’t compile – see Q&A in this issue.
The committee previously decided that the return
type of operator–> should not be checked inside
the declaration of a template so you could have
auto_ptr<int> and not get a compile-time error
for int* operator–> unless you tried to use it. I
proposed that this relaxation be extended, be-
cause it is perfectly reasonable to call the opera-
tor explicitly as a function:

X x;
T* p = x.operator->();

This is valid even if T has no members. It’s valid
because you are not trying to dereference the
type returned by operator–>. The committee
accepted my proposal and two paragraphs of the
draft standard were removed as a result – defi-
nitely a step in the right direction!

Related to this, and part of the above proposal,
the standard iterators in the draft library are now
required to support i->m if it makes sense to do
so. That will hopefully tidy up a lot of code that
currently has to use (* i).m instead. I ended up
editing the changes into the appropriate library
clause and it made me realise just how much
attention that section of the draft still needs:
we’re getting a lot of comments about the lan-
guage clauses but it would be really helpful if
you all tried to read the library and comment on
that!

Except for destruction...

Over the last few meetings, the committee fixed
a lot of the holes concerning exception-safety, by
adding try /catch blocks around mem-initializers
(well, around whole function bodies, in fact),
providing auto_ptr and tightening up the rules
about exception-specifications. This still left one
particularly thorny problem: when an exception
is thrown, the stack unwinds and destructors are
called – if one of those destructors throws an
exception, the program terminates (it actually
calls terminate() which can be overridden).
Quite a few people have called for some mecha-
nism that allows a destructor to ask “can I throw
an exception?” A proposal from Germany pro-
vided the solution: add a function, called un-
caught_exception(), that returns true if an
exception has been thrown but not yet caught
(i.e., during stack unwinding). This provides the
bare minimum necessary for robust handling of
exceptions during destruction.

Synthesis

Core III also tidied up an important flaw in the
semantics of namespaces. One of the benefits
claimed for namespaces was that you could syn-
thesise a new namespace from several others:

// standard namespace to be used by all
// programs written within ACME
namespace ACME {
 // open the standard library
namespace:
 using namespace std;
 // open Rogue Wave’s library
namespace:
 using namespace RogueWave;
 // open version 3 of ACME’s ‘K’
library:
 using namespace KLibV3;
}

The intent was that ACME’s programs could
then include the appropriate headers and just
say:

using namespace ACME;

This worked, but there are times when you don’t
want to open the whole namespace, you only
want to pull parts of it out without getting (po-
tentially) everything. The obvious way to do that
is with an explicitly qualified name without wor-
rying which namespace the declaration really
inhabits:

ACME::initialiseKLib();
ACME::list<ACME::widget> widgets;

Unfortunately, this didn’t work! Bjarne
Stroustrup proposed a change to allow qualified

 Overload – Issue 9 – August 1995

 Page 20

name lookup to ‘tunnel’ through using-directives
which fixes this problem. The committee ac-
cepted the proposal so namespaces now fulfil
their initial promises. It’s taken a long time to
get clarification on the meaning of namespaces
and, even now, a lot of people still don’t really
understand how they work. At least we now have
a stable base, that seems to work, on which to
build.

Small is beautiful?

There were a large number of ‘small’ issues re-
solved in Monterey. Each WG has a list of out-
standing issues for the clauses for which they are
responsible. Those lists typically have fifty to a
hundred issues active with WG members work-
ing hard to suggest resolutions, draft WP
changes and get the committee to accept them.
This process is generally fairly successful and
will be the pattern of work for the committee for
the next few years. Not all the resolutions are
entirely sensible and here are two from Mon-
terey that I think are somewhat dubious:

Boolean arithmetic?

Assignment operators now allow the left hand
operand to be bool which allows you to write:

bool b = true;
b *= 42;

This wasn’t universally popular with the com-
mittee with a quarter voting against, but it falls
naturally out of the existing rules for bool, un-
fortunately, because those weren’t strict enough
in the first place.

First class rights for unions!

A union can no longer have members with refer-
ence type. It was argued that you can’t do much
with such things so we should ban them. This
motion was particularly unfortunate, in that we
have already voted on it and defeated it. It suc-
ceeded this time because two of the National
Bodies that strongly objected were not repre-
sented at Monterey.

I should point out that the remaining small issue
resolutions were reasonable and included such
things as:

• sequence points in mem-initialisers – to en-
sure that the initialisers are evaluated in
strict sequence,

• multiple extern “C” definitions are now ill-
formed,

• clarification of many issues regarding link-
age, templates and the library’s handling of
exceptions.

Name injection revisited

In Overload 7 I hinted that the committee were
trying to restrict name injection to make it less
surprising. In fact, at Monterey, there was a
groundswell of support for removing the feature
altogether but a couple of things stopped us.
Consider the following code based on an exam-
ple in Barton & Nackman:

template<typename T>
struct Comparable
{
friend bool operator==(const T&, const
T&);
};
template<typename U>
struct Array
: struct Comparable< Array<T> >
{ ... };

Or consider this, simpler, example:

template<typename T>
class basic_complex
{
friend basic_complex<T>
 operator+(const
basic_complex<T>&,
 const basic_complex<T>&);
// ...
};
basic_complex<double> z = 1.0;
z = 2 + z;

The last line requires a conversion on the left
hand side of the + which means that operator+
must be a non-member function. It also means
that operator+ cannot be a global template op-
erator because conversions are not allowed there
either (because of type deduction). So we must
use a non-member, non-template operator which
can be declared as needed for any sort of ba-
sic_complex. Only name injection allows us to
do this.

At the moment then, it seems that name injection
must live on. Steve Rumsby (maintainer of the
UK C++ information web site) suggested three
rules that might make name injection better be-
haved:

1. inject into the namespace of the template
definition, not the namespace of the use,

2. defer injection to the end of a full expression
(i.e., where temporaries are destroyed),

3. if name injection occurs, reconsider the ex-
pression and if any names have changed

 Overload – Issue 9 – August 1995

 Page 21

their meaning, the expression has undefined
behaviour.

These suggested rules are currently being dis-
cussed by the committee so we shall probably
see a proposal on paper for voting at Tokyo. In-
cidentally, rule 1 only works since we changed
the operator lookup rules in Austin.

What about that Barton & Nackman code? It
factors out the name injection into a template
base class so that any other class can be ‘Compa-
rable’ – i.e., have an appropriate non-member,
non-template equality operator – simply by de-
riving from Comparable. Neat? Clever? Ob-
scure? I think we can expect to see much more of
this sort of thing as programmers become more
comfortable with OO design and flexible ways
of using templates and inheritance – Barton &
Nackman makes a good read on those grounds.

The future

For the committee, the future holds several more
meetings at which we will continue to deal with
small issues. For the C++ community, the future
should hold an increasingly stable draft standard
and compilers that conform more closely. Re-
member: two years and counting!

Sean A. Corfield
sean@corf.demon.co.uk

Uncontained – oddities and
oversights in the standard

library
by Kevlin Henney

The STL (see Seduction: The Last? elsewhere in
this issue) is now part of the draft standard li-
brary, but how much of the rest of the standard
library could be considered a part of the STL?
Unfortunately not as much as might or should
be. Whilst the basic_string template class has
certainly been moved towards the STL model,
other areas of the library remain sadly unaf-
fected.

It is worth recognising that the library working
group has finite resources; it is unreasonable to
expect the whole of the library’s style to change
at the flick of a switch. However, most of the
library has been invented by the committee –
raising questions from critics about its maturity –
and it seems surprising that consistency among

the invented components may also become an
issue.

Valerie and friends

The maths library includes containers such as
valarray that cater for a more numeric view of
computation. Although a more recent invention
than the original string class, the nomenclature
and style of these classes has not been made
STL-like. It is trivial to show that vector compu-
tation classes can satisfy the standard container
requirements. It would certainly simplify a de-
veloper’s understanding of the library if a – for
want of a better word – ‘standard’ approach
were taken. Thus we might consider that in its
current state the library is not wholly compatible
with itself.

For instance, rather than length I would have
expected the valarray class to have size and
empty members for querying capacity.1 There
are also no iterator functions or types defined for
it; a convenience that would allow easier integra-
tion with the algorithms library. Simply because
FORTRAN fails to provide useful non-numeric
operations on its arrays does not mean that a
newly designed C++ library has to repeat its mis-
takes.

Sure, the results and operations I have described
as missing can be deduced or handled by differ-
ent means, but that’s not the point of a standard
library – I expect standard interfaces. The valar-
ray class is not badly designed: it just doesn’t fit.

Bits in pieces

The bitstring class, discussed in some detail in
[1], was retired in preference to the bool spe-
cialisation of the STL vector class, the unspe-
cialised version of which also saw off the
dynarray and ptrdynarray classes. I have no
problem with this except it appears that many of
the bit specific operations present in bitstring,
such as left and right shift, did not turn up in
vector<bool>. Whether deliberate or by over-
sight, this does not seem an entirely fair ex-
change.

With the loss of bitstring the bits class, again
discussed in [1], gained a couple of characters to
become the bitset class. It acquired some STL

1 Not to be confused with capacity which is a
member of some containers already – Ed.

 Overload – Issue 9 – August 1995

 Page 22

wisdom in the naming and rearrangement of
some of its members, but lost out on having any
of the iterators which its bit-unwise relative, vec-
tor<bool>, did rather well out of. In case you
have any doubts: yes, it is possible to have refer-
ences into and iterators over a bit sequence. You
can’t use traditional references and pointers so
you effectively define your own lvalue dummy
type to represent the target and bit offset. This is
a common C++ idiom and an application of the
PROXY pattern that is used in many libraries, the
standard one included. You will find the tech-
nique fully described in [2] and [3].

The deficiencies in bitset appear more pro-
nounced when you look at the draft standard
document. The clause on containers starts off
with the basic requirements for a container, i.e.,
what constitutes a container, and is followed
immediately by the non-conforming definition of
the bitset class.

Fixed opinions

With the exception of bitset, all the containers in
the library have variable runtime size. While this
is certainly the most flexible and the most com-
mon requirement, for some critical applications
either behavioural specification or efficiency
considerations can constrain the cardinality of a
size at compile-time. A fixed size vector effec-
tively behaves like a traditional C array with the
added advantage of a glossy interface. On the
downside, its type includes its size; a
fixed_vector<int, 10> could not be passed to
something expecting a fixed_vector<int, 20>.
For the applications that genuinely need this type
of class it is unlikely to be a problem.

They could always define a member template
conversion operator or template constructor
– Ed.

Where the allocator mechanism is defaulted but
overridable for other containers, fixed size con-
tainers do not require an allocator to handle stor-
age for their contained elements. Part of the
reason for using a fixed size container is to
eliminate this additional level of indirection, and
consequently the exact memory requirements for
a fixed size container are known at compile time.
The memory used by the fixed container would
be that of its immediate context: using the same
storage as any enclosing structure, or on the
stack if it is declared as a local variable, or on

the heap if it is allocated by new or memory
mapped if placement operator new is used.

The following is a light sketch of such a class.
The remaining members can be filled out easily
if you are familiar with the standard vector class:

template<class value_type, size_t
length>
fixed_vector
{
public: // types
 typedef value_type value_type;
 typedef size_t size_type;
 typedef ptrdiff_t
difference_type;

 typedef value_type* pointer;
 typedef const
value_type*const_pointer;
 typedef value_type& reference;
 typedef const value_type&

const_reference;

 typedef pointer iterator;
 typedef const_pointer
const_iterator;
 ...
public: // capacity
 bool empty() const
 { return length == 0; }
 size_type size() const
 { return length; }
 size_type max_size() const
 { return length; }
 ...
public: // iteration
 iterator begin()
 { return base; }
 const_iterator begin() const
 { return base; }
 iterator end()
 { return base + length; }
 const_iterator end() const
 { return base + length; }
 ...
public: // access (not checked for
 // exceptions)
 reference operator[](size_t index)
 { return base[index]; }
 ...
private: // state
 value_type base[length > 0
 ? length : 1];
};

In terms of speed efficiency, objects of this class
will fly like the wind. Code size, however, could
become an issue if not handled carefully. I said
that each different size constitutes a different
type: this implies that a class is instantiated for
every new size. Fortunately most of the members
can be inlined, and other techniques – such as
using private base classes that operate on void*
– can be used to reduce any possible weight
gain.

If general fixed size containers were present in
the standard, the bitset class could be killed off
in favour of the bool specialisation of a

 Overload – Issue 9 – August 1995

 Page 23

fixed_vector. Other modifications would have to
be made to the basic requirements for containers
to allow fixed size containers, e.g., the mandated
swap member must swap the state of current ob-
ject with the operand in constant time, according
to the standard, but will take linear time for a
fixed size container.

Hashes to ashes

Where are the standard hash tables? Next to
linked lists, the mainstay of any library or book
of data structures is, without a doubt, the hash
table. The STL already provides the associative
containers map and multimap, and the auto-
associative containers set and multiset. However,
the ordered iterator access requirements on these
imply that the implementation is in terms of a
sorted tree structure, which has logarithmic
lookup time, rather than a hashed implementa-
tion, which has nearly constant lookup time.

The solution is not simply to weaken the re-
quirements for associative containers, but to pro-
vide an additional set of requirements based on
hashing associative containers. A library imple-
mentation would provide hash_set,
hash_multiset, hash_map and hash_multimap
classes.

Apparently hash tables were included in Alex
Stepanov and Meng Lee’s original STL imple-
mentation, but not – for some reason – in the
original proposal. Javier Barreiro, Bob Fraley

and David Musser made a proposal for their ad-
dition to the STL, but in the race for draft release
the gate had already been closed on large
changes. Many hope that the hash table model
will become at least a de jure if not initially a de
facto standard [4].

This issue was raised again in Monterey and
the committee reaffirmed its position that the
library must gain no more weight – Ed.

Kevlin Henney
kevlin@wslint.demon.co.uk

Notes and references

[1] “The Draft Standard C++ Library”,
reviewed in CVu 7(3), was an unfor-
tunately premature look at the C++
standard library by P J Plauger.

[2] “Advanced C++ Programming Styles
and Idioms” by James O Coplien looks
at proxies for overloading the sub-
script operator.

[3] “Design Patterns: Elements of Reus-
able Object-Oriented Software” by
Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides describes
and applies the proxy pattern.

[4] Documentation and implementations
of the hash table model are also avail-
able from
ftp://butler.hpl.hp.com/stl

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

Ulrich Eisenecker’s series on multiple inheritance continues, Roger Lever follows up his campaign for
real inheritance and Peter Wippell shows how RTTI solved his problem.

 Overload – Issue 9 – August 1995

 Page 24

Multiple inheritance in C++ –
part II

by Ulrich W. Eisenecker

In the first part of this series, I showed why mul-
tiple inheritance is sometimes necessary and in-
troduced some simple examples. In this article, I
introduce virtual base classes with an example
based on combinatorial maths.

Combinations

The following example, which is adapted from
[EIS91], produces a complete series of combina-
tions in lexical order. What does that mean?
Well, suppose you want to crack a combination
lock. A typical lock of this kind has three rings,
each with numbers from zero to nine. A system-
atic approach to open the lock would be to start
with combination 0-0-0, then change to 0-0-1,
then to 0-0-2, and so on. The lock will be open
by the time you reach 9-9-9 (hopefully, a long
time before). A different example for such a se-
ries of combinations would be to generate all
possible outcomes of a lottery with numbered
balls, for instance the “Lotto 6 of 49”, which is
very popular in Germany. Of course, with
13,983,816 combinations this would be very te-
dious work, even for a computer.

Four different situations should be distinguished.
To illustrate them, one can think of an urn filled
with uniquely coloured or numbered balls. The
first situation is when the balls are taken out of
the urn, the numbers are noted in order, and each
ball is returned immediately. Formula (1) com-
putes the number of possibilities when the balls
are replaced and their order is important. For-
mula (2) applies when the balls are replaced, but
their order is not considered. Formula (3) is to be
used when the balls are not replaced, but their
order is important. Finally, formula (4) is used
when the balls are not replaced and their order is
of not important. The number of balls is denoted
by n and the number of draws by k.

(1) n k

(2) n+k-1  (n+k-1)!
————— ————————
 k  k!(n-1)!

(3) n!
——————
(n-k)!
provided 1 ≤ k ≤ n

(4) n n!
  ————————
k k!(n-k)!

Generating combinations

But the aim is not to compute these formulas.
Rather we are interested in generating all possi-
ble combinations under the described conditions.
Lexical order means, that

• an order relation is defined and, that

• according to this order the resulting draws
are strictly sorted from low to high.

That is easy to achieve, when balls are replaced
and their order is important. It is simply to count
in a numeral system based on n from the lowest
number up to the maximal number which can be
represented in this numeral system with k digits.
Here is a complete example for three balls and
drawing two balls each time, which results in
nine different combinations:

0 0
0 1
0 2
1 0
1 1
1 2
2 0
2 1
2 2

What happens if the order in which the balls are
drawn is not important? Again the answer is sim-
ple: all combinations which consist of the same
balls as a previous combination are deleted. The
example from above looks now like this:

0 0
0 1
0 2
1 0 deleted
1 1
1 2
2 0 deleted
2 1 deleted
2 2

If you look at which of the combinations were
deleted, you can see that the numbers of an indi-
vidual valid sequence are in lexical order and
those of an invalid sequence are not! So a simple
test that the elements of a combination are in
ascending order is sufficient to detect combina-
tions which must be deleted.

Now we return to our original example and de-
lete combinations where a ball occurs more than
once in a single sequence. This is an easy task:

0 0 deleted

 Overload – Issue 9 – August 1995

 Page 25

0 1
0 2
1 0
1 1 deleted
1 2
2 0
2 1
2 2 deleted

Finally we have the situation of the “Lotto 6 of
49”, where it does not matter in which order the
numbers were taken out and where it is impossi-
ble to draw the same number more than once. It
is only important to have the right numbers. This
leaves us with the following:

0 0 deleted
0 1
0 2
1 0 deleted
1 1 deleted
1 2
2 0 deleted
2 1 deleted
2 2 deleted

Now we can go on to design the classes we need
for the four different combination generators, of
course using multiple inheritance.

Implementing the generators

The root class is called AllCombs, which is ab-
breviated from “all combinations with duplicates
and importance of order”. Its public services are
its constructor, which allocates memory for the
combinations and initialises it, reset, which ini-
tialises the array of numbers in the combination,
n and k which return the corresponding values,
with which AllCombs was initialised. The value
of a combination at a given position between 0
and k-1 is returned by valueAt. The operator<<
is defined for printing the actual combination.
The most important method is nextCombination,
which generates the next valid combination in
lexical order. When there is no next valid com-
bination, FALSE is returned and TRUE
otherwise. The destructor is necessary to return
the memory occupied by combination. There are
several protected data members. Among them
combination, which is a pointer to an array
holding the combination. The values of n and k
are held by n_ and k_ respectively, firstTake
indicates that the urn has just been initialised,
and cursor is used as an internal marker for
speeding up the generation of the next
combination.

class AllCombs
{
public:
 AllCombs(unsigned N, unsigned K);
 void reset();
 unsigned n();
 unsigned k();
 unsigned valueAt(unsigned index);
 virtual BOOL nextCombination();
 virtual ~AllCombs();
friend ostream& operator<<(ostream&,
 AllCombs&);
protected:
 unsigned n_, k_, cursor;
 BOOL firstTake;
 unsigned* combination;
};

NoOrd, which is derived public from AllCombs,
generates combinations without ordering being
important. It has its own constructor which only
calls the constructor of AllCombs. Of course
nextCombination must be overridden and a pro-
tected method needsSorting is necessary which
checks whether a given combination is in itself
lexically sorted and therefore a valid combina-
tion.

NoDup is very similar to NoOrd, except for the
method duplicates, which checks for repeated
values.

NoOrd

AllCombs

NoDup

AllCombs

AllCombs

Fig 1: AllCombs, NoOrd and NoDup

To derive the class NoOrdNoDup multiple in-
heritance is used. In nextCombination the inher-
ited tests needsSorting from NoOrd and
duplicates from NoDup serve to check if a com-
bination is valid.

 Overload – Issue 9 – August 1995

 Page 26

NoOrd

AllCombs

NoDup

AllCombs

AllCombs

NoOrdNoDup

AllCombs

NoOrd

AllCombs

NoDup

Fig. 2: A problematic NoOrdNoDup

After examining figures 1 and 2 thoroughly it
does not come as a surprise that the compiler
will complain about AllCombs being an ambigu-
ous base class of NoOrdNoDup and about n and
k being ambiguous members. There is a similar
problem as with the TwinPhone (in the first arti-
cle), but now propagated through the inheritance
hierarchy. Therefore a mechanism is needed to
eliminate unwanted duplicates of common an-
cestors. Unfortunately this cannot be controlled
when deriving NoOrdNoDup. Rather it is neces-
sary to make NoOrd and NoDup use virtual in-
heritance by deriving them virtual from
AllCombs. The correct declarations for NoDup
and NoOrd to enable elimination of duplicate
members are:

class NoOrd: virtual public AllCombs
{ ... };
class NoDup: virtual public AllCombs
{ ... };

The declaration of NoOrdNoDup is not affected.

NoOrdNoDup

NoOrd

AllCombs

NoDup

AllCombs

AllCombs

AllCombs

NoDupNoOrd

Fig. 3: A well designed NoOrdNoDup

One important peculiarity concerning initialisa-
tion has to be mentioned. A common base (a vir-
tual base class) is initialised only once,
regardless of how often any of its constructors
are called. This is done automatically if a default
constructor for this class exists. If not, the con-
structor must be called explicitly from the con-
structor of the most-derived class. Any
additional direct or indirect calls to constructors
of this common base class are ignored (cf.
[STR93], pp. 580ff).

Since in the example of combination generators
only

AllCombs::AllCombs(unsigned n,
 unsigned k);

exists, the initialisation of AllCombs can not be
done automatically by calling a default construc-
tor. From the point of view of good design, there
is no need to introduce a public default construc-
tor, which can only cause harmful behaviour if
called accidentally for an instance of AllCombs.
Therefore that constructor must be called explic-
itly from the constructor of NoOrdNoDup. Any
further indirect calls of AllCombs constructor via
the constructors of NoOrd and NoDup, which
must themselves be called by NoOrdNoDup’s
constructor, are ignored.

A riddle

To demonstrate the usefulness of the combina-
tion generators here is a riddle to solve.

The Riddler blackmails Gotham City. He reveals
that there is a bomb in the foundations of the
town hall which has been activated recently. The

 Overload – Issue 9 – August 1995

 Page 27

bomb is stuck in solid concrete, so it can not be
removed. The mayor must pay a large sum of
money to the Riddler, so that he will stop the
bomb. But there is another chance – to disable
the bomb. The correct combination of three ci-
phers must be entered in an electronic lock in the
cellar, which controls the bomb. The riddle was
like this:

“The first number is at the second number’s po-
sition in the fraction of the square root of adding
the first and the second number. The third num-
ber is at the second number’s position in the
fraction of the second number’s root. You need
two additional hints: none of the three numbers
will occur twice and the numbers are in ascend-
ing order! Be careful, you have only one at-
tempt! If you are wrong, it will be the last error
in your life. It seems better for you to pay. Har
har har ...”

The mayor calls Batman for help. Batman re-
flects and starts to program his computer. After
half an hour the computer prints out three num-
bers, which Batman presses immediately on the
bomb’s lock. Of course, the detonator stops run-
ning and Gotham City does not need to pay the
riddler.

How can we do this too and find the right num-
bers? Try to design the solution yourself before
you study and run the program, the main routine
of which is listed over the next page.

Next article

The focus of the next article will be mainly on
multiple inheritance and design. The circum-
stances under which multiple inheritance can be
used and what to be aware of will be discussed
in depth.

References

[EIS91] Eisenecker, Von Urnen und Kugeln.
Ziehungsgenerator für Kombinationen
und Variationen. In: c’t 11/91, S. 172-
178

[STR93] Stroustrup, The C++ Programming
Language, 2e. Addison-Wesley, re-
printed with corrections, 1993

 Overload – Issue 9 – August 1995

 Page 28

Can’t find it? – I
If you’re wondering where part III of my cOOmpiler writer series is, don’t worry, it’ll be back in Overload
10. With the committee meeting and an overdue product release, I was unable to devote as much time to
the column as I would have liked and had to postpone it. With my forthcoming job change – from Devel-
opment Group Manager at Programming Research to my own company, Object Consultancy Services – I
will also have to change the direction of the column slightly but I still intend to examine various problems
that beset compiler writers and developers alike!

Sean A. Corfield
Technical Director, OCS

ocs@corf.demon.co.uk

Can’t find it? – II
Here are some useful URLs for information about C++:

http://www.maths.warwick.ac.uk/c++
The official UK C++ web site maintained by Steve Rumsby. There are links from here to lots of
other useful resources, including the Virtual C++ Library and various BSI and ISO standardisa-
tion resources.

http://www.cygnus.com/~mrs/wp-draft/index.html
A browsable version of the latest draft C++ standard made available by Mike Stump of Cygnus
– the GNU software support folks.

http://metro.turnpike.net/S/scorf/cplusext.html
One of my pages that provides examples of the extensions the committee have added to C++
since the ARM was published. The pages accessible from here are still under construction and
change fairly regularly. This, and all my other pages, will shortly move to up-
town.turnpike.net/~scorf/ (and may, in fact, have moved by the time this issue is deliv-
ered). You’ll probably need Netscape to browse this page because it uses tables!

http://www.cs.rpi.edu/~musser/stl.html
Lots of information about the Standard Template Library including example programs, docu-
mentation, history and philosophy – an essential read if you are interested in STL.

http://bach.cis.temple.edu/accu
Alex Yuriev’s excellent Association of C & C++ Users home page!

If you know of other useful URLs, please let me know and I will include them in a future issue of Over-
load.

// nThNumberOfFraction
// extract the nth digit of the fractional part of the floating point value passed
unsigned nThNumberOfFraction(
 double f,
 unsigned n
)
{
 for (int posn = 0; posn < n; ++posn)
 {
 f = 10.0 * f - 10.0 * unsigned(f);
 }
 return unsigned(f);
}

int main()
{
 // 3 digit lock, 0-9 on each:
 NoOrdNoDup urn(10,3);

 while (urn.nextCombination())

 Overload – Issue 9 – August 1995

 Page 29

 {
 // the first of The Riddler's conditions:
 if ((urn.valueAt(0) == nThNumberOfFraction(sqrt(urn.valueAt(0) +
 urn.valueAt(1)),
 urn.valueAt(1))) &&

 // the second of The Riddler's conditions:
 (urn.valueAt(2) == nThNumberOfFraction(sqrt(urn. valueAt(1)),
 urn.valueAt(1))))

 // nextCombination ensures the values are in lex ical order
 {
 cout << "To disable the bomb, press " << urn << '.' << endl;
 }
 }
}

Ulrich W. Eisenecker

eisenecker@dbag.ulm.DaimlerBenz.COM

The complete code will be on a forthcoming CVu disk and then on Demon for anonymous ftp – Ed.

 Overload – Issue 9 – August 1995

 Page 30

On not mixing it...again
by Roger Lever

My original intention in “On not mixing it” [1]
was to question the use of the mixin program-
ming style. To constructively criticise, I provided
an alternative implementation, but unfortunately
I explained the rationale rather inadequately as
The Harpist indirectly noted [2]. I will redress
that balance now – or at least make a better at-
tempt! To understand why I question the use of
mixin programming, I shall make a case for
‘proper’ inheritance and the design choices made
for that approach. So, starting with design...

Analysis, design & abstraction

Before we start to design a solution we need to
fully understand the problem. We build a model
of the problem domain by using abstractions.
This model is then refined and used to solve the
particular problem. It may sound simple but it
isn’t. This process is not C++ specific but it is
well worth investing some time in it. There are
many good books devoted to this area but my
personal favourite is Booch’s book [3]. Overload
8 also touched on this very important subject [4].

Classes are used in C++ to represent the funda-
mental concepts of the problem domain or “real-
ity” being modelled. To quote Stroustrup [5]:

“A well designed system will contain
classes supporting logically separate
views of the system. For example:

1. classes representing user-level con-
cepts (e.g. cars & trucks)

2. classes representing generalisations
of the user-level concepts (vehicles)

3. classes representing hardware re-
sources (e.g. a memory management
class)

4. classes representing system re-
sources (e.g. output streams)

5. classes used to implement other
classes (e.g. lists, queues...)

6. built in data types and control struc-
tures”

Naturally to go from analysis and design to de-
livered executable will incorporate many deci-
sions regarding these classes, however, I want to

focus on inheritance. This is the mechanism that
C++ uses to generalise concepts and mirror them
in the solution domain and in the process reuse
code. An important point is that concepts do not
need a physical counterpart: concepts can and do
include abstract items such as events and roles.

Inheritance & reuse

Reuse used to be synonymous with inheritance –
no need to write new code, derive a new class
and hack that. This was of course a major step
forward from the previous mechanism for reuse,
namely copy-paste-and-hack.

Problems emerged from this approach which led
to rules-of-thumb about what inheritance was and
how and when to use it. This body of wisdom
encapsulated simple rules of thumb such as IsA
and HasA. However, we need to emphasise some
vital points for proper inheritance:

• Context – specific problem domain and re-
quirement

• Perspective – viewpoint of the user, designer
and implementor. Context and perspective
are everything. Understanding this enables us
to produce better abstraction models since
we know what the model is doing, why and
for whom.

Context & perspective are everything

Let’s explore the vehicle-car-wheel trio. Using
Stroustrup’s terms, car and wheel are user-level
concepts and vehicle the generalisation. What are
we assuming? That the concepts are related,
which may be true or it may not. How do we de-
cide if these concepts are related? By understand-
ing the context and the perspective being used.

1. What is a vehicle and what does it do?

2. What is a car and what does it do?

3. What is a wheel and what does it do?

Generally, we would accept the above trio as be-
ing related and would automatically assume the
missing details such as :

• vehicle – types of transport (car, truck, bus...)

• car – the family-sized vehicle that gets us
from A to B

• wheel – keeps a vehicle rolling along from A
to B

 Overload – Issue 9 – August 1995

 Page 31

But what if we applied a different context? For a
fairground ride the vehicle might generalise the
rides available, including a kiddie car which is
very different from a normal car. Wheels in this
instance are redundant or decorative – such
“cars” tend to be fixed to a roundabout or run on
rails. We could rework this example in any num-
ber of scenarios but the key is knowing what be-
haviour or services we expect from the concepts
in the abstract model and the perspective.

Perspective is important since it qualifies to
whom the abstraction is relevant and helps avoid
confusion based on similar vocabulary. For ex-
ample, using the concept ‘queue’ – what is that
and what does it do? From each perspective it
may be something very different:

• User – a queue of cars on a production line,
or a traffic jam

• Designer – an operating system service to
handle system requests

• Implementor – data structure with FIFO se-
mantics

What we should expect is governed by require-
ment, specification and perspective. The user’s
expectation will be based on user-level concepts
such as car and what services a car would offer
the user. The designer’s expectations will gener-
alise these from those original concepts and
cover a set of services or behaviours that are ap-
propriate to the abstract model. Cargill [6] de-
scribes this as “Concentrate common abstractions
in a base class”. The designer will also need to
consider the solution domain and design for that
as well, such as printers and screen output. A
basic definition, to horrify language lawyers, of
interface and implementation:

• Interface – publicly available services or be-
haviours (what it does)

• Implementation – private mechanism used to
implement the interface (how it does it)

The implementor’s expectation would be in
terms of data structures and algorithms. The ex-
pectation would be that the implementation
would be private and users of the class would use
the public interface to access the services of-
fered. The division and roles are somewhat arbi-
trary, for example Murray [7] states:

• Designing the abstraction and designing the
implementation should be two separate, but
related activities

• What is not in the abstraction is as important
as what is in the abstraction (Mural’s empha-
sis). However, it is useful to separate the
concerns to simplify the complexity. Also as
a matter of principle we want to maintain the
separation of the interface from the imple-
mentation as much as is reasonably possible.

It follows from the logically separate views of
the system, that each view could have its own
inheritance hierarchy. So a car manufacturing
application could be composed of three distinct
hierarchies, reflecting the problem domain (car),
the designer domain (vehicle, output...) and the
implementor domain (list, queue...).

In each of these views the inheritance hierarchy
needs to pass certain litmus tests such as:

1. A class should describe a set of objects [6]

2. A Derived (car) IsA Base (vehicle)

3. A Derived (car) is a subtype of the type Base
(vehicle)

4. A Derived (car) is substitutable for a Base
(vehicle)

This last rule is known as contravariance [8] and
is the real test for proper inheritance. Multiple
inheritance does not change the intent of, or re-
move, any litmus tests. This hierarchy is fine:

Vehicle

LandVehicle SeaVehicle

Car Amphibian

Since an Amphibian IsA LandVehicle and IsA
SeaVehicle, using multiple inheritance instead of
single inheritance does not change the criteria
applied – it simply adds another ‘and’ clause.

If we used this hierarchy instead of (Vehicle –>
Car) it would require substantial changes: a) Ve-
hicle would need to be declared virtual b) the
most derived class must initialise the virtual base

 Overload – Issue 9 – August 1995

 Page 32

class. This is an important point in terms of de-
signing for inheritance.

Interfaces and implementations

Using multiple inheritance still models the prob-
lem domain and still passes the substitution test.
The problem domain is distinct from the solution
domain, but in practice we need to combine all of
the classes into a cohesive solution to the prob-
lem. In particular we need to map the solution
hierarchies of the designer and implementor to
the user’s problem domain hierarchy. This is
where the mixin style enters the equation offer-
ing an apparently simple solution.

The user-classes need a mechanism to operate
within the solution domain. The mixin approach
is to use inheritance to provide ‘car’ with addi-
tional, public interface, services such as the abil-
ity to save state to disk, send output to the printer
or display information to the screen. However,
this form of inheritance is not in keeping with
substitutability and is used only as a reuse
mechanism for the implementation. Cargill [6]
notes for single inheritance:

• Recognise inheritance for implementation;

• use a private base class or (preferably) a
member object

Inheritance supplies both an interface and im-
plementation depending on how it is used. For
example, an ABC (Abstract Base Class)
composed entirely of pure virtual functions
supplies only the interface and no
implementation. Private inheritance supplies the
implementation but no interface. To use
inheritance as a design tool, rather than a reuse
mechanism we need to apply the criteria of
substitutability.
Traps in applying inheritance

Inheritance should not be used for specialisation
or subsets. Specialisation is too vague or as Cline
[8] states “A major source of confusion and de-
sign errors...Forget specialisation and learn about
substitutability”. The use of inheritance with sub-
sets came up in Overload 8 and Kevlin Henney
[9] is correct to say “...the problem is poorly
stated”. The context is everything. What services
the abstract model of Ellipse supports will de-
termine if one of these statements is false:

1. Every Ellipse can be resized asymmetrically

2. Circle IsA Ellipse

3. A Circle cannot be resized asymmetrically.

If one statement is false then we have the follow-
ing options:

• Recognise that public inheritance is not ap-
propriate

• Change Ellipse to not include asymmetric
resizing

Of course if we were desperate we could forget
public inheritance, use private inheritance and
override the asymmetric resizing functions, but
that may end up as a surprise for someone later.

Mixin alternatives

I have taken some time in explaining design is-
sues and inheritance to explain my position on
the mixin programming style. In Overload 7 [1] I
presented one alternative, which also used the
key feature that inheritance supplies – polymor-
phism. The mechanism shown had polymorphic
behaviour both vertically Record-
>ExtendedRecord and horizontally Device-
>Printer|Screen|Disk.

Peter Wippell [10] states “Surely the stream li-
brary is complicated enough without introducing
another layer of classes!”. The intent was to add
that layer as another hardware abstraction layer.
Previously, particularly with printers and floppy
disk drives, I have found that the stream is fine
but the device at the other end is not:

1. Printer not connected, out of paper, offline,
paper jammed...

2. No disk in drive, write protected, disk full...

So to have both polymorphic selection and de-
vice safety I put that layer in. In retrospect there
is a problem with the design. It is likely that a
Record will know where the output is going in
terms of the screen, disk or printer and will for-
mat the output differently for each device. So
perhaps the horizontal polymorphism (can I pat-
ent that phrase?!) is redundant or overkill. Than-
kyou for that point of detail on strstream – which
I believe is deprecated now? (If so, it will stop
me from using it).

Yes, strstream is deprecated in favour of
stringstream – Ed.

This mechanism was designed as an alternative
to the mixin style. A number of other approaches
are possible dependent on the requirement for
polymorphic behaviour and the expectation of

 Overload – Issue 9 – August 1995

 Page 33

deriving further classes. It is not intended to rep-
resent the way to add in these mechanisms, it is
just a catalyst for looking at the issue in a differ-
ent way.

Summary

The crux of the issue is: how do disparate classes
communicate and collaborate to solve the prob-
lem at hand. This is a subject of active study and
work and is certainly something which will affect
everyone with an interest in OOP. However, for
now, inheritance should be used as a design tool
and not as a mechanism for reuse of the imple-
mentation.

Roger Lever
rnl16616@ggr.co.uk

References

[1] Overload 7, “On not mixing it”, Roger
Lever

[2] Overload 8, “Having Multiple Person-
alities”, The Harpist

[3] Benjamin/Cummings, “Object-
Oriented Analysis and Design with
Applications”, Grady Booch

[4] Overload 8, “OOA – The Shlaer-
Mellor Approach”, David Davies

[5] Addison Wesley, “The C++ Program-
ming Language Second Edition”,
Bjarne Stroustrup, Chapter 12, Section
12.2

[6] Addison-Wesley, “C++ Programming
Style”, Tom Cargill

[7] Addison-Wesley, “C++ Strategies and
Tactics”, Robert B. Murray

[8] Addison-Wesley, “C++ FAQ Fre-
quently Asked Questions”, Marshall
Cline & Greg Lomow

[9] Overload 8, “Circle & Ellipse – Vi-
cious Circles”, Kevlin Henney

[10] Overload 8, “A “too-many-objects”
lesson”, Peter Wippell

Another “too-many-objects” les-
son

by Peter Wippell

I have taken some rather large editorial liber-
ties with this article since it is essentially an
update of last issue’s article – I hope Peter
doesn’t mind too much! – Ed.

In Overload 8, I showed how to write records
polymorphically to a generalised device stream. I
stated that there did not appear to be an easier
way to establish whether a stream was a printer
than to “invent” a Printer class derived from of-
stream. After consulting the Borland help files, I
found a more direct way!

An enquiry function, isPrinter(ostream&) em-
ploys Run Time Type Identification to find out if
the streambuf of the device in question is a file-
buf. If it is, it can call the filebuf member func-
tion, fd(), and identify the printer from its pre-
defined MS-DOS file descriptor:

bool isPrinter(ostream& os)
{
 // note: condition is a declaration of
 // pfb and is true if the dynamic_cast
 // succeeds
 // i.e., returns a non-null pointer:
 if (filebuf* pfb =

dynamic_cast<filebuf*>(os.rdbuf()))
 {
 // it is a filebuf, is it the
printer?
 return PRN_file_handle == pfb->fd();
 }
 else
 {
 return false;
 }
}

I have supplied the complete code in case anyone
wants to improve it.

Peter Wippell

The code will be on a forthcoming CVu disk –
Ed.

editor << letters;
Dear Editor,

I’m converting a large DOS application which
uses a proprietary database (CTree from Fair-
com) to C++, Windows and Client/Server (Wat-

com, MS SQL and Oracle targets). We’ve built
an enquiry version in PowerBuilder (using a
class library called PowerClass which we are
very pleased with). We’ve also done other work
in VB, so Windows knowledge is improving.

 Overload – Issue 9 – August 1995

 Page 34

I’d like to find C++ class libraries for screen
forms handling (MFC etc. may be OK for that)
and “Data Windows”.

I also need consultancy to give me the necessary
training, advice and knowledge, and possibly
contract programmers too.

I seem to be finding it very difficult to find the
right people to get connected with. A C++ train-
ing course for C programmers is easy to find –
but they seem to want to spend four days teach-
ing me how to draw a circle etc. and one day
showing me the database stuff, and I’d like it the
other way round! – but there may be a reason for
that.

It may also indicate that C++ programming for
database is not done these days and people use
PowerBuilder or whatever; I’ve got a legacy in C
which I would prefer to carry forwards to the
new product – if we rewrite it in PowerBuilder,
say, it will need massive testing and all our cli-
ents will insist on full dual running when they
upgrade, if we just build screen and database
handlers, and keep the old code for data valida-
tion, transaction processing, etc., then the dual
run should be achievable by a short pilot run.

Perhaps I should be building this product with a
view to selling it to fill a hole in the market?

Any ideas?

Kristen Baker-Munton
IPSS Limited
Bentons West

Bildeston
IPSWICH, IP7 7JR

Tel 01449 741777 Fax 740202
kristen@ipss.com

This seems to be a common problem: I
see many companies trying to make the
move to C++ for various reasons and
appropriate training and consultancy is
hard to find – the operative word being
“appropriate”.

I’m sure that database work is being
done in C++, so where is the training?
If anyone can help Kristen, please get in
contact!

Dear Sean,

You invited comments on namespaces, so here
are mine. Please bear in mind I’m only starting
out with C++.

I would have thought that when searching for a
variable the search should have gone:

Local => (Namespace if specified) =>
Global

From my understanding of your examples, which
may be limited, it seems if a global variable and
a namespace variable exist and you then use the
namespace and attempt to access the duplicated
name the result is ambiguous. Why is this?
Surely if you have specified a namespace it
should have precedence over the global settings.

I do agree with finding of local variables first if
they exist, but I really think that namespaces
should be searched before globals.

I’m not so sure about the usage of two different
namespaces with the same variable names, what
happens if you have

namespace A {
 int j;
}

namespace B {
 using namespace A;
 int j; // Or perhaps even worse long
j,
 // or int *j
}

What happens in this situation?

Regards,

Barry Dorrans
BarryD@phonelink.com

You’re not alone in expecting the more
locally specified “using namespace X;”
to be searched prior to the global scope!

Despite appearances however, the us-
ing-directive is not a declaration of any
sort: it just says “perform the usual
name lookup, but if you get to file scope,
also look in this namespace”.

I’ll write up a more detailed examina-
tion of namespaces in Overload 10 to try
to dispel the confusion that currently
surrounds them.

Hi Sean,

Just scanned through Overload 8 and, well, I’ll
stick my neck out and assert a mistake in the ar-
ticle by/about the authors of the Ellemtel stan-
dards. (Didn’t Feynman say something along the
lines of “we won’t find out where we’re wrong
unless we stick our neck out”?)

 Overload – Issue 9 – August 1995

 Page 35

On page 43, in the first ‘code’ box the following
fragment is shown:

char a[]="abc";
a[1] = 'x'; // undefined behaviour [sic]

I reckon that this example ought to be using not
a char array but a char pointer. It was my belief
that an array definition (as above) actually allo-
cates space for the correct number (here, 4) of
chars, and that this space is read-writable.

On the other hand, the similar-looking pointer
definition:

char* pc="abc";

does not allocate memory for the four characters
that would make up the quoted string, and a
write such as:

pc[1]='x';

would be undefined behaviour.

I wouldn’t bother pointing this out were it not
for the fact that a lot of people (me included)
read ACCU publications in order to learn and
improve; this process is hindered by subtle mis-
takes.

Yours (in a particularly pedantic frame of mind),

Fazl Rahman
fazl@hadronic.demon.co.uk

You’re absolutely right, Fazl! I should
have spotted this when I edited the arti-
cle. For the point that Mats and Erik
were making, both examples (with and
without const) should have used pointers
– just goes to show that even ‘old hands’
are fallible!

Dear Sean,

Dave Midgley complains (Letters, April issue)
that C++ code is always littered with getAttrib-
ute() member functions, and suggests that it

would be an improvement to C++ if member
variables could be made private for writing
while public for reading. In my view this is a
tempting but bad suggestion! The significance of
data abstraction extends beyond preventing the
encapsulated data from being changed by func-
tions outside the class. The public member func-
tion that returns the data is the class’s interface
to the rest of the world. The function may cur-
rently just return the value of a variable without
doing anything else; the variable’s name may be
implied by the function’s name; the internal
storage type of the variable may be known. But
things may change one day. The use of the
member function ensures that the interface to the
class remains the same, so that internal changes
within the class don’t affect the rest of the world.

Peter Arnold
peter.arnold@iccs.sil.org

I agree – the classic example usually
given is Point – whose coordinates may
be polar or rectangular:

class Point
{
public:
 double getX() const;
 double getY() const;
 double getR() const;
 double getTheta() const;
//...
};

Written in this way, you have a choice
about representation and can change it
later on without needing to change any
client source code.

Exercise for the reader: how would you
write Point so that you could change the
representation without needing to re-
compile any client code, just relink?

Questions & Answers
Got a C++ problem? Not sure whether it’s you or the compiler? Send it in and Overload will try to sort
you out!

Sean,

I was using the auto_ptr class [from the draft
standard library] in BC++ when I noticed:

template<class T> class A
{
public:
 T* operator->() const;

};
int main()
{
 A<int> a;

 return 0;

}

 Overload – Issue 9 – August 1995

 Page 36

did not compile. Using a user defined class in
main instead of int is fine. Is this a bug in
BC++?

Do you know the relevant reference in the ARM
which specifies whether this is legal or not?

Joseph Borkoles
jborkole@jpmorgan.com

The ARM specified that the return type
of operator-> must be a pointer to a
class. If you write a pointer-like tem-
plate class then you have the problem

that you need two versions: one with op-
erator-> that can only be instantiated
with class types, and one without that
operator that can be used with builtin
types. The committee decided that this
was not really acceptable and decided
that checking the return type of opera-
tor-> should be delayed until the point of
use – for template members only! So,
BC++ isn’t really wrong, it just hasn’t
caught up with the draft standard yet.

Interviews
Overload is always glad to feature “virtual” interviews with well-known names from the C++ world. If
you want to see an interview with someone – especially if you’re willing to conduct the interview – please
let the editor know!

In this issue, Roger Lever interviews the author of Taming C++.

Interview with Jiri Soukup
by Roger Lever

Having read a good book called Taming C++ by
Jiri Soukup (Addison Wesley) I thought it would
be interesting to ask the author a few high level
questions about C++ for the ACCU. Jiri Soukup
was happy to oblige:

Why did you write ‘Taming C++’?

I wanted to cover two subjects that are almost
entirely missing in the existing literature:

1. How to implement large C++ projects with-
out introducing a confused network of mutu-
ally interacting classes (spaghetti++).

2. Practical insight into what is involved in im-
plementing persistent objects in C++.

In terms of OOPL and ‘IT Solutions’ how
would you position C++ and Smalltalk? There
was an interesting comparison in Taming
C++...

This is a nice way to get into a big controversy.

Personally, I definitely favour C++, even for pro-
totyping. The typelessness of Smalltalk opens
the gates to numerous errors and, in my opinion,
quickly hacked code is not the best strategy even
when designing a prototype. Recently, I was in-
volved in a big project which was prototyped in
Smalltalk, and implemented in a different lan-
guage. Due to the typelessness of Smalltalk, it

was difficult to understand the prototype (you
had to depend entirely on variable names), and
the first implementation had serious performance
problems caused by the different concepts of the
two languages. C++ does have problems with
allocation and pointers, which are often quoted
in favour of Smalltalk; these can easily be pre-
vented when using the techniques shown in
“Taming C++”.

Two small comments:

One of the alternate titles originally proposed for
“Taming C++” was “Designing Large Projects in
C++”. That title would better emphasise that the
book provides ideas on how to keep complex
C++ architectures under control.

Also the shelving term (which is what publishers
call the word(s) printed on the upper left corner
of the back cover, whose purpose is to help
bookstores place the book correctly with other
related titles, is “Programming Languages/C++”,
which has caused the book to be placed with
C++ textbooks, not books on OO design and OO
methodologies.

What are essential characteristics of quality
C++ programs?

• Clarity; one should be able to understand the
program from reading the code. Implement-
ing relations as objects may help in this goal.

• Automatic protection against pointer and/or
allocation errors which cause the most dan-
gerous situations in C and C++.

 Overload – Issue 9 – August 1995

 Page 37

• Persistent data handled as a “system fea-
ture”, without having custom coded func-
tions such as saveGuts() in every class.

• Deep inheritance hierarchies, multiple in-
heritance, and virtual functions should be
used only when really needed – as little as
possible.

• Quality programs avoid special language
features and smart tricks. If such tricks are
used, they are flagged in the code and prop-
erly commented so that even a non-expert
can understand the code.

What are your thoughts about reuse in C++?

The key to reuse is in the communication be-
tween all designers participating in the project.

In a large project I managed some years ago, our
team of 10 people met every day for about an
hour and discussed the progress daily. No dupli-
cation of code or algorithm was permitted, under
the threat of being fired.

What advice would you offer to beginner C++
programmers?

Get Bjarne’s book (The C++ Programming Lan-
guage), forget all other books that try to “ex-
plain” the language, and start coding. If you can,
find a friend who knows C++ and is willing to
answer questions. Return to other books later,
when you start to use more advanced features of
the language. Keep two different compilers on
your computer – for example Borland C++ and
Watcom C++. Often, when one compiler’s error
message does not give you enough clues, the
other one will.

What advice would you offer to intermediate
C++ programmers?

Keep reading and learning, but do not forget that
more than 50% of software cost is in mainte-
nance. Keep your programs simple and easy to
read – I just cannot overemphasise that point. In
C++, there are so many features and tricks, it is
easy to produce totally unreadable code that’s
impossible to maintain.

What are 5 of your ‘Golden Rules’ of pro-
gramming?

1. A program reflects the state of the mind of
its creator. Confusion creates confused pro-
grams. Avoid coding on those days when
things don’t work your way.

2. When you reach the point that you don’t un-
derstand your own code, add comments or
redesign it immediately. If it is difficult to
understand its logic now, it will be a night-
mare to do anything with it later on. If you
don’t understand it well, nobody else will.

3. Program is a living entity which is never fin-
ished. Code with this in your mind. Leave
comments, hooks, clues, and explanations to
help possible additions. I use an error mes-
sage even for conditions that “should never
happen”.

4. An extensive test should be a part of every
program right from the beginning.

5. Prototype in the language you plan to use for
the final product.

What are the major C++ trends you see de-
veloping?

I am somewhat unhappy about several trends
which, I believe, will eventually reverse.

In my opinion, STL is a poor choice for the basic
class library: it is totally unprotected, and does
not address object persistency. I believe that de-
sign patterns will replace what we used to call
data structures, but we will have to develop
methodology for implementing patterns and
building libraries of reusable patterns. Also, and
that is a totally different trend, I don’t like Win-
dows and the general emphasis on graphical in-
terfaces. Programming should not become more
difficult just for the ease of displaying pretty
pictures.

What do you mean about STL being unpro-
tected?

The worst C (and C++) errors are incorrect
pointers or pointers leading to objects that were
destroyed without being disconnected from some
list. These errors may stay dormant in your code
for a long time, and then they suddenly show up
– usually by crashing your program. Such errors
are often difficult to find; one such horror story
is described in Chap.3.2 (p.91) of “Taming
C++”.

When using STL, you can place an object on a
list and then destroy it. When you traverse the
list, the program will crash. “Taming C++”
shows how to design a class library so that this
type of error cannot happen. There are commer-
cial libraries that protect against pointer errors.

 Overload – Issue 9 – August 1995

 Page 38

Have you started to favour a particular ap-
proach to Design Patterns?

It is too early to talk about different approaches
– the entire field is in flux. However, I think that
the next steps will be more concern about the
low level implementation issues, not just about
abstract patterns that apply to the high, architec-
tural level. The central step for the improvement
in both reuse and maintainability will be to make
patterns visible in the final code, even after the
original coder and designer are done (and per-
haps long gone).

What impact would these major trends have
on development in C++?

Perhaps, C++ objects could be automatically
persistent. The compiler has all the information
to implement this efficiently.

Also, I believe, with time various C++ code gen-
erators will become more accepted.

Libraries of ready-to-use patterns will be soon
available.

What are you currently working on?

A book that will be probably called “Implement-
ing Class Patterns” and it will show how to use
patterns when actually coding programs, and
how to design libraries of selected pattern im-
plementations. The difference from “Taming
C++” will be that all the code is based entirely
on C++ templates; a code generator is not re-
quired except, perhaps, for reducing the code
effort.

Thankyou for your time and effort.

Thank you, you posed interesting questions.

Roger Lever
rnl16616@ggr.co.uk

Some of Jiri’s remarks, particularly about
STL, I disagree with and I’m sure that sev-
eral other readers may have something to say
on this subject too? – Ed.

Books and Journals
Overload would like to set up a small book review panel, consisting of experienced C++ developers to
write in-depth reviews of C++-specific books. Please contact the editor if you are interested or want more
details.

Design Patterns
reviewed by Sean A. Corfield

Title: Design Patterns – Elements of Reus-
able Object-Oriented Software

Authors: Gamma, Helm, Johnson, Vlissides

Publisher: Addison-Wesley, 1994

ISBN: 0-201-63361-2

Price: £28.95

Format: hardback, 400 pages.

Patterns

Patterns are probably the hottest topic in OO at
the moment and this, the “Gang of four” pattern
catalogue, the most widely praised. So what’s all
the fuss about?

At its core, this book has a catalogue of twenty-
three “design patterns”. The patterns are design-

level templates for creating solutions to common
problems. And that’s it, really.

“That’s it?” you say. Well, yes and no. What
makes this book so special is simply that no-one
has taken the trouble to distil this problem com-
monality, categorise it and write it up in a form
that programmers and designers can actually un-
derstand.

A roadmap

The book is in three sections (despite the claim
of “two main parts” in the preface). The first
section attempts to explain what patterns are and
how you use them. The third section looks at
where we are now and where we might be going.
The catalogue of patterns makes up the central,
and largest, section of the book (270 pages).

It is probably worth quoting a line from the Pref-
ace: “A word of warning and encouragement:
Don’t worry if don’t understand this book com-
pletely on the first reading. We didn’t under-
stand it all on the first writing!”. My first
reaction was one of disappointment because the

 Overload – Issue 9 – August 1995

 Page 39

pattern descriptions were just that: descriptions.
They didn’t seem generic enough and the code
fragments given were often for specific exam-
ples. So I put the book down for a couple of
weeks and then started reading it again.

Hard work

This book makes you work! Hard! On subse-
quent readings I began to appreciate this more
and more because I began to see two things: pat-
terns that I had unknowingly already applied and
patterns that I could have applied. The former
gives you insights that help you solve other,
similar problems more quickly. The latter tends
to make you curse, because if you had applied
the pattern, the end result would have been more
elegant and more flexible!

Whilst the amount of applied thinking that the
book requires is unusually high compared to the
norm these days, the authors have provided
plenty of hints and tips on how to best use the
material in the book. They provide several sug-
gestions for ways to read the book as well as
how to use it to solve particular problems. The
latter section (§1.6) is particularly helpful as it
takes you through various parts of the design
process, pointing out how various patterns fit in
to different scenarios that you might be trying to
solve.

Organisation

For a catalogue, the book is extremely readable
because the authors have adopted a clear and
consistent method for documenting the patterns.
Each pattern is explained by stating what it is
intended to do, why you might want to do that
and when you can. The components and interac-
tions behind each pattern are then explained with
a mixture of prose, OMT, Booch and examples,
before moving on to the “how”. Finally, example
code is given in C++ or Smalltalk (or both) and
some real world uses are mentioned.

This means you can quickly establish whether
the pattern is useful or interesting, and as you
read further you get more detail and more hints
on how to apply it to your own problem.

Dipping in

I’ve found that the most instructive way to read
the book is just to open it up randomly, flick
back to the start of whatever pattern you’re in
and just start reading. You probably won’t put it
down until you’ve read several patterns. Over
time, you’ll absorb more and more of them –
some are more intuitive than others. One thing
that struck me was the variety of application
domains from which the authors have drawn
their examples: FACADE (compiler), CHAIN OF

RESPONSIBILITY (help system), STATE (TCP
communication), VISITOR (inventory / pricing).
Of course, the usual graphics and text editor ex-
amples are also present.

Code fragments

Don’t expect pages of C++ template-based
source code – you’ll be disappointed like I ini-
tially was. The code used to illustrate the pat-
terns is mainly C++ with some Smalltalk but this
is a book about design rather than about pro-
gramming. If you want the generic pattern in
code, you’ll have to think hard and understand
the pattern so that you can apply it to your own
code or derive the template-based solution if one
exists (it doesn’t always).

Conclusion

You probably don’t need me to tell you, but this
is a very rewarding book. Buy it and dip into it a
few times and you’ll find yourself coming back
to it time and time again. The reward comes
from the “lightbulb effect” as patterns start to
suggest themselves when you’re designing sys-
tems later on.

Sean A. Corfield
sean@corf.demon.co.uk

Product Reviews
What development tools do you use? Do you want to review them for Overload?

 Overload – Issue 9 – August 1995

 Page 40

UTAH – a short product report
by Francis Glassborow

When the telephone has not been ringing (over
40 times today) I have been testing a product
from ViewSoft Inc called UTAH. I have been
using version 1.1 of the product for MS Win-
dows 3.1. Let me start by saying that I like the
product so that my critical statements below are
because I want it to be better.

The product is a tool for designing and develop-
ing GUI based products. It has a nice feel to it
and I found it easy to use. Certainly inserting
application specific code was clean and simple.
After you have your design complete, with some
facility for emulating the result, generating code
and files for the compiler of choice was only a
couple of mouse clicks away. I did not have to
choose between Borland 4.0 and Visual C++ 1.5
until I was finished. When I selected my com-
piler UTAH went away and generated project
files etc.

Unfortunately, at this stage, UTAH makes un-
warranted assumptions about where its libraries
are and where you will have installed your com-
piler. As my systems never have anything in the
default location I had to patch the generated pro-
ject file when difficulties manifested.

ViewSoft have plans to provide versions of
UTAH for other platforms, though they only
support Borland and Microsoft development
tools on Windows platforms. When I asked
about other compilers for the same platforms
they said that they had surveyed the field and too
few of their potential customer base used com-
pilers such as Watcom and Symantec. Problems
with things such as name mangling algorithms
cause difficulty when you try to use another
compiler (or so they believe – time has not al-
lowed me to test this).

I think they have the wrong target. A large pro-
portion of those using Microsoft or Borland
compilers will be quite happy with the AFX
builders that come with those products and are
not realistic customers for UTAH. It is those that
want to transfer across compilers, and even more
across platforms that are most interested in prod-
ucts like UTAH. It was nice to be able to delay
the choice between Borland and Microsoft com-
pilation tools. I would have been even more im-
pressed had I been able to take a product

developed with UTAH on a MSWindows ma-
chine and port it directly for compilation on an
OS/2 platform.

It is those that want to work with multiple com-
pilers or multiple platforms that have most to
gain from tools like UTAH. As long as the UK
distributor keeps me informed I’ll let you know
how the product develops. In the meantime, if
you would like to know more or want to evaluate
the product contact Professional Software Ltd on
01753 810 845 who are the UK distributors.

Francis Glassborow
francis@robinton.demon.co.uk

S-CASE
reviewed by Sean A. Corfield

Product: S-CASE

Company: MultiQuest Corporation, USA

Release: 2.0

Platforms: MS-Windows, Macintosh, Sun
SPARC, HP 9000

Cost: From $495

Contact: 72531.2510@compuserve.com
(708) 397 9930 tel
(708) 397 9931 fax

What is it?

As you might infer from its name, S-CASE is a
design tool. Specifically, it is an OO design tool
using the Booch notation that generates C++
source code. I bought S-CASE after seeing a
comparative review in C++ Report, January
1995. The alternatives were Rational’s Rose and
Together/C++ (see Overload 6, page 39) at
$1995 and $995 respectively and they were sim-
ply too expensive for me to consider as a per-
sonal purchase.

What does it do?

S-CASE allows you to design your software
graphically by specifying the different relation-
ships between objects. You can optionally de-
scribe “scenarios” showing events and messages
passing between the objects. Finally and, for
most people, more importantly, you can generate
C++ code which you then edit to flesh out the
methods. Although it cannot take existing C++
code and reverse engineer it, once you have gen-

 Overload – Issue 9 – August 1995

 Page 41

erated code, you can edit that and the code gen-
erator stays in synch, with some limitations.

S-CASE is clearly aimed at multi-user develop-
ment and supports “projects” with check-in/-out.
Each user can check-out part, or all, of a project
and work on that part, although this relies on
some sort of network file sharing with record
locking to provide the necessary security (e.g.,
NFS). Once checked-out, diagrams can be edited
and code generated and/or modified. For anyone
who has worked with a source code control sys-
tem, such as rcs, this is second nature. The pro-
jects are organised in hierarchies and classes can
be ‘linked’ between sub-projects so that different
views of the design can be maintained. This is
ideal for designing a system composed of related
hierarchies of objects, e.g., a parser will have
hierarchies of Type classes, Expression classes
and Statement classes that are related by use. S-
CASE makes it easy to work in different views
while it coordinates the design-level and code-
level changes across all views.

Getting started

Installation is straightforward but the licensing is
a bit of a nuisance. S-CASE operates in ‘demo’
mode until you obtain a licence key from Mul-
tiQuest. If you have email, this is a relatively
painless process but otherwise involves a transat-
lantic phone call. However, I found the technical
support, by both email and phone, to be courte-
ous and efficient so I can’t really complain. The
manual is well organised, starting with installa-
tion (for each platform) and configuration, lead-
ing through the online tutorial and then on to the
project manager, the class diagrams and finally
the code generation subsystem.

The online tutorial is enough to allow you to do
useful work with the product but familiarity with
Booch’s book is necessary to cope with the sub-
tleties of some parts of the notation. Having said
that, I had produced several pages of annotated
design documentation and code for a small pro-
ject I had chosen within a day.

Code generation

Initial code generation is simply a matter of se-
lecting some classes from a diagram and telling
S-CASE to generate headers and source files.
The annotations used in the specification dialogs
are written into the code as comments. You can
then edit the bodies of the methods to complete

the functionality and S-CASE will retain your
code during the next phase of code generation.

It does this by embedding special comments in
the generated code which you must not remove,
although you can generate ‘clean’ code at any
time that does not contain these comments. Be-
cause of this strategy, you must be careful not to
change the interface of, or relationships between,
classes. That means: don’t add methods or data
members, and don’t change the inheritance struc-
ture! This ‘trains’ you to work with the diagrams
and so you tend to think more carefully about
such changes.

The only problems I encountered were with in-
stantiated classes. Parameterised classes trans-
late to templates as expected, but I could not find
an easy way to persuade S-CASE to generate
sensible references to instantiated classes (uses
of templates). The documentation is somewhat
sparse in this area so I suspect this is a fairly re-
cent addition that will improve over time.

Annotations and other information

Specifications of data members and methods are
entered through a hierarchy of dialog boxes. This
takes a bit of getting used to because you can
only view one member or method at a time at the
most detailed level. You can always generate the
code and look at that since it contains all the in-
formation entered in these dialogs but it would
be more convenient to have a scrolling list of the
information in the dialogs.

Booch-style ‘notes’ can be added freestyle to the
diagrams which allows the class and object dia-
grams to be used as standalone documentation.
Unfortunately, these notes do not get written
through to the generated code.

Support for the methodology

S-CASE supports class diagrams and object dia-
grams with the full range of icons for classes,
relationships and messages. S-CASE does not
support the other Booch diagrams, such as state
transition and interaction diagrams. Given the
code generation facilities, the lack of the latter
diagrams does not seem, to me at least, any great
loss.

CASE for the unCASEwise

I’ve never been a great fan of CASE tools or
formal methodologies but after using S-CASE to
document an existing C++ project, I soon found

 Overload – Issue 9 – August 1995

 Page 42

that ‘obvious’ design flaws were present in the
project. These flaws are ‘obvious’ once you have
a notation other than code to work with and I am
keen to use S-CASE for future development
where possible. That’s not to say that CASE
tools stop you making such design errors, but
they are likely to be apparent earlier in the proc-
ess, and probably easier to correct (because in-
heritance and other relationships can be changed
with a few mouse clicks and the code regener-
ated).2

Download a demo

S-CASE can be downloaded from
ftp://ftp.netcom.com/pub/sh/showcase –
“try before you buy!” which is what I did.

Summary

For the price, S-CASE provides a reasonable
level of functionality that will be suitable for
many C++ shops wanting to take their first steps
along the OO CASE path. Working with the dia-
grams is quick and intuitive but the specification
dialogs are a bit clumsy – I hope these will be
improved in future releases.

Sean A. Corfield
sean@corf.demon.co.uk

2 Possibly followed by some tedious editing to
get the code to recompile. :-)

 Overload – Issue 9 – August 1995

 Page 43

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield
13 Derwent Close, Cove

Farnborough, Hants, GU14 0JT
sean@corf.demon.co.uk

Production Editor

Alan Lenton
yeti@feddev.demon.co.uk

Advertising

John Washington
Cartchers Farm, Carthorse Lane

Woking, Surrey, GU21 4XS
john@wash.demon.co.uk

Subscriptions

Dr Pippa Hennessy
c/o 11 Foxhill Road

Reading, Berks, RG1 5QS
pippa@octopull.demon.co.uk

Distribution

Mark Radford
mradford@devel.ds.ccngroup.com

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

The copyright of all material published in Overload (except book and product reviews whose copyright is
the exclusive property of ACCU) remains with the original author. Except for licences granted to (a) Cor-
porate Members to copy solely for internal distribution (b) members to copy source code for use on their
own computers, no material can be copied from Overload without the prior written consent of the copy-
right holder.

Copy deadline
All articles intended for inclusion in Overload 10 (October) must be submitted to the editor by September
4th.

