
 ISSN 1354-3172

Overload
Journal of the ACCU C++ Special Interest Group

Issue 16

October 1996

Editorial: Subscriptions:
Sean A. Corfield Barry Dorrans
13 Derwent Close 2 Gladstone Avenue
Cove Chester
Farnborough Cheshire
Hants CH1 4JU
GU14 0JT barryd@phonelink.com
overload@corf.demon.co.uk

£3.50

Contents
Editorial 3

Software Development in C++ 4
Some OOD answers 4

Go with the flow - part II 8

Mixing Java & C++ 13

C++ Techniques 15
Circles and Ellipses revisited: coding techniques – an introduction 15

Why is the standard C++ library value based? 18

editor << letters; 19

questions->answers 24

News & Product Releases 27
The OMT User Group 27

ACCU and the ‘net 28

 Overload – Issue 16 – October 1996

 Page 3

Editorial
A fast year
Since your overworked editor has finally got a
grip on his personal life (at least temporarily), it
seemed a good opportunity to try to catch up
with the six issues a year I promised you.

If you all put on your writing hats, I should have
enough material to get issue 17 out by New
Year!

A lot has happened in the OO world this year.
We’ve seen the C++ committee lurch much
closer to a final standard and by the time you
read this we may well have agreed to release the
second “Committee Draft” – a significant step
nearer the International Standard we all want
and, in many cases, need.

We’ve also seen the OO methodology folks set-
tle down with the makings of a Unified Method
that incorporates the best of the disparate meth-
ods in use (and some of the worst – hey, no-one
said it would be perfect!). This will help OO de-
velopers in the future convey their thoughts more
precisely and reduce the burden on training and
relearning. This is just as well given the wide-
spread lack of training programmes in most
companies these days.

We’ve also seen a new light in the OO world. A
language that promises portability and simplicity,
a faster way to build tomorrow’s application: the
distributed application. Of course, I’m talking
about Java. Is it all hype? Is it the new saviour?
Hopefully, you’ll all be convinced that it is nei-
ther. It is, however, an extremely important de-
velopment and provides us with yet another tool
with which to solve the problems around us.

Although early days yet, Java too will need stan-
dardisation in order to “facilitate commerce” as
they say in the standards’ world. That effort is
expected to begin shortly but we do not know yet
how it progress. In issue 17 I shall be reporting
on the November meeting of WG21 and X3J16 –
the C++ committees – but in issue 18 I shall be
reporting on the January meeting of SC22’s Java
Study Group.

English English
Recently I read a complaint about correct Eng-
lish in CVu and, by implication, Overload. I
would respond much as Francis did and say that
we as editors do our level best but with the task

of technical proofreading as well, occasional er-
rors in English slip past. Some a spell checker
would catch and some they wouldn’t. I actually
don’t use a spell checker for Overload, preferring
to proofread and correct by hand. In this issue, it
led me to replace “draw” with “drawer” which a
spell checker could not have caught. If this issue
contains more oddities than usual, I can point at
least part of the blame at MS Word. After a fash-
ion, that is. I’ve just upgraded my main system
from a 68040-based Mac to a PowerPC-based
Mac and therefore purchased another copy of
MS Office (to obtain the 6.0.1 Word upgrade)1.
This issue was therefore prepared with a “clean”
installation of Word and has made me realise
how much customisation I had done on the old
system. In particular, I had fiddled with many of
the “Intellisense”™ settings to suppress much of
Word’s “helpfulness”. Some of its helpfulness
may have caused unwanted “corrections” in this
issue...

On the subject of English however, I will remark
that probably the most irritating things I find in
contributions are “ie.” and “eg.” when the correct
forms are “i.e.” and “e.g.”, usually followed by a
comma. Of course, this is something that a spell
checker will correct but whilst readers might be-
rate me for missing such an error (unlikely, I
suspect), they forget that most of the spelling
errors that creep in are actually because the
original contributor does not run a spell checker
prior to submitting copy!

That’s rich!
Formatted contributions now seem to be coming
in mainly as Rich Text Format as previously re-
quested. Thankyou for that – it really does make
my life easier.

The Editor
overload@corf.demon.co.uk

1 Word of principle: I am one of those apparently rare
home computer owners who insists on buying all
their own software (and shareware!) to stay legal on
all (three) of their systems. Many of us make our liv-
ing from software which, ultimately, we expect some-
one to pay for. We should extend the same courtesy to
the vendors of products we use. Of course, I’m sure
that none of you reading this would “borrow” soft-
ware from a friend...

 Overload – Issue 16 – October 1996

 Page 4

Software Development in C++
This section contains articles relating to software development in C++ in general terms: development tools,
the software process and discussions about the good, the bad and the ugly in C++.

Kevlin provides a detailed response to Graham Jones’ questions from issue 15 which I hope you will all
find very enlightening, Richard Percy continues his series on financial application programming by revis-
ing and enhancing last issue’s model and Francis warns of the perils of trying too hard to take Java on
board as another “C with classes”.

Some OOD answers
by Kevlin Henney

In “Some questions about OOD”, Overload 15,
Graham Jones called into question many aspects
of the object view of software construction.
There were some good questions, as well as a
few misonceptions. Here I hope to address some
of both.

As a first point, however, Graham opens his arti-
cle stating that he has little experience of writing
C++: “not really enough to have sensible ques-
tions”. It has been said that there are no stupid
questions, only stupid answers. I don’t believe
that you have to pass through some acolyte stage
of avowed silence before reaching a priesthood
level where you are allowed to ask questions. It
is often difficult to get answers without asking
questions, and harder still to ask deeper questions
without previous answers.

Modularity
Graham identifies that the definition of the word
‘modularity’ varies between OO design authors.
This is a good observation, but the variation has
little to do with object-orientation. Before I was
involved in OO development I was keen on
structured approaches, but the one word that
seemed to vary in definition between authors was
— you guessed it — ‘modularity’. Some use it to
mean procedures and functions, others use it to
mean compilation units, others use it to mean
information cluster, etc.

OO inherits (sic) this confusion, to some degree,
as it is essentially an extension of previously
held wisdom on software engineering. Booch
takes the term to mean something akin to Ada’s
package and MODULA-2’s module, although the
definition he gives is in fact broader and fits
more comfortably with my own and others’ view
that a module is a cohesive unit of decomposi-
tion. Hence modularity is the property something
exhibits if it is composed of such units. And in

real terms what are these units? At one level you
have classes, and within them member functions
are also modular, and above classes you have
compilation units (which may or may not have
strong language support) and then subsystems.

In answer to one of Graham’s queries, “I find it
much easier to think of objects as more flexible
implementations of the compilation units in C
than as of C structs. Is this sensible?”, with
the caveat that we replace ‘objects’ with ‘classes’
the answer is “yes”.

For one of the clearest and most comprehensive
discussions on the subject, I would recommend
the chapter entitled “Modularity” in Bertrand
Meyer’s Object-Oriented Software Construction
[Prentice Hall, 1988, ISBN 0 13 629031 0], as
well as Parnas’ seminal “On the Criteria to be
used in Decomposing Systems into Modules”
[Comms of the ACM 15(12): 1053-1058, Decem-
ber 1972].

Meyer’s comment about matching “modules”
to linguistic constructs is particularly telling
in this context – Ed.

Abstraction
Whenever discussing the concept of abstraction I
tend to wheel out a couple of quotes. I include
them here, along with the requisite dictionary
definition:

abstraction n. 2. the process of formu-
lating generalized concepts by extract-
ing common qualities from specific
examples.

The Collins Concise Dictionary

The purpose of abstraction in program-
ming is to separate behaviour from im-
plementation.

Barbara Liskov, “Data Abstraction and
Hierarchy”,

OOPSLA ‘87 Addendum to the Proceed-
ings

 Overload – Issue 16 – October 1996

 Page 5

In this connection it might be worth-
while to point out that the purpose of
abstraction is not to be vague, but to
create a new semantic level in which one
can be absolutely precise.

Edsger W Dijkstra, “The Humble Pro-
grammer”,

Comms of the ACM 15(10), October
1972

Abstraction, as discussed above, is not a concept
unique to OO, and is indeed a concept at the
heart of any technique that purports to simplify
the management of complexity, e.g., high level
languages as opposed to assembler. However, it
is the case that with object-orientation we can
take the abstraction further:

As soon as we start working in an un-
typed universe, we begin to organize it
in different ways for different purposes.
Types arise informally in any domain to
categorize objects according to their us-
age and behaviour. The classification of
objects in terms of the purposes for
which they are used eventually results in
a more or less well-defined type system.
Types arise naturally, even starting from
untyped universes.

Luca Cardelli and Peter Wegner,
“On Understanding Types, Data Ab-

straction and Polymorphism”,

Computing Surveys 17(4), December
1985

I have given you a definition by reference of
what I understand as ‘abstraction’. There are
other definitions, but that some authors prefer to
be either more specific or more general is again
not a problem with OOD; it is a fact of life.

Encapsulation
Normally there is not much variation in the defi-
nition of encapsulation. It is the concept that the
abstraction is placed, literally, “within a cap-
sule”. The implication is that once the abstraction
has been made, it can be closed and treated as a
unit. This we express in terms of protecting state
attributes as private data members and using pub-
lic members to describe the meaningful opera-
tions on our abstract type. There is a strong
analogy with security, considering the pub-
lic/private separation akin to a firewall.

I have not read Russell Winder’s Developing
C++ Software, but the snippets that Graham
quoted do not inspire great confidence. However,
to answer one of Graham’s points directly, “why
hide things from the programmer?”: because that
is what modules do. If you program in C and use
functions you already believe in hiding things
from the programmer.

The idea of restricting access is in line with the
principle that we separate behaviour, i.e., inter-
face, from implementation. Some programmers
are under the illusion that they have some kind of
right to tamper with all the internals of any ab-
straction. This is fine if you’re playing around,
but it is not software engineering and has no
place as a commercial attitude. In other words it
may considered a privilege, but it is certainly not
a right.

When I create an abstraction I describe the ways
that it is meaningful and safe to use it. I create a
working vocabulary for that concept. I use the
language to enforce the semantics; I am not in-
terested in having people break the code through
accidental misunderstanding or simple fraud (in a
language with a preprocessor and direct memory
manipulation it is difficult to protect against de-
termined fraud). You may differ in this: having
people come up to you and tell you that your
code is broken, only to discover that they have
used it in a way that you did not anticipate, sanc-
tion or guard against, may appeal to you.

A common misconception is that lone program-
mers do not need to worry about encapsulation,
or even meaningful variable names and clear
code. But it’s worth pointing out that

You learn to write as if to someone else,
because next year you will be “someone
else”.

Kernighan and Plauger, The Elements of
Programming Style

The other reason you hide implementation is to
allow and anticipate change. Changing an open
data structure in a program or, especially, a li-
brary results in more of a tsunami than a ripple
effect. Being able to retake certain design deci-
sions is an important capability. Consider a date
class. Francis asked a similar question a while
back (“Date with a design”, Overload 11), but I
am going to restrict it to handling Western calen-
dars. What is the best internal representation for
it? I can think of a few depending on the princi-
pal ways in which I intend to use it, but in all

 Overload – Issue 16 – October 1996

 Page 6

cases the general interface is fairly stable. An-
swers and suggestions either directly to myself or
to Sean.

Note that there is a concept of abstract or implied
state that should be distinguished from the idea
of physical implementation. A common miscon-
ception with OO is that not only is all data pri-
vate, but there is no way to access anything of
interest through a class interface. If this were true
then it would create a great tension within any
design: given a person object, how would one
find out the spouse or parents if you believed that
all you could return were primitive types and that
a pointer would break encapsulation? The idea
here is that we are modelling associations and
collaborations that are required for an object to
exist. We are modelling implied assembly, but
there is no requirement that we implement it in a
simple and literal fashion (the Six Million Dollar
Man provides us with a good example of this).

Modelarity
Where are the objects? Graham says that his
OCR application seems to be rather short on sta-
ble object abstractions. “Using OOA/OOD for
the interface is fine, but a minor issue either
way” seems to be a somewhat hasty dismissal.
The majority of code in any application is related
to presentation issues such as user interface, per-
sistence management, comms, and error handling
strategy within these. OO certainly works for
these facets of an application, and even if it could
not be applied elsewhere I would have said that it
had already proved itself — an estimated 70 to
90% of application code is devoted to such han-
dling!

But we can take it further. Steve Cook and John
Daniels coined the term “object myth” to de-
scribe the common fallacy that objects in your
application correspond to real world objects.
Your application will look very odd if this is
your view. What we are doing is modelling the
problem domain which, from a requirements and
analysis perspective, may be rooted in the real
world. We should not mistake the map for the
territory: the model has artefacts of the model-
ling domain that are not in the real world, and
vice-versa. In turn we build a machine — a pro-
gram being an abstract specification of a machine
— based on the model. Again, there will be arte-
facts in the machine implementation that are not
present in the model, and vice-versa. For a good
discussion of this philosophy I wholeheartedly
recommend Michael Jackson’s Software Re-

quirements & Specifications — a lexicon of prac-
tice, principles and prejudices [Addison-Wesley,
1995, ISBN 0 201 87712 0].

So really, the message here is that we are inter-
ested in our design having ‘modelarity’ rather
than reality. A good example of this is when a
friend came to me recently for advice on building
a neural network and that he wanted to “do it
with objects”. (As an aside, his intent was to win
on the horses. I have another friend who came to
me a few years ago with the aim of doing a simi-
lar thing with the pools. Whilst I can help them
with the modelling dimension, plausibility and
realisation is firmly rooted in reality: I do not
find myself swimming in the sea of alcohol that
is my promised share of the fabled Big Win.)

I gave him a hand with the design as I had some
experience with neural nets a few years ago (in-
cluding a very simple OCR engine, as it hap-
pens) and “doing it with objects” is both an
interest and what I do for a living. I am not going
to discuss the way that he originally intended to
handle the problem domain category (horse,
jockey, etc.) to feature (win/lose) mapping in
terms of neural net design, except to say that ini-
tially he was quite far off the mark and would
have required a vast array of processors to
achieve a solution in anything short of geological
time.

So, how to model a neural net? The net design he
had chosen was a fairly standard back-
propagation configuration with one hidden layer.
Such neural nets are often illustrated in terms of
three layers of interconnected nodes, with a
given weighting on each link. This is visually
appealing and is an appropriate model for our
understanding. It is also the one that he had cho-
sen as the basis for his code. He had node objects
and layer objects, and lists of pointers connecting
the whole thing together. This is a singularly in-
efficient and redundant way of implementing a
neural net: the wrong model was used — never
confuse the aim of simplicity with something
that is simplistic.

The mathematical model provides us with a more
appropriate starting point: the nodes are of transi-
tory interest, it is the connections that are doing
the work, and the whole system is best described
in terms of matrices and their manipulation. Thus
matrices are the lowest level objects of interest.
In this context I would strongly recommend Bar-
ton and Nackman’s Scientific and Engineering
C++ — An Introduction with Advanced Tech-

 Overload – Issue 16 – October 1996

 Page 7

niques and Examples [Addison-Wesley, 1994,
ISBN 0 201 53393 6]. If you do it thoroughly,
there is more work here than simply creating 2D
arrays. My friend initially looked a little disap-
pointed: he had hoped there would be, I guess,
some kind of magic going on; a big secret that
was to be revealed to him.

I then pointed out that all we had was a handful
of matrices that enabled us to build the founda-
tion of his system, but we hadn’t even touched
the bulk of his application. We then provided a
neural net class that encapsulated this state. The
visual view is a convenient one, so the interface
to this class gave the impression that its abstract
state was composed of nodes and layers. This
meant that it could be interacted with directly via
a command or GUI system, which in turn was
factored out. There was the issue of persistence,
there was a lot of training data and the need to
save and load pretrained or partially trained nets:
RDBMS, flat text file, or binary file? Why not
all? The best model for this is an object one;
functions are a singularly inappropriate method
for expressing this.

And what about training and running the net?
Functions look like good candidates for these
jobs, until you realise that they are uninterrup-
table, stateless, cannot be combined with other
functions to create alternative training programs
and are non-persistent. Why are these features
important? A simple data flow approach, i.e.,
function maps input to output, is not adaptable,
and is exclusively sequential, i.e., it will hang the
application for very long periods of time. Reify-
ing functions as objects (variously known as
functors, function objects, functionals or func-
tionoids) is not, as Graham suggests, about being
trendy; it is because ordinary functions are sim-
ply very limited in C and C++.

If you have any familiarity with functional pro-
gramming or lambda calculus you will immedi-
ately recognise other areas of limitation. If not, I
would refer you to Introduction to the Theory of
Programming Languages (principally chapter 5,
“Lambda calculus”) by Bertand Meyer [Prentice
Hall, 1990, ISBN 0 13 498502 8], The Emperor’s
New Mind (the last section of chapter 2, “Algo-
rithms and Turing Machines”) by Roger Penrose
[Vintage, 1989, ISBN 0 09 977170 5], or “Can
Programming be Liberated from the Von Neu-
mann Style? Functional Style and its Algebra of
Programs” by John Backus [Comms of the ACM
21(8): 613-641, August 1978] for good introduc-

tions to this field. The Barton & Nackman book
and Jim Coplien’s Advanced C++ Programming
Styles and Idioms [Addison-Wesley, 1992, ISBN
0 201 54855 0] are good reading for functor con-
cepts and implementations.

By this time classes were practically dripping off
the wall. I am not going to cover all of the candi-
date classes that we discussed, but it is worth
pointing out that the majority of them were small
helper classes that reified relationships, strate-
gies, control patterns, views, etc. In other words,
not these big, chunky, clunky real world classes
that many OO novices (and, sadly, some ‘ex-
perts’) believe are the stuff of OO programs. The
fine grained classes can have more of an impact
on the construction of your application than the
course ones.

I have skimmed quickly through the design deci-
sions that we took to create a stable layered ar-
chitecture that would tolerate the uncertainties
and inevitable changes as the system was im-
proved and refined, or different strategies were
adopted. I could spend a lot longer on this prob-
lem if that was the focus of the article, and the
fact that structuring the system in layers now
allows the domain classes — horses, jockeys,
races, etc. along with a reified mapping to nets
— to be expressed simply and effectively.

Patterns
I was a little surprised that Graham said that De-
sign Patterns [Gamma, Helm, Johnson and Vlis-
sides, Addison-Wesley, 1994, ISBN 0 201 63361
2] seemed only to contain patterns for GUIs and
none for scientific/engineering programming.
Again, I think this view results from a failure to
generalise. It is certainly true that many of the
examples used are GUI based, but the examples
are not themselves patterns. The use of many
GUI examples in the book is related to the
broader base that GUIs have as a simple currency
over worked scientific/engineering examples.

I have applied or seen applied every one of the
patterns described in the book, and I can attest
that not one single pattern is GUI specific. Ear-
lier this year the Journal of Object-Oriented
Programming ran a series of articles about the
application of some Design Patterns patterns to
financial programming. John Vlissides has also
been applying a number of these, in his C++
Report column, to the construction of a file sys-
tem framework.

 Overload – Issue 16 – October 1996

 Page 8

In my review of “Design Patterns” in Over-
load 9, I commented on how well-balanced I
thought the examples were – Ed.

If you still doubt their applicability in scien-
tific/engineering programming, I would again
recommend Barton and Nackman’s Scientific
and Engineering C++. The book is not a patterns
book, but you will find yourself tripping over
common idioms and patterns in every chapter.

Conclusion
Graham’s view of design is a good one:

1. Decomposition into smaller, simpler
pieces, and

2. Finding and exploiting similarities
among the pieces.

But it is not complete. This is more of a meta-
design approach. The advice, as it stands, does
not provide criteria for decomposition, judging
the goodness of relationships between and within
the pieces (coupling and cohesion), language
mapping, testability, etc. Most of the design
methods I have come across use these two prin-
ciples, but if that is all they offered they would
be pretty hollow — for some more reflections on
this kind of advice see “Elements of Program-
ming Style”, CVu 6(6). Object-orientation pro-
vides us with a set of criteria and some
mechanisms for decomposing programs that is
based on sound software engineering principles.

I hope this article has shed more light than dark-
ness, and perhaps has inspired further questions.
I will leave you with another quote to ponder:

Substance doesn’t change. Method con-
tains no permanence. Substance relates
to the form of the atom. Method relates
to what the atom does. In technical
composition a similar distinction exists
between physical description and func-
tional description. A complex assembly
is best described first in terms of its sub-
stances: its subassemblies and parts.
Then, next, it is described in terms of its
methods: its functions as they occur in
sequence. If you confuse physical and
functional description, substance and
method, you get all tangled up and so
does the reader.

Robert M Pirsig, Zen and the Art of Mo-
torcycle Maintenance

Kevlin Henney
kevlin@two-sdg.demon.co.uk

Go with the flow - part II
by Richard Percy

Recap
In the first article in this series I outlined the re-
quirements for a generalised cashflow projection
model and a prototype solution involving a
Cashflow template class and its clients. The ini-
tial solution is a good starting point but requires
some refinements and enhancements to meet the
requirements listed at the outset. More testing is
required in the context of a simulated system to
verify that it is usable in a real program.

Requirements revisited
The initial model met the following important
requirements:

• Generation of a cashflow of any type from a
given start position for a specified number of
periods or until a certain condition occurs, if
earlier.

• The option to choose at run-time the function
to generate each position.

However, there were a few minor problems with
the Cashflow class’ interface and memory man-
agement. It also stored all rows in a cashflow
with no option to discard the rows that are not
required. The C++ maxim, “Don’t pay for what
you don’t use,” suggested that I should develop
the model to deal with optional storage of inter-
mediate cashflow positions.

After some amendments and enhancements the
Cashflow class needs to be taken for a spin over
more demanding terrain. I have provided an ex-
ample to test its speed and capacity and to dem-
onstrate its use with two different client classes.
These capacity and capability types of testing are
important when developing a prototype that may
be extensively used by other developers. Other
users will often try to employ reusable compo-
nents in situations never envisaged by their au-
thor; so it is as well to test for any limitations and
publish them!

Revisions to the model
The model remains fundamentally unchanged
and consists of a Cashflow template class and its
clients. A client class represents a “row” of a
cashflow and is required to have a member func-

 Overload – Issue 16 – October 1996

 Page 9

tion that can populate its object’s data using the
data in the previous row.

The Cashflow class interface
The original class declaration was the following:
template <class Vec>
class Cashflow {

public:

 Cashflow(Vec* pStartPos);
 virtual ~Cashflow();

 // RollFunc type is a pointer to a
member
 // function of class Vec
 typedef bool (Vec::*RollFunc)
 (const unsigned long, const
Vec&);
 // generate the entire cashflow using
 // duration-limited roll forward
 void RollUpLim(RollFunc,
 const unsigned long
duration);

 virtual ostream& PrintOn(ostream& =
cout)

const;

private:
 // disable copy & assign
 Cashflow(const Cashflow&);
 const Cashflow& operator =(const

Cashflow&);
 // data members
 typedef TIArrayAsVector<Vec> CfArray;
 typedef TIArrayAsVectorIterator<Vec>

CfIterator;
 CfArray huge* pcf;
}; // Cashflow

The most significant problem with this interface
was that the start position for the cashflow was
supplied as a pointer in the constructor. This im-
paired the flexibility of the model because it pre-
vented the start position from being changed
between projections and, therefore, a new Cash-
flow object had to be created for each projection.

More subtly it gives rise to a memory issue be-
cause the internal container of the Cashflow class
demands that its rows are created on the heap.
This put the onus on the client code firstly to re-
member to allocate the start row using the new
operator and secondly to remember to delete
the row after destruction of the Cashflow object.

Consider my original code that created a start
position, constructed a Cashflow object and ran
the projection.
int main()
{
 int retCode;
 try
 {

 …
 Cashflow<TestVec> t(new TestVec(0.0,
 .008, 0.0, 50000.0, 50.0,
0));
 t.RollUpLim(&TestVec::ProjectionRF,

25*12);
 …
 retCode = 0;
 }
 catch (...)
 {
 cout << “\nException!\n\n”
 “Program threw an unhandled”
 “ exception” << endl;
 retCode = 32767;
 }
 return retCode;
}

I stated that if an exception is thrown back to
main() then all dynamically allocated objects
are deallocated by the Cashflow destructor. This
was fine, provided that we ever get to the de-
structor, but what if an exception is thrown in the
Cashflow constructor while allocating memory
for the internal container? If so then the construc-
tor is wound back and execution jumps to the
catch(…) block. The Cashflow destructor isn’t
called because the object has not been success-
fully constructed. Therefore, the start position
(TestVec object) that has been created on the
heap isn’t deleted and a memory leak results.

There are two solutions to this. One is to leave it
up to the client class programmer to use a smart
pointer and the other is to accept an object
passed by reference as the start position and
make a copy to add to the internal container. I
judged that the second is tidier and would have a
negligible impact on performance. The resultant
code is shown below and has other changes to
deal with the optional storage of intermediate
cashflow rows.

It is not normally recommended to change the
interface of a reusable class but it is better at this
early stage than later. As one says in financial
circles, the past is not necessarily a good guide to
the future!
template <class Vec>
class Cashflow {
public:
 Cashflow(const signed long
 baseIndex =
0);
 virtual ~Cashflow();

 // RollFunc type is a pointer to a
member
 // function of class Vec
 typedef bool (Vec::*RollFunc)
 (const unsigned long,
Vec&);
 // generate the entire cashflow using
 // duration-limited roll forward

 Overload – Issue 16 – October 1996

 Page 10

 void RollUpLim(Vec& start, RollFunc,
 const unsigned long duration,
 const bool storeAllRows =
false);

 virtual ostream& PrintOn(ostream& =
cout)

const;
 // Get index of start row
 const signed long BaseIndex();
 // Get current number of rows
 const unsigned long Rows();
 // Get current upper bound
 const signed long LastIndex();
 // Get a row
 const Vec& operator []
 (const signed long
row);

private:
 // disable copy & assign
 Cashflow(const Cashflow&);
 const Cashflow& operator =(const

Cashflow&);
 // data members
 typedef TIArrayAsVector<Vec> CfArray;
 typedef TIArrayAsVectorIterator<Vec>

CfIterator;
 CfArray huge* pcf;
 const signed long base;
 unsigned long size; /* Must maintain
 own size count because Borland
array
 allocates new rows in lumps
 (cfGrowth).*/
}; // Cashflow

There are a few points to note in the above decla-
ration.

The constructor now accepts an argument so that
the row numbering doesn’t have to start from
zero.

The roll forward function RollUpLim now ac-
cepts an argument to specify whether all rows of
the cashflow are to be retained. If this is false
then only the first and last rows are available.

An overloaded [] is provided along with some
functions concerned with row indexing.

Copy construction and assignment are disabled.
This is partly laziness on my part but I doubt that
copying an entire cashflow would be necessary.
As usual it depends on how loud the users shout!

Some people (mentioning no names) don’t like
typedef statements on the grounds that they
impair readability. I suggest that they can be very
useful for long or complicated type names.

I needed to implement the Borland array con-
tainer using a huge pointer to prevent the test
programs crashing with long cashflows. Perhaps

there is an expert reader who could explain why
this is the case.

Implementation of the Cashflow class.
The internal workings of the class are not altered
radically from the description I gave in the last
article. There are some changes because of the
altered interface and, of course, some additional
functions. I will describe only a few of the im-
plementation details and would be happy to sup-
ply the full source code on request.

The constructor allocates memory for the internal
array. It would be quite legitimate to do this in
the constructor initialiser list like this:
template <class Vec>
Cashflow<Vec>::Cashflow(
 const signed long bi)
: base(bi), size(0),
 pcf (new CfArray(cfInitSize - 1, 0,
 cfGrowth)) { … }

However, I might want to do something in the
constructor that could throw an exception (per-
haps if the value of the argument were outside a
certain range). If this occurred after the memory
allocation then the exception handling mecha-
nism would not recover the memory and a leak
would occur. Of course, this is only a serious
problem if it happens repeatedly and the amount
of memory is large. A safer way is the following.
template <class Vec>
Cashflow<Vec>::Cashflow(
 const signed long bi)
: base(bi), size(0)
{
 …leave memory allocation as late as

possible…
 // Use 0-based array internally for
 // convenience
 pcf = new CfArray(cfInitSize - 1, 0,
 cfGrowth);
 // array "owns" elements
 pcf-
>OwnsElements(TShouldDelete::Delete);
}

It is this kind of nit-picking that makes C++ such
a challenge!

The roll forward function is considerably more
complex now that optional storage of intermedi-
ate rows is allowed but the basic mechanism is
the same. The start position is now passed as an
argument and a copy is made to form the first
element of the array. Each further element is
added and then populated using the RollFunc
member function pointer supplied. This function
takes the previous element as an argument.
template <class Vec> void
Cashflow<Vec>::RollUpLim(

 Overload – Issue 16 – October 1996

 Page 11

 Vec& start,
 RollFunc pfRollUp,
 const unsigned long dur,
 const bool storeAllRows)
{
 …integrity checks on arguments…

 // delete array members & free memory
 if (0 != size) pcf->Flush();
 // make a COPY of the start vector
 pcf->Add(new Vec(start)) , size = 1;
 bool cont=true;
 unsigned long c = 0;
 Vec* pNewRow;

 if (storeAllRows)
 {
 while (cont && c < dur)
 {
 pcf->Add(pNewRow = new Vec());
 size++;
 cont = (pNewRow->*pfRollUp)
 (c + 1,

*(*pcf)[static_cast<int>(c)]);
 c++;
 }
 }
 else
 {…}
}

Note the use of the operator ->* to call a class
member function using its address.

The code shown above applies when the user
requires all rows to be stored. I have not shown
the more complex section that applies when only
the first and last rows are retained. It involves
creating temporary rows and overwriting them to
minimise the amount of memory allocation per-
formed.

The client classes
A client of the Cashflow class represents a row
of a cashflow and must itself be a class. It must
also have a default constructor, copy constructor,
overloaded == and << operators and at least one
projection function whose address can be taken.

My example is intended to show how a personal
pension quotation might be made. The details are
simplified in order to minimise the size of the
code but the overall design is realistic. Any simi-
larity of my fictitious pricing basis to that of a
real insurance company, either living or dead, is
purely coincidental!

The main classes provided are Policy (an abstract
class), ULPension (a unit-linked pension contract
that also provides life cover) and Annuity (an
annuity contract providing benefits payable
throughout life from retirement). ULPension and
Annuity each contain a nested class that is used
to make up the cashflow rows.

The abbreviated declarations follow.
class Policy {
public:
 virtual ~Policy() {} // ensure
correct
 // destruction of derived
objects
 virtual double GetCost() = 0;
 // find price of
policy
 virtual void DoPIAProjection() = 0;
 // print projected
values
}; // class Policy

class ULPension: public Policy {
public:
 ULPension(double sumAssured, double
fund)
 : polSA(sumAssured), targFund(fund) {}
 virtual double GetCost();
 // calculate
premium
 virtual void DoPIAProjection();

 class RfVec {
 public:
 RfVec(double U=0, double G=0,
 double S=0, double P=0)
 : uv(U), g(G), qx(0), sa(S),
 p(P), md(0) {}
 // default destructor, copy & assign
 // are OK
 bool IsEqual(const RfVec&) const;
 ostream& PrintOn(ostream& = cout)

const;
 bool KeyFeaturesRF(
 const unsigned long
newDuration,
 RfVec& oldRow);
 double GetUnitValue() const
 { return uv; }
 private:
 …cashflow row data members…
 }; // class ULPension::RfVec

private:
 …policy data members…
}; // class ULPension

class Annuity: public Policy {
public:
 Annuity(double annAmount)
 : polAnn(annAmount) {}
 virtual double GetCost();
 // calculate
premium
 virtual void DoPIAProjection();

 class PriceVec {
 public:
 PriceVec(double F=0, double E=0,
 double G=0, double A=0)
 : f(F), e(E), g(G), npv(0),
 a(A), res(0), ifp(1),
disc(1/1.01)
 {}
 // default destructor, copy & assign
 // are OK
…functions similar to ULPension…

 private:
 …data members…
 }; // class Anuuity::PriceVec

private:

 Overload – Issue 16 – October 1996

 Page 12

 …policy data members…

}; // class Annuity

The Cashflow objects are created in the functions
ULPension::GetCost, ULPen-

sion::DoPIAProjection and Annu-

ity::GetCost. The function
Annuity::DoPIAProjection, however, doesn’t
need to create a Cashflow object. The GetCost
functions don’t store intermediate cashflow rows
because only the last row is used to determine
the cost of the policy. The DoPIAProjection
function, however, needs to retain all rows for a
diagnostic trace and to provide projected values
at various points in time for the client’s illustra-
tion. An example follows.
void ULPension::DoPIAProjection()
{
 ofstream

outFile("c:\\temp\\cashflow.txt",
 ios::out | ios::app);
 outFile << “PENSION: Constructing”
 “ projection cashflow...”
 << endl;
 RfVec startPol(0, 0.0094, polSA,
 polPrem);
 // 12% p.a. growth for
projection
 Cashflow<ULPension::RfVec> cf;
 cf.RollUpLim(startPol,

ULPension::RfVec::KeyFeaturesRF,
 25*12, true); // age 35->60
 outFile << “...finished roll forward!”
 << endl;
 outFile << cf << endl;
}

Incidentally, it’s not just “toy” programs that use
streams to output data to files. They are of im-
mense practical value in this type of application
both to testers and users with technical knowl-
edge.

The roll forward functions within the nested
classes are implemented similarly to the extract
published in the last article. The example below
is for the pension because the annuity code is
rather longer and nastier!
bool ULPension::RfVec::KeyFeaturesRF(
 const unsigned long newDuration,
 ULPension::RfVec& oldRow)
{
 // fill in missing values in old
period &
 // get unit value at start of new
period
 oldRow.qx = exp(newDuration/100.0) /

50000.0;
 oldRow.md = max(oldRow.qx * (oldRow.sa
-
 oldRow.p - max(oldRow.uv ,
0.0)),0.0);
 oldRow.um = oldRow.uv + oldRow.p -

oldRow.md;
 uv = oldRow.um * (1 + oldRow.g);

 // set up parameters for new period
 g = oldRow.g;
 sa = oldRow.sa;
 p = oldRow.p;

 return uv > 0; // stop if policy
lapses
}

Note that this function is called on a newly con-
structed object. The function merely populates
some of its data members and the remainder of
the previous row’s members.

Controlling the application
The layers of encapsulation illustrated above re-
sult in a very simple interface and the controlling
code can be kept short. Of course, the disadvan-
tage of this, as with any encapsulated design, is
that one must provide plenty of functionality at
the interface.
int main()
{
 int retCode;
 try
 {
 Annuity ann(8500);
 // we require an annuity of
 // £8500 per month
 double fund(ann.GetCost());
 ULPension ulp(96000.0, fund);
 cout << “Monthly premium needed to”
 “ produce fund: ”
 << ulp.GetCost() << endl;
 ulp.DoPIAProjection();
 ann.DoPIAProjection();
 retCode = 0;
 }
 catch (xmsg x)
 {
 cout << "\nException!\n\n"
 << x.why() << endl;
 retCode = 32767;
 }
 catch (...)
 {
 cout << “\nException!\n\n”
 “Program threw an unhandled”
 “ exception” << endl;
 retCode = 32767;
 }
 return retCode;
}

In the example above the 35 year-old client’s
current salary is £36,000. He needs life cover of
£96,000 until retirement and he wishes to retire
at age 60 with a pension worth £2,000 per month
in today’s terms. Assuming 6% RPI inflation this
would be £8,500 at age 60. The program calcu-
lates the fund required at retirement as £823,000
and the monthly premium required to produce
this fund as £775. The program runs rather

 Overload – Issue 16 – October 1996

 Page 13

slowly, though, because of the iterative method
used to achieve the target values.

Summary
The generalised cashflow model is now well de-
veloped and has been thoroughly road-tested.
However, the imaginary users are now crying out
for some formatting functions for their huge
cashflows and an easy, efficient way to carry out
iterative targeting (“back-solving”) for pricing
and simulation runs. The Technical Director
might also be wondering why we’re still using an
out-of-date implementation of C++. I will ad-
dress these points in future articles and provide a
range of examples.

Richard Percy
106041.3073@compuserve.com

Mixing Java & C++
Ruminations by

Francis Glassborow

One of the talks I attended at the recent Object
Expo Europe caused me grave reservations. The
speaker was very keen to elaborate on how you
could mix Java and C++ by using the Java native
method facility. At the end of the talk I expressed
the opinion that the speaker had just spent 100
minutes describing my worst maintenance
nightmare. I was only exaggerating slightly.

Code that seeks to mix legacy C with object-
oriented C++ often has problems because proce-
dural C makes assumptions that are not always
well supported by object-oriented code. However
the problems are not implicit in mixing C and
C++ source. The designers of C++ have made a
continuous effort to keep C++ compatible with
C. There are incompatibilities because things
such as nested classes are desirable in C++ and
are not supported in C (nesting a struct, enum or
union inside a C struct results in the enclosed
definition being exported to global space). The
C++ object model is largely backward compati-
ble with the C one. C++ provides a mechanism
for linking C code with C++ code, the extern “C”
provision. Even here some refinement has had to
be added because linking these is not as simple
as it was originally thought to be.

Java provides a mechanism for using C native
methods. Note that that is C not C++. I am sure
the designers of Java were well aware of the
mare’s nest of problems that would open up if
Java programs tried to call native C++ methods.

Before I go on, I think it is worth mentioning that
there is an immediate price for using native C
from within Java; the result will fail the Internet
security firewall provided by Java. In other
words an Internet applet that contains a use of
native C will have a very limited use.

Of course there is another cost for using a native
C method in Java, the result is no longer port-
able.

Now let me move on to trying to use C++ from
Java. The first question that springs to mind is
why anyone would want to do this. The problem
is that the Java world is expanding very fast (for
example one of the most experienced Siemens’
development teams – including such C++ experts
as Uwe Steinmuller and pattern experts such as
Hans Rohnert – has been using nothing but Java
for almost a year). It is not only book publishers
that want to rush to get on the bandwagon, the
developers of libraries also want to get in ahead
of the opposition. Those with reasonably well
developed C++ libraries would like to get out an
early release of the Java version. In addition
there are all those developers who already use a
C++ library and would like to reuse it in their
Java developments.

The idea that has crossed the minds of several
people is that they could provide a Java wrapper
class to encapsulate the C++ class. If you just
consider simple classes, this is relatively easy to
do by hand and there appear to be a number of
simple rules of thumb to guide you in doing it.
Of course this leads people to write programs to
automate the generation of such wrappers. In the
typical test cases this works quite well. Unfortu-
nately the test cases are ones where it would be
pretty easy to rewrite the original code as a Java
class.

Now those of you who are used to writing C++
for event driven environments know just how
difficult it is to co-ordinate your program objects
with their corresponding environment objects. In
this case most of the design decisions were made
with the intent that two sides should be able to
co-operate. In the case of Java there were no
such intentions. Java was not designed to co-
operate with legacy C++. The two object models
are entirely different. C++ is designed to support
static binding wherever possible. Indeed the de-
fault for C++ is static binding and we have to tell
the compiler when we want dynamic binding by
qualifying member functions as virtual. Java
defaults to dynamic binding and the programmer

 Overload – Issue 16 – October 1996

 Page 14

has to explicitly qualify a method as final to
enable static binding. This is not the place to dis-
cuss the relative advantages of the two ap-
proaches, each has advantages and each has
penalties.

The next, and more drastic, difference is in the
management of dynamic memory. C++, by de-
fault, leaves the responsibility entirely in the
hands of the programmer. It does not prohibit
garbage collection but it does not provide any
special support for such. Java uses garbage col-
lection to manage dynamic memory. There is no
mechanism in Java to return the responsibility to
the programmer, the best you can do is to sum-
mon the garbage collector yourself. That would
normally be a very silly thing to do. Incidentally
it was for just this reason – that garbage collec-
tion cannot be retroactively removed – that C++
chose not to support it by default.

This difference in memory management makes it
very difficult to ensure that C++ objects and their
corresponding Java wrapper objects die together.
One of the quickest ways to create a dangling
object in Java is to have two references to the
same C++ object and use one of them to destroy
the C++ object. Remember that Java has no con-
cept of a reference: all Java class instances are
handled through pointers! In Java:
Mytype mt;

creates a pointer for a Mytype object and initial-
ises it to null.
mt = new Mytype;

creates an instance of Mytype and saves its ad-
dress in mt. This is quite different from the C++
concept of an object and a reference. In C++ a
reference behaves like the original because it is
only, semantically, an alias for the original. Let
me try to elucidate:
int fn(Mytype mt1, Mytype mt2) {
 mt1=mt2;
 return 0;
}

behaves in the same way in C, C++ and Java. In
each case the local variable mt1 takes on the
value of the local variable mt2. In C a bitwise
copy of mt2 overwrites the contents of mt1. In
C++ whatever copy assignment for Mytype
changes the local mt1 to mt2. In Java mt1 and
mt2 will both now point to the same object
(whatever mt2 was pointing to). The important
thing to grasp is that this code does not change
the external objects that were passed as argu-

ments. If you want to understand Java you must
think of a function such as the above as being
like C/C++:
int fn(Mytype * mt1, Mytype * mt2){
 mt1=mt2;
 return 0;
}

and not like the C++:
int fn(Mytype & mt1, Mytype & mt2){
 mt1=mt2;
 return 0;
}

which copies the object mt2 refers to into the
object that mt1 refers to.

There are those such as John Max Skaller (an
Australian C++ expert) who believe that C++
should have used such a model for variables, but
it did not and we continue to live with both the
benefits and the penalties for such choice.

How does all this matter? Well it means that
those writing Java do not expect to have to do
any memory management, indeed they cannot in
the Java environment. On the other hand C++
code expects memory to be managed by the pro-
grammer. Do not think that finalise will pull
you out of the hole. All that does is to specify
some action that should be taken before the gar-
bage collector recovers the memory for an ob-
ject, but unless you force garbage collection, it
may never happen. What this amounts to is that
once you start splicing C++ code into your Java
you will have to manage the C++ objects’ life-
times... all of them because Java only has dy-
namic objects (well that is near enough true).
You have just lost one of the major features of
Java.

If you think this is bad, much worse is yet to
come. Java does not have multiple inheritance
nor any of the consequential baggage such as
virtual base classes. I have no doubt that with
sufficient persistence and hacking skills you
might be able to cope with C++ objects with
multiply inherited parents, but frankly, why
bother. The presenter of the talk on mixed Java
and C++ programming provided a truly ghastly
hack to enable the Java programmer to extract
relevant layout information for a C++ object. It
would be bad enough if this hack actually
worked but in the presence of multiple inheri-
tance and virtual base classes you have no reason
to expect consistent layouts for different derived
objects.

 Overload – Issue 16 – October 1996

 Page 15

In my opinion, the long and the short of it is that
whatever short term gains you make by using an
automated tool to allow you to reuse C++ code in
Java will be lost many times over in future main-
tenance and debugging.

I am happy with Java programmers using C na-
tive methods, just as C programmers sometimes
use assembly language to access some platform
specific resource. I am also happy with Java call-
ing an entire C++ application – after all that is
one of the advantages of using Java on a server:

my client Java application can address a server
application without having to consider the nature
of the client platform, the client application can
use platform specific programs to service the
client requests. What leaves me deeply worried is
that anyone could seriously propose that Java
and C++ should be mixed in a single application
– that way lies madness.

Now over to you. Tell me why I am wrong.

Francis Glassborow
francis@robinton.demon.co.uk

C++ Techniques
This section will look at specific C++ programming techniques, useful classes and problems (and, hope-
fully, solutions) that developers encounter.

Alec Ross continues his exploration of techniques for type evolution and Francis contemplates the seman-
tics of the C++ standard library.

Circles and Ellipses revisited:
coding techniques –

an introduction
by Alec Ross

A previous article [1] described some motivation
for techniques supporting type evolution, as
originally raised in a series of articles in Over-
load last year.

There are several mechanisms available in C++
to implement such type evolution.

First, an object’s behaviour can be viewed as a
set of sub-behaviours, and these can be seen as
associated with sub-type states of the object,
even if the object is a simple, conventional C++
instance with a constant type. In other words the
change in type is in the eye of the beholder see-
ing “different” behaviours being exhibited by a
conventional C++ object. For example a member
function can be seen as being composed of sub-
functions for different parts of its argument do-
main. As the argument value changes, these dis-
tinct functions are brought into play. The
“different” functions can be seen as giving the
object different methods, possibly depending on
the values of member data. This technique is de-
scribed in greater detail below.

It is also possible to overlay an object in store
with one of a different type which can have a
different interface, and, in general, different
members. This technique could be seen as pro-

viding a “real” change in type. It is described in a
subsequent article.

Finally, Coplien’s Envelope-Letter idiom with
simulated virtual constructors provides a mecha-
nism to achieve most of what is wanted. [12]
This also is described in detail in a following
article.

Circle to ellipse - by using a change
of perspective
At a basic level, any perceived variation in be-
haviour of an object which depends on some-
thing - such as the value of a data member -
could be viewed as a a change in type. For ex-
ample, a given member function could be viewed
as being made up of two mappings from different
parts of its argument’s domain. (Partial func-
tions).

e.g., (omitting inlines for simplicity):
class X { ... int f(); ... int n; ...};

int X::f()
{
 return (n % 2); // sub-domains: n
odd,
} // n even
 // f() is an isodd(n)

A change in the value of a member n changes
f()’s return value: thus a change in n could be
viewed as changing the type of the X object con-
cerned.

The division of the argument domain might be
arbitrary, but would most reasonably correspond
to two sub-mappings with different expressions,
e.g.,

 Overload – Issue 16 – October 1996

 Page 16

 int X::f() { return (n % 2 ? 1 : 0);
}
 // f() is an
isodd()

At this slightly more elaborate level, the mapping
could be viewed as bringing two or more differ-
ent behaviours into a single function, and the
required execution path selected by an if ()
... or switch () ..., a conditional opera-
tor (? :) as above, or possibly indexing into a
table of pointers to functions. (Yet another
mechanism would be to use conventional poly-
morphism with a function argument of polymor-
phic type.) Often member functions will be
made up in such ways Ð but the aggregation and
choice of different behaviours from within a sin-
gle function is not usually perceived as a switch
which changes the object’s type. For example,
for a (malleable) conic type, we could have:
void conic::f()
{
 if (e == 0) circle_f();
 else if (e < 1) ellipse_f();
 ...
}

Methods can also be changed dynamically on a
per class or per object basis. When this change is
expensive to make at run-time, when the aggre-
gation of functionality results in relatively com-
plicated code, where the change can be seen as
persisting with an object or class over several
subsequent uses, and when transitory event(s)
trigger the change, then there may be a greater
tendency to regard the change as a change in the
type of the object rather than simply as a choice
in behaviour (and data) within a given type. As
noted above, the behaviour can be given a
switchable indirection via a pointer to function,
e.g.,
X::f() { p(); }
 // f() now invokes afunction
switchable
 // via p
 // (Note: “p()” is equivalent to
 // “(*p)()”)

Paradoxically, idioms such as foo() { ... if
(...) f1(); else f2() ... } could be
seen as late-binding, leaving the choice of behav-
iour as late as possible at run-time, whereas the
use of a pointer to function could be seen as
early/ier binding in some sense, where p is set
and then (at lease potentially) left untouched for
several invocations of foo().

The examples below illustrate some syntaxes
which can be used to select a function implemen-
tation on a class or per object basis, using indi-

rection from a pointer to a (member or non-
member) function. This allows objects to switch
their behaviour based on arbitrary criteria - such
as the value of a data member, where any write
access to this member could potentially change
the pointer.

The following show the use of directly set mem-
ber pointers to functions to achieve object poly-
morphism.

1) Generalised idiom/syntax to pick up
free functions.

// idiom for choice of behaviour
// which can be regarded as
// involving a type-change
// (also appropriate for non-
morph)

void f();
void g();

typedef void (*PVF) ();

PVF p;

p = f; // set p

foo() { p(); }
 // foo now always invokes
 // f() (until p changed)

2) Specific example.
// Illustration of use of pointer
to
// function members pointing to
free
// (i.e., non-member) functions

typedef void (*PVF) ();

class Conic
{
public:
 ...
 void Do() { p(); }
 // invoke free
functions
 void Do_s() { ps(); }
private:
 PVF p; // per
object
 static PVF ps; // class
wide
};

3) Use of pointers to member functions
// Illustration of use of pointer
to
// function members pointing to
// member functions

class Conic
{
public:
 Conic(double e = 0);
 virtual void Show();
 virtual void SetEccentricity
 (double
e_in);
private:

 Overload – Issue 16 – October 1996

 Page 17

 double e;
 void Setup();
 ...
 void (Conic::*ShowPtr) ();
 // pointer to member function
 // used to select display
function

 void ShowShape();
 void ShowCircle();
 void ShowEllipse();
};

Conic::Conic(double ei) : e(ei)
{
 Setup();
}

void Conic::Setup()
{
 if (e == 0) // see note (*)
below
 {
 ShowPtr =
&(Conic::ShowCircle);
 }
 else
 if (e < 1) // see note (*)
 {
 ShowPtr =
&(Conic::ShowEllipse);
 }
} // Note (*): no allowance for
 // error margin

void Conic::Show()
{
 // will call appropriate fn
 Setup(); // ensure pointer
current
 (this->*ShowPtr) ();
 // do the
deed
}

 The pointer to function could be set-up
in the constructor, and then maintained
with all code which altered the eccen-
tricity - or simply set up as needed.
The above code illustrates both ap-
proaches, though one is sufficient.
(The comment about the lack of error
margin indicates potentially naive
switching, where misclassification
could occur due to errors in calculation
or accuracy of representation. The
code is thus oversimplified for the
purposes of illustration.)

 This example can even be stretched to
use a member to point to a function
member of another class.

4) Using pointers members which point
to functions in another class:

class C
{
public:
 void f1() { ... }

 void f2() { ... }
};

class conic
{
friend class C;
public:
 ...
 ...
 void Show(C& c0) { ((&c0)->*pc) (); }
private:
 typedef void (C::*PVFC)();
 PVFC pc;
 void setup()
 {
 pc = (e == 0.0) ? &C::f1 : &C::f2;
 }
 ...
 ...
};

An overall view
All of the above techniques have considered that
an object could be regarded as having morphed
when the behaviour of a given member function
has changed. Obviously one can add techniques
to change the sets of data members involved,
such as the use of a handle-body idiom, with the
data in appropriate bodies. Changing the accessi-
bility of members is more problematic. The prob-
lem is perhaps not too severe for data, if it is at
least protected, and possibly private as is nor-
mally the case - one simply does not need to
change the accessibility. If one wanted to guard
against function calls which were inappropriate
for the object’s state, one might have to resort to
run-time tests, perhaps including the use of ex-
ceptions.

The approach described above has the merit of
simplicity, though in some cases it could lead to
objects bloated with data, complex function defi-
nitions, and fat interfaces. In other words, many
of the benefits of OO - and in particular those
due to encapsulation and inheritance - could be
lost. Also, although the effective type of an ob-
ject could be changed, the result of typeid()
would be constant - which could be seen as a
problem.

Alec R L Ross
alec@arlross.demon.co.uk

References
[1] Alec Ross, “Circles and Ellipses Re-

visited”, Overload, Issue 15,

[2] James O. Coplien, “Advanced C++
Programming Styles and Idioms”, Ad-
dison-Wesley, Reprinted with correc-
tions 1992, especially Section 5.5, pp
133 ff (Envelope and Letter Classes),

 Overload – Issue 16 – October 1996

 Page 18

pp 148ff, (virtual constructors using
globally overloaded operator new),
and Section 9.2, p 311 ff, (a canonical
form for the Envelope-Letter idiom).

Why is the standard C++
library value based?
by Francis Glassborow

I was recently asked the title question in an email
from someone who was struggling to use the
RogueWave version of STL as shipped by Bor-
land. I wonder how many of you have ever con-
sidered the question. I certainly had not, so let
me make amends by sharing some thoughts with
you. In doing so I am sticking my neck out and
speculating because I have largely left library
issues to those that specialise in that area – recent
experiences suggest that this might not have been
an entirely wise decision even if quite a few oth-
ers took the same position.

I too made that decision and have similar
misgivings – Ed.

I think that the first major issue is that C++ is not
an object-oriented language. That is a very im-
portant issue because it strongly influences many
design decisions. The Standard C++ Library is
intended to be a tool for all C++ users, not just
the object-oriented ones. It is very difficult to use
an object-oriented library in a procedural or
functional programming style. Some might even
claim that it is impossible.

The second issue is that of efficiency. The Stan-
dard C++ Library is an inherent part of the lan-
guage. Very few programmers are going to be
writing code based only on the kernel language,
other than the designers of the SC++L that is.
This means that almost every other piece of code
is going to depend on aspects of the design of the
SC++L. We all know that the place for efficiency
considerations is at this deep level. The founda-
tions must be strong, efficient and suitable for
use by almost everyone.

Object-oriented libraries are inherently less effi-
cient. The reason is that there is a price to pay for
late binding. At the higher levels of program-
ming this is a price that we are often willing to
pay. But not all programmers are in a position to
accept the efficiency penalties that come with
OOP.

It is worth noting that the most OO part of the
SC++L is that related to i/o. There are already

high overheads in implementing any support for
i/o so the cost for making it OO is a relatively
small element. Unfortunately the design of io-
streams is highly complicated, involving twin
hierarchies (the i/o class hierarchy itself and a
hierarchy of buffers) as well as multiple inheri-
tance and virtual base classes. Making sure that it
was compatible with the C stdio specification as
well as alternative characters (for example input
might be from Unicode stream) has further com-
plicated it. While it is technically possible to de-
rive new polymorphic types of iostream objects
doing so is definitely expert territory. I wonder,
given a clean sheet, what we might design for i/o
today.

There are many examples of object based design
in the SC++L. By object based I refer to types
that lack the polymorphic feature so that the code
can be bound statically – that is, bound at com-
pile time. Indeed one of the attractions of tem-
plates is that it helps with writing general
methods without introducing an artificial type
dependency. Compare the STL containers with
earlier methods that relied on contained objects
all being derived from a common base class
(such as Borland’s TObject).

You should consider the SC++L as a box of
components, most of them are loose though a
few are substantial constructs. Rather like my
spare parts drawer that contains nuts, bolts, bits
of wire, etc. as well as spare power units, plugs
and cooling fans. I have to understand the higher
order components so that I do not break a DC
12V fan by plugging it into a 230V AC supply.
The low level bits are generally more robust and
I can see what they do. Of course if I insist, I can
strip the threads on a bolt by using the wrong
nut.

It is usually possible to encapsulate a non-OO
item in a wrapper. For example, suppose that we
have a simple class:
class example {
public:
 example& fn ();
 // rest of interface
private:
 // interface
};

Now I can write:
class oo_example : example {
 virtual oo_example& fn()
 { return example::fn(); }
 // provide the rest of the interface
 virtual ~oo_example();
private:
 // probably nothing

 Overload – Issue 16 – October 1996

 Page 19

};

I am not sure whether private inheritance is ap-
propriate here rather than using the ‘Cheshire
Cat’ mechanism:
class oo_example1 {
 virtual oo_example& fn()
 { return smile->fn(); }
 // provide the rest of the interface
 virtual ~oo_example();
private:
 example * smile;
};

I would welcome your thoughts on the issue. I
guess there are times when one is better than the
other and perhaps some of you can come up with
good examples so that we can all learn to make
better choices.

Conclusion
Avoid trying to make the SC++L into something
that it is not. There are lots of examples being
thrown around at the moment aimed at demon-
strating how powerful the STL is. The problem is
that these examples often make the STL seem to
be something that it is not. It is possible to use
raw STL for small programs but it is really a set
of simple components from which you can de-
velop domain specific tools. The application

programmer will often be at least one more layer
away from the underlying procedural code.

I am reminded of my days as a Forth program-
mer where everything was built on what went
before. All that you needed to implement for a
new platform was the native code primitives,
everything else would port easily. If you view
the Standard C++ Library plus the C++ kernel as
the native code primitives then the programs
built on them will port easily. Of course what we
need are some other special standard libraries
such as a graphics API so that other parts of our
programs can be built with standard components.
Of course that will require other abstractions, or
rather extensions to the C++ abstract machine.

Which reminds me, one of the strengths of the
Java programming language is that it is written
for the Java Virtual Machine, if you start using
Java divorced from the JVM you will find that
you no longer have quite such a portable lan-
guage. Those seduced into using J++ as an ordi-
nary programming language would do well to
remember that.

Francis Glassborow
francis@robinton.demon.co.uk

editor << letters;
Hi Sean,

Great issue, Overload 15. In the /tmp/late/* col-
umn, “Constraining template value parameters”,
I illustrated an interval checking class that could
be used as follows:
static in_range<id, 0, max_id>
id_in_range;

This asserts that the first parameter is in the in-
clusive range defined by the following two, i.e.,
in the range [minimum, maximum]. You com-
mented

Perhaps, given STL’s practice for inter-
vals [minimum, maximum) might be
more in the spirit of C++?

The reason I did not exclude the upper bound is
the loss of domain: I would never be able to
check that something was in the range that in-
cluded INT_MAX, so as a complete range
checker the class would not have been fit for
purpose.

Now on to a genuine erratum. I wrote the spe-
cialisation

struct compile_assert<0> {
compile_assert(); };

And commented

... for 0 the constructor is inaccessible,
and hence objects of this type are unde-
clarable.

Which is pretty much nonsense, I’m afraid. It’s
certainly true that the code wouldn’t build to
completion as no constructor definition is pro-
vided – the linker will cheerfully inform you of
this, but that was not my intent. What is missing
is a private access specifier, or use of the word
class rather than struct. Either will have the de-
sired effect, but I tend to use struct for this and
related concepts such as traits, preferring instead
to use class for more conventional OO and ADT
definitions.

Kevlin A P Henney
kevlin@two-sdg.demon.co.uk

Your comment about ranges is a good
point! As for the “private” constructor,

 Overload – Issue 16 – October 1996

 Page 20

well I misread it as you had intended
too...

Sean,

In his discussion of the Boolean type in Over-
load 15, Francis states that they should not sup-
port any operators other than (in)equality,
assignment and inversion. What about the logi-
cal AND and OR operators (&& and ||)? These
are absolutely essential for compound conditions,
like
 if (a==1 || b==2)

This brings me on to a point that I have been
meaning to write to you about for some time.
Francis also suggests a user-defined type can
support a Boolean type - meaning, I think, that
the restricted number of operators available can
be ensured. However, the two logical operators
&& and || acting on built-in types have special
behaviour, insomuch as they evaluate their oper-
ands conservatively, and this is not reproduced in
the class equivalents as far as I am aware. Take
this simple program:
typedef int Bool;
Bool cmp_fn(int a, int b)
{
 cout << "Compare " << a << " & " << b
 << "\n";
 return 0;
}

main()
{
 if (cmp_fn(1,2) && cmp_fn(3,4))
 cout << "EEK!\n";
 else
 cout << "OK\n";
}

The output is:
Compare 1 & 2
OK

Now replace the typedef with the class:
class Bool
{
public:
 Bool(const int){};
 ~Bool(){};
 operator int() { return 0; };
 Bool operator &&(Bool&)
 { return Bool(0); };
};

The output is now:

Compare 1 & 2
Compare 3 & 4
OK

So we see that with a built-in type/operator the
second comparison is optimised away, but this
cannot occur in the user-defined version because
both operands to the operator &&() function
need to be evaluated before it is called.

This may seem somewhat esoteric, but there are
instances where a Boolean-like type is required,
consider fuzzy logic for one, and having such a
type behaving differently from the built-in that it
is modelled on is undesirable. The case of the ++
operator, which used not to distinguish the pre-
and post- versions for user types is a case where
the language changed to be more consistent. I
wonder why the same consideration has not been
given the the logical operators.

Colin Hersom
colin@hedgehog.cix.co.uk

Why not omit Bool::operator&&()?
It isn’t needed since you have a conver-
sion from Bool to int. However, you
are right that there is no way to simulate
the McCarthy-&& semantics in C++
(without resorting to all sorts of expres-
sion classes to provide delayed evalua-
tion semantics!). I believe the possibly of
“fixing” operator&&() has been dis-
cussed but it would require extensive
changes since at present the rules for
function calls cover operator&&().

This is the second part of a letter sent to me
as editor of CVu. As it concerns material pub-
lished in Overload, I have extracted it and
added my response – Francis

Dear Francis,

In Overload 15 Kevlin Henney describes some
interesting ways of using templates for compile-
time tests. In C, you can use the pre-processor, or
runtime tests, both of which have disadvantages.
But what about using enum, as in the following?
enum { ensureintsare32bits = 1 /
 (sizeof(int)*CHAR_BIT == 32)
};

Changing the subject again (and no longer writ-
ing for CVu), it seems to me that your code for
setname() (Overload 13, page 7) is still un-
safe. I wrote to Overload about this, but I was a
bit confused, and I managed to confuse Sean too.
I was confused because my (very out of date)
version of strrchr() returns a non-const
char*, and because setname() is declared as

 Overload – Issue 16 – October 1996

 Page 21

having a non-const char* argument. While
correct use of const prevents the second prob-
lem I illustrated, it is not much help for the first.

I presume you would like setname() to have a
const char* argument. You can then cause
setname() to fail like
record.setname(1 +
 strrchr(record.getname(), ' ')
);

I am unclear how general this sort of problem is
due to my lack of knowledge about C++. But it
seems to me that whenever a part of an object
can be understood as a whole object there might
be problems, e.g., if I wanted to take the real part
of a complex number, (but still regard it as a
complex number) I might use
Complex a;
...
a = a.real();

If the class Complex uses dynamic memory, and
its assignment operator follows the usual
if (this != &rhs)
 {destroy, create}

pattern, is there a problem? I am unclear as to
whether this is exactly what you were getting at
in Overload 13, or just that the code for doing it
should be in one place. Why is a “create, copy,
destroy” pattern not the norm, as in the follow-
ing?
void setname(const char *s)
{
 char *p;
 p = new char[strlen(s) + 1];
 strcpy(p, s);
 delete [] name, name = p;
}

You could pass this on to Sean, or incorporate
any of it in a reply, as you see fit.

Regards

Graham Jones

Francis responds:

Graham raises a number of interesting points and
illustrates the danger of some of the current idi-
oms being used in C++. Most objects cannot be
created from parts of themselves. However the
standard C++ idiom assumes that this will be the
case. Graham demonstrates that this assumption
is unsafe.

Many of the idioms of C++ are intended to pro-
vide efficient low-level code. This is important
so that the high-level programmer does not pay
the price for reusing low-level code. Elsewhere

in this issue I examine another aspect of this
problem.

The low-level pattern Graham suggests is cer-
tainly reasonable (and preferable) for functions
such as setname() where it will be rare that
the original is already the required new version.
It is also more efficient because it replaces a de-
cision with a local pointer variable (small space
use, no extra instructions) and a single assign-
ment to a pointer. It will be less efficient when it
unnecessarily creates a new copy. Note that dy-
namic memory allocation is potentially a very
expensive process, many programs spend over
30% of their time in dynamic memory alloca-
tion/deallocation.

Where the copy creation is more frequently un-
necessary then the initial if statement may still be
desirable. Where creation from a part object is
impossible the standard idiom will do, but again
where creation is rarely unnecessary Graham’s
alternative becomes a front runner again.

Francis Glassborow
francis@robinton.demon.co.uk

You didn’t confuse me Graham, but your
question was rather vague! I assumed
your problem was const-correctness be-
cause strchr is different in C & C++.
The other problem to which you alluded
passed me by because I would use { cre-
ate copy, destroy } for strings anyway
(rather than { destroy, create }) or copy-
overwrite if I had a safe way to do it,
e.g., memmove.

Sean,

Graham Jones’ article makes depressing reading.
I don’t know how OCR systems work, but I have
found that an object-oriented approach always
leads to a better design. I accept that there may
be cases where it is inappropriate (the Standard
Template Library has been quoted as one exam-
ple), but I am sure these are rare. I get the im-
pression that Graham is entirely self-taught. If
so, I would suggest that he tries to find a sea-
soned practitioner of OOD to help with his pro-
gram. There is something important in OO
methods, it does work in practice and I would
hate to think that Overload readers might be put
off by articles such as this.

And so to Peter Moffat’s linked lists... When I
first started reading about object-oriented pro-

 Overload – Issue 16 – October 1996

 Page 22

gramming it was frequently said that “you’ll
never write another list”. Lists (and similar basic
constructs) would be standard library objects.
So, when I got my first C++ compiler, I tried to
write a List class to see if I had grasped the con-
cepts. And, like Peter, I spent many hours trying
various different strategies. I was never really
happy with the results. Some versions were easy
to use but expensive on space or CPU time, oth-
ers were efficient in space or time but cumber-
some to use. Of course, this was before I had
heard of templates and long before the Standard
Template Library.

I think the most important point about Peter’s
article is that there will be many, many pro-
grammers out there in commerce and industry
following similar paths through the C++ jungle.
Most will get there in the end, but it will be a
long and expensive journey for those setting out
without a guide. Some won’t make it at all. I
have no doubt that there will be a backlash
against C++ (and perhaps OO in general) in the
commercial world when the first wave of pro-
jects is over and companies look back at what
has been achieved. There will be a lot of legacy
C++ code - objects everywhere, but all inextrica-
bly tied to each other so that changing one has a
knock-on effect on far too many others. The
trouble is it takes a long time to learn how to use
C++ properly and commercial organisations
don’t have that time. Software engineering is
still a very young discipline and growing up is a
painful experience.

Circles and Ellipses... Alec Ross’s article has
some intriguing ideas. I can’t wait for the follow
up articles.

My “suspected bug in Visual C++ V4.1” was
confirmed as such by Microsoft. I suspect it’s a
problem with namespaces (in that case, a class as
a namespace) because we found another one that
might be related. It manifests itself in code like
this:
// Suspected bug in MS Visual C++ V4.1.
// Watcom 10.6 reports no error.

template <class T> class set;

struct Junk
{
 void set();
};

void Junk::set() {} // error C2955:
'set' : class template name expecting
parameter list

The error message goes away if the member
function is defined within the class. This has
also been confirmed as a bug in VC++ 4.1 and
4.2 by Microsoft.

I’m astonished that a compiler could get
this wrong! I wonder what on Earth
they’re doing here?

Phil continues:

Stop Press: I think we’ve found another bug in
VC++...
 class Outer {
 protected:
 int i;
 public:
 friend class Inner;
 class Inner {
 public:
 void f (Outer& outer)
 {
 outer.i = 3; // error
C2248: 'i' : cannot access protected
member declared in class 'Outer'
 }
 };
 };

There is a similar bug in the Knowledge Base
(Q115854) which “has been corrected in Visual
C++ version 2.0”.

Phil Bass
pbass@rank-taylor-hobson.co.uk

I replied:

Nope. By chance it’s correct. The friend
declares (injects) a name at file scope
which is therefore not the same as the
nested class. Try adding “class Inner;”
ahead of the friend declaration – that
should forward declare the nested class
and then the friend declaration will refer
to the nested class. I suspect VC++ will
still choke on it.

Note that the committee have recently
removed name injection from the lan-
guage but I’m not sure of the impact on
this construct.

Phil responds:

My apologies to Microsoft, VC++ gets it right
and your suggestion works just fine. Usually I
check suspected bugs against another compiler,
but I was a bit hasty this time. Worse still, I
didn’t really understand how friend declarations
work. Just shows how valuable membership of
ACCU is.

 Overload – Issue 16 – October 1996

 Page 23

I must credit Stuart McGregor, a contractor
working with us, for discovering all three bugs
reported to ACCU recently. In each case, it was
code using or in the style of the Standard Tem-
plate Library that tripped us up.

Phil Bass
pbass@rank-taylor-hobson.co.uk

Which just goes to show how much STL
stresses current compilers!

Hi Sean,

I was told that in C++ the switch statement is a
no-no. But in C++ The Complete Reference
Second Edition by Herbert Schildt (ISBN 0-07-
882123-1) it says:

“Virtual functions and dynamic binding enable
polymorphic programming as opposed to switch
logic programming. C++ optimizing compilers
normally generate code that runs at least as effi-
ciently as hand-coded switch-based logic.”

And that was a Performance Tip. To me that
says that it’s still ok to use switches and that they
are just as efficient as using polymorphic pro-
gramming (Which I don’t know how to do as of
yet) but if polymorphic is more efficient then I
think I’m going to learn it ASAP. What are your
thought about this?

Thanks again...

Steve Mertz
smertz@direct.ca

Steve is a novice C++ programmer who
has been emailing me quite a bit. Origi-
nally he had problems with a (poorly de-
signed) string class and I helped him
work through that. Eventually he said it
was from a book and then went on to the
above issue from the same book. I have
clarified the issues for Steve in private
email but thought I would bring this to
the attention of the readership as a
warning: many of the books out there
are written by authors who do not un-
derstand C++! Schildt’s annotated ANSI
C Standard book is (in)famous for hav-
ing nonsense commentary but it’s one
saving grace is that it’s the cheapest way
to obtain the ANSI C Standard (even
though one page of the description of
printf is missing!). The string class was
full of simple mistakes which will unfor-

tunately go over the heads of most nov-
ices - such mistakes are doubly
dangerous for they mislead the very peo-
ple they should be helping.

And what are my thoughts?Don’t buy
any of Schildt’s books!

switch has it’s place in C++ because it
and polymorphic method calls do not do
the same job and each is suited to solv-
ing different problems.

Sean,

I have recently discovered your “C++ – beyond
the ARM” page, and have found it very helpful.
Thank you for making it available.

However, I have a question I have not seen di-
rectly addressed. It relates to a class declaration
nested within a template class, e.g.,
template< class T >
class enclosing {
private:
 class inner;
}; // enclosing<T>

It seems clear that such a nested declaration is
allowed. It is less clear, however, how then to
define the inner class. (I know that I could place
the definition entirely within the scope of the
enclosing class, but choose not to do so because
of the complexity of the inner class.)

By analogy with the syntax used to define mem-
ber functions, I would guess the following ap-
proach:
template< class T >
class enclosing<T>::inner {
}; // enclosing<T>::inner

However, I have found no compiler that likes
this at all, nor any of several variations on this
basic theme.

If you have a moment, I would appreciate your
comments on this puzzle.

Thank you.

Walter Brown
wb@fncrd8.fnal.gov

Glad you found my pages useful. I’ve re-
cently updated much of the template in-
formation.

You are absolutely correct about defin-
ing the nested class: forward declaration
of nested classes – even without tem-

 Overload – Issue 16 – October 1996

 Page 24

plates thrown in – is a relatively recent
resolution of the committee and many
compilers simply haven’t caught up yet

(MS VC++4 doesn’t even get the non-
template case right).

questions->answers
by Kevlin Henney

After a rather unexpected and unplanned break, questions->answers is back. Fortunately, the break was
not forced through lack of questions — or even lack of answers — so please continue forwarding any C++
and OO questions either to myself or via Sean.

Access, your flexible friend
Peter Pilgrim asks how it is possible to create a
class that may only be allocated with new. This
question has come up a couple of times in differ-
ent places, including recently on
accu.general. As with many questions, the
answer to this one mines a rich seam of tech-
niques based on a single principle. The principle
here is to control — restrict in fact — the access
of default features. Along with the explicit mem-
ber functions you provide for your class the lan-
guage provides you with the implicit capability
to do the following:

• Default construction, if no other constructor
is provided and if none of the non-static
data members are references or const;

• Copy construction;

• Copy assignment, providing that none of the
non-static data members are references or
const;

• Destruction;

• Taking the address of an object of that class
using operator&;

• Dynamic allocation using the global new
operator;

• Deallocation using the global delete op-
erator;

• Dynamic allocation of arrays using the
global new[] operator;

• Deallocation of arrays using the global de-
lete[] operator.

There is an additional rule that for derived
classes these operations are not implicit if they
were not accessible in the base class. The list
above forms what I sometimes call the hidden
interface and it is worth keeping in mind that the
way to prevent any of these operations is to de-

clare them explicitly as private and not provide
a definition:
class mutex
{
 ...
private:
 mutex(const mutex&);
 mutex& operator=(const mutex&);
};

This fragment illustrates the common technique
of preventing default copy behaviour in a class.
Anyone attempting to construct a copy, such as
passing by value, or assign one object to another
will be greeted with a compile time error telling
them that those members are not publicly acces-
sible. This is much better than being greeted with
an obscure runtime error that comes from re-
source aliasing and accidental multiple release.
Use this idiom when copying behaviour is

• meaningless (e.g., copying a container of raw
pointers that owns, i.e., will delete on de-
struction, its contents),

• not something you want to provide in casual
syntax because of its hidden overhead (e.g.,
duplicating a file object), or

• simply too difficult and not felt to be neces-
sary (e.g., duplicating large data structures of
which only a few instances ever exist in a
program).

On the issue of inheritance it is possible to cap-
ture this idea in a base class:
class nocopy
{
private:
 nocopy(const nocopy&);
 nocopy& operator=(const nocopy&);
};

This confers non-copying on its derived classes
as their default:
class mutex : public nocopy
{
 ...
};

 Overload – Issue 16 – October 1996

 Page 25

This particular mix-in style potentially has no
space overhead as the base class is empty, and
can be optimised out of the size of the derived
class (see questions->answers, Overload 13). On
high warning levels some compilers or checkers
may issue a warning that the copy operators can-
not be generated for derived classes. Since this is
more often the intention than not (in truth, I
don’t seem to be able to recall any circumstance
in which it has not been expected) such warnings
are a pain and potentially deter programmers
from using a sound technique.

But watch out for programmers who then try
to pass objects round by const nocopy&!
Consider the implications of making nocopy
(a) a private base class (b) a virtual base
class. What is the impact? – Ed.

This is all well and good, but how does it help
with Peter’s original problem? I’ve reviewed a
common example and asserted that the principle
is general. But what do I declare private to re-
strict creation to new? This requires a little lateral
thought. Consider the following:
void dummy()
{
 dialog_box unused;
}

This function declares an automatic variable.
What is being executed? A constructor and a de-
structor. Clearly, to prevent such declarations
(and objects with static storage duration), one or
both of these must be made private. If we make
the constructors private we will prevent the
following expression from compiling:
dialog_box *q_and_a = new dialog_box;

Which is unfortunate as it is the only one we
wish would compile! In other words, declare the
destructor private and the previous expression
will compile, as we intended, and the dummy
function will not.

Suicide objects
So that’s it is it? Well, not exactly. How do I get
rid of such objects? I can’t use delete as the
destructor is private. The incorrect answer is
“just leave ‘em, the runtime’ll pick ‘em up when
it’s finished” and is neither necessarily true —
users of 16 bit Windows can spend time amusing
themselves watching the resources in their sys-
tem leak away every time they run Word or Ex-
cel — nor safe — they will fail to release cleanly
any system resources they grabbed, and these
may be more significant than memory.

Some objects govern their own lifetimes, i.e., the
stack, static storage or another object are not re-
sponsible for destroying them. They will disap-
pear of their own accord, based on some event:
void dialog_box::on_completion()
{
 delete this; // be afraid, be very
afraid
}

The delete this is the reason that you wish
to prevent non-heap creation. You must also be
sure that no other object holds a dangling refer-
ence to the object. As suggested, this is poten-
tially dangerous code and always deserves a
comment. You may wish to chose something
slightly less flippant, but I will confess to having
put this comment and similar into production
code — it has the desired effect of grabbing your
attention and being memorable!

The modeless dialog box is the most common
example of the need for self determination; you
also see it with daemon threads and similar ex-
amples. In making the destructor non-public,
as opposed to the functions in most other access
limiting techniques, you need to provide a defini-
tion of the destructor. You may wish to make this
protected if you have a hierarchy of suicide
objects in mind. Note that making the destructor
in a derived class non-public once it has al-
ready been made public in the base is next to
useless — next to, but not exactly, as there are a
couple of techniques that I may discuss in a fu-
ture column (if asked) that work on this princi-
ple.

There are other techniques that do not play with
fire and constrain the semantics of the class so
heavily, involving the addition of manager ob-
jects to govern knowledge and lifetimes of other
objects. Consider a document view window that
kicks off a modeless search dialog box. When
the user is done with it they dismiss the dialog.
In the delete this scheme it commits sui-
cide and that’s it. A better scheme is that the
document view remembers the dialog box. If it
has disappeared from view and the user asks
again for a dialog box, the same one is pulled
forward rather than another one created. Simi-
larly, on dismissal the dialog box informs its
owner that it has been dismissed and the owner
takes appropriate action: either it deletes it (sort
of a callback for self deletion), or it hides it and
retains it for the next time it is used, so that the
cost of window creation is not paid again and the
dialog’s state persists. This design is both cleaner

 Overload – Issue 16 – October 1996

 Page 26

and more flexible; the fun is at the design level
rather than at the language feature level.

Threadbare
A question from Jon Jagger asks how to create
thread objects given a C function based threading
API. There are a number of threading APIs that
share generally the same characteristics. In addi-
tion to a number of flags and other control data,
there are four key components to a thread crea-
tion function’s prototype:

• A function pointer that is executed as the
newly created thread’s main function;

• Some user data, normally a void *, that is
passed into the thread function;

• A handle returned to identify the handle cre-
ated;

• An indication of success that is returned to
verify that the handle was successfully cre-
ated.

Often the last two are rolled into a single return
value, but this is not always the case: e.g., both
the Win32 and POSIX.1c thread creation func-
tions separate them out. Here is the prototype for
the POSIX function:
int pthread_create(
 pthread_t*thread_id,
 pthread_attr_t
 creation_attributes,
 void* (*start_function)(void *),
 void* start_function_argument);

All this is fine for C: we create a function that is
to be executed as the thread’s lifecycle, and pass
in some data that we want the thread to operate
on or use as context. A little bit of casting here
and there for tidiness sake, and everything seems
OK:
void *thread_main(void *argument)
{
 thread_data *to_do =
 (thread_data *)
argument;
 ...
}

int main()
{
 ...
 if(pthread_create(&tid, attr,
 thread_main, &data) !=
-1)
 ...
}

But this is clumsy and error prone, and certainly
some way removed from the object model that
we would like to be using consistently within our
C++ code. There are a couple of issues here:

• We would like a more toolkit base approach
in a thread class, i.e., that it wraps up the
complexity of initialisation, parameters,
launch, failure, etc.

• The function based approach shows high
coupling between arguments and weak cohe-
sion with the function.

The second point is a software engineering issue,
and is equivalent to saying that the arguments to
our function are not normalised. You may not
have thought of applying the concepts of cou-
pling, cohesion and normalisation to function
signatures — I’m happy to explain this in more
detail if prompted. Effectively the function and
the user data are a single unit and should be ex-
pressed as such. The way that we resolve this is
to invert the relationship between the function
and its data, defining a class that contains the
data, has a function defining the lifecycle, and
hides the plumbing of the C API:
class thread
{
public: // usage interface
 void run(); // kicks off thread
 ...
protected: // lifecycle
 virtual void main() = 0;
private: // plumbing
 ...
};

class needle : public thread
{
 ...
protected:
 virtual void main();
private: // data for use by thread
 ...
};

needle hey_stack;
hey_stack.run();

I will say that there are a couple of things I do
differently, but those would probably raise more
questions than answers! I will ask one question
that you might like to ponder: why don’t I auto-
matically run the thread when I construct it?

So far so good, but main is a member function
and the thread creation function is expecting an
ordinary function. Some people try all manner of
casts to get this to work, but it isn’t worth the
trouble: it’s not supposed to work. There’s a lot
more to member functions — member function
pointers, in particular — than meets the eye.
There is a mistaken belief that this is passed in
as a hidden first argument to a member function.
If this were true then there might be some reason
to believe — ignoring the not insignificant vir-
tual for the moment — that the member func-

 Overload – Issue 16 – October 1996

 Page 27

tion pointer technique would stand a chance of
working. However, the truth is that it is as if
this were passed in as a hidden first argument:
there are few compilers now that implement it
like this.

I won’t dwell on member function pointer issues:

1. There is probably a whole (at least) ques-
tions->answers in that area, and

2. We don’t need them to solve the problem.

By turning the problem inside out again we get
our solution:
class thread
{
 ...
private:
 static void *runner(void *);
};

A static member function has no this
pointer and is, to all intents and purposes, a
global function so we can cheerfully pass it to
our thread creation function without worry2.
What is the data item of interest? The current
object:
void thread::run()
{
 ...
 if(pthread(&id, attr,
 runner, this) != -1)
 ...
}

To get the behaviour we desire we perform a
simple piece of unpacking in the runner func-
tion:
void *thread::runner(void *data)
{
 thread* self =
 reinterpret_cast<thread
*>(data);
 self->main();
 ...
}

I have used the newer cast notation as it is
cleaner and clearer in intent — you try grepping
for parentheses in your program to try and find
casts, and see how far you get!

If you have not come across this technique be-
fore, follow it through carefully and you will see

2 Well, sort of without worry. Few things in life are
easy and, I'm afraid to say, there is another issue here
that I am going to gloss over. Sean, how about a
whole questions->answers issue of Overload? Err,
actually no, I didn't say that — one must be careful
what one asks for; one might get it.

how we achieve type safe and type dependent
behaviour in a simple form. The adaptor function
allows us to use a C function to build an OO
framework — polymorphism, encapsulation, and
all. I have glossed over a couple of issues to get
to the point, but I hope that there will be some
questions about these in future.

Kevlin Henney
kevlin@two-sdg.demon.co.uk

News & Product
Releases

This section contains information about new
products and is mainly contributed by the ven-
dors themselves. If you have an announcement
that you feel would be of interest to the reader-
ship, please submit it to the Editor for inclusion
here.

The OMT User Group
a correction from Kevlin Henney

The mailer that I used to send the OMT User
Group announcement was a little generous in
reinterpreting currency symbols: all the pound
signs were converted to dollar symbols. This re-
sulted in membership details for the user group
being quoted at much less than cost price in the
last issue of Overload!

Corrected, excluding VAT one year’s member-
ship is £39 for an individual, corporate member-
ship is £129 for 5 named individuals or £199 for
10.

Additionally, a web site is now being planned
and corporate members will be entitled to a link
to their site, where applicable. For details please
contact one of:

Kevlin Henney
khenney@qatraining.com

Jan Bevans
jbevans@qatraining.com

Note that these new email addresses supercede
the older (qatrain.mhs.compuserve.com) ones
which remain compatible, but use a slower and
less reliable connection method.

I should apologise to Kevlin for not pick-
ing up on this! Perhaps I have become so
used to American prices with spending
so much time over there...

 Overload – Issue 16 – October 1996

 Page 28

ACCU and the ‘net
ACCU.general
This is an open mailing list for the discussion of C and C++ related issues. It features an unusually high
standard of discussion and several of our regular columnists contribute. The highlights are serialised in
CVu. To subscribe, send any message to:
accu.general-sub@monosys.com

You will receive a welcome message with instructions on how to use the list. The list address is:
accu.general@monosys.com

Demon FTP site
The contents of CVu disks, and hence the code from Overload articles, eventually ends up on Demon’s
main FTP site:
ftp://ftp.demon.co.uk/accu

Files are organised by CVu issue.

ACCU web page
At the moment there are still some problems with the generic URL but you should be able to access the
current pages at:
http://bach.cis.temple.edu/accu

Please note that a UK-based web site will be operational in the near future and this will become the “offi-
cial” ACCU web site. Alex Yuriev has done a great job supporting the ACCU web site from the US –
thanks Alex!

C++ – The UK information site
This site is maintained by Steve Rumsby, long-serving member of the UK delegation to WG21 and nearly
always head of delegation.
http://www.maths.warwick.ac.uk/c++

C++ – Beyond the ARM
My C++ pages. The template section has had a major overhaul recently.
http://www.ocsltd.com/c++

Any comments on these pages are welcome!

Contacting the ACCU committee
Individual committee members can be contacted at the addresses given above. In addition, the following
generic email addresses exist:
caugers@accu.org
chair@accu.org
cvu@accu.org
info@accu.org
info.deutschland@accu.org
membership@accu.org
overload@accu.org
publicity@accu.org
secretary@accu.org
standards@accu.org
treasurer@accu.org
webmaster@accu.org

There are actually a few others but I think you’ll find the list above fairly exhaustive!

 Overload – Issue 16 – October 1996

 Page 29

Credits
Founding Editor

Mike Toms
miketoms@calladin.demon.co.uk

Managing Editor

Sean A. Corfield
13 Derwent Close, Cove

Farnborough, Hants, GU14 0JT
overload@corf.demon.co.uk

Production Editor

Alan Lenton
alenton@aol.com

Advertising

John Washington
Cartchers Farm, Carthouse Lane

Woking, Surrey, GU21 4XS
accuads@wash.demon.co.uk

Subscriptions

Barry Dorrans
2, Gladstone Avenue

Chester, Cheshire, CH1 4JU
barryd@phonelink.com

Distribution

Mark Radford
mark@twonine.demon.co.uk

Copyrights and Trademarks
Some articles and other contributions use terms which are either registered trademarks or claimed as such.
The use of such terms is intended neither to support nor disparage any trademark claim. On request, we
will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU. An author
of an article or column (not a letter or review of software or book) may explicitly offer single (first serial)
publication rights and thereby retain all other rights. Except for licences granted to (1) Corporate Members
to copy solely for internal distribution (2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy deadline
All articles intended for inclusion in Overload 17 (December/January) should be submitted to the editor by
December 7th.

	Editorial
	A fast year
	English English
	That’s rich!

	Software Development in C++
	Some OOD answers
	Modularity
	Abstraction
	Encapsulation
	Modelarity
	Patterns
	Conclusion

	Go with the flow - part II
	Recap
	Requirements revisited
	Revisions to the model
	The Cashflow class interface
	Implementation of the Cashflow class.
	The client classes
	Controlling the application

	Summary

	Mixing Java & C++

	C++ Techniques
	Circles and Ellipses revisited:coding techniques –an introduction
	Circle to ellipse - by using a change of perspective
	An overall view
	References

	Why is the standard C++library value based?
	Conclusion

	editor << letters;
	questions->answers
	Access, your flexible friend
	Suicide objects
	Threadbare

	News & ProductReleases
	The OMT User Group

	ACCU and the ‘net
	ACCU.general
	Demon FTP site
	ACCU web page
	C++ – The UK information site
	C++ – Beyond the ARM
	Contacting the ACCU committee

