
Structured Concurrency in C++
Lucian Radu Teodorescu applies principles from
Structured Programming to concurrency.

C++20: A Coroutine Based Stream Parser
Andreas Fertig uses coroutines
to make stream parsing clearer.

The Vector Refactored
Teedy Deigh razes the level of abstraction.

Join ACCU
Run by programmers for programmers,
join ACCU to improve your coding skills

www.accu.org

A worldwide non-profit organisation

Journals published alternate months:

CVu in January, March, May,
July, September and November

Overload in February, April, June,
August, October and December

Annual conference

Local groups run by members

professionalism in programming

Join now!
Visit the website

April 2022 | Overload | 1

CONTENTSOVERLOAD

Copyrights and Trade Marks
Some articles and other contributions use terms that are either registered trade marks or claimed
as such. The use of such terms is not intended to support nor disparage any trade mark claim.
On request we will withdraw all references to a specific trade mark and its owner.

By default, the copyright of all material published by ACCU is the exclusive property of the author.
By submitting material to ACCU for publication, an author is, by default, assumed to have granted
ACCU the right to publish and republish that material in any medium as they see fit. An author
of an article or column (not a letter or a review of software or a book) may explicitly offer single
(first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2)
members to copy source code for use on their own computers, no material can be copied from
Overload without written permission from the copyright holder.

The ACCU
The ACCU is an organisation of
programmers who care about
professionalism in programming. That is,
we care about writing good code, and
about writing it in a good way. We are
dedicated to raising the standard of
programming.

The articles in this magazine have all
been written by ACCU members - by
programmers, for programmers - and
have been contributed free of charge.

Overload is a publication of the ACCU
For details of the ACCU, our publications

and activities, visit the ACCU website:
www.accu.org

4 Taming Wordle with the
Command Line
James Handley uses simple command
line tools in order to (hopefully) name
that Wordle in four!

6 C++20: A Coroutine Based
Stream Parser
Andreas Fertig uses coroutines to make
stream parsing code clearer.

9 Structured Concurrency in C++
Lucian Radu Teodorescu applies principles from
Structured Programming to concurrency.

15 The Vector Refactored
Teedy Deigh razes the level of
abstraction.

OVERLOAD 168

April 2022

ISSN 1354-3172

Editor

Frances Buontempo
overload@accu.org

Advisors

Ben Curry
b.d.curry@gmail.com

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Steve Love
steve@arventech.com

Chris Oldwood
gort@cix.co.uk

Roger Orr
rogero@howzatt.co.uk

Balog Pal
pasa@lib.hu

Tor Arve Stangeland
tor.arve.stangeland@gmail.com

Anthony Williams
anthony.ajw@gmail.com

Advertising enquiries

ads@accu.org

Printing and distribution

Parchment (Oxford) Ltd

Cover design

Original design by Pete Goodliffe
pete@goodliffe.net

Cover photo by Dustin Humes
on Unsplash.

Copy deadlines

All articles intended for publication
in Overload 169 should be
submitted by 1st May 2022 and
those for Overload 170 by
1st July 2022.

https://unsplash.com/@dustinhumes_photography
https://unsplash.com/photos/x9_ZD7crK9o

EDITORIAL FRANCES BUONTEMPO
On Becoming Unstuck
The horsemen of the apocalypse may be on the
horizon. Frances Buontempo attempts to stop
doom-scrolling and solve problems instead.
I haven’t written an editorial. I was stuck for ideas.
Instead, I let my mind wander and once all the news
of impending doom, jobs to do around the house, talks
to prepare and the like bubbled up and got added to a
to-do list, I was tempted to wander off myself. I did
spend some time collecting all my hand scribbled to-

do lists and putting them in once place. I should probably make a new list
and throw out the old ones. I’ll play today’s Wordle first though – little
rituals to make yourself sit still long enough to start concentrating can be
very important. Playing some music works too. If I play a whole album
rather than leave random play on, I can persuade myself to sit at my desk
for the duration of the music and thereby manage to get stuff done too.
Good music, goal accomplished: win, win.

It’s not always that easy though, and the stuff I get done may not be what
I first intended. Distractions abound when you don’t have a clear goal in
mind, can’t form your list into a priority queue, or worse find the list is
more like a tree structure with each thing you think of kicking off twice
as many extra things to deal with. You may have heard of Feynman’s
algorithm, “facetiously suggested by Murray Gell-Mann, a colleague of
Feynman, in a New York Times interview” [c2.com14]:

1. Write down the problem.
2. Think very hard.
3. Write down the solution.

On the face of it, the suggestion seems trite and unhelpful. Furthermore,
some suggest that the algorithm only works if you are Feynman himself.
Variations on the same idea have been suggested, for example from
Hacker News [Hacker]

1. Write down the problem.
2. Try several established strategies to solve it.
3. Get stuck, resign self to failing.
4. Go to sleep.
5. Write out the answer over breakfast.

Aside from the apparent frivolity, trying to write down a problem often
helps one to focus on a specific goal. Like talking to the fabled rubber duck
to debug an issue, trying to be clear about what you are stuck on might
help you get unstuck. I say ‘unstuck’; I am aware that ‘coming unstuck’
can also mean everything falling apart and failing, but let’s stay positive
and stick to problem solving instead of doom-scrolling.

Stepping away from the keyboard and doing something else halts doom
surfing, and likewise many problems can be solved

by doing something completely different,
though this may get mislabelled as work

avoidance by the doubters. I once decided
it was far more important to wash the

skirting boards than revise for a looming exam. Some friends at university
tried to ‘mow’ the lawn with nail scissors. We’ve all been there.
Eventually, you have to face whatever it is you were supposed to be doing.
I suspect changing from sitting down staring at a book or screen and
physically moving shifts your perspective. Going for a walk or getting
some other form of exercise can clear your head too. It might be because
you are still thinking on the problems or issues while doing a menial task,
but can’t keep digging down deeper in the hole you started, making more
notes and ending up with an exponential number of problems. If you can’t
just get up and go for a walk, because you are stuck in an office – remember
those days? – or in an exam or similar, try a different problem. If you’re
stuck on one question, try another one and revisit the first one later. In a
similar vein, George Polya once said “If you can't solve a problem, then
there is an easier problem you can solve: find it” [Polya73]. This advice
was aimed at solving mathematical problems. To solve an equation, guess
a value and see if it works. In the process you might notice ways to
eliminate some terms or similar. Resorting to solving a simpler problem
helps too. If you are trying to integrate something messy looking,
substituting a variable might work. This can be a bit like extracting a
method when you refactor – leaving less cognitive load by breaking up
complicated ideas. Flushing out edge cases and impossibilities leaves less
to think through as well. Similar tricks work when programming, though
don’t forget, “We can solve any problem by introducing an extra level of
indirection, except for the problem of too many levels of indirection”
[Wikipedia-1]. If you can’t figure out an algorithm using a tree structure,
maybe try an array first. With one item in. Or, even none. Sometimes
tidying up code, or writing some documentation, or deleting code helps
shift your focus enough to go back and tackle the initial problem. “A
change is as good as a rest”, as the saying goes.

Polya’s advice was aimed at getting students themselves to form a plan
to tackle problems rather than the teacher giving step by step instructions.
This helps students to actually learn. Solving a different problem that is
similar frequently hints at ways forward and noticing connections like
these shows knowledge is growing. An extreme version of solving a
different problem would be coming out with Plan B if Plan A doesn’t
work. It is hard to know when to abandon hours of work and try something
else, since the alternative may not work either. Nonetheless, the different
perspective might suggest a way forward for the first attempt. You won’t
know until you try. If neither plan works, resort to moving the goal posts.
This might mean scratching some items off a to-do list or asking a
customer if some feature can wait for another day. If you get stuck solving
one problem, give up and solve a different one.

Some problems are hard. In fact some problems, such as the halting
problem are NP-hard. In case you have forgotten the definition:

Frances Buontempo has a BA in Maths + Philosophy, an MSc in Pure Maths and a PhD technically in
Chemical Engineering, but mainly programming and learning about AI and data mining. She has been a
programmer since the 90s, and learnt to program by reading the manual for her Dad’s BBC model B
machine. She can be contacted at frances.buontempo@gmail.com.
2 | Overload | April 2022

EDITORIALFRANCES BUONTEMPO
A problem is NP-hard if an algorithm for solving it can be translated
into one for solving any NP-problem (nondeterministic polynomial
time) problem. NP-hard therefore means ‘at least as hard as any
NP-problem’, although it might, in fact, be harder. [Wolfram]

If that didn’t help much, the salient point here is some problems can be
reduced to other problems, which you could try to solve instead. If you
can’t solve the problem and someone else offers a solution, you might be
able to verify it works. Perhaps the main lesson from the P=NP question,
and also Feynman’s algorithm, is to delegate to someone else.

If you can’t move the target or abandon requirements and have a mammoth
task in front of you which you can’t delegate, start with the first step. One
thing at a time. It’s not always obvious where to start though. A large task,
like preparing a conference talk or writing a book can be daunting. So,
where do you start? Truth be told, usually in the middle. From the outside,
a title and table of contents may appear to be produced first, however some
thoughts or sketchy notes for a few important ideas that fit somewhere,
exactly where to be decided, usually come first. Maybe start with a few
tests, then make a to-do list? Maybe draw a mock up on a white board?
Perhaps read up on the state-of-the-art – a very important part of research.
We can’t all spend our time reinventing the wheel. As you read around a
subject you may find someone else has already solved your problem. Job
done. Unfortunately, you may Google a problem and find you’ve asked
the exact same question years ago on a forum somewhere. And still no one
knows the answer. That’s possibly a good thing. Sit back, relax and cherish
having something difficult to think about. Take a deep breath and have
another go.

Some problems do have known solutions, but you can still get stuck when
you apply them. For example, some techniques for root finding [Martin16]
require an initial guess which gets updated in a loop. Annoyingly, the
algorithm can head to other roots, go to infinity, or get trapped in cycles.
In order to find where a function, f, has the value zero, also known as root
finding, you can start with an initial guess of x0 and find a better
approximation x1 by calculating

where fʹ is the derivative of f. Then reapply the formula to the new
approximation and keep going. If you can’t find the derivative, you’re
slightly stuck, but could try to calculate that numerically. Once you have
fʹ, you might end up with a division by zero problem. Also, a bad initial
guess can get you in trouble too. [Wikipedia-2]. You might have to think
carefully about where to start before applying this and similar techniques.
As a saying goes, “If I wanted to get there, I wouldn’t start from here.” At
the very least, if you are tempted to have code in a while loop waiting
for a condition to be met, consider dropping out after a pre-specified
number of iterations so you don’t loop forever. Instead of iterating, some
algorithms rely on recursion. Instead of getting stuck in a loop, you are
likely to hit a stack overflow at some point if your stopping condition is
wrong. You may not be stuck, but you certainly haven’t solved your
problem.

There are many ways to get stuck and many things to get stuck on. Patricia
Aas recently asked the world what the longest time people had spent
debugging an issue was and how big the fix was [Aas22]. As you can
imagine, there were many replies. My favourite was someone spending a

day debugging an I/O issue until a colleague pointed out the network cable
was unplugged. I confessed to having spent several days looking at a
networking issue for some low-level embedded devices. I even spent
hours looking at the output on a protocol analyser. Eventually the presence
of a \n character came into focus. The nice small fix was to change it to
a \r. Many problems in IT are hard to spot, but when you find them you
might only need one small change to sort things out. That might seem as
unhelpful as Feynman’s algorithm, but reminding myself the issue is
probably something small, simple and obvious, even though I haven’t
found it yet can help me avoid panicking and start being more systematic
about how to troubleshoot.

Having the wrong line ending character was my fault and quickly fixed;
however, sometimes things beyond your control cause problems. We’re
having our house rewired; annoying but necessary. This gave us the
opportunity to put in a network cable because Wi-Fi doesn’t always work
very well through old stone walls. You’ll never guess what happened next.
Well, you might. The internet stopped working. The new cable was to
connect the main router to another in the office, so had no reason to stop
the internet into the house. We couldn’t fix it so had to phone our internet
provider’s help line. It ‘magically’ started working again during the course
of the call. Interesting. We were using our own router, so they decided to
send us one of theirs in case it happens again. This time you really won’t
guess what happened next. I discovered a package, yep the new router,
literally stuck in the letterbox. I guess the posty had tried to shove it
through the letterbox, failed, couldn’t get it back out
and ran away. It needed two of us to hold the letter box
open and force the parcel back out. If something is
about to get stuck, maybe give up and summon help?
Just saying.

References
[Aas22] Patricia Aas, on Twitter: https://twitter.com/pati_gallardo/status/

1499517651999420416

[c2.com14] The Feynman Algorithm: http://wiki.c2.com/
?FeynmanAlgorithm (page last updated December 2014)

[Hacker] Hacker News: https://news.ycombinator.com/
item?id=14191681

[Martin16] Patrick Martin, ‘Eight Rooty Pieces’, Overload, 24(135):8-
12, October 2016. https://accu.org/journals/overload/24/135/
martin_2294/

[Polya73] George Polya, How to Solve It: A New Aspect of Mathematical
Method. Princeton University Press, 1973.
See also https://en.wikipedia.org/wiki/How_to_Solve_It

[Wikipedia-1] Fundamental theorem of software engineering:
https://en.wikipedia.org/wiki/
Fundamental_theorem_of_software_engineering

[Wikipedia-2] Newton’s method: https://en.wikipedia.org/wiki/
Newton%27s_method#Failure_of_the_method_to_converge_to_th
e_root

[Wolfram] NP-Hard Problem, Wolfram Mathworld, at
https://mathworld.wolfram.com/NP-
HardProblem.html#:~:text=A%20problem%20is%20NP%2Dhard,
%2C%20in%20fact%2C%20be%20harder

x x
f x

f x1 0
0

0

 

()

()
April 2022 | Overload | 3

https://twitter.com/pati_gallardo/status/1499517651999420416
https://twitter.com/pati_gallardo/status/1499517651999420416
http://wiki.c2.com/?FeynmanAlgorithm
http://wiki.c2.com/?FeynmanAlgorithm
https://news.ycombinator.com/item?id=14191681
https://news.ycombinator.com/item?id=14191681
https://accu.org/journals/overload/24/135/martin_2294/
https://accu.org/journals/overload/24/135/martin_2294/
https://en.wikipedia.org/wiki/How_to_Solve_It
https://en.wikipedia.org/wiki/Fundamental_theorem_of_software_engineering
https://en.wikipedia.org/wiki/Newton%27s_method#Failure_of_the_method_to_converge_to_the_root
https://en.wikipedia.org/wiki/Newton%27s_method#Failure_of_the_method_to_converge_to_the_root
https://mathworld.wolfram.com/NP-HardProblem.html#:~:text=A%20problem%20is%20NP%2Dhard,%2C%20in%20fact%2C%20be%20harder

FEATURE JAMES HANDLEY
Taming Wordle with the
Command Line
Could static analysis provide a generic way to approach
Wordle? James Handley uses simple command line tools
in order to (hopefully) name that Wordle in four!
or many people (myself included)
Wordle [Wordle] has become part of the
daily routine. Wordle is a simple

‘Mastermind’-like game where you have to
guess a five-letter word in six guesses or fewer.
For each guess you make (each of which has
to be a valid five-letter word), you get an
indication of whether each letter appears in the
solution, and if it does whether you have guessed it in the correct position.
One important thing to note is that the spelling is American English.

After a several weeks of solving it with random guessing, I decided to try
and be a bit more scientific, in part thanks to a little extra prod from a video
by Hannah Dee [Dee22].

First things first. If the answer didn’t have to be a valid word you are
unlikely to solve it. There are 2626262626 (over 11 million)
permutations possible. While you can rule out a lot of these permutations
after every guess, basic arithmetic exposes the problem. If we guess 5
different letters each turn, then we will have tried 25 different letters in 5
guesses. For our final guess, we will know which distinct letters are in the
solution, but can’t be sure of their position, or if any have been repeated.
Or to look at it in a more Wordle way – on the first guess, say we happen
to get four letters in the correct position. That still leaves 25 possibilities
for the fifth letter (as one may be repeated), but only 5 guesses to find it.
SHAME, SHAPE, SHALE, SHADE, SHAKE, SHAVE anyone?

Fortunately it does have to be a valid word,
which helps enormously. There are ‘only’
11,302 words in Linux’s ‘huge’ American
English dictionary, from “aahed” to
“zymix”. We can rule out a lot of these, but
we’ll use this list as the worst case. Most
of the analysis in this article uses two GNU
commands – grep (a regular expression
line matcher) and wc (a word counter). We
will also pipe the output from command to
the next. There are of course multiple regular expressions to solve any
given problem [RegEx] – I’m using ones which (hopefully) are easy to
read.

Each word in the source dictionary file is on a separate line, but there are
words with diacritics, apostrophes, and some proper nouns. First of all
we’ll need to filter it to only ASCII characters, and then to lines with
exactly five lower case letters. We’ll write the result into a file called

wordle-words.txt to use throughout the rest of the analysis (see
Listing 1).

The approach I am taking is to try to extract as much information as
possible from each individual guess – the theory being that at each stage
you are reducing the search space by the greatest amount. I am using
guesses based on the letters which are most likely to occur in the solution,
which provides positional information where there is a match, or
significantly reduces the candidate word list where there isn’t. This is
unlikely to be the optimal approach, but has the advantage of being easy
to understand and implement.

We can use some grep magic to count how many times each letter of the
alphabet appears in the full word list. The flag –o will output every match
on a new line, for example grep -o "." on “ABA” will output “A”, “B”,
“A” on separate lines. We can then sort this output, and group/count it with
uniq. The final two commands in Listing 2 aren’t strictly required – they
sort the output numerically and output it in columns.

The 5 most common letters are S, E, A, O and R, and AROSE is the only
word we can make from those five letters. If we count all the words which
have at least one of these letters, it’s an amazing 10,782 out of 11,302. This
means we have a 95% chance matching at least one letter, and if we don’t
match any letters at all we’ve only 520 candidate words left to search.

 $ grep "[arose]" wordle-words.txt | wc -l
 10782

On the other hand if we used the least popular letters (say BUZZY), we
only cover 4,665 words. Our odds of a match have gone down from 95%

F

James Handley The Rev’d James Handley has an MEng in
Software Engineering, a PhD in Computing and Medical Physics,
and a BA in Theology. He is a Principal Software Developer at JBA
Consulting as well as being an ordained priest in the Church of
England. For the past 15 years or so he has specialised in GIS and
mapping, and he is particularly interested in how software
development can influence faith and ministry, and vice versa. He
can be contacted via revjameshandley@gmail.com

Listing 1

$ grep -P "^[[:ascii:]]*$" /usr/share/dict/american-english-huge | \
 grep "^[a-z][a-z][a-z][a-z][a-z]$" > wordle-words.txt

$ wc -l wordle-words.txt
11302 world-words.txt

Listing 2

 $ grep -o "." ./wordle-words.txt | sort | uniq -c | sort -g -r | column
 5807 s 2828 l 1637 c 1194 k 228 j
 5723 e 2722 t 1628 m 869 f 92 q
 5242 a 2414 n 1531 y 856 w
 3832 o 2013 d 1387 h 593 v
 3636 r 1898 u 1334 g 340 z
 2901 i 1661 p 1307 b 237 x

Key to the examples:

A – this is a correct letter, in the correct place.

A – the letter exists in the word, but not in this place.

A – this letter does not exist in the word.
4 | Overload | April 2022

FEATUREJAMES HANDLEY

there is only one five-letter word which does
not have any letters from “AROSEUNTIL” in it, but

that word is left as an exercise for the reader!
to less than 50%. What’s worse, if we don’t match any, we are still left
with 6,637 words to search.

Ignoring the positional information for a moment, we can break down what
happens when we match combinations of letters. If we only match “A” then
we know we didn’t match any of “ROSE”, which only leaves 797 possible
words:

 $ grep "[arose]" wordle-words.txt | \
 grep "a" | \
 grep -v "[rose]" | wc -l
 797

Do the above for all the possible combinations of letters (we’ve already
seen that AROSE is the only word with all these letters) and you get the
following:

Even without positional information, we have reduced the word list from
10,782 to a maximum of 894.

By taking into account positional information, we can reduce it even
further. Say we need an “A” in the correct position:

 $ grep "[arose]" wordle-words.txt | \
 grep "a" | \
 grep -v "[rose]" | \
 grep "a...." | wc -l
 123

That means there are 123 five-letter words which begin with A, but don’t
have the letters ROSE. Inverting the final grep would give us the count for
“correct letter, wrong position”. Completing this analysis for our five
starting letters:

The chances are we will match more than one letter, and all the possible
combinations would be too many to list here. But for the least specific

combination (“AS”) we get:

So it seems reasonable to estimate that our new candidate word list has a
maximum of 750 words. Not bad for one guess.

As we saw with SHAME/SHAPE/etc., changing only one letter is not a
good strategy. The ‘best’ second guess will depend on the match of the first
guess, but if we are taking a generic approach we will want choose a
distinct set of letters to the first guess. The next 5 on the list are I, L, T, N,
and U – “UNTIL” (or “UNLIT” if you prefer). Our coverage with UNTIL
against the full list is still pretty good at 8,690 matches vs. 2,612 non-
matches. It also turns out there is only one five-letter word which does not
have any letters from “AROSEUNTIL” in it, but that word is left as an
exercise for the reader!

The ‘best’ third guess depends even more on the first two matches, and
you will have to at least re-use a vowel. The next most frequent letters are
D, P, C, Y, and M, and H so trying to make a word from these letters with
whichever vowels you already know is probably your best bet. Assuming
some match with “AROSEUNTIL”, it turns out that the third most frequent
letter set doesn’t actually change very much.

So, my approach to solving Wordle:

1. Guess “AROSE”

2. Guess “UNTIL”

If no match with either, there is only one possible word.

3. Guess a word with the letters you know, also using as many letters
as possible from DPCYM.

4. You should now be able to work out the answer!

This is what happened for me with Wordle #244:

1. AROSE – 107 words left

2. UNTIL – 20 words left

3. DOPEY – 1 word left

4. DODGE

References
[Dee22] Hannah Dee – “A Linux refresher through the medium of

Wordle” posted on 25th January 2022. https://www.youtube.com/
watch?v=i4UipSGjaNQ

[RegEx] “Some people, when confronted with a problem, think ‘I know, I’ll
use regular expressions.’ Now they have two problems.” Attributed
to Jamie Zawinski – see for example http://regex.info/blog/2006-09-
15/247

[Wordle] https://www.nytimes.com/games/wordle

First word Number of matches Number of non-matches

AROSE 10,782 520

BUZZY 4,665 6,637

A 797 AR 431 RS 234 ARO 153 ASE 409 ROSE 85

R 189 AO 323 RE 522 ARS 315 ROS 186 AOSE 10

O 531 AS 894 OS 659 ARE 380 ROE 211 ARSE 123

S 667 AE 561 OE 417 AOS 181 RSE 283 AROE 12

E 789 RO 249 SE 823 AOE 47 OSE 255 AROS 45

AROSE 123 AROSE 674

AROSE 77 AROSE 112

AROSE 140 AROSE 391

AROSE 54 AROSE 613

AROSE 252 AROSE 537

AROSE 17

AROSE 68

AROSE 59

AROSE 750
April 2022 | Overload | 5

https://www.youtube.com/watch?v=i4UipSGjaNQ
https://www.youtube.com/watch?v=i4UipSGjaNQ
http://regex.info/blog/2006-09-15/247
http://regex.info/blog/2006-09-15/247
https://www.nytimes.com/games/wordle

FEATURE ANDREAS FERTIG
C++20: A Coroutine Based
Stream Parser
Stream parsing code can be very complicated. Andreas
Fertig uses coroutines to make stream parsing code clearer.
n this article, I want to show you how C++20’s coroutines can help you
when writing a stream parser. This is based on a protocol Andrew
Tanenbaum describes in his book Computer Networks. The protocol

consists of a Start Of Frame (SOF) and ESC to escape characters like SOF.
Hence, ESC + SOF mark the start of a frame as well as the end. In today’s
exercise, we will parse the string Hello World (yes, without the comma,
sorry). For simplicity, I am using strings and not bytes. The steam shown
in Figure 1 is what we are going to process.

The classic way
Before C++20, we cou ld have qu ick ly wr i t ten a func t ion
ProcessNextByte, which would have dealt with tokenizing the stream.
It looks for the ESC + SOF for the start of a frame and calls the callback
frameCompleted once a frame is complete. Error cases are not treated
for simplicity here. They are silently discarded. Listing 1 is a version of
ProcessNextByte.

There are other ways to implement this, such as using a class and getting
rid of the static variables. However, a function is essentially what we
like here. This is not really a job for a class. Even with a class, tracking
the state and quickly seeing where we are remains complicated. Another
way, of course, is to bring in the big guns and use some kind of state pattern
using virtual methods. I once had the pleasure of working with such a beast.
It turned out that it was very hard to see the control flow, and in the end,
all calls ended up in one single class, which contained the actual logic.

However, one upside of using a class would be that we can have multiple
objects parsing multiple streams. With the given ProcessNextByte we
can only parse exactly one stream.

Coroutines applied
Listing 2 (overleaf) is the same logic, this time as a coroutine.

There are various great things. First, Parse is not a template, as
ProcessNextByte was. By looking at the function’s body, the states are
much clearer to see. We have two infinite-loops (which is a bad thing on
some embedded systems as infinite-loops can usually be avoided) where
the outer is really infinite and the inner runs as long as the frame is
incomplete. We can see that this code first looks for ESC and then for SOF
. If ESC is found, but the next byte is not SOF, the search for ESC starts
over. The logic above was way more complicated and harder to see
through.

Once ESC followed by SOF is found, the inner loop starts . It adds all
received bytes to the local variable frame. But before that, Parse checks
whether we are looking at an escape sequence . If so, the escape character
is removed and replaced by the unescaped version. In our case, this is

I

Figure 1

ESC SOF0x70 ‘H’ ‘e’ ‘l’ ‘l’ ‘o’ ESC 0x7 ESC

‘r’ ‘l’‘o’‘W’ ‘d’ ESC 0x99 …

Escape ‘H’

SOF SOF

SOF

ESC

Listing 1

template<typename T>
void ProcessNextByte(byte b, T&& frameCompleted)
{
 static std::string frame{};
 static bool inHeader{false};
 static bool wasESC{false};
 static bool lookingForSOF{false};

 if(inHeader) {
 if((ESC == b) && not wasESC) {
 wasESC = true;
 return;
 } else if(wasESC) {
 wasESC = false;

 if((SOF == b) || (ESC != b)) {
 // if b is not SOF discard the frame
 if(SOF == b) { frameCompleted(frame); }

 frame.clear();
 inHeader = false;
 return;
 }
 }
 frame += static_cast<char>(b);
 } else if((ESC == b) && !lookingForSOF) {
 lookingForSOF = true;
 } else if((SOF == b) && lookingForSOF) {
 inHeader = true;
 lookingForSOF = false;
 } else {
 lookingForSOF = false;
 }
}

Andreas Fertig is a trainer and lecturer on C++11 to C++20, who
presents at international conferences. Involved in the C++
standardization committee, he has published articles (for example,
in iX) and several textbooks, most recently Programming with
C++20. His tool – C++ Insights (https://cppinsights.io) – enables
people to look behind the scenes of C++, and better understand
constructs. He can be reached at contact@andreasfertig.info
6 | Overload | April 2022

https://cppinsights.io

FEATUREANDREAS FERTIG
necessary for ESC as its value is 'H'. As there are no other characters we
need to escape, for now, we only check whether the byte following ESC
is either SOF or ESC. Both are valid. Any other byte is a processing error,
which we silently discard by throwing away the current frame and starting
over from the beginning.

I claim that this code is fairly straightforward to read, without knowing
what co_await and co_yield do. I’m sorry about the co_, but
coroutines were late to the party, and keywords like await or yield were
already used in code-bases, hence the prefix.

We can also see something new. Parse returns FSM, my name for this
coroutine type.

While I like most about the version I showed you above, there is something
I don’t like as much. We need to write a huge amount of boilerplate code
to make all the coroutine elements come alive. Sadly, C++20 does not ship
with a coroutine library. Everything in the coroutine header is a very low-
level construct, the building blocks required for a great coroutine library.
Lewiss Baker maintains cppcoro in GitHub [Baker] and is the author of
various proposals for a great coroutines library in C++23. If you are
looking for a promising shortcut that has a good chance of ending up in
the STL, cppcoro is the choice.

BYOC (Bring your own coroutine)
Let’s look at how we can implement the missing pieces without any other
library, only the STL.

The type FSM
First, what is FSM?

It is a using alias to async_generator<std::string, byte>:

 using FSM = async_generator<std::string, byte>;

async_generator is another type we have to write, one way or the
other, to satisfy the coroutine interface. This type consists of a special type,
or in this case, a using alias promise_type. This is a name the compiler
looks for to determine whether async_generator is a valid coroutine
type. Precisely with this spelling! In Listing 3 (overleaf), we see the
implementation of async_generator.

With the call operator, we get access to the value from inside the coroutine.
This is the receiving end of something that can be seen as a pipe. The pipe
is filled on the other end, inside the coroutine, by co_yield.

We can put data into the pipe with SendSignal. This is received inside
the coroutine by a co_await.

Because async_generator holds a communication channel with our
coroutine, we only allow this type to be moveable but not copyable. An
instance of this type is created for us by the compiler when instantiating
an object of type promise_type. This is why I chose to make the
const ructor of async_generator private and say that

Listing 2

FSM Parse()
{
 while(true) {
 byte b = co_await byte{};
 std::string frame{};

 if(ESC == b) {
 b = co_await byte{};

 if(SOF != b) { continue; }
 //  not looking at a start sequence

 while(true) {  capture the full frame
 b = co_await byte{};

 if(ESC == b) {
 //  skip this byte and look at the
 // next one
 b = co_await byte{};

 if(SOF == b) {
 co_yield frame;
 break;
 } else if(ESC != b) { // out of sync
 break;
 }
 }
 frame += static_cast<char>(b);
 }
 }
 }
}

Listing 3

template<typename T, typename U>
struct [[nodiscard]] async_generator
{
 using promise_type =
 promise_type_base<T, async_generator,
 awaitable_promise_type_base<U>>;
 using PromiseTypeHandle =
 std::coroutine_handle<promise_type>;
 T operator()()
 {
 //  the move also clears the mValue of the
 // promise
 auto
 tmp{std::move(mCoroHdl.promise().mValue)};
 //  but we have to set it to a defined state
 mCoroHdl.promise().mValue.clear();
 return tmp;
 }
 void SendSignal(U signal)
 {
 mCoroHdl.promise().mRecentSignal = signal;
 if(not mCoroHdl.done()) { mCoroHdl.resume(); }
 }
 async_generator(async_generator const&) =
 delete;
 async_generator(async_generator && rhs)
 : mCoroHdl{std::exchange(rhs.mCoroHdl, nullptr)}
 {}
 ~async_generator()
 {
 if(mCoroHdl) { mCoroHdl.destroy(); }
 }
private:
 friend promise_type; //  As the default ctor
 // is private G needs to be a friend
 explicit async_generator(promise_type * p)
 : mCoroHdl(PromiseTypeHandle::from_promise(*p))
 {}
 PromiseTypeHandle mCoroHdl;
};

If you’re not familiar with coroutines, have a look at ‘Concurrency,
Parallelism and Coroutines’ by Anthony Williams from ACCU 2017
[Williams17]. Coroutines are just functions, which can be stopped and
restarted or resumed.

Coroutines are stackless: they suspend execution by returning to the
caller and the data that is required to resume execution is stored
separately from the stack. This allows for sequential code that
executes asynchronously. [cpp]

They hinge on three terms: co_await, which suspends the function and
returns control to the caller until it’s resumed; co_yield, which yields
a value to the caller (and then picks up where it left off when called again);
and co_return, which completes execution and returns a value.

Coroutines (an explanation from Fran Buontempo)
April 2022 | Overload | 7

FEATURE ANDREAS FERTIG
promise_type is a friend. This is just to prevent misuse or false
assumptions.

PromiseTypeHandle is a handle to the current coroutine. With it, we
can transfer data between normal and coroutine code (e.g. co_yield and
co_await).

Next up is the promise_type. The using alias is directing to
promise_type_base, which is composed of T, async_generator,
awaitable_promise_type_base<U>. So, two more new types.

The promise_type_base
First, the reason for the suffix _base is that the entire example uses two
generators. One for the parsing logic we are looking at and another one for
simulating a data stream. Listing 4 is the implementation.

This generator satisfies the co_yield interface of a coroutine. A very
rough view is that the call co_yield is replaced by the compiler calling
yield_value. So promise_type_base serves as a container for the
value coming from the coroutine into our normal code. All the other
methods are just to satisfy the coroutine interface. As we can see,
coroutines are highly customizable, but that is a different story.

We can also see that promise_type_base derives from the third
pa ram e te r pa s sed t o i t . I n ou r ca se , t h i s i s
awaitable_promise_type_base<U>. This is a variadic argument,
simply to allow creating a promise_type_base object without a base
class.

The awaitable_promise_type_base
Next, we need to write the glue code for co_await, which waits for the
next byte. This is the part of awaitable_promise_type_base,
creating a so-called Awaitable-type. In Listing 5, you can see an
implementation.

With these pieces, we have the FSM coroutine type and can use Parse.
Figure 2 (overleaf) shows which element in our code interacts with which
part of the async_generator.

Summary
I hope I could demonstrate that coroutines are a great tool when it comes
to implementing parsers. The boiler-plate code aside, they are easy to write
and highly readable. You can find the complete version of this example
on godbolt.org [Fertig].

Until we have C++23 and hopefully much better coroutines support in the
STL, we either have to write code as above or use cppcoro [Baker].

As always, I hope you learned something from this article. Feel free to
reach out to me on Twitter to give feedback (https://twitter.com/
Andreas__Fertig). 

References
[Baker] Lewiss Baker, cppcoro on Github:

https://github.com/lewissbaker/cppcoro

[cpp] ‘Coroutines (C++20)’, available at:
https://en.cppreference.com/w/cpp/language/coroutines

[Fertig] An electronic version of the original blog post and all examples
is available on godbolt.org: https://godbolt.org/z/8hEffT

[Williams17] Anthony Williams, ‘Concurrency, Parallelism and
Coroutines’ from ACCU 2017 available at:
https://www.youtube.com/watch?v=UhrIKqDADX8

Listing 4

template<typename T, typename G,
 typename... Bases>
 //  Allow an optional base class
struct promise_type_base : public Bases... {
 T mValue;
 auto yield_value(T value)
 {
 mValue = value;
 return std::suspend_always{};
 }
 G get_return_object() { return G{this}; };
 std::suspend_always initial_suspend()
 { return {}; }
 std::suspend_always final_suspend() noexcept
 { return {}; }
 void return_void() {}
 void unhandled_exception() { std::terminate(); }
};

Listing 5

template<typename T>
struct awaitable_promise_type_base {
 std::optional<T> mRecentSignal;
 struct awaiter {
 std::optional<T>& mRecentSignal;
 bool await_ready() {
 return mRecentSignal.has_value(); }
 void await_suspend(std::coroutine_handle<>) {}
 T await_resume()
 {
 assert(mRecentSignal.has_value());
 auto tmp = *mRecentSignal;
 mRecentSignal.reset();
 return tmp;
 }
 };
 [[nodiscard]] awaiter await_transform(T) {
 return awaiter{mRecentSignal}; }
};

FSM Parse()
{
 while(true) {
 byte b = co_await byte{};
 std::string frame{};

 if(ESC == b) {
 b = co_await byte{};

 if(SOF != b) { continue; }

 while(true) {
 b = co_await byte{};

 if(ESC == b) {
 b = co_await byte{};

 if(SOF == b) {
 co_yield frame;
 break;
 } else if(ESC != b) {
 break;
 }
 }

 frame += static_cast<char>(b);
 }
 }
 }
}

async_generator<std::string, byte>

awaitable_promise_type_base::await_resume

promise_type_base::yield_value

Figure 2

This article was first published on Andreas Fertig’s blog (https://
andreasfertig.blog/2021/02/cpp20-a-coroutine-based-stream-
parser/) on 2 February 2021.

It is a short version of ‘Chapter 2: Coroutines’, from his latest book
Programming with C++20. The book contains a more detailed
explanation and more information about this topic.
8 | Overload | April 2022

https://andreasfertig.blog/2021/02/cpp20-a-coroutine-based-stream-parser/
https://godbolt.org/z/8hEffT
https://github.com/lewissbaker/cppcoro
https://www.youtube.com/watch?v=UhrIKqDADX8
https://twitter.com/Andreas__Fertig
https://twitter.com/Andreas__Fertig

FEATURELUCIAN RADU TEODORESCU
Structured Concurrency in C++
Raw threads tend to be unstructured. Lucian
Radu Teodorescu applies principles from
Structured Programming to concurrency.
f one made a list of the paradigm changes that positively influenced
software development, Structured Programming would probably be at
the top. It revolutionised the software industry in two main ways: a) it

taught us how to structure programs to better fit our mental abilities, and
b) constituted a fundamental step in the development of high-level
programming languages.

Work on structured programming began in the late 1950s with the
introduction of the ALGOL 50 and ALGOL 60 programming languages,
containing compound statements and code blocks, and allowing engineers
to impose a structure on programs. In 1966, Böhm and Jacopini discovered
what is now called structured program theorem [Böhm66], proving that
the principles of structured programming can be applied to solve all
problems. Two years later, in 1968, Dijkstra published the highly
influential article, ‘Go To Statement Considered Harmful’ [Dijkstra68],
arguing that we need to lay out the code in a way that the human mind can
easily follow it (and that the GOTO statement works against this principle).

It is said that concurrency became a concern in the software industry in
1965, when the same Dijkstra wrote the article, ‘Solution of a problem in
concurrent programming control’ [Dijkstra65]. This article introduced the
critical section (i.e., mutex), and provided a method of implementing it –
the use of critical sections has remained an important technique for
concurrent programming since its introduction. To reiterate the timeline,
the critical section concept was introduced before the structured
programming theorem, before the influential ‘Go To Statement
Considered Harmful’, and before 1968, when the term Software
Engineering was coined (at a NATO conference [Naur69]).

While concurrency is an old topic in the software industry, it appears that
we still mainly handle concurrency in an unstructured way. Most of the
programs that we write today rely heavily on raw threads and mutexes. And
it’s not just the software that’s written this way; this is how we teach
programmers concurrency. One can open virtually any book on
concurrency, or look at most of the concurrency tutorials, and most
probably the first chapters start with describing threads and mutexes (or
any other form of synchronisation primitive). This is not anybody’s fault;
it’s just the state of our industry (at least in C++).

This article aims to show that we can abandon the thread and mutex
primitives for building concurrent abstractions, and start using properly
structured concurrency with the senders/receivers framework [P2300R4]
that may be included in C++231. We look at the essential traits of structured
programming, and we show that they can be found in the senders/receivers
programming model.

Structured programming
The term structured programming is a bit overloaded. Different authors
use the term to denote different things. Thus, it is important for us to define
what we mean by it. We have 3 main sources for our definition of
structured programming: a) the article by Böhm and Jacopini introducing

the structured program theorem [Böhm66], Dijkstra’s article [Dijkstra68],
and the book Structured Programming by Dahl, Dijkstra, and Hoare
[Dahl72]. The book contains references to the previous two articles, so, in
a sense, is more complete.

Based on these sources, by structured programming we mean the
following:

 use of abstractions as building blocks (both in code and data)

 recursive decomposition of the program as a method of creation/
analysis of a program

 local reasoning helps understandability, and scope nesting is a good
way of achieving local reasoning

 code blocks should have one entry and one exit point

 soundness and completeness: all programs can be safely written in a
style that enables structured programming

In the following subsections, we will cover all these aspects of Structured
Programming. Subsequently, we will use these as criteria for defining
Structured Concurrency, and decide whether a concurrency approach is
structured or not.

Use of abstractions
Abstraction is the reduction of a collection of entities to the essential parts
while ignoring the non-essential ones. It’s the decision to concentrate on
some of the similarities between elements of that set, discarding the
differences between the elements. Variables are abstractions over ‘the
current value’. Functions are abstractions that emphasise ‘what it does’ and
discard the ‘how it does it’.

As Brooks argues, software is essential complexity [Brooks95]. That is,
we cannot fit it into our heads. The only way to reason about it is to ignore
parts of it. Abstractions are good ways to ignore the uninteresting details
and keep in focus just the important parts. For example, one can easily
understand and reason about something that ‘sorts an array’, but it’s much
harder to understand the actual instructions that go into that sorting
algorithm. And, even instructions are very high-level abstractions
compared with the reality of electromagnetic forces and moving electrons.

Use of (good) abstractions is quintessential for structured programming.
And to remind us of that, we have the following quote from Dijkstra
[Dahl72]:

At this stage I find it hard to be very explicit about the abstraction,
partly because it permeates the whole subject.

Out of all the abstractions possible in a programming language, the named
abstractions (e.g., functions) are most useful. Not because they have a
name associated with them, but because the engineer can create many of
them and differentiate them by name. I.e., having the ability to add for

1. This appears not to be true anymore. While writing this article, the C++
standard committee moved the P2300 proposal target release from
C++23 to C++26.

I

Lucian Radu Teodorescu has a PhD in programming languages
and is a Software Architect at Garmin. He likes challenges; and
understanding the essence of things (if there is one) constitutes the
biggest challenge of all. You can contact him at lucteo@lucteo.ro
April 2022 | Overload | 9

FEATURE LUCIAN RADU TEODORESCU

As much as possible, all code blocks need to be
fully encapsulated. Parts of a code block should
not interact with the world outside the block
loops in the code is good, but having the ability to create different functions
that are capable of implementing any types of problems (including
abstracting out for statements) is much more useful.

Using functions, the engineer can abstract out large parts of the program
and express them with a simple syntactical unit (a function call). This
means that functions play an important role in Structured Programming.
When we say that abstractions are at the core of Structured Programming,
we mean exactly this: we’re able to abstract away large portions of the
program.

Furthermore, it’s worth noting that, in Structure Programming, one can
find abstractions that would represent the whole program. Just think of the
popular main() function.

Recursive decomposition of programs
In the Structured Programming book, Dijkstra spends a fair amount of
time on problem decomposition, on how we’re able to build software
hierarchically. That is, we’re capable of building programs by:

 recursively decomposing programs into parts, using a top-down
approach

 making one decision at a time, the decision being local to the
currently considered context

 ensuring that later decisions do inot influence early decisions (for
the majority of the decisions)

This gives us an (almost) linear process for solving software problems.
Any process for solving software problems is good, but a linear process is
much better. Software being essential complexity, one can imagine that we
might have coupling between all parts of the system. If the system has N
parts, then the amount of coupling would be in the order of O(N2). That
is, a process that is focused on the interactions between these parts would
have to be in the order of at least O(N2) steps. And yet, Structured
Programming proposes us a linear process for solving problems.

The process advocated by Structured Programming is based on the Divider
Et Impera strategy, and our brain is structured in such a way that allows
us to easily cope with it.

One other key aspect of this method is that the sub-problems have the same
general structure as the bigger problems. For example, let’s assume that
we have one function that calls two smaller functions. We can reason about
all three functions in the same way: they all are abstractions, they all have
the same shape (single entry, single exit point), they all can be further
decomposed, etc. This will reduce the strain on our brains, and allows us
to reuse the same type of solution in many places.

Local reasoning and nested scopes
To reduce the burden of understanding programs, Dijkstra remarks that we
need to shorten the conceptual gap between the text of the program and
how this is actually executed at runtime [Dahl72, Dijkstra68]. The closer
the execution follows the program text, the easier it is for us to comprehend
it. It is best if we can understand the consequences of running a piece of

code by understanding just the preconditions and the corresponding
instructions.

If we are following the pattern preconditions + instructions 
postconditions, to properly have local reasoning (i.e., focus on the actual
instructions), then we need the set of preconditions to be small. We cannot
speak of local reasoning if the set of preconditions needs to contain
information about everything else that happened before in the program.
For example, if we want to analyse a block of code that sorts an array of
numbers, we should not be concerned with how that array was generated;
any parts of the sorting algorithm should not be coupled with other parts
of the program.

Another way to look at local reasoning is by looking at encapsulation. As
much as possible, all code blocks need to be fully encapsulated. Parts of
a code block should not interact with the world outside the block. Dijkstra
imagines that, in the ideal world, every part of the program would run on
its dedicated (virtual) machine. This way, different parts will be
completely independent.

In this context, the notion of scope is important. A lexical scope isolates
the local concerns of a code block (lexically specified) from the rest of the
blocks. If I declare a local variable in my block, no other block can interfere
with my local variable. And again, the more stuff we have locally defined,
the more local reasoning we’re able to do.

Single entry, single exit point for code blocks
Looking at a sequence of regular instructions (i.e., without loops or
alternatives) is easy. The preconditions of an instruction directly depend
on the postconditions of the previous instruction. This is what Dijkstra
calls enumerative reasoning. The conceptual gap between a sequence of
instructions and the execution of those instructions in time is minimal.

If we want to treat code blocks or function calls as instructions, we should
ensure that they share as many properties as possible with the simple
instructions. One of these properties is single entry, single exit point. Every
instruction, every block of code and every function should have one single
entry point so that we can easily check whether the preconditions are met.
Similarly, they should have one single exit point so that we analyse a single
set of postconditions.

There is another advantage of using a single entry, single exit point
strategy. The blocks and the function calls have the same shape as simple
instructions. That allows us to apply the same type of reasoning to code
blocks and to function calls, and permits us to have a simpler recursive
decomposition.

Soundness and completeness
Having a single entry and a single exit point is a big restriction on the
number of programs we can write. We need to make sure that this
restriction does not impose a limit on the number of problems that can be
solved with Structured Programming. We must have a sound method to
ensure that we are able to build all programs with the restrictions imposed
by our method.
10 | Overload | April 2022

FEATURELUCIAN RADU TEODORESCU

We may create abstractions that
correspond to tasks, but it’s hard to

create abstractions of different sizes,
spanning multiple threads
The structured program theorem [Böhm66] proves that we can write all
our programs using 3 simple control structures: sequence, selection and
repetition. The Böhm and Jacopini paper has 3 major takeaways:

 ensuring that Structured Programming can be applied to all types of
problems

 providing a set of primitives that can be used as building blocks for
our programs

 providing alternative ways to visualise the programs – flowcharts

Concurrency with threads and synchronisation
primitives
In the classic model of concurrency, one would use raw threads to express
parallelism and then use synchronisation primitives to ensure that the
threads do not interact in ways that break the correctness of the program.
This model of organising concurrency is completely unstructured.

We don’t have a general way of creating higher level abstractions that can
represent parts of our concurrent program (and fully handle concurrency
concerns inside it). Thus, we cannot use any such abstractions to
decompose a program into subparts while keeping the concurrency
constraints straight.

In this model, it’s generally hard to do local reasoning. With
synchronisation primitives, we almost always need to consider the rest of
the program. We cannot simply look at one single function and draw any
conclusion about what synchronisation we need.

As we don’t have good general-purpose abstractions to encapsulate
concurrency constraints, it is hard for us to discuss single-entry and single-
exit points for such abstractions. Furthermore, as there is no general
composable method for expressing concurrency, it’s hard for us to discuss
the soundness of the approach.

Synchronisation primitives act like GOTO commands, breaking local
reasoning and encapsulation.

Concurrency with raw tasks
Let’s now turn our attention to another model of dealing with concurrency.
The one that is based on raw tasks (see [Teodorescu20]). We call a task
an independent unit of work that is executed on one thread of execution.
We call an executor something that dictates how and when tasks are
executed. Those two concepts are enough for building concurrent systems.

We have proved before that a task-based system can be used to implement
all concurrent problems [Teodorescu20] and that we can compose task-
based system without losing correctness and efficiency [Teodorescu21].
That is a step towards Structured Concurrency. However, task-based
systems still don’t fully have the characteristics we’ve taken from
Structured Programming.

Let’s first look at the ability to create concurrent abstractions. We may
create abstractions that correspond to tasks, but it’s hard to create
abstractions of different sizes, spanning multiple threads. Taking tasks as
they are, without any workarounds, doesn’t fully encapsulate concurrency

constraints. In this case, they also cannot be used for recursively
decomposing concurrent programs.

Simple tasks are equivalent to functions, so they allow local reasoning just
like Structured Programming does (that is, only if tasks are independent,
as we said previously).

In [Teodorescu21], we introduced a technique to allow the decomposition
of tasks. First, the concept of a task is extended to also contain a
continuation. A continuation is a type-erased function that is executed
whenever the task is completed. Most of the machinery that can be built
on top of tasks can be made to work by using continuation. Secondly, the
article introduced a trick that allows tasks to change their continuations
while running. More precisely, to exchange the continuation of the current
task with the continuation of another tasks (that can be executed in the
future, or on a different thread). With this trick, we can make tasks
represent concurrent work that span across multiple threads, with inner
details.

If we apply this trick, then we lose the ability for local reasoning. The
bigger abstraction (original task + continuation) is not specified in a one
place; it is distributed between the start task, and all the tasks that are used
to exchange the continuations (directly or indirectly) with this task. We
lose lexical scoping and nesting properties.

With raw tasks, it’s often the case that we spawn tasks and continue. This
is the fire-and-forget style of creating concurrent work. Each time we do
this, the spawn operation has one entry point, but two exit points: one that
remains with the current thread, and one that follows the newly spawned
task.

In conclusion, even if tasks systems allow us to achieve most of the goals
we set up for a structured approach, we cannot achieve all the goals at the
same time.

Concurrency with senders/receivers
There is a new model in C++ that can solve concurrency in a structured
approach. This is the model proposed by [P2300R4], informally called
senders/receivers. As we shall see, this model works well with all the
important points considered to be ‘structured’.

A sender is an entity that describes concurrent work. The concurrent work
described by the sender has one entry point (starting the work) and one exit
point, with three different alternatives: successful completion (possible
with a value), completed with error (i.e., exception), or cancelled.

It is worth mentioning that senders just describe work; they don’t
encapsulate it. That would be the role of what P2300 calls operation states.
However, users will rarely interact directly with operation states. These are
hidden behind simple-to-use abstractions.

Listing 1 shows an example of using a sender to describe concurrent work.
We specify that the work needs to be executed on pool_scheduler
(e.g., an object identifying a pool of threads), we specify what work must
happen, and we specify that if somehow the scheduler is cancelled to
transform this into a specific error. While creating the sender object, no
April 2022 | Overload | 11

FEATURE LUCIAN RADU TEODORESCU

having a multiple exit strategy doesn’t necessarily imply
multiple exit points … function calls are considered to
have a single exit point, even if they can exit either with a
value or by throwing an exception
actual work happens; we just describe what the work looks like. The call
to sync_wait starts the work and waits for it to complete, capturing the
result of our concurrent work (or maybe forwarding the exception if any
exception is thrown).

For the purpose of this article, we define a computation as a chunk of work
that can be executed on one or multiple threads, with one entry point and
one exit point. The exit point can represent the three alternatives mentioned
above: success, error and cancellation. Please note that having a multiple
exit strategy doesn’t necessarily imply multiple exit points; this is similar
to how function calls are considered to have a single exit point, even if they
can exit either with a value or by throwing an exception.

A computation is a generalisation of a task. Everything that can be a task
can also be a computation, but not the other way around.

The senders/receivers model allows us to describe any computation (i.e.,
any concurrent chunk of work) as one sender. A proof for this statement
would be too lengthy to show here, and the reader can find it in
[P2504R0]2. This paper also shows the following:

 all programs can be described in terms of senders, without the need
of synchronisation primitives

 any part of a program, that has one entry point and one exit point,
can be described as a sender

 the entire program can be described as one sender

 any sufficiently large concurrent chunks of work can be
decomposed into smaller chunks of work, which can be described
with senders

 programs can be implemented using senders using maximum
efficiency (under certain assumptions)

In summary, all concurrent single-entry single-exit chunks of works, i.e.,
computations, can be modelled with senders.

It is important to note that computations fully encapsulate concurrency
concerns. Computations are to concurrent programming what functions

are to Structured Programming. Computations are the concurrent version
of functions.

The above paragraph represents the quintessence of this whole article.

Use of abstractions
Let’s start our analysis of whether the senders/receivers model can be
considered structured by looking at abstractions. In this model, the obvious
abstraction is the computation, which can be represented by a sender. One
can use senders to abstract out simple computations (smaller than typical
tasks), to abstract out work that corresponds to a task, or to abstract out a
chunk of work that may span multiple threads. The upper limit to how
much work can be represented by a sender is the size of the program itself.
Actually, the entire program can be represented by a single sender. See
Listing 2 for how this may be done.

Recursive decomposition of programs
As mentioned above, [P2504R0] proves that any program, or part of the
program, can be recursively decomposed with the use of senders.
Moreover, within a decomposition, the smaller parts can be made to look
like the original part; they can be all senders.

Listing 3 shows an example on how a problem can be decomposed into
two smaller parts, using senders to describe both the problem and the sub-
problems.

Local reasoning and nested scopes
The reasoning can be local with the senders/receivers model. The
definition of a sender completely describes the computation from

2. The paper uses the term computation in a different way to this article.
There, computation is defined to be equal to a sender, and then it’s
proven that it can represent arbitrarily chunks of work. It’s the same
thing, but coming from a different perspective.

Listing 1

using ex = std::execution;
int compute_something() {...}

ex::sender auto snd =
 ex::schedule(pool_scheduler)
 | ex::then(compute_something)
 | ex::stopped_as_error(my_stopped_error)
 ;
auto [r] =
std::this_thread::sync_wait(std::move(snd))
 .value();

Listing 2

using ex = std::execution;
ex::sender auto whole_program_sender() {...}
int main() {
 auto [r] = std::this_thread::sync_wait
 (whole_program_sender()).value();
 return r;
}

Listing 3

ex::sender auto do_process() {
 ex::sender auto start
 = ex::schedule(pool_scheduler);
 ex::sender auto split_start = ex::split(start);
 return ex::when_all(
 split_start | ex::let_value(comp_first_half),
 split_start | ex::let_value(comp_second_half)
);
}

12 | Overload | April 2022

FEATURELUCIAN RADU TEODORESCU
beginning to end. The reasoning of all the aspects of that sender can be
done locally, even if the sender contains multiple parts.

Let us look again at the code in Listing 3. The top-level computation
contains the elements needed to reason about how the sub-computations
start and finish. We’re able to inspect this code and draw the following
conclusions:

 one entry and one exit for the entire process

 both halves start processing on the pool scheduler

 if one half ends with error/cancellation, then the other half is
cancelled and the whole process ends with the original error/
cancellation

 the process ends when both parts end

The idea of nested scopes was a major point in the design of senders/
receivers. One can properly nest senders, and also nest operation states,
and also receivers nest. Please see [Niebler21a] for more details.

Single entry, single exit point
By definition, senders have one entry point and one exit point. There are
multiple alternatives if the work described by a sender may terminate, but
essentially, we may say that there is only one exit point. This is similar to
how a function call might exit either with a return value or an exception.

While one can use the fire-and-forget style with senders, this is not the
recommended way of using senders.

See also [Niebler21b] for a better illustration about how senders are
fulfilling the single entry, single exit point requirement.

Soundness and completeness
In Structured Programming, the structured program theorem [Böhm66]
provides the soundness and completeness guarantees for the method. For
the senders/receivers model, as mentioned above, [P2504R0] shows that
one can soundly use it to solve all possible concurrency problems.

If one is able to use senders to describe any chunk of concurrent work (with
one entry and one exit point), and if we can decompose any concurrent
programs in such work chunks, then we are covered.

The reader should note that, out of the box, P2300 doesn’t provide
primitives for representing repetitive computations or for type-erasing the
senders; these are needed to be able to describe many concurrent chunks
of work. However, the model is general enough to allow the user to create
abstractions for these. In fact, there are libraries out there that already
support these abstractions; one of the most known ones is [libunifex].

Bonus: coroutines
I felt it would be better not to include coroutines as one of the requirements
needed for structured concurrency. We can write good concurrent code
even without the use of coroutines. However, coroutines can help in
writing good concurrent (and parallel) code.

Interestingly enough, in his part of the Structured Programming book
[Dahl72], Dahl discusses coroutines, a SIMULA feature, as a way of
organising programs. If a program uses only subroutines, then, at the
function-call level, the program is always organised hierarchically. Using
coroutines might help when strict hierarchical organisation is not
necessarily needed, and cooperative behaviour is more important.

The senders/receivers proposal guarantees good interoperability between
senders and coroutines. According to the proposal, all awaitables are also
senders (i.e., can be used in places where senders are used). Moreover,
most of the senders (i.e., senders that yield a single value) can be easily
made awaitables (by a simple annotation in the coroutine type).

Let us look at the example from Listing 43. Here, task<T> is a coroutine
type. The reference implementation associated with the P2300 paper
provides an implementation for this abstraction [P2300RefImpl].

naive_par_fib is a coroutine; it uses co_return twice and
co_await once. The res variable inside the coroutine is a sender. We can
co_await this sender, as shown in the body of our coroutine; thus, senders
can be awaited. Towards the end of the example, we show how one can
simply use the coroutine invocation to chain it to a sender, thus using it
just as if it was a sender. Furthermore, the function passed to let_value
needs to return a sender; we are returning a task<uint64_t> awaitable.

Using coroutines might make the user code easier to read. In this particular
example, we also showed how coroutines can be used to obtain type-
erasure of senders; task<T> acts like a type-erased sender that generates
a value of type T.

Discussion
The current senders/receivers proposal, [P2300R4] doesn’t aim at being a
comprehensive framework for concurrent programming. For example, it
lacks facilities for the following:

 type-erased senders

 a coroutine task type (the name is misleading, as it would
encapsulate a computation)

 facilities for repeating computations

 facilities for enabled stream processing (reactive programming)

 serialiser-like abstractions

 etc.

3. This is a bad implementation of a Fibonacci function, for multiple
reasons. We use it here just to exemplify the interaction between
components, not to showcase how one would implement a parallel
version of Fibonacci

Listing 4

template <ex::scheduler S>
task<uint64_t> naive_par_fib(S& sched, int n) {
 if (n <= 2)
 co_return 1;
 else {
 ex::sender auto start = ex::schedule(sched);
 ex::sender auto res = ex::when_all(
 start | ex::let_value([&] {
 return naive_par_fib(sched, n - 1);
 }),
 start | ex::let_value([&] {
 return naive_par_fib(sched, n - 2);
 })
) | ex::then(std::plus<uint64_t>());
 co_return co_await std::move(res);
 }
}
ex::sender auto snd =
 naive_par_fib(sched, n)
 | ex::then([](uint64_t res) {
 std::cout << res << "\n";
 });
std::this_thread::sync_wait(std::move(snd));

The senders/receivers model proposed to C++ share many traits with the
async/await model [Wikipedia]. The latter model was introduced in F# 2.0
in 2007 [Syme11], and then spread to multiple programming languages
(C#, Haskell, Python, etc.), eventually reaching C++ with the addition of
coroutines in C++20. In F#, a type Async<T> represents an
asynchronous computation (wording taken from [Syme11]). This would
be analogous to the Task<T> coroutine type we discussed above. And,
as senders are equivalent to these types, it means that the Async<T>
from F# is an abstraction similar to a sender.

However, the senders/receivers model can be implemented more
efficiently than coroutines or other similar type-erased abstractions.

Structured Concurrency is not something that can be done with senders/
receivers only in C++. Other languages can support Structured
Concurrency too; the P2300 senders/receivers model just ensures that
we get the most performance out of it, as it avoids type-erasure and other
performance penalties.

The senders/receivers model
April 2022 | Overload | 13

FEATURE LUCIAN RADU TEODORESCU
However, the most important part of the proposal is the definition of the
general framework needed to express concurrency. Then, all the facilities
needed to represent all kinds of concurrent programs can be built on top
of this framework. The proposal contains just a few such facilities (sender
algorithms), but the users can create their own abstractions on top of this
framework.

This article focuses on the framework, showing that it has the needed
requirements for Structured Concurrency; we are not arguing that the
facilities described in P2300 are enough.

Another important topic to discuss, especially in conjunction with
concurrency, is performance. After all, the move towards more parallelism
is driven by the performance needs of the applications. Our single-threaded
processors are not fast enough, so we add more parallel processing to speed
things up, and concurrency is needed to ensure the safety of the entire
system.

In task-based systems, we put all the work into tasks. Usually, we type-
erase these tasks to be able to pass them around. That means that we have
an abstraction cost at the task level. This will make it impractical to use
tasks for very small chunks of work. But, it is typically also impractical to
use tasks with very big chunks of works, as this can lead to situations in
which we do not properly fill up all the available cores. Thus, task-based
systems have good performance in just a relatively narrow range, and users
cannot fully control all performance aspects. Task-based systems can have
good performance, but not always the best performance.

In contrast, the senders/receivers model doesn’t imply any abstraction that
might incur performance costs. The user is free to introduce type-erasure
at any level that is best for the problem at hand. One can write large
concurrent chunks of work without needing to pay the costs of type-erasure
or memory allocation. Actually, most facilities provided in the current
P2300 proposal do not incur any additional type-erasure or memory
allocation costs.

The senders/receivers model allows one to model concurrency problems
without any performance penalties.

Conclusions
Structured Programming produced a revolution for the good in the
software industry. Sadly, that revolution did not also happen in concurrent
programming. To improve concurrent programming, we want to apply the
core ideas of Structured Programming to concurrency.

After discussing the main ideas that shape Structured Programming, we
briefly discussed that classic concurrent programming is not structured at
all. We’ve shown that task-based programming is better, but still doesn’t
meet all the goals we set to enable Structured Concurrency.

The rest of this article showed how the senders/receivers model fully
supports all the important ideas from Structured Programming, thus
making concurrent programming with this model worthy to be called
structured.

In concurrent programming, we have computations to play the role of
functions in structured programming, and any computation can be
described by a sender. With the help of [P2504R0], we argued that one can
use senders to describe any concurrent program. We discussed here how
senders can be used as abstractions to describe concurrent work at any level
(from the entire program to small chunks of work). We’ve shown that this
model lends itself well to recursive decomposition of concurrent programs
and to local reasoning of abstractions. Likewise, we’ve also discussed how
senders have the single entry, single exit shape and how one can build
complex structures from simple primitives.

All these make the senders/receivers model match the criteria we set to
achieve Structured Concurrency. When this proposal gets into the C++
standard, we will finally have a model to write safe, efficient and structured
concurrent programs.

References
[Böhm66] Corrado Böhm, Giuseppe Jacopini, ‘Flow Diagrams, Turing

Machines and Languages With only Two Formation Rules’,
http://citeseerx.ist.psu.edu/viewdoc/
download?doi=10.1.1.119.9119&rep=rep1&type=pdf,
Communication of the ACM, May, 1966

[Brooks95] Frederick P. Brooks Jr., The Mythical Man-Month
(anniversary ed.)., Addison-Wesley Longman Publishing, 1995

[Dahl72] O.-J. Dahl, E. W. Dijkstra, C. A. R. Hoare, Structured
Programming, Academic Press Ltd., 1972

[Dijkstra65] Edgar Dijkstra, ‘Solution of a problem in concurrent
programming control’, Communications of the ACM, September,
1965.

[Dijkstra68] Edgar Dijkstra, 1Go To Considered Harmful’,
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf,
Communication of the ACM, March, 1968

[libunifex] Eric Niebler, et al., libunifex, https://github.com/
facebookexperimental/libunifex, 2022

[Naur69] Peter Naur, Brian Randell, Software Engineering: Report on a
conference sponsored by the NATO SCIENCE COMMITTEE,
Garmisch, Germany, 7th to 11th October, 1968, 1969

[Niebler21a] Eric Niebler, ‘Working with Asynchrony Generically: A
Tour of C++ Executors (part 1/2)’, CppCon, 2021,
https://www.youtube.com/watch?v=xLboNIf7BTg

[Niebler21b] Eric Niebler, ‘Working with Asynchrony Generically: A
Tour of C++ Executors (part 2/2)’, CppCon, 2021,
https://www.youtube.com/watch?v=6a0zzUBUNW4

[P2300R4] Michał Dominiak et al., ‘std::execution’, 2022,
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/
p2300r4.html

[P2300RefImpl] Bryce Lelbach, et al., ‘P2300 Reference
implementation’, 2022, https://github.com/brycelelbach/
wg21_p2300_std_execution

[P2504R0] Lucian Radu Teodorescu, ‘Computations as a global solution
to concurrency’, 2021, http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2021/p2504r0.html

[Syme11] Don Syme, Tomas Petricek, Dmitry Lomov. ‘The F#
asynchronous programming model’, International Symposium on
Practical Aspects of Declarative Languages, Springer, 2011

[Teodorescu20] Lucian Radu Teodorescu, ‘The Global Lockdown of
Locks’, Overload 158, August 2020, available online at
https://accu.org/journals/overload/28/158/teodorescu/

[Teodorescu21] Lucian Radu Teodorescu, ‘Composition and
Decomposition of Task Systems’, Overload 162, April 2021,
available online at https://accu.org/journals/overload/29/162/
teodorescu/

[Wikipedia] ‘Async/await’ on Wikipedia, https://en.wikipedia.org/wiki/
Async/await, 2022
14 | Overload | April 2022

https://en.wikipedia.org/wiki/Async/await
https://en.wikipedia.org/wiki/Async/await
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.9119&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.119.9119&rep=rep1&type=pdf
https://homepages.cwi.nl/~storm/teaching/reader/Dijkstra68.pdf, Communication of the ACM, March, 1968
https://github.com/facebookexperimental/libunifex
https://github.com/facebookexperimental/libunifex
https://www.youtube.com/watch?v=xLboNIf7BTg
https://www.youtube.com/watch?v=6a0zzUBUNW4
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p2300r4.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2504r0.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2021/p2504r0.html
https://accu.org/journals/overload/28/158/teodorescu/
https://accu.org/journals/overload/29/162/teodorescu/
https://accu.org/journals/overload/29/162/teodorescu/

FEATURETEEDY DEIGH
The Vector Refactored
Finding the right level of abstraction
can be challenging. Teedy Deigh
razes the level of abstraction.
@Polymorpheus: What if I told you that vector is not the only data
structure available from the standard library?

@Teedy: But what if I told you, Polly, that the C++ standard says
that “vector is the type of sequence that should be
used by default”? As any engineer knows, don’t mess
with the defaults, amiright?

[Teedy looks for support from the others on the call.
She has Zoom in Muppet Show mode, but all she gets
is a wall of muted silence against a back drop of either
camera-off darkness or Star Wars backdrops and devs
who are obviously ‘multitasking’.]

@Polymorpheus: I think it’s reasonable to use string for strings rather
than vector<char>, don’t you?

@smith: And also u16string and u32string – but please,
please, don’t use wstring.

@Polymorpheus: Yes, thank you, Winston. For a relatively new
codebase, this system does seem a little stuck in the
last century. Either way, basic_string is the
template you’re looking for.

@Teedy: I can roll with that – still an array under the hood,
which we know is the one true data structure.

@Polymorpheus: I appreciate the fundamental nature of arrays, but it
feels a little low level for some of the code, such as –
wait a moment, let me just share my screen [code
appears] – this code here, which queues requests.

@Teedy: Oh yes, love that code.

@smith: Love is blind.

@Polymorpheus: I think a deque would have been just fine.

@Teedy: Pfft, deque’s just a vector wannabe that lacks cache
locality. It’s all over the place. This variant of a
circular buffer does everything needed, and with the
kind of code that keeps me in work.

@smith: Wouldn’t it be better to encapsulate all this [waves
hand at camera] in a class rather than leaving the logic
strewn all over the code, big footprints of duplicated
control flow everywhere the vector – sorry, circular
buffer – passes? There’s so much copy and pasting
[cat walks across keyboard in front of camera, a
stream of garbled characters fill the chat] I get a
haunting sense of déjà vu every time I look through
this code.

@Teedy: Repetition legitimises.

@smith: ...

@Teedy: What?

@smith: That, Ms Deigh, is the sound of incredulity.

@Polymorpheus: Winston has a point, though, Teedy. I think for a
system that is I/O bound – spending most of its time
in the OS, the network, setting cookies and chatting to
the Oracle database – this micro-optimisation doesn’t
justify the code complexity it brings.

I presume low-level caching is also why you steer clear
of map in – wait a moment – this code?

@Teedy: Strictly speaking, that is a map... it’s just that it’s
implemented as a vector. I mean, really, that’s all a
map is, isn’t it? It’s a binary tree that wants to be a
sorted array. I just chopped it down to size.

@smith: I think you should be trying to raise the level of
abstraction rather than raze it to the ground.

@Teedy: Look, all those other data structures are just simulating
certain algorithms on a vector. Rather than live in a
simulation, I prefer to keep it real.

@Polymorpheus: How do you define ‘real’? At one level, these are all
simply electrical signals. We need to work at a higher
level than that.

@Teedy: This talk of higher-level stuff is all very well, but
performance has always been an issue with this system
– it’s like watching everything in slow motion. I’m
doing my bit to make my code as cache friendly as
possible, given how cash unfriendly some of our
customer response has been.

And what about thread safety, atomic operations and
low-lock code? A lot easier with vector than any
data structure based on linking together fragmented
memory. I could go on.

@smith: I don’t doubt it.

Well, rather than let Teedy rabbit on, I think we should
address the elephant in the Zoom: the architecture.
Teedy’s micro-optimisations are infuriating from a
coding perspective, but her desire to optimise is
understandable given what she’s working with and
around.

@Teedy: Thanks... I think.

@smith: I mean, this code shouldn’t even be multi-threaded. A
thread per request? That’s so 1990s. I’m not even
convinced we should be using Oracle.

Teedy Deigh noodles with code and codes with noodles. She enjoys
unlimited coffee refills and avoiding long walks... and short walks... and,
in fact, any kind of walk whatsoever. She has no love of the outdoors
and believes that doors are there for a reason. For her star sign, she
identifies more with -> than *. She has no pets, and the only cat she
likes is on the command line.
April 2021 | Overload | 15

FEATURE TEEDY DEIGH

Do not try and bend the architect.
That’s impossible.
Instead, only try to realise the truth.
@Teedy: Agreed. With hindsight, NoSQL might be the better
option.

@Polymorphism: You’re SWOMming.

@Teedy: What?

@Polymorphism: Not you, the architect. I think he’s been trying to say
something, but has been speaking while on mute.

@TheArchitect: Ah, yes, umm... as I have been saying for the last few
minutes, I planned the architecture up front and in
meticulous detail. I sent the spec round a few months
ago.

@smith: I think that ended up in my spam folder.

@Teedy: I got it. It inspired me to write that limerick.

@smith: Oh yes, that was actually quite good.

@Teedy: Thanks... I think.

@smith: How did it go?

@Teedy: UML, UML, UML,

Bloody Hell, Bloody Hell, Bloody Hell,

UML, Bloody Hell,

Bloody Hell, UML,

UML, UML, Bloody Hell.

[Thumbs-up and applause emojis appear next to some
of the callers.]

@TheArchitect: Anyway, this is the sixth time we have rewritten this
system, and I am convinced it is going to work out well
this time. There is no need to change anything.

@smith: You mean, there’s no need to change anything from
all the times it didn’t work out?

@Polymorpheus: We’re a bit more agile these days. We run
retrospectives to avoid repeating the mistakes of the
past.

@TheArchitect: Repetition legitimises.

@smith: Dammit, not everyone believes what you believe.

@TheArchitect: My beliefs do not require them to.

@Polymorpheus: I think it would help us and the system if we
understood the rationale behind some of your more,
errm, interesting and dated–

@TheArchitect: –timeless–

@Polymorpheus: –decisions. I’m not sure we’re ready to just swallow
the take-it-as-read pill.

@TheArchitect: Some of my answers you will understand, and some
of them you will not.

@Teedy: Always riddles with you, huh?

@smith: Do not try and bend the architect. That’s impossible.
Instead, only try to realise the truth.

@Teedy: What truth?

[@TheArchitect disappears.]

@Polymorpheus: There is no architect. One of the advantages of being
the meeting host.

[Thumbs-up and applause emojis appear next to some
of the callers.]

@smith: Yeah, he’ll probably think it was a bad connection or
blame it on Zoom.

@Teedy: OK, so now we can redesign the system, right?

@smith: We should aim for something more stateless,
functional and habitable. For storing options and other
data, I’d like to move away from XML... all those
bloody, pointy angle brackets – whoever said XML
was human readable clearly had a very specific human
in mind. Perhaps we could bridge the code–data divide
and opt for something like LISP? It’s like wiping your
config with silk.

@Teedy: I know Scheme.

@Polymorpheus: Show me.
16 | Overload | April 2021

carecode ?
about

 passionate
about

programming?

Join ACCU www.accu.org

Monthly journals, available printed and online

Discounted rate for the ACCU Conference

Email discussion lists

Technical book reviews

Local groups run by ACCU members

professionalism in programming
accu

Visit www.ACCU.org to find out more

	On Becoming Unstuck
	Taming Wordle with the Command Line
	C++20: A Coroutine Based Stream Parser
	Structured Concurrency in C++
	The Vector Refactored

