
 ISSN 1354-3172

Overload

Journal of the ACCU C++ Special Interest Group
Issue 21

August 1997

Editorial: Subscriptions:
John Merrells David Hodge
4 Park Mount 31 Egerton Road
Harpenden Bexhill-on-Sea
Herts East Sussex
AL5 3RA TN39 4EL
john.merrells@octel.com
 101633.1100@compuserve.co
m

 Overload – Issue 21 – August 1997

 Page 2

Contents
Contents 2
Editorial 3
Software Development in C++ 4
Circles and Ellipses Revisited: Coding Techniques – 3 By Alec Ross 4
The Draft International C++ Standard 7
The Casting Vote by Sean A Corfield 7
Getting the Best By Francis Glassborow 9
C++ Techniques 14
Safe Assignment? No Problem! By Kevlin Henney 14
Make a date with C++ By Kevlin Henney 17
Whiteboard 20
inline delegation By Francis Glassborow 21
A Finite State Machine Design By Einar Nilsen-Nygaard 21
Object Counting By John Merrells 24
Rational Values by The Harpist 27
News, Views, & Reviews 30
The C&C++ European Developers Forum By Ray Hall 30
They pursued it with forks and hope. By Alan Griffiths 32
editor << letters; 34

 Overload – Issue 21 – August 1997

 Page 3

Editorial

ACCU Conference

Last month’s highlight was the ACCU
conference in Oxford. I was pleasantly
surprised by the professionalism with which
it was pulled off. Compared to the usual
corporate junkets this represented real value
for money. There’s a full review from Ray
Hall in the News Section, so I won’t say too
much – except to report a few amusing
asides.

Bjarne gave a presentation on Friday about
various approaches to class design. He
talked a lot about the benefits of abstract
interfaces, without once mentioning COM,
and a bit about the new paradigm of generic
programming, without ever mentioning the
STL.

He also talked about the design and
evolution of C++ on Saturday morning. He
used the metaphor of the craftsman’s toolbox
for C++: it contains a wide variety of tools,
some of which are only suitable for expert
use. Of course the people who don’t know
how to use the more advanced tools still like
to have them in their own toolbox, but
mainly just for show. He contrasted this
with other languages which attempt to adopt
a simpler approach but which are inevitably
limited in the areas in which they can be
used, at least until they are expanded - he
raised a lot of laughter when he said that the
Nutshell guide to Java is now 670 pages
long.

He was most enlightening when taking
questions from the floor. He managed to
expound insights from even the most simple
of questions. In response to the query ‘How
do you feel about and const and mutable
relationship?’ He paused to consider, and
thoughtfully stated, ‘I have nothing to say
about mutable. Next question please.’

Me & Bjarne

The day before the conference I discovered
that Bjarne and myself are best mates – Well
actually we’re just working together – Well
actually my current employer, Octel, just got
bought by AT&T - Well actually it was
Lucent, but they used to be part of AT&T.
So Bjarne and myself are almost best mates.
Just as well I didn’t stagger up to him on
Friday evening and inform him of this
exciting news.

John Merrells

(Almost a Bell Labs Engineer)
john.merrells@octel.com

 Overload – Issue 21 – August 1997

 Page 4

Software Development in C++

Circles and Ellipses Revisited:
Coding Techniques – 3

By Alec Ross

Around Again - This Time using
Coplien's Envelope-Letter Approach

The morphing circle/ellipse problem [1-8]
raises general questions on OO modelling.
This note gives some further perspectives,
and coding techniques. Coplien has
described some relevant techniques, as
pointed out by Kevlin[3]. In particular
Coplien's description of an Envelope-Letter
idiom offers a useful approach . Some
discussion and illustrative code for this
idiom is given below.

Mental Models and Classes

At a particular level in our mental model of a
system we can chose to model the our types
with C++ classes and supply them with
implementations. As soon as we do so, we
make particular design decisions
(compromises) which are appropriate to
some range of applications.- and not to
others. For example, we can model conic
sections by defining a class, objects of which
we simply call "conics". If the conics were
to being used in a mathematics application
one might wish to be able to effect an exact
symbolic differentiation of the curve. A
given defined conic class might or might not
support this well. For most purposes
however, it will be sufficient to approximate
the parameters of the conic: e.g. to represent
the eccentricity by a simple built-in scalar
such as a double.

A conic object might be considered to be an
infinite set of points along its locus: but
morphing it changes the set of points, and so
even this set of points is a transient attribute
of our morphable conic object.

A conic is not a physical object; but it can
represent an "ideal" for a physical object -
e.g. the shape of a wheel is represented by a
circle.

Distortions of the wheel might be
represented by distortions of the its initially
circular perimeter: but in no way is the initial
circle object, considered as an infinite set of
points, the same as the that corresponding to
the distorted one. The persistent aspects are:
the wheel, which could be considered an
object, and its idealised perimeter, which
again might be considered an object.

Morphable Conics - Getting Round to
an Implementation

In this vein we can look at a morphable
conic, in a "real world", in a modelled
abstract word, and as an instance of a
corresponding C++ class. We will continue
to call it a conic, and give it an individual
existence even as it changes dimensions and
conic type - even allowing it to assume
values of eccentricity illegal for a
mathematical conic.

Envelope-Letter Implementation

With this conceptual framework we can
design a class hierarchy using the envelope-
letter idiom described by Coplien[9].
Briefly, this approach involves using a base
class object as a handle (the Envelope), with
a member which is a pointer to a derived
object. This pointer is set up at run-time (in
the Envelope constructor) to point to the
derived object as it is created in free store
with new. The derived object is the Letter,
and the above mechanism allows its type to
be determined at run-time. The Envelope is
thus a type, objects of which can be created
and passed around carrying differing
contents (the methods and data of the various
derived classes), accessible via the base
object's pointer member.

 Overload – Issue 21 – August 1997

 Page 5

In this implementation we have a single
envelope base class, and derived classes for
circle, ellipse, parabola, hyperbola, and
illegal. (The use of this last class allows
objects to be created and morphed into and
out of eccentricities illegal for a
(mathematical) conic.) The envelope class
contains a pointer to the appropriate derived
class; changing the eccentricity changes a
corresponding data member; a change of
conic type involves deletion of the old letter,
and creation of the appropriate new one,
retaining connection via the envelope->letter
pointer.

Some design decisions remain, and are of
interest in generalising the approach for use
with other sets of classes. For example the
eccentricity member might be placed in the
base class, and thus will occur in both the
letter and envelope objects. These members
could be simultaneously updated, or given
two uses in the different components (such
as that noted in the source here).
Alternatively some such data need not be
held in the envelope at all: it could be
replicated in all the letters, but not the base;
or abstracted into a further class below the
base envelope, which would serve as the
base for the different conic types as
represented in differing “letter” classes. This
latter approach might be appropriate if
several such members are involved, as it
could save storage-related costs of having
multiple copies. One trade-off here is the
loss of previous state information. A similar
decision arises as to what use if any to make
of the pointer to letter member, where it
occurs in the letter itself. Here it is simply
set to 0 in the letter; but other uses could be
made.

The code below sketches an illustration of
this idiom for conics. It follows Coplien's
original fairly closely. It makes use of
bool, true and false. The effects of
these will need to be emulated if they are not
available on the target compiler. The idiom
could be developed further in various
directions. For example, there could be
multiple letters associated with a single

envelope. A modification to replace the
pointer member with an auto_ptr is
straightforward. (If, as may still be the
intention, the standard auto_ptr class will be
defined with a non-virtual destructor, one
might hesitate to use it as a base class.)
Finally, the pattern, and variations of it,
could readily be provided as templates.

CONIC.H

The interface for the Conic class, which
offers conic objects whose eccentricity can
be changed at run time. Logically there is
one Conic class, which serves as a handle for
implementation classes which are themselves
derived from the Conic class; ie the handle
Conic object contains a pointer to an object
whose type can be set up and changed
dynamically.

//Conic class, and derived classes

class Conic
{
public:
 Conic(
 double eccentricity = 0.0,
 bool isenvelope = true);
 virtual ~Conic();
 void ShowName();
 virtual void Display();
 void Setup(
 double eccentricity = 0.0);
protected:
 void Setname(const char *cp);
 double Getecc();
 Conic *Getp();
 void Setecc(
 const double e_in,
 int setenvelope = 1);
private:
 char * name;
 // initial value in base type
 double e;
 // modified/viewed value in base
 // component of derived type
 Conic *p;
 bool envelope;
};

The derived types are Circle, Ellipse,
Parabola, and Invalid - based on the value of
eccentricity called for.
class Circle : public Conic
{
public:
 Circle();
 void Display();
};

class Ellipse : public Conic
{

 Overload – Issue 21 – August 1997

 Page 6

public:
 Ellipse(double ecc = 0.5);
 void Display();
};

class Parabola : public Conic
{
public:
 Parabola(double ecc = 1);
 void Display();
};

class Hyperbola : public Conic
{
public:
 Hyperbola(double ecc = 2.0);
 void Display();
};

class Invalid : public Conic
{
public:
 Invalid(double ecc = -1);
 void Display();
};

CONIC.CPP

Enumeration of conic types and a helper
function to categorise a conic.
enum Conic_type {
 invalid, circle, ellipse,
 parabola, hyperbola};

Conic_type ConicType(
 const double ecc)
{
 return (
 ecc==0?circle :
 (ecc<1 && ecc>0) ? ellipse :
 ecc==1 ? parabola :
 ecc>1 ? hyperbola :
 invalid);
}

The Conic constructor takes two parameters;
the eccentricity of the conic, and a flag
defining if this object is the letter or the
envelope. If it’s the later then Setup() is
called to force the construction of a letter
object.
Conic::Conic(
 double eccentricity,
 bool isenvelope)
 : e(eccentricity),
 envelope(isenvelope),
 p(0)
{
 if (isenvelope)
 {
 Setup(eccentricity);
 name = "Base Conic: Envelope";
 }
 else
 name = "Base Conic: Letter";
}

Conic::~Conic()
{

 delete p;
}

void Conic::Setup(
 double ecc)
{
 // if we have a derived object,
 // but no change in type requested
 if (p &&
 ConicType(ecc)==ConicType(p->e))
 {
 // simply set up new eccentricity
 p->e = eccentricity;
 }
 else
 {
 // need to set up derived object
 // (first time, or changed type)
 delete p;
 switch (ConicType(ecc))
 {
 case circle:
 p = new Circle;
 break;
 case ellipse:
 p = new Ellipse(ecc);
 break;
 case parabola:
 p = new Parabola(ecc);
 break;
 case hyperbola:
 p = new Hyperbola(ecc);
 break;
 case invalid:
 p = new Invalid(ecc);
 break;
 }
 }
}

void Conic::Setname(const char *cp)
{ name = (char *) cp; }

// used in envelope, and in letter
inline double Conic::Getecc()
{ return e; }

// get from envelope
Conic *Conic::Getp()
{ return p; }

void Conic::ShowName()
{
 cout << "Name:" << name << endl;
}

void Conic::Display()
{
 cout << "\nIn Conic Display ";
 cout << "Eccentricity = "
 << e << endl;
 if (p == 0)
 cerr << " Pointer p == 0.\n";
 else
 p->Display();
}

The Circle conic class.
Circle::Circle()
 : Conic (0, false)
{
 Setname("Circle");
}

void Circle::Display()

 Overload – Issue 21 – August 1997

 Page 7

{

 cout << "Logically a Circle. ";
 cout << "Ecc = " <<
 Getecc() << endl;
}

The Ellipse conic class.
Ellipse::Ellipse(
 double eccentricity)
 : Conic(eccentricity, false)
{
 Setname("Ellipse");
}

void Ellipse::Display()
{
 cout << "Logically an Ellipse. ";
 cout << "Eccentricity = " <<
 Getecc() << endl;
}

I think you can probably guess that the
Parabola, Hyperbola, and Invalid conic
classes are practically identical to the Ellipse
conic class. Identical except for the logical
type name they display.

Example client code:

This demonstrates the run-time
polymorphism of the Conic class.
Conic C1; // set up as default
C1.Display();

C1.Setup(0.7); // change to ellipse
C1.Display();

C1.Setup(1); // change to parabola
C1.Display();

The Conic object has changed internal type
from Default, to an Ellipse, to a Parabola.

 Alec R L Ross

alec@arlross.demon.co.uk

References

[1] The Harpist, "Related Objects",
Overload, Issue 7, p 22 - 25

[2] Francis Glassborow, "Related
Addendum", Overload, Issue 7, p 26

[3] Kevlin Henney "Circle & Ellipse -
Vicious Circles", Overload, Issue 8, pp 22 -
25

[4] Francis Glassborow, "Circle & Ellipse -
Creating Polymorphic Objects", Overload,
Issue 8, pp 26 - 28

[5] The Harpist, "Having Multiple
Personalities", Overload, Issue 8, pp 28 - 32

[6] The Harpist, "Joy Unconfined -
reflections on three issues", Overload, Issue
9, pp 11 - 13

[7] The Harpist, "Addressing polymorphic
types", Overload, Issue 10, pp 15 - 19

[8] Alec Ross, "Circles and Ellipses
Revisited", Overload, Issue xx,

[9] James O. Coplien, "Advanced C++
Programming Styles and Idioms", Addison-
Wesley, Reprinted with corrections 1992,
especially Section 5.5, pp 133 ff (Envelope
and Letter Classes), pp 148ff, (virtual
constructors using globally overloaded
operator new), and Section 9.2, p 311 ff, (a
canonical form for the Envelope-Letter
idiom).

The Draft International C++ Standard

The Casting Vote
by Sean A Corfield

London, July 1997. The circus comes to
town.

The second Committee Draft ballot is closed
and the votes are in. The scores on the doors
were: 11 yes without comments, 6 yes with
comments, 5 no (with comments), 1 abstain
and 1 not voting. According to the rules, the
committee has to try to address all the
‘major’ issues raised in the comments from
the no votes so that those no votes become

 Overload – Issue 21 – August 1997

 Page 8

yes votes. In reality, the committee had
given an undertaking that comments with yes
votes would also be addressed if possible.

The UK had a couple of showstopping issues
that made us vote no. Resource leakage
from containers was one issue and the awful
mess that is auto_ptr was the other. We
also raised other issues but they were
considered less important. In London, the
Library Working Group was incredibly
productive and resolved about 200 issues,
including exception safety and policy for
container classes. The upshot of this is that
the resource leakage issue has also been
addressed. Unfortunately, auto_ptr,
which was also on Sweden’s comments
(with their yes vote) was not touched. Even
though the UK were the primary cause of
adding the class in its original, simple form,
and said they would be happy to remove the
whole class if the copy semantics were not
removed, the committee decided - for now at
least - to leave it alone.

Germany raised some concerns about the
specification of template template
parameters being rather weak. The
committee’s initial response was to propose
removing the language feature - a first!
However, this met with a lot of opposition
from several National Bodies who view the
feature as potentially very useful (it hasn’t
been implemented yet). This issue was
deferred until New Jersey in November.

To help writers of templates, return
void_expression is now valid in
template functions, allowing for code like:

template<typename R, typename A>
class Func
{
public:
 R f(A);
};
template<typename R, typename A>
R Func<R,A>::f(A a)
{
 return (R)g(a);
}

I still think passing void expressions to void
parameters would help but that seems too

much of a change at this point. It’s a step in
the right direction though.

One of my other bugbears did not go the way
I would have liked. In the container classes,
there is a potential ambiguity between:

template<typename T>
class Container
{
public:
 Container(size_t, T);
 template<typename Iterator>
 Container(Iterator, Iterator);
};

When T is an integral type, the expression
Container(100,42) actually matches
the template constructor with Iterator
parameters instead of the ‘size_t, T’
version. Prior to London, this meant that
instead of constructing a 100-element
Container full of the value 42, you’d get
a compilation failure because the template
constructor was a better match (with
‘Iterator == int’). There appeared to
be several ways to resolve this, including
adding overloads or removing some of the
signatures. My favorite would have been to
remove the ‘size_t, T’ signatures as I
believe these are confusing and error-prone.

However, the committee decided to make
implementers ‘do the right thing’ by
effectively saying that if Iterator turns
out to be an integral type, the constructor
behaves as if it was the ‘size_t, T’
version. My objection to this is that it places
a burden on authors of standard-like
containers. I also have reservations about
teachability. This resolution was the only
issue I voted against this time, however,
which I took as confirmation that the
committee are actually converging and the
document is improving. I found it rather
encouraging given my harsh words about the
committee in my last column.

What else was changed? Lots of small
issues were dealt with which meant minor
changes to overload resolution (which has
become the trademark of a committee

 Overload – Issue 21 – August 1997

 Page 9

meeting), clarification of copy optimisations
and a host of other tweaks.

Next stop: Morristown, New Jersey in
November where we will attempt to produce
and submit the Draft International Standard,
assuming that the resolution of comments in
London is acceptable to the National Bodies
that voted no (and changes their vote to yes).
If that stage is also successful, our March
meeting in France may well be somewhat
celebratory as we should be able to submit
the International Standard itself at that point.

Then we can settle down to deal with the
torrent of Defect Reports that you all submit!

Sean A Corfield

sean@ocsltd.com.

Getting the Best
By Francis Glassborow

One common pre-occupation indulged in by
programmers is deciding how to make their
code smaller or faster. One consequence of
this (possibly unhealthy) attitude is the
degree to which suppliers of compilers try to
provide optimisation. They constantly vie
with each other to generate smaller faster
code (in as little time as possible) even
though the results are almost always bugged.
That parenthetical comment is important
because when I first started programming
one used two distinct breeds of compiler.
The first type just compiled what I wrote as
closely as it could. These produced fat slow
code in a reasonable time. When I was
happy that I had a viable application I could
then put it through an optimising compiler
and go away for a long lunch break while it
chewed away at my code. The result was
thin, fast but it had taken its time getting
there. Nowadays programmers seem to
expect maximal optimisation (according to
whatever specifications they switch on) in
little more time than completely un-
optimised code.

Quite distinct from user selected
optimisations there are many optimisations
provided by good compilers under what is
called the ‘as if’ rule. Basically this says that
if the program cannot determine that it has
been optimised then the compiler can do it.
Much of the licence given to the compilation
of C code is aimed at allowing as much
optimisation as reasonable. Of course one
person’s reasonable is another’s disaster.

One of the major differences between C/C++
and Java is the attitude to how much licence
shall be granted to the compiler. For
example, consider:
x = fn(++x) + gn(++x);

Do not worry about what fn and gn do. In
C/C++ this is very suspect code. I am not
actually convinced that it exhibits undefined
behaviour because there are sequence points
both before and after the call of each
function, however it certainly has
indeterminate behaviour because you cannot
know in which order the three sub-
expressions are evaluated. Before the ‘+’ is
evaluated its operands (fn(++x) and
gn(++x)) must have been evaluated.
Before the assignment is evaluated (with the
side effect of storing the value of the right
hand side in the storage for the left hand
side) the address of x and the value of the
rhs must be determined. However note that
this places no limitations on the order of
evaluation of &x, fn(++x) and gn(++x).
If the order matters, you must unroll your
code with something such as:
temp0 = fn(++x);
temp1 = gn(++x);
x = temp1 + temp2;

Even then the compiler is at liberty to mess
with your code but it better come up with the
answer you expect because we have now
provided a strict sequence. Let me pin this
down a little further for the benefit of those
that are unfamiliar with the order of
evaluation problem.

Suppose:
int fn(int val) {return val+2;}

 Overload – Issue 21 – August 1997

 Page 10

int gn(int val) {return val*3;}
int i=0;

Now temp0 should become 3 (and x
becomes 1). Then temp1 becomes 6 (and x
becomes 2). Finally the last statement makes
x become 9; But if we look at the original
(assuming that the sequence points in the
function calls eliminate the undefined
behaviour) we still get two alternatives. If
fn(++x) is evaluated before gn(++x) we
get 9 but if they are evaluated in the opposite
order gn() will return 3 and make x be 1,
then fn() will return 4 (making x become
2). The end result will be that x finishes up
as 7.

By the way, as a result of a question (defect
report) raised by me, the C Standards
Committees claim that a ‘close and careful
reading shows that terms must be evaluated
(as if) serially and not in parallel.’ The need
for such a restriction is demonstrated by the
above code.

The reason that C/C++ allows this
unspecified order of evaluation is to permit
the compiler to arrange the order of
evaluation to best advantage. This can be
quite advantageous, but the price is that
programmers have to watch for places where
the reorganisation of their code can result in
different behaviour. In the context of the
design of C, had this licence not been
allowed the language would have been
considerably less popular. Remember that
one of the prime targets of C was to support
porting of Unix. Operating systems need
fast slim code because they are essentially
large applications whose performance effects
everything else.

Java has a very different set of design
criteria. These result in the desire for stable,
predictable code that always does the same
thing regardless as to the platform on which
it is running (the fact that this is not as
achievable as some believe is an entirely
different issue). Another feature of Java is
that the target users include many people
with less insight into the consequences of

allowing liberties to compilers (the fact that
many C/C++ programmers also lack these
insights is a quality of training issue.) The
result is that Java strictly defines the order of
evaluation of operands as well as operators.
In the above code, the address of x must be
evaluated before the right hand side.
fn(++x) must be evaluated before
gn(++x). You may consider this a good
thing™, but it is not cost free. It constrains
the compiler so that many potential
optimisations are unavailable.

Now once we allow compilers liberties we
have to consider what to do with problems
such as reading a memory mapped input
port. Consider:
char *inport= 0xFFFE;
int i;
i = *inport * 256 + *inport;

Now an optimising compiler is going to
convert that into:
i = *inport * 257;

Definitely not what I intend, but how is the
compiler to know that the effect of
evaluating *inport is to change its value
(to the next value in the input stream)? It
cannot possibly know this. We want to
allow the compiler to optimise our code so
that we can write easily maintained code
which the compiler will, none the less,
compile to compact and efficient
executables. What we need is a mechanism
to switch off this normally desirable
optimisation. That is the major purpose for
which volatile was introduced to C. If I
change my declaration of inport to:
volatile char * inport = 0xFFFE;

the compiler must not optimise away
evaluations of *inport.

Almost ten years later C++ was faced with
the problem of data that must always be
modifiable even in the context of a const
object. The problem here was that the
compiler could do various things including
marking const objects as ROMable. It

 Overload – Issue 21 – August 1997

 Page 11

knows that const objects cannot be
changed and this opens up a whole panoply
of possible optimisations. Again we need a
mechanism to warn the compiler off.
Another keyword, mutable, was
introduced to manage this problem.

What I am trying to emphasise is that it is
part of the shared spirit of C and C++ to give
compilers the maximum licence to optimise
the code we write. On the other hand it is
part of the spirit of Java to give the compiler
as little room for change as is possible. Now
let me come to the major issue that has
caused vigorous debate among those
responsible for C++, copy construction.

In C there is no real issue because we can
define copying as a strict bitwise copy of the
original. The compiler can do all sorts of
things behind our backs but the code must
always behave ‘as if’ a bitwise copy has
been made every time we pass a value or
initialise a variable. The compiler knows
exactly what copying means and can
determine when it can avoid actually doing
so. For example:
static int treble(int param)
{ return param * 3; }

int main ()
{
 int i = 3;
 i = treble (i);
 return 0;
}

allows the compiler to do all kinds of things
because the process of passing the argument
into treble(), and returning a value
cannot result in any odd behaviour behind
the compiler’s back. The point I wish to
make is that the ‘as if’ rule allows a C
compiler considerable liberty when it comes
to passing values (or not actually passing
them) around.

The concept of a copy constructor was to
provide a mechanism whereby the
programmer can handle the times when
bitwise copying was either unsafe (the object
includes a pointer to a dynamic resource, and
so needs a deep copy) or undesirable

(inefficient, and lazy copying can be used).
The problem is that we can no longer
optimise away copies and rely on unchanged
behaviour because the programmer may
have included non copying semantics in their
copy constructor. For example I often
instrument my copy constructors (arrange for
them to output messages via cout, clog,
cerr or whatever) so that I can track the
process.

All that a compiler can deal with is syntax.
When I declare and define a copy
constructor I follow a specific well defined
syntax by which the compiler can determine
that what I am writing is a copy constructor,
in other words the mechanism by which a
value can be passed. Currently the compiler
has a licence to assume that what is
syntactically a copy constructor will also be
semantically one. That means that it is
allowed to use it whenever it deems it
desirable to copy a value and to elide its use
whenever it deems that doing so will comply
with the ‘as if’ rule if the programmer has
not ‘cheated’ by writing something that only
appears to be a copy constructor.

This presents us with problems. First, it is
not easy to lay down specific rules to
determine exactly what the semantics of
copying are. It is one of those things that we
all believe we understand (though I suspect
we all understand different things) but find
nigh impossible to specify. If we could
exactly specify what is meant by copying we
could either define a breach of this to cause
undefined behaviour or even, possibly,
diagnose breaches. I am not convinced that
such would be desirable even if achievable.
In other words I think that there is nor merit
in attempting to constrain what is
syntactically copying to being semantically
no more than that. Even if I did not think
that, I think that there are many who would
and any attempt to get consensus on this
issue would be doomed from the start.

Equally well I am certain that many
programmers would not wish to pay the
price of constraining the compiler so that it

 Overload – Issue 21 – August 1997

 Page 12

could not elide copy constructors to produce
more efficient code. To understand the
problem, consider:
class Mytype {
 // something
};

inline Mytype fn (Mytype m)
{ // something
 return m;
}

int main()
{
 Mytype example;
 example = fn(example);
 return 0;
}

How many times should the code call the
Mytype copy constructor? Regardless of
what Mytype might be I do not think that
(after checking that it could call a copy
constructor) it needs to make any actual
calls. (There is an interesting secondary
issue here that I have not seen raised before,
and that is the potential for optimising away
copy assignment. This also involves issues
about copy semantics. I have no doubt that
good optimising C compilers elect to
optimise away assignments but I do not think
that a C++ compiler can do so in the
presence of a user defined operator =()
when the parameter is a reference to the
relevant class, i.e. it is a copy assignment.)
As the C++ working paper currently reads I
do not believe that any call is required.
However by not calling the copy constructor
any side effects will not happen. You might
suggest that I could use a const reference
parameter to for fn() to circumvent the
problem, and make the return a reference.
But a little tinkering with code should
convince you that this does not work, I could
not then make changes to the parameter in
the body of the function, and I could not
return it other than through a const &, and
that is not likely to be what I want. Passing
by a straight reference does not work
because that will inhibit conversions to the
argument passed. In addition it will allow
changes to the original even if I do not desire
those. You see, I may pass a value and
return a value because in general I want to
modify a copy and yet there will still be

cases when copies are unnecessary for
specific application code.

I have thought intensely about this issue and
can come to only one conclusion, no matter
how skilled the writer of reusable code there
will be times when the compiler can
determine in the context of the whole that
some copies can be dispensed with. The
ordinary programmer wants this, and
compiler writers will provide it even if they
have to turn it off to comply with some well
intentioned constraint added to the standard.

I believe that this approach is the right one
for C++ (though almost certainly the wrong
one for Java). We need to attack the
problem from an entirely different direction.
There are idioms in C++ that rely on
destructors being called. Some of these need
support of a guarantee that a copy
constructor will be called to pass by value
regardless of any apparent gain from eliding
the copy constructor calls.

If you are still with me, you will realise that
we are back to almost exactly the problem
that volatile solves in C/C++. We have
an optimisation scenario that is almost
always one that we wish to permit, indeed
encourage. None the less there are times that
can be determined by the class designer
where such optimisation will be dangerous
and result in behaviour other than that
intended.

I think all must accept that optimisation by
eliding or completely eliminating copies will
always be with us in C++ and that most will
want it that way. What I am arguing for (and
only time will tell if others accept the
argument) is a way for the class designer to
switch off that optimisation. Because it
serves no other useful purpose (note the
useful) I am proposing that we deem that a
copy constructor that takes a volatile &
or a const volatile & parameter shall
be deemed to be one that may never be
optimised away. Personally I would also
extend the licence and technique to copy
assignment. But…

 Overload – Issue 21 – August 1997

 Page 13

I hope that this provides you with food for
thought and at the very least convinces you
that you should never rely on a pass by value
invoking a copy constructor.

For the record, the compiler is not supposed
to optimise away a copy constructor if both
the original and the copy are subsequently
used. Even this requires a little more word-
smithing to allow the optimisations most
expect. The concept of use is tightly defined
by the C++ working paper. This means that
if I write:
Mytype m0;
Mytype m1(m0);
m0, m1;

Regardless as to any surrounding context the
compiler MUST call the copy constructor to
create a distinct object m1 as a clone of m0.
The fact that any halfway competent
compiler optimises away the third line as
doing nothing is entirely irrelevant. That
line uses (in the terms of the WP) both m0
and m1 and so both must exist and the copy
constructor must be called to create m1 from
m0. In other words the client programmer
can, in extremis, force a call of the copy
constructor. What we need is a way for the
class designer to insist that his copy
constructor is used.

Postscript

The above was written before the London
meeting of WG21/X3J16. I decided to leave
it as is and add a section explaining a little of
what was decided there.

A number of avenues were explored
including consideration of allowing
optimisation of copy constructors based on
the behaviour of the corresponding
destructor. A number of horrible
pathological examples persuaded those
involved that they had to provide some
constraints on copying that were not
dependant on decisions made by class
designers. The most damning code was:
struct X {
 int i;
 X(X &);

};

int main (){
 X x;
 int & xr=x.i;
 cout<<xr;
 return 0;
}

Actually this is vicious and outlaws just
about all elision of copy constructors.
Personally I would be happy to make such
code result in unspecified results (not
undefined because I think that whatever
happens x.i should contain some readable
value.) That is, if programmers insist on
aliasing sub-objects then the consequences
should be entirely on their own heads. The
rest of the C/C++ community pays a high
price in enforcing rules to make such coding
practices work. However that is just my
opinion and it is one that is harder to argue
than simply to accept that compilers should
not be allowed to optimise away copies.

What actually happened is that an attempt
was made to provide a list of places where
elision of copies was always acceptable.
Unfortunately only two instances were
agreed upon (return values and something
else that slips my mind at the moment, and
this is already three days late).

What many of us were concerned about was
that the list did not include passing by value
to inline functions. Fundamentally the
problem is that it is hard to pin down exactly
when this is safe, but many of us including
Bjarne Stroustrup are certain that not
allowing elision in such circumstances is bad
news. The issue was left with an agreement
to look for some formulation during the next
few months but if one does not come up
before the New Jersey meeting in November
it seems probable that conforming compilers
are going to be hamstrung. I am not sure
that this does not potentially severely
damage idioms that use forwarding functions
(wrappers).

Francis Glassborow

francis@robinton.demon.co.uk

 Overload – Issue 21 – August 1997

 Page 14

C++ Techniques

Safe Assignment? No Problem!
By Kevlin Henney

In the last issue [1] I examined, amongst other
things, the problems of self assignment and
exception safe assignment in response to an
article in the previous issue [2]. A pattern
based on these thoughts was presented. The
pattern addressed the problem of exceptions
arising from failed construction, but what of
failed destruction? This was rather
tantalisingly – and perhaps irritatingly – "left
as an exercise for the reader to resolve". This
time I will present a solution and the revised
pattern.

Recap

In implementing something like the
Handle/Body idiom [3] we separate the outer
user object (the handle) from the object used
for internal representation (the body). The
body is typically dynamically allocated,
implying that the default shallow copy
semantics for copy construction and
assignment provided by the compiler will not
result in the right behaviour. A first stab at
an alternative assignment operator might be
something like the following:

type &type::operator=(const type &rhs)
{
 if(this != &rhs)
 {
 delete body;
 body = new rep_type(*rhs.body);
 }
 return *this;
}

But what if the constructor or new operator
throws an exception? The handle object is
left in an unstable and undestructible state: it
has a pointer to an invalid, already deleted
object. An attempt to remove the handle
object (now in a state of confusion) will
inevitably result in undefined behaviour –

preventing object destruction is almost
impossible, especially with auto variables
and value members of other objects.

The challenge is to make this exception safe;
the temptation is to put up all kinds of
complex scaffolding using try, catch and
throw. The solution is significantly
simpler. Rather than using the following
flow:

1. release existing resources
2. take a copy of rhs's resources
3. bind copy to self

The following code structure is implicitly
safe with respect to failed allocation:

1. take a copy of rhs's resources
2. release existing resources
3. bind copy to self

This makes the following code exception
safe:

type &type::operator=(const type &rhs)
{
 // self assignment
 // safe control flow...
 rep_type *new_body =
 new rep_type(*rhs.body);
 delete body;
 body = new_body;
 return *this;
}

There is the interesting side effect, as noted,
that a check for self assignment is not strictly
necessary. But what if the destruction results
in an exception?

Repercussions

How could such an exception arise? Either
the body’s destructor throws an exception or
the delete operator does. It is generally
accepted that throwing an exception from a
destructor is a bad idea, but this does not
mean it will not happen or that you may have
identified a particular case where you want

 Overload – Issue 21 – August 1997

 Page 15

this capability. Also, whilst the regular
operator delete will not throw an
exception, there is nothing to stop developers
providing their own allocation and
deallocation operators that do so.

First we must understand why throwing
exceptions from a destructor is a bad idea.
Philosophically we might consider an
exception a cry for help, but in the case of a
destructor there is nothing we can do to help
as the object ceases to be. Pragmatically
throwing an exception from a destructor may
terminate your program: if the destructor is
being called as part of the stack unwind
initiated by another exception being thrown,
what would the presence of a second
exception mean? In practice it means that
terminate will be called – you can
provide your own program termination using
set_terminate, where the default is to
call abort.

As far as your program is concerned this is,
well, pretty severe. Can it be prevented?
Yes:

• Throw no exceptions from destructors,
which means ensuring that no exceptions
are thrown by any functions it may call
as well as not throwing them explicitly.

• A stronger recommendation is that the
destructor should be declared with an
empty throw spec, i.e. throw(), in
which case any thrown exceptions will
trigger a call to unexpected, whose
default action is to call terminate but
which may be customised using
set_unexpected.

• If you still wish to propagate an
exception, you can use
uncaught_exception to filter
whether an exception is thrown or not.
This function returns true if there is
currently an uncaught_exception.

Whichever way you look at it, it is a delicate
business.

As an aside, there is an interesting idiom that
allows you to extend the resource acquisition
is initialisation idiom [4]. The intent of this is
to grab a resource in a constructor and
release it in the destructor. Such a resource
may be a mutex, a file, etc. At one level this
is a convenience idiom that abstracts control
flow, at another it is the fundamental
building block of exception safe
programming.

But what if we want to take a different action
in the case of failure? Consider the case of a
transaction, or any kind of fallible action,
that on success will be committed otherwise
its changes will be rolled back. If we can
assume that failure is indicated by the use of
exceptions, within the destructor we can
express this branching control flow:

transaction::~transaction()
{
 if(uncaught_exception())
 ... // rollback
 else
 ... // commit
}

There are few guarantees that can be
delivered in the presence of exceptions
thrown from destructors. The current ISO
draft has definitions for what constitutes
exception safety, and not throwing up in the
destructor is one of the criteria.

But what can be done if it does occur? What
do you do when it all goes horribly wrong?
Damage limitation is the name of the game:
it is probably not safe to attempt
redestruction, so attempting to complete the
operation with as much grace as possible,
leaving things in a well defined state, seems
the best approach. You can grade the
severity of the problem: absolute exception
safety where all is in a well defined and
recoverable state, not possible here; accept
resource loss but continue execution (the cut
your losses approach); chaos. We’ll opt for
the second if we can.

 Overload – Issue 21 – August 1997

 Page 16

Resolution

A simple control flow solution ensures that
assignment is optimistic and fail safe in the
event of resource deallocation failure:

1• alias existing resources
2• bind a copy of rhs's resources

to self
3• release old resources via alias

This is disarmingly simple, preserving the
previous exception safety and allowing a
stable assignment to complete even if
resource tidying fails:

type &type::operator=(const type &rhs)
{
 // self assignment
 // safe control flow...
 rep_type *old_body = body;
 body = new rep_type(*rhs.body);
 delete old_body;
 return *this;
}

This implies that failure to create aborts the
assignment but leaves the object in its
previous state, whereas failure to destroy
completes the assignment but has a potential
resource leak.

Although we are adopting the cut your losses
approach, you may still instinctively feel the
need to patch up this leak. Lets recap a
moment: the object to destroy, for whatever
reason, could not be destroyed and you still
want to destroy it. Sounds like a tricky one.
There are two ways of looking at this: one is
that the problem is a real show stopper for
your system, in which case the program
should terminate; the other is that there is
probably nothing sensible you can do with
such an object, and losing it is no great loss.
Either way, letting the exception propagate
out of the function and losing the reference is
an adequate solution.

However, you may feel that a stubborn
object should be permitted to go out with
some dignity and not simply be forgotten, its
thrown exception the last grumble anyone
hears of it. In certain cases you may also
know how to deal with such beasts:

type &type::operator=(const type &rhs)
{
 rep_type *old_body = body;
 body = new rep_type(*rhs.body);
 try
 {
 delete old_body;
 }
 catch(...)
 {
 throw
failed_to_delete<rep_type>(old_body);
 }
 return *this;
}

This approach commutes the exception to a
new exception that contains all the info
about the indestructible object. Whoever
catches it can decide to retry the deletion or
take an alternative course of action. The
failed_to_delete template class could
derive from a more general deletion failure
class if the catcher is not likely to be
interested in the specifics. This code clutters
our basic function somewhat, and a little
factoring out can provide us with a simple
utility function:

template<typename type>
void try_delete(type *ptr)
{
 try
 {
 delete ptr;
 }
 catch(...)
 {
 throw failed_to_delete<type>(ptr);
 }
}

This makes the assignment operator simpler,
and allows us to switch strategies easily
without impacting the basic flow of the
function:

type &type::operator=(const type &rhs)
{
 rep_type *old_body = body;
 body = new rep_type(*rhs.body);
 try_delete(old_body);
 return *this;
}

Revision

In closing I present a modified version of the
pattern:

 Overload – Issue 21 – August 1997

 Page 17

Exception Safe Handle/Body Copy
Assignment
Problem

• Ensuring copy assignment in C++ is
exception safe.

Context

• A class has been implemented as
handle/body pair.

• The body is copyable – type shallow or
deep as appropriate.

Forces

• Any of the steps taken in performing the
assignment may fail, resulting in a
thrown exception. Partial completion of
the steps may leave the handle in an
unstable state.

• The result of assignment, successful or
otherwise, must result in a stable handle.

• Self assignment must also result in a
stable handle.

• After successful completion of the
assignment the handle on the left hand
side of the assignment must be
behaviourally equivalent to the handle on
the right hand side.

• Assignment, successful or otherwise,
must be non-lossy, i.e. no memory leaks.

Solution

• Alias the existing body before taking the
body copy.

• Perform the body copy and bind to the
handle before releasing the existing body
via the alias.

Resulting Context

• The existing body is not deleted before
the body copy has been attempted.
Therefore, a failed body copy will not
result in an unstable handle.

• Failed body release may result in
resource loss, but the assignment will
have succeeded and have left the handle
in a stable state.

• The ordering accommodates safe self
assignment at the cost of a redundant
copy.

• If the body copy preserves behaviour
equivalence, a successful assignment will
preserve it for the composite handle/body
object.

• The solution can be used in conjunction
with the schema for copy assignment
from the Orthodox Canonical Class
Form.

There is nothing left for the reader to resolve
this time, but I would leave you with this
thought: it is a myth that exception safety
requires a maze of explicit exception
handling code; carefully consideration of
ordinary control flow and helper objects will
often provide a simpler route.

Kevlin Henney

kevlin@acm.org

References

1 Kevlin Henney, “Self Assignment? No
Problem!”, Overload 20.

2 Francis Glassborow, “The Problem of
Self Assignment”, Overload 19.

3 James O Coplien, Advanced C++
Programming Styles and Idioms, 1992,
Addison-Wesley.

4 Bjarne Stroustrup, The C++
Programming Language, 1991, Addison-
Wesley.

 Overload – Issue 21 – August 1997

 Page 18

Make a date with C++
Independence of Declaration

By Kevlin Henney

In the last article (Overload 20) I covered
some of the differences between C and C++
when defining traditional data types, i.e.
struct, enum and union. Many of the
differences are minor, but are sufficient to
make the C++ less quirky than C in this area.
On the other side of this is the dynamic
aspect of dealing with types, i.e. declaring
and initialising variables.

Declare anywhere

In C++ a declaration is also considered to be
a statement, meaning that you can declare
pretty much anywhere that a statement is
acceptable.

cout << "Xmas of which year? ";
int year;
cin >> year;
date xmas = { 25, 12, year < 100 ? 1900
+ year : year };

Part of the reason for allowing this is to
encourage the practice of declaring as close
to the point of use as is possible, and the
earliest such opportunity is when enough is
known to initialise the variable. Both of
these points are valuable as they discourage
the separation of the variable from the point
at which it becomes safe to use (i.e. when it
receives a well defined value) and the place
where it is used:

cout << "File name to store diary: ";
char name[FILENAME_MAX];
cin >> name;
FILE *out = fopen(name, "a+");
...

Excessive use of variables is not a practice
that is criticised often enough. Many
developers treat variables as an end in
themselves, resulting in large declaration
blocks skulking at the beginning of
functions. Declaring all variables used by a
function in a single place can be a hard habit
to break; it is part of the very definition of

languages like Pascal, FORTRAN and, to an
extreme extent, COBOL. Languages like
ALGOL 60, C and Ada have always permitted
declarations per blocks; now C++ has taken
up ALGOL 68's lead and allowed a freer, and
to many peoples' minds, and more logical
approach.

Absolutely anywhere

The scope of variables follows pretty much
the rules you would expect, with a couple of
additions and a significant change. As bona
fide statements declarations can appear on
their own as the body of an conditional or
loop, and without the explicit scoping of a
block1.

One of the most obvious cases of bound
variables is in the expression of a counting
loop, normally written as a for loop. The
counter is effectively part of the control
structure. In C++ we can express this
conveniently:

for(size_t day = 0; day < 7; ++day)
 cout << day_name[day] << endl;

The variable day is in scope over the for
loop from its point of declaration. This
means that it is not in scope outside the loop:
the implication is that if you want it to be,
then declare it... outside the loop! Simple as
this logic may seem, there was originally no
precedent for it and C++ used to take the
view that the code above was equivalent to

size_t day = 0;
for(; day < 7; ++day)
 cout << day_name[day] << endl;

This has now changed, so this is an
assumption to watch out for in older code.
C9X will also be adopting this extension, but
without the historical detour that C++ took.

1 Note that this was not originally the case with C++, and older
compilers may not support this. I must confess that outside of a
certain completeness it lends to the language design, it is not often
of much practical use.

 Overload – Issue 21 – August 1997

 Page 19

Another change that C++ now supports is
declarations in conditions. A whole
condition can be replaced by the initialised
declaration of a single variable which may
be used as a logical value. This includes
bool, int and pointer variables. The
declared variable is in scope over the whole
statement:

if(FILE *out = fopen(name, "a+"))
 // non-null therefore can
 // use it for I/O
else
 cerr << "Could not open " << name <<
endl; // null

This declaration syntax is supported in the
condition of an if, a switch, a while
and a for statement. It is left as an exercise
for the reader to figure out why it is not
supported for do while loops.

Jumping backlash

The support for initialisation is something
that C++ emphasises above all. It is not
taken as lightly as it is in C:

/* legal C, illegal C++ */
goto after;
{
 FILE *out = fopen(name, "a+");
after:
 ...
}

This is a slightly pathological piece of code
(and the block is only there to allow it
compile as C), but it serves to illustrate the
difference between the languages: in C you
can jump past an initialisation, leaving a
variable in an undefined state; in C++ you
cannot jump past any initialisation. Given
that the use of goto results in something
tantamount to excommunication in most
circles, is there a practical point to this? Yes,
consider the following illegal code:

switch(today)
{
case sunday: case saturday:
 cout << "Where do you want to go
today? ";
 // not legal
 char response[80] = "nowhere";
 cin >> response;
 ...

 break; default:
 cout << "A weekday :-(" << endl;
 break;
}

A switch is just a glorified set of jumps,
and even though you may have included a
break it is important to remember that
case...break does not define a scope:
{...} does, and therefore jumping to
default constitutes jumping past the
initialiser for response. Here the intent is
that if the user terminates input, the initial
value of response remains as its default, i.e.
"nowhere". Therefore, if you want
variables local to a case in a switch that
code must be enclosed in block.

Dynamic initialisation

There are some constraints in C that have
always bugged me as being purely historical
and without rationale for either the
application programmer or compiler writer. I
am referring here to the requirement that
aggregate initialiser lists must contain
compile time constants. This is no longer a
restriction in C++, and examining the
following will hopefully highlight why I
consider it to be the removal of an arbitrary
constraint rather than a feature extension:

date valentine = { 14, 2, 1997 };
date propose = valentine;
int day = propose.day + 7,
 month = propose.month,
 year = propose.year + 1;
date hitched = { day, month, year };

What this serves to illustrate is that we can
initialise a struct object from a constant
aggregate initialiser list, that we can initialise
one object from another non-constant
struct object, and that we can also
initialise built-in types from non-constant
expressions – in this case there are many in a
single declaration. This is true of both C and
C++. The last line, however, is illegal in
existing C (for no good reason) and legal in
C++ (for obvious reasons). It is likely that
this state of affairs will change in C9X.

 Overload – Issue 21 – August 1997

 Page 20

The first example in this article also took
advantage of this feature. In C++ any
expression will do, and this includes
complex expressions involving function
calls. In these cases the order of execution is
left to right.

Before time

What may perhaps be a little surprising is
that globals, and statics by implication,
may also be initialised from runtime
expressions. One thing that has never been
true is that program execution begins with
main. It is the well defined entry point to
the programmer's code and that has been as
close to what is in practice the beginning of
the program as makes no difference. In the
case of anything at file scope the
initialisation effectively occurs before entry
into that translation unit:

const bool using_local_time =
getenv("USELOCALTIME");

Any initialiser that is not a compile time
constant would be rejected by C compilers,
but is permitted in C++. The initialisation
takes place before execution of the first
function in that translation unit, which means
that it may take place before main is
executed or on first call to a function in that
module. Note that it is unwise to rely on
guaranteed execution before main, as a
couple of techniques unfortunately do; such
automagical behaviour is not portable. The
weak requirement allows dynamic loading of

modules at runtime and module initialisation
on demand.

Another issue that tends to bite is the order
of initialisation: within a translation unit all
file scope initialisations occur from top to
bottom, but there is no guaranteed ordering
between translation units. Complex
initialisations that depend on other
translation units are discouraged for this
reason.

Summary

• Declarations are statements.

• A for loop variable can be declared
with scope only within the loop.

• An initialised variable within a switch
body must be enclosed in another scope,
i.e. a block.

• Declarations can also be used as
conditions.

• Initialisers need not be compile time
constants for aggregates and non-auto
variables. For file scope entities it is not
wise to rely on a total program ordering.

Kevlin Henney

kevlin@two-sdg.demon.co.uk

Whiteboard

Recently I’ve been interviewing candidates
for an engineering vacancy which we have
open at the moment. My current approach,
after the initial pleasantries, is to hand them
a marker pen, gesture to the whiteboard, and
to say, ‘Tell me about the project you’re
currently working on.’

I generally try to navigate them towards
explaining a few things; a class hierarchy

they work with, or have designed, the
dynamic relationship between these objects,
and some aspect of the C++ implementation.
So far, it’s been working quite well. I can
soon tell the level of their communications
skills, and the depth of the understanding
they have of the concepts they’re trying to
put across.

It’s interesting how infrequently people use
formalised notations for their diagramming.

 Overload – Issue 21 – August 1997

 Page 21

There’s the odd glimpse of a bit of Booch
here, and a bit of OMT there. But, no sign of
UML yet.

So, this introduction is just a reminder of the
purpose of this new section. It’s a forum for
you to exchange design and implementation
ideas. It doesn’t matter that the idea might

be flawed. It’s the discussion which is
important.

Well, go on, write a page about a piece of
design work you completed recently. You
might even find a pattern in there…

John Merrells
john.merrells@octel.com

inline delegation
By Francis Glassborow

I frequently hear of programmers rejecting
the use of inline, especially implicit inline
in a class interface, on the grounds that it
makes the executable larger. A side effect of
that can be to slow the program down if
paging to virtual memory is necessary. The
warning is valid but the thinking behind it is
flawed. Every programmer who learnt to use
macro assemblers knows that there are two
critical decisions regarding code size. If a
piece of code takes less space than that of a
call on the underlying hardware, you always
inline the code (used a macro). The second
critical point is more complicated and
requires a decision based on how many times
the code is to be used. We can probably
ignore the latter in the context of C++ but the
former is certainly still valid.

A forwarding (wrapper) function does
nothing except relay arguments, access etc.
In its very nature code size considerations
cannot influence the decision to use inline
for such a function, all we are doing is
wrapping one function call in another. There
may be other reasons to hide forwarding
functions in an implementation file but I
cannot imagine what they might be.

Francis Glassborow
francis@robinto.demon.co.uk

A Finite State Machine Design
By Einar Nilsen-Nygaard

Finite state machines (FSMs) are very useful
tools for keeping programming “features”,
like over-sized switch statements, under
control.

I’m going to present an approach to a FSM
design which I believe is very generic and
fulfils the criteria of being “run-time
polymorphic”. I’ll explain what I believe
this means. It is the ability to change the
behaviour of the classes at run time, and to
me this means providing for their
configuration at run time, probably by
providing an interface that allows internal
state to be changed.

What I’ll detail here is a slightly simpler
version of some state machine work I
recently carried out as part of a larger
project. The design is presented in Booch
notation (hopefully most people will be
reasonably familiar with that), and I’ll try to
work in an example to justify the existence
of the state machine classes. Also, as a new
departure for me I’ll try to use templates and
the STL, so please bear with me if I make
some mistakes in their use!

Finally, this article is not purely design or
implementation, it is more a mixture of
requirement, analysis, design and
implementation, so if you don’t like the style
please get in touch and I’ll change it for my
next article... if I’m asked to write another!

The Problem

The project I’m involved with just now is
concerned with the management of
distributed hardware devices, and as such is
required to control the hardware. This is
performed by either polling the hardware and
sending device specific commands (e.g. over
a RS232 line) or via some standard protocol
such as SNMP (Simple Network
Management Protocol).

 Overload – Issue 21 – August 1997

 Page 22

It was recognised that the devices we
managed quite often had some form of
“state” associated with the value of certain
hardware attributes. However, the attributes
were often not all of the same type, so the
design would have to work for multiple
types.

Further, we wished to perform certain
“actions” based on the current state. The
scope of these actions was widened to
include the following categories:

• Before Actions - actions performed prior
to confirming the new state as entered.

• During Actions - actions carried out
while in a particular state.

• After Actions - actions performed upon
exiting a state.

Another important decision made was to
separate state values from the external input
required to drive the state machine as if it is
a black box, so I decided on the standard
FSM technique of an external stimulus
triggering state transitions. This allowed the
separation of state values and stimuli.

Some Candidate Classes

After the initial requirements and analysis, I
was left with the following core class
candidates:

• StateMachine - the main controlling
object.

• State - an object that encapsulates the
value of a state, which state is next in
response to a stimulus, and what actions
to perform.

• ActionInterface - an abstract class
presenting an interface to allow user
derived classes to implement actions to
perform.

The Design Bit

So now we move onto some design of the
class hierarchy. What are the relationships
between the classes I identified previously,
and are they up to solving the problem we
looked at before? Figure 1 shows the design
as it stands just now. What isn’t so clear are
the interfaces these classes will present to a
user and how we’ll manage requirements
such as varying state value and stimuli types.
That’ll be looked at in the next section on
implementation.

State

State
Machine

1

0..n

A

Action
Interface

One StateMachine has
zero or more State
attributes by value.

Each State has three
sets of Action
Interface references.

After

1

0..nBefore

1

0..n

During

1

0..1

Figure 1 -- Basic FSM Design

I’ll now fill out a few more of the details of
the classes:

StateMachine - This is the main interface
presented to the user. It will allow the user to
add and remove states, attach and detach
actions from states and stimulate the state
machine. State values and stimuli can be of
different types, but all states must have the
same state value type and the same stimulus
type.

State - These objects will be created by the
user of the state machine and added to the
state machine. They will hold three lists of
pointers to the abstract class ActionInterface
- one for actions executed before a state is
entered, one for actions executed while in the
state, and one for actions to be executed
while leaving a state.

ActionInterface - A simple abstract class
presenting to pure virtual methods, start and
stop. start will be called once for before,
during and after conditions, and stop will be

 Overload – Issue 21 – August 1997

 Page 23

called once to stop during actions when a
state is about to be left.

So, Let’s Start Coding!
(or The Implementation Section)

I’ve quickly moved through some of the
main parts of the software lifecycle
(requirements, analysis, design) and
shamelessly skipped over the details, so now

I’ll get onto actually implementing the state
machine. The first step is to get down some
first cut interfaces for the three main classes
identified so far.

sm.h

The declaration of the StateMachine class.

template<class StateValue,class Stim>
class StateMachine
{
public:
 // create the state machine with the starting state as a parameter
 StateMachine(const StateValue &initialState);
 ~StateMachine();

 // add or remove states from the state machine by value
 bool addState(const State<StateValue,Stim> &state);
 bool removeState(const State<StateValue,Stim> &state);

 bool attachAction(const StateValue &sv, ActionTime at,
 ActionInterface<StateValue,Stim> *ai);
 bool detachAction(const StateValue &sv, ActionTime at,
 ActionInterface<StateValue,Stim> *ai);

 bool stimulate(const Stim &stim);
private:
 // our current state
 StateValue currentStateValue;

 // storage for all the states in the machine
 typedef map< StateValue, State<StateValue,Stim>,less<StateValue> >
 StateContainer;
 StateContainer stateMap;
};

state.h

The declaration of the class State class.
template<class StateValue,class Stim>
class State
{
public:
 State() { }
 State(const StateValue &sval);
 State(const State &pattern);
 ~State();

 // Assignment operator for use by STL collection class(es)
 State<StateValue,Stim> & operator=(const State<StateValue,Stim> &pattern);

 // Access to the value of this state
 const StateValue &value() const;

 // Add a transition to this state - a transition is defined as the
 // stimulus and the value of the state that the stimulus takes you to
 bool addTransition(const Stim &stim,const StateValue &nextSval);

 // Work out from the transition map what the next state should be and
 // return this in the StateValue reference parameter. If no next state,
 // method returns false
 bool getNextStateValue(const Stim &stim,StateValue &nextSval);

 // Add/remove actions to be carried out at certain times
 bool attachAction(ActionTime at,ActionInterface<StateValue,Stim> *ai);
 bool detachAction(ActionTime at,ActionInterface<StateValue,Stim> *ai);

 Overload – Issue 21 – August 1997

 Page 24

 // For the state machine to inform the state that it's time to kick off
 // or stop appropriate actions and do one-shot actions
 void enter(StateMachine<StateValue,Stim> *sm);
 void leave(StateMachine<StateValue,Stim> *sm);

private:
 // the value represented by this state
 StateValue sval_;

 // the transition map
 typedef map<Stim,StateValue,less<Stim> > TransitionMap;
 TransitionMap tmap_;

 // the action sets -- I use sets as I don't want to have duplicate actions
 // attached to the same time
 typedef set<ActionInterface<StateValue,Stim>*,
 less<ActionInterface<StateValue,Stim>* > > ActionContainer;

 ActionContainer before_;
 ActionContainer during_;
 ActionContainer after_;

};

actionif.h

The declaration of abstract class
ActionInterface.
template<class StateValue,class Stim>
class StateMachine;

template<class StateValue,class Stim>
class ActionInterface
{
public:
 virtual bool start(StateMachine<StateValue,Stim> *sm) = 0;
 virtual bool stop(StateMachine<StateValue,Stim> *sm) = 0;
};

This article is the start of a series on state
machines. Next month I’ll be beefing up this
design or altering it to provide more facilities
and improved performance. Let me know
what you think so far. All comments are
welcome directly to me.

Einar Nilsen-Nygaard

EinarNN@atl.co.uk
einar@rhuagh.demon.co.uk

Object Counting
By John Merrells

Software Leaks!

Over time software systems often leak
resources. Process resources like heap
memory, and system resources like handles
to kernel objects. Even when you’re being

really careful you can mislay bits of memory
and the occasional system handle. For quick
and dirty programs, which are run
infrequently and for a short period of time, it
doesn’t generally matter a great deal. But,
for systems which must exhibit long-term
reliability no leakage can be tolerated. So, if
even careful engineers can’t write leak free
software, how can we build highly reliable
software?

Defensive programming must be the answer.

Memory Leakage

There’s been plenty of discussion of debug
memory allocators over the years. Some
simple book keeping will ensure that every
allocation and deallocation is accounted for.
Most compilers come with a debug memory
allocator, or there are commercial tools such
as HeapAgent, Bounds Checker, and Purify.
Along with ‘memory overwrites’ and ‘reuse

 Overload – Issue 21 – August 1997

 Page 25

after free’ errors they will provide a leakage
summary. These reports are often volumous,
slow to generate, and hard to map back onto
the original code.

For memory which is allocated to construct
an object we should take the book keeping
one step back, from the memory to the
object. Rather than log the allocation, let’s
log the construction. Rather than the free,
the destruction.

Object Leakage

Many programs contain a set of classes of
which some are instantiated once, and others
created millions of times. I’m extending the
80/20 rule here to mean that a program users
20% of its classes 80% of the time. To
ensure that there are no orphan objects at the
end of a program run, count the object
constructions and destructions. The
difference is the leakage.

The simplest implementation of this would
be to add a static member variable and
method to the suspect class. For example:

class Suspect
{
public:
 Suspect();
 ~Suspect();
 static void ReportLeakage();
private:
 static int m_total;
};

Suspect::Suspect()
{
 // Original stuff.
 m_total++;
}

Suspect::~Suspect()
{
 // Original stuff.
 m_total--;
}

void Suspect::ReportLeakage()
{
 cout << "Suspect: " << m_total <<
endl;
}

int Suspect::m_total = 0;

A single line has been added to the
constructor and destructor to keep track of
the total number of instances of the class in

existence at any point in time. If the class
had multiple constructors then each
constructor would need to increment the
counter.

Of course the application main function will
need to call the ReportLeakage method
at shutdown.

void main()
{
 DoStuff();
 Suspect::ReportLeakage();
}

The function which does the real work of the
application might appear as follows.

void DoStuff()
{
 Suspect s;
 Suspect *ps= new Suspect;
}

In this case the corresponding delete for
the new has been omitted. The resultant
console output for the application will be:

Suspect: 1

With this type of object counting built into
your software from day one you will
instantly be aware of when some mistake has
caused some resource wastage.

Performance Extension

This object counting mechanism can also be
used as an algorithm efficiency metric.
Keeping track of both constructions and
destructions rather than just the difference
allows us to see how many of each type of
object was required for a particular run of the
software. Our changes to the Suspect
class would be:

class Suspect
{
public:
 Suspect();
 ~Suspect();
 static void ReportLeakage();
private:
 static int m_create;
 static int m_destroy;
};

 Overload – Issue 21 – August 1997

 Page 26

Suspect::Suspect()
{
 m_create++;
}

Suspect::~Suspect()
{
 m_destroy++;
}

void Suspect::ReportLeakage()
{
 cout
 << "Suspect: Created=" << m_create
 << " Destroyed=" << m_destroy
 << " Leakage="
 << m_create-m_destroy
 << endl;
}

int Suspect::m_create = 0;
int Suspect::m_destroy = 0;

The output for our dodgy DoStuff
program would be:

Suspect: Created=2 Destroyed=1 Leakage=1

Creation Number

So far this object counting method has
provided us with some everyday metrics
which indicates how leaky our software
bucket is. But, once leaks have been
identified we need a mechanism for tracking
them down. We could store the creation
number with each object. For example.

class Suspect
{
public:
 Suspect();
 ~Suspect();
 static void ReportLeakage();
private:
 int m_serial;
 static int m_create;
 static int m_destroy;
};

Suspect::Suspect()
{
 m_create++;
 m_serial= m_create;
 cout
 << "Suspect Constructor "
 << m_serial << endl;
}

Suspect::~Suspect()
{
 m_destroy++;
 cout
 << "Suspect Destructor "
 << m_serial << endl;

}

The output for our simple DoStuff program
would be:

Suspect Constructor 1
Suspect Constructor 2
Suspect Destructor 1
Suspect: Created=2 Destroy=1 Leakage=1

In a simple case such as this it is simple to
identify the errant piece of code. In a more
complex system we’ll need something more
sophisticated. Keeping a list of pointers to
all the objects currently in existence would
reduce the program output and the effort
required to match up all the serial numbers.

class Suspect
{
public:
 Suspect();
 ~Suspect();
 static void ReportLeakage();
private:
 int m_serial;
 static int m_create;
 static int m_destroy;
 static list<Suspect*> m_orphans;
};

Suspect::Suspect()
{
 m_create++;
 m_serial= m_create;
 m_orphans.insert(
 m_orphans.begin(),this);
}

Suspect::~Suspect()
{
 m_destroy++;
 m_orphans.remove(this);
}

void Suspect::ReportLeakage()
{
 cout
 << "Suspect: Created=" << m_create
 << " Destroy=" << m_destroy
 << " Leakage="
 << m_create-m_destroy
 << endl;
 list<Suspect*>::iterator i;
 cout << "Suspect Remaining= ";
 for (
 i = m_orphans.begin();
 i != m_orphans.end();
 ++i)
 cout << (*i)->m_serial << " ";
 cout << endl;
}

int Suspect::m_create = 0;
int Suspect::m_destroy = 0;
list<Suspect*> Suspect::m_orphans;

Our improved summary becomes:

 Overload – Issue 21 – August 1997

 Page 27

Suspect: Created=2 Destroy=1 Leakage=1
Suspect Remaining= 2

At this point I’ll stop refining, but I’ll seed a
couple of thoughts in your mind.

• How might we find out more about the
leaked objects?

• How might we extract this object
counting method into a mix-in class?

• How could system resource handles be
similarly tracked?

John Merrells

john.merrells@octel.com

Rational Values
by The Harpist

Introduction

This article, suggested by Francis, introduces
the design of a value based class. I hope that
Overload 22 will include some comments
from you experts, along with my attempt to
implement the class.

The problem is to design and implement a
rational number class. For those that dozed
in the back of their maths classes (actually in
my experience the best place to doze was the
front, teachers looked straight over you and
worried about the level of attention they
were getting from those further back) a
rational number is one that can be expressed
as the ratio of two integers. In other words
these are the much dreaded fractions that
send most human beings into screaming fits.
If you doubt this, try asking ten people to
help you with a small piece of arithmetic
with fractions, you will be very lucky if even
one of them does not immediately discover a
reason that they need to be elsewhere.

A rational number can be represented by an
ordered pair of integers, one called the

numerator (conventionally written first, or on
the top) the other being the denominator
(second or below). Actually we can be more
general than this and merely require that the
denominator and numerator themselves be
rational.

One advantage of rational numbers as
compared with floating point ones (so called
real numbers which can only be
approximated in a computer) is that there is
no approximation involved when using them
for computer arithmetic, as long as the two
integers remain within the range of available
values. On the other hand we must take care
to reduce them to a canonical form (unique
and agreed standard representation) this
involves a process of reducing the two
integers by dividing by their highest
common factor. This is a simple process as
there is an excellent algorithm for finding the
highest common factor that was well known
to the ancient Greeks, but more of that in
good time.

A Skeleton Design

First we need an integer type. At some stage
we may want to go to some form of big
integer with unlimited range (well only
limited by machine resources) but we better
choose something simpler to start with while
we develop the class itself.

This is the first place that inexperienced
programmers overly constrain their
solutions. Consider the following:
class Rational {
public:
 typedef unsigned int integer_t;
private:
 integer_t numerator, denominator;
 bool negative;
 // to come
};

Note my choice of unsigned int. There
is really nothing to be gained and much to be
lost by confusing the issue with signed
values for the numerator and denominator.
Instead the sign is stored separately and a
bool seems ideally suited to this purpose.
The public typedef publicly documents

 Overload – Issue 21 – August 1997

 Page 28

the type associated with the numerator and
denominator. Dirctly using the underlying
type will damage the portability of your
code. It is worth taking note of such uses of
typedef and using the defined alias, even
at the cost of some extra typing.

From time to time you might decide that you
wanted a floating point approximation to the
value of a Rational. This requires a
floating point division which is still one of
the most expensive arithmetic operations,
even on modern machines (and remembering
that we may be using a user integer type, is
likely to remain potentially expensive). We
should not want to carry out this operation
unless needed. A simple optimisation should
be used to avoid recalculating it if it has
already done.

That suggests two more items of data:
 long double fp_value;
 bool converted;

At this stage I am not sure whether the code
to do the conversion will be used other than
to provide a value for an appropriate get
function. It does not matter because I can
implement it directly initially, and provide a
private utility function later if the code
needs to be extracted for reuse. Now why
private and not protected? Well
there will be no protected interface for
Rational. This is a pure value class, it is
not intended as a base class and if you need
to use it that way either I got it wrong or you
did. Try to think about this because if it is
not immediately clear, you still do not have a
firm grasp of the difference between values
and objects. (One way to look at the
distinction is by considering what will be
meant by saying that two identifiers compare
equal (i.e ident1==ident2 is true). For
objects this basically means they are the
same object (you compare addresses), but for
values you have to compare the
representations.)

Why did I choose a long double to store
the converted value? Well that ensures that I

get the greatest possible number of
significant figures. If I need less in the
application, that is OK because conversion to
double (or even float) at the application
end will handle that. As the designer of
Rational I want to meet the needs of the
largest possible group of clients.

There is one small problem with this; I have
considerably increased the storage required
for a Rational. That is a typical design
decision and much depends on how often I
think you will want to use a floating point
value. If I thought the class would be rarely
used I might remove the storage and rely on
direct calculation every time. Actually, as
the storage is private, I could remove it
without changing the public
interface/behaviour of the type. Perhaps a
good example of the advantages of
private data.

However, if I choose to retain the storage
there is one extra refinement that I need to
think about. What happens if the user
creates a const Rational and then asks
for its floating point value? Either the
constructors need to initialise fp_value in
all cases (not desirable because of the
potential computational overhead) or
fp_value and the related bool flag must
be changeable even in a const instance.
Fortunately C++ now provides a mechanism
to support this need. We need to use the
qualifier mutable. Thus far our class is:
class Rational {
public:
 typedef unsigned int integer_t;
private:
 integer_t numerator, denominator;
 bool negative;
 mutable long double fp_value;
 mutable bool converted;
public:
 long double get_value() const;
 // to come
};

Now we have one utility function whose
purpose is to reduce the numerator and
denominator to their lowest terms. The only
question is whether this should be automatic
or determined by some criterion. Again this
will be an implementation detail. If it is

 Overload – Issue 21 – August 1997

 Page 29

automatic (in other words will be performed
every time there is a change to the primary
data—numerator and denominator) then we
do not need to track if it has been done. If it
is based on some other criterion we will need
a bool value to track whether the current
state is the canonical (fully simplified one)
or not. Let us keep it simple for now and
specify that all functions that change primary
data will call the private utility function
simplify() to reduce the primary data to
its simplest form. Note that all such
functions must also set the value of
converted to false.

Now, let us consider what we need by way
of constructors. We will certainly need a
default constructor (because we are sure to
want arrays of Rational). We will also
want to be able to convert integers to
Rational, and to be able to construct a
Rational from two integer values.
Actually we can package this up into a single
constructor:
Rational(
 integer_t numer=0,
 integer_t denom=1);

So the default Rational is 0/1 and integer
n converts to n/1. That seems entirely
satisfactory. Do we need any other
constructors? Yes, we must have one to
convert floating point types to Rational
ones. I think that an implementation of:
Rational(long double);

will be enough. Note that in context this
particular parameter hardly needs a name in
the prototype. I am not covering
implementation this time but you should
think carefully about this one because it will
almost certainly be possible to pass a value
that cannot be represented by a Rational
because it is outside the achievable range
(this might not be the case if integer_t
was a user type with unlimited range). How
should we deal with such a case? Note that
we could use 0 for a denominator to
represent effective infinity. There are some
advantages to such a technique, though if we

use it, any use of fp_value will need
special treatment. What do you think? Try
to weigh up the merits of different solutions.

What about a copy constructor? Do we need
one? And copy assignment? I do not think
either of these needs user definition because
as far as I can see the compiler generated
ones will be correct and efficient for any
reasonable implementation. We can always
revisit this decision if necessary.

The same applies to the destructor. Now
look back at the constructors and ask
yourself what we have missed and how we
might fix it. Yes, there is a problem and it
does need fixing, but there are alternatives
and as class designers we need to weigh up
the merits and come to a solution.

What else do we need? I guess that many
users will want to inspect both
denominator and numerator, but
should we also allow them to change them
directly? Think carefully about this because
we should not just provide functions because
we think of them. For what it is worth, I do
not think that we need set functions for the
primary data, but see if you can spot why I
think we can do without them.

We certainly need functions for basic
arithmetic. Remember that I am of the
school that abhors use of friend unless
you can justify it from some perspective
other than that you think it convenient. The
following member operator functions
should provide most of what we need:
Rational operator +=(const Rational &);
Rational operator -=(const Rational &);
Rational operator *=(const Rational &);
Rational operator /=(const Rational &);

Any others? Well you might consider the
possible increase in efficiency that could
result by providing functions such as:
Rational operator *=(long int);

Note however that these do not provide extra
behaviour only the possibility of alternative
implementation when desirable. It is not

 Overload – Issue 21 – August 1997

 Page 30

often that you can add or remove functions
without adding or removing behaviour. Also
note that we must be careful not to overdo
this and finish up with perfectly reasonable
code becoming ambiguous. However there
are some conversions that we may want to
suppress or replace.

If you consider implementation details you
will need to watch out for code that should
be factored out. Things like lowest common
denominator will be needed by more than
one member function.

Do we need a function to print out (or
dispatch to an output stream) the primary
data? If so, should it be a member function
or a global one? What reasons do you have
for your choice?

One function we certainly need is a
comparison function. Given that we can
easily implement the various logical
operators.

What else? Think carefully because there
are still several bits that I have left out.

Conclusion

The above is the starting point for the
complete design of a Rational class. I
hope you will spend a little time completing
it. This should include an explanation of any
choices you have made. Such explanation is
much more valuable than the silly comments
that some programmers litter their code with.
It is the thing that helps others to see why
you did things. A design is like a blue print

and so should contain all the information
needed for someone to check the design as
well as for someone to implement it.

When you have an extension added to your
house, the blue prints are required by those
validating the proposal against local building
regulations. They are also needed by the
various craftsmen (bricklayers, plumbers,
electricians etc.) who must implement the
plans. You will not get authority to go ahead
until all major features have been designed
and documented.

Just the same should apply to provision of a
new class in C++. Of course design refines
analysis and sometimes you might have to
revisit that first stage, and implementation
may sometimes require a design
modification but those should be infrequent.
In the case of a well documented design
revisiting the design should be easy if
necessary because the principles are already
clearly stated. You really should not be
cutting implementation code till your design
is pretty solid.

Well it is over to you.
The Harpist

I have a copy of the C++ Report CD (1991-
95) for the best documented complete design
for a Rational class. You need not follow
the same plan as the Harpist. I will leave it
to the editorial board of Overload to
determine the winner. Francis.

News, Views, & Reviews

The C&C++ European Develop-
ers Forum

Conferences can be tricky to evaluate
depending on your balance of expectations
and outcomes. My expectations were
grouped around the promises in the brochure

about learning more about C/C++ and
meeting like-minded people. Organisation by
Parkway Research was good, Oxford Town
Hall easy to get to and commodious, and the
weather was wonderful (OK that’s not due to
organisation but it was a real bonus). The
principal bug was that the untested acoustics
of the main hall turned out to be appalling.

 Overload – Issue 21 – August 1997

 Page 31

Day 1 (Friday 18 July) consisted of a variety
of parallel sessions and was attended by
about 200 people. Session 1 had six groups
with sign-up varying from 72 (STL) down to
5 (Lotus Domino). Session 2 was more
skewed, from 7 for Perl5 to 100 for Patterns.
The final session had 168 mainstreaming to
hear Bjarne Stroustrop and only 16 for
Delphi for C/C++ programmers. I have no
idea what the out-turn was but there was a
shortage of seats for the patterns session, so
some of the smaller sessions may have been
somewhat intimate. Day 2 was all in the
main hall, with what appeared to be a
slightly larger take-up than on Friday. I hope
these numbers will convince the powers that
be (aka Francis?) that this sort of thing is
well worth mounting.

I was with the majority in all 3 choices on
Friday, and look forward to feedback from
the other sessions. The STL session was
given by Leen Ammeral (Hogeschool van
Utrecht), Patterns and Implementations by
Kevlin Henney (QA Training) and on
Saturday we had Dan Saks (Saks &
Associates) on Const, Bjarne again, Tom
Plum (Plum Hall Inc.) on standards and
compiler testing, and P J (Bill) Plauger on
embedded C++.

Given that the major speakers had come hot-
foot from the WG21 standards meeting,
there was much mention of the Final
Committee Draft which had resolved
practically all the issues about which we
have read in recent years. This is good news
since we might now expect an ISO standard
in mid 98. It is also relevant to the Forum
because it was the newer features which
dominated presentation and discussion.
Since time and space prevent a blow-by-
blow account of individual sessions the
following is a more generalised account of
my impressions. The standards issues,
coupled with my Friday choices put more
emphasis on generalities than I had expected,
though this is by no means a criticism.

Probably the nitty-grittiest session was Dan
Saks who almost frightened the pants off me

as I realised how counter-intuitive was my
appreciation of const. For the most part
this did not rely on new features, except for
mutable, which he deployed as part of a
campaign to get constants out of headers and
to stop casting the constness away. This had
many detailed examples and it would be
good to see some of these in Overload or
CVu some day.

To be fully buzzword-compliant we now
need to know about Patterns. When I first
came across this (in 1989, would you
believe) there was an emerging idea that a
book about buildings published in 1977 by
Christopher Alexander might have some
relevance to software construction. Now
there are books and articles all over the place
and Alexander’s book has become a best-
seller. Kevlin showed a range of patterns
with code fragments implementing them.
This went down well, though I would have
preferred fewer examples more fully
detailed. Since the notes were substantially
worked up perhaps we can persuade him to
make some of them available here.

Bjarne Stroustrop has an engagingly
informal presentation style but I would guess
that it is thoroughly rehearsed. In fact, much
of what he said is available in the third
edition of The C++ Programming Language
which sold like hot cakes after his Friday
presentation (representing a large proportion
of the 100 copies available in the UK at that
time - run and get one if you can!). Logically
his Saturday session comes first, describing
as it did, how C++ evolved. The early
history should be well known here, but it
was interesting to hear him coming back
repeatedly to the issues of abstraction and
localisation which led to the namespace
feature. In the Friday session he had
expanded into generic programming and the
ways in which container templates, iterators
and generic algorithms can lead to simpler
(and thus more robust) code. Since about
80% of the third edition is new, go and read
the book!

 Overload – Issue 21 – August 1997

 Page 32

Leen Ammeraal’s session STL for the less
experienced would have made more sense
(to me) had it come after the above instead
of first thing on Friday, but the notes were
detailed and, going through them afterwards,
it fits in well. This was a thorough look, with
code, at containers and iterators. As with
some other presentations it depended on the
view that the new standard would soon be
reflected in available compilers, and one
valuable feature was the annotations of how
VC++5.0, BC++5.2 and one or two of their
relatives, deal with the code fragments. All
this and more is available in his STL for
C++ programmers (Wiley 97).

The standards process, as such, was
described by Tom Plumb in the first half of
his session and he went on to describe some
of the issues in compiler testing as they try to
follow emerging standards. Perhaps because
it was the after lunch slot, I thought that his
audience found this a bit dry. The final “now
for something different” session saw Bill
Plauger producing Embedded C++ as an
unofficial (and mainly Japanese) response to
the issue that C++ has now become rather
large. The proper sub-set that is proposed
approximates to earlier versions of C++,
especially the library (as described in his The
Draft Standard C++ Library, Prentice-Hall
1995). It appears that code-bloat comes from
exceptions (adding about 50% to sample
programs in all configurations) and from
multiple inheritance, templates (and the new
STL) and new-style casts. Details for those
interested at http\\www.caravan.net/ec2plus.

There was a small but perfectly formed
exhibition around the circulation space on
Friday though all except Blackwells had
given up for Saturday. If speakers and
presentations live up to those described
above in a reprise, then Parkway may have
more success in selling space. I certainly
hope there is a reprise and recommend that
more of you get to it.

Ray Hall

Ray@ashworth.demon.co.uk

They pursued it with forks and
hope.

By Alan Griffiths

The End of the Road for C++?
I’ve been using C++ since the first port of
cfront (by Glockenspiel) appeared on the
MS-Windows platform about a decade ago
now. During that time the language has
changed enormously, most of the changes,
when considered in isolation, have been
improvements, but overall the effect has
been disconcerting. With other
programming languages I feel confident that
I’ve mastered it after a few months. With
C++ I felt that I was starting again every few
months. New features made my existing
knowledge obsolete or invalid.

I’m not a typical developer - I’ve enjoyed the
ride despite the frustrations. But, in my
experience the typical developer rarely, if
ever, opens a book or magazine to update
their skills. It may be apocryphal, but I’ve
heard of one company that spent a fortune
employing consultants to fix Y2K problems
in their application code but failed to change
the habits of their own staff. After a year or
so the exercise needed to be repeated.
Obviously, few ACCU members fit this
description of “typical developer” but most
of us have to work in organisations in which
we are the minority.

Two years ago the ’95 “Committee draft”
[CD1] was issued for public comment. This
led to an exchange of articles in Overload 7,
by myself and the then editor Sean Corfield.
My contention was that the language had
become too hard to use, and that too many
legacy coding practices had been broken.

Since then I’ve seen the botched attempts
that compiler implementers have made at
implementing the language, and observed the
problems the committee have had in
ensuring that the standard was clear and self-
consistent. For example, the standard

 Overload – Issue 21 – August 1997

 Page 33

library relied heavily on a language feature
that didn’t exist in the language definition.

The ’97 “Committee draft” [CD2] has been
publicly available for a few months and is
much clearer than the previous version.
However, as I was aware of some problems
with it I was convinced we wouldn’t be
seeing a “Draft International Standard”
before the ACCU conference. Since the
conference had been subtly arranged to abut
the standards committee meeting in London,
there were a number of members there.
They were uniformly of the opinion that the
major problems had been addressed, and that
the remaining problems could be dealt with
without significant delays.

I doubt that anyone on the C++ ANSI/ISO
committees expected the standardisation
process to take so long, or to lead to such
problems. The obvious comparison is with
the C standardisation process, which largely
restricted itself to documenting existing
practice, and by comparison went smoothly.
In comparison the C++ standardisation
process greatly extended “existing practice”
(as described by the “Annotated Reference
Manual” which is now of historic interest
only) and added support for generic
programming, exception handling and
namespaces. Each of these is welcome and
sustainable as an individual addition to the
ARM language. However, the interactions
between namespaces and templates
contributed significantly to the delay
between CD1 and CD2, and the interactions
between exceptions and the generic
programming library (STL) were not
resolved as of CD2.

A lot of very bright individuals have
contributed to the development of C++, and
it is a tribute to their skills and enthusiasm
that the standardisation process didn’t
collapse under the weight of these
difficulties. We are about to have a standard
definition of the language, but before we all
breathe a collective sigh of relief there is one
question to answer: “how long before the

compiler and library implementers catch
up?”

And now: Java!

When I started using C++ it was because it
was a better applications programming
language than C, and there were no sane
alternatives for MS-Windows development
at the time. However, it is far more suited to
“systems programming” than to “application
programming”, and as it has required an
increasing level of skill to use correctly has
become less and less suited to use by the
typical “applications programmer”.

Java shows great promise as an application
programming language. If you don’t require
the same degree of control and responsibility
that C++ supplies, it is far easier to use.
Given the hysterical level of support that it
has in the industry I’d expect the tools to be
in place for me to switch to using Java for
application development early in ’98.
However, I don’t expect to see it replace
C++ in its chosen domain. For instance, I
have some components that could not meet
their performance envelopes running on the
JVM - some optimisations are just not
possible in that environment.

Assuming that Java fulfils my expectations, I
predict a mixed language development
model for application development with the
majority of code in Java and heavily
optimised or environment specific modules
coded in C++. However, which particular
glue holds this together is an interesting
question - COM, CORBA, JNI, and native
compilation of Java all have proponents -
that more than one solution will be available
is certain.

The C++ SIG

The “C++ Special Interest Group” was set up
to cover C++ development topics that would
not be of relevance to the general
membership of the ACCU. During Sean
Corfield’s term as editor Overload has been
of great benefit in keeping abreast of the

 Overload – Issue 21 – August 1997

 Page 34

changes to the C++ language, but these
changes are coming to an end and I feel that
the need for such a role will diminish over
the coming years.

At the same time we have Java, another
language in the “C” family, which I
anticipate many of the current C++
developers will (or should) be using in the
next year or two. One possible reaction to
this is to create a new “Java” SIG, but given
that the people most likely to contribute to
this are those already contributing to the C++
SIG, it would probably spread our efforts too
thinly.

The responses I’ve had to my editorial in
Overload 19 divide into two camps:

• “I paid for C++, that’s what I expect.”
and

• “My interest in programming is more
general than C++, don’t be afraid to
branch out.”

As far as I can see, provided that we don’t
fail to publish the C++ material that is
submitted then any other material is a bonus
for the latter camp and may be ignored by
the former.

Alan Griffiths
AGriffiths@ma.ccngroup.com

Technical Sub Editor

EXE, the monthly magazine for software
developers, is looking for a technical sub
editor to join its busy team. The right
candidate will have superlative English and a
thorough knowledge of software
development.

You will be able to rewrite technical features
and produce headlines and standfirsts to tight
deadlines. Programming experience a
significant advantage, HTML a definite plus.
Opportunity to write features and news
stories for the magazine and the Web site.

Please send a full CV, examples of your
work, and a 300-word critique of any UK
computing title to David Mery at:

EXE Magazine, Centaur Communications,
St Giles House, 50 Poland Street, London
W1V 4AX

or email to dmery@dotexe.demon.co.uk

BCS OOP Patterns Day

The British Computer Society, Object-
Oriented Programming and Systems
Specialist Group, are having a ‘Patterns Day’
on Saturday 18th October 1997.

It’s an all-day event at the IBM Centre South
Bank and will include:

• Keynote presentations

• Pattern Writers workshops

• Patterns Readers’ Groups

• Interactive workshops

• Public launch of the UK Patterns' Group

Speaking will be:

Jim Coplien, Bell Laboratories, US (author
of "Advanced C++" and co-editor of the 2
"Pattern Languages of Program Design"
books)

Neil Harrison, Lucent Technologies (co-
author of an Organisational Patterns pattern
language)

Franck Buschmann, Siemens AG (lead
author of Patterns-Oriented Software
Architecture)

Suzanne Robertson, Atlantic Guild (author
of a Requirements Patterns pattern
language)*

Booking details are available from the BCS
OOPS SIG home page

 Overload – Issue 21 – August 1997

 Page 35

(http://www.sis.port.ac.uk/bcs-oops.html) or
through the OOPS Treasurer, Ray
Warburton, email
warburton@hvlc.demon.co.uk, or by snail

mail to High View Development Ltd, 5 High
View, Steep Street, Chepstow, Monmouth
NP6 5 QB .

editor << letters;

Overload Future
John Merrells

Yes, a letter to myself.

Unfortunately, despite my general pleas,
Overload 20 didn’t generate any letters. So,
Vox Pox ahoy, I beat some of you
subscribers up with a reader’s survey. I e-
mailed 40 people to solicit some feedback on
the future of Overload. Only 8 replied! Of
the rest: 9 of the addresses bounced, 3 had
resigned from the ACCU, and 2 no longer
subscribed to Overload. So, when you get an
email from us next week, I’ll be expecting
great things.

Below are some snippets from your
comments. They are not attributed to
authors as I didn’t expressly state that I
would be publishing anything from the mail
exchanges.

Should Overload contain Java
articles?

• I don't think so. The ACCU SIGs allow
members to subscribe to groups which
closely match their set of interests. I
think that Java articles should appear in
C Vu and, if there is enough interest, and
we can find an organiser, we should start
an ACCU Java SIG.

• Yes. I have minimal experience of Java,
and will probably need to learn more, in
the next year or so

• Yes, probably, but don't go overboard.

• Yes. It's a great platform. Just don't jump
on the bandwagon with articles that
everyone has done before. Most Java

related text I see covers the same ground
- simple 'wow' things. There must be
some meat to it.

• Java articles would be of interest, but
may be of sufficiently general interest
that they belong in CVu? Rather than in
Overload which goes out to a fraction of
the ACCU membership.

• Two more agree without comments.

Should Overload contain OO articles?

• Yes. Most people I know in the industry
are good(ish) programmers, but don't
give enough thought to OOD and
decisions which will affect future
modifications. With some OOA/D skills
they would be writing more maintainable
and useful code.

• I'd prefer introductory and language-
independent OO articles to appear in C
Vu. But, given that analysis, design, and
patterns are very important for writing
non-trivial C++ programs, I'd welcome
them in Overload. Notations such as
UML are very useful for describing
systems of related or collaborating
objects - they should definitely be a part
of Overload articles.

• I don’t see any harm. I would lump Java
and OO together. Throw in Eiffel and
Smalltalk too. Basically I want to
understand OO techniques better. Within
the OO community there are still
arguments raging about single
inheritance vs. multiple inheritance,
garbage collection vs. non-garbage
collection. Of course different problems
lend themselves to different languages.

 Overload – Issue 21 – August 1997

 Page 36

• OO articles would be good. Something
along the lines of the articles Paul Field
did in CAUGers, but with (say) a UML
spin and more general interest.

• Yes, particularly patterns.

• Three more agree without comments.

Is there anything else Overload
should contain?

• Basically I get Overload to improve my
C++ and learn more. The majority of
articles are way over my head. I’d like to
see more explanation of syntax,
especially for templates.

• Less pedantry. I would like to see fewer
articles dealing with obscure points of
syntax and more articles dealing with the
application of OOL to real problems.

• Comparatives against other languages.
CASE & CAST tools experiences.

• Less ‘language’ articles, more on good
design techniques.

• Some decent compiler reviews. The
CVu book reviews really help cut
through a lot of the dross; something
which gave me some equally unbiased
help when looking at compilers would be
great.

General comments

• I am a very very ‘early learner’ with
C++, many of the articles are interesting
but way beyond my comprehension.

• I do like the mixture of opinions,
introductions to new features, techniques,
things to avoid, and so on. I also
particularly like Overload for being
platform-independent.

Conclusion

This, admittedly small, sample of subscribers
seem to feel positively towards Overload
covering general Object Oriented topics, and
even articles about languages other than
C++.

But, of course, and as ever, we can only
publish what we receive. If you want
Overload to broaden its horizons, then you
must generate some ‘alternative’ material.
In Overload 22 I’d like to print an
introductory article about UML, and how to
implement a common pattern in Java.

John Merrells

john.merrells@octel.com

 Overload – Issue 21 – August 1997

 Page 37

ACCU and the ’net

ACCU.general
This is an open mailing list for the discussion of C and C++ related issues. It features an unusu-
ally high standard of discussion and several of our regular columnists contribute. The highlights
are serialised in CVu. To subscribe, send any message to:
accu.general-sub@monosys.com

Demon FTP site
The contents of CVu disks, and hence the code from Overload articles, eventually ends up on
Demon’s main FTP site:
ftp://ftp.demon.co.uk/accu
Files are organised by CVu issue.

ACCU web page

Thanks to Net Access and DeMontfort University we now have a machine permanently connected
to the Internet. The official ACCU web pages have moved to a new home.
http://www.accu.org/

C++ – The UK information site
This site is maintained by Steve Rumsby, long-serving member of the UK delegation to WG21
and nearly always head of delegation.
http://www.maths.warwick.ac.uk/c++

C++ – Beyond the ARM
Sean Corfield maintains a set of pages about recently added C++ features. He welcomes feed-
back on their content.
http://www.ocsltd.com/c++

Contacting the ACCU committee
Individual committee members can be contacted at the addresses given above. In addition, the
following generic email addresses exist:
caugers@accu.org
chair@accu.org
cvu@accu.org
info@accu.org
info.deutschland@accu.org
membership@accu.org
overload@accu.org
publicity@accu.org
secretary@accu.org
standards@accu.org
treasurer@accu.org
webmaster@accu.org
There are actually a few others but I think you’ll find the list above fairly exhaustive!

 Overload – Issue 21 – August 1997

 Page 38

Credits
Founding Editor

Mike Toms

Editor
John Merrells

4 Park Mount, Harpenden, Herts, AL5 3AR.
john.merrells@octel.com

Readers
Ray Hall

Ray@ashworth.demon.co.uk

Ian Bruntlett

Einar Nilsen-Nygaard
EinarNN@atl.co.uk

einar@rhuagh.demon.co.uk

Production Editor

Alan Lenton
alenton@aol.com

Advertising
John Washington

Cartchers Farm, Carthouse Lane
Woking, Surrey, GU21 4XS

accuads@wash.demon.co.uk
Subscriptions

David Hodge
31 Egerton Road

Bexhill-on-Sea, East Sussex. TN39 3HJ
davidhodge@compuserve.com

Copyrights and Trademarks

Some articles and other contributions use terms which are either registered trademarks or claimed
as such. The use of such terms is intended neither to support nor disparage any trademark claim.
On request, we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of ACCU.
An author of an article or column (not a letter or review of software or book) may explicitly offer
single (first serial) publication rights and thereby retain all other rights. Except for licences
granted to (1) Corporate Members to copy solely for internal distribution (2) members to copy
source code for use on their own computers, no material can be copied from Overload without
written permission of the copyright holder.

Copy deadline

All articles intended for inclusion in Overload 22 should be submitted to the editor, John Merrells
<john.merrells@octel.com>, by September 15th.

	Contents
	Editorial
	ACCU Conference
	Me & Bjarne

	Software Development in C++
	Circles and Ellipses Revisited: Coding Techniques – 3By Alec Ross
	Around Again - This Time using Coplien's Envelope-Letter Approach
	Mental Models and Classes
	Morphable Conics - Getting Round to an Implementation
	Envelope-Letter Implementation
	CONIC.H
	CONIC.CPP
	Example client code:
	References

	The Draft International C++ Standard
	The Casting Vote by Sean A Corfield
	Getting the BestBy Francis Glassborow
	Postscript

	C++ Techniques
	Safe Assignment? No Problem!By Kevlin Henney
	Recap
	Repercussions
	Resolution
	Revision
	References

	Make a date with C++
	Independence of Declaration
	By Kevlin Henney
	Declare anywhere
	Absolutely anywhere
	Jumping backlash
	Dynamic initialisation
	Before time
	Summary

	Whiteboard
	inline delegationBy Francis Glassborow
	A Finite State Machine DesignBy Einar Nilsen-Nygaard
	The Problem
	Some Candidate Classes
	The Design Bit
	So, Let’s Start Coding!(or The Implementation Section)
	sm.h
	state.h
	actionif.h

	Object CountingBy John Merrells
	Software Leaks!
	Memory Leakage
	Object Leakage
	Performance Extension
	Creation Number

	Rational Valuesby The Harpist
	Introduction
	A Skeleton Design
	Conclusion

	News, Views, & Reviews
	The C&C++ European Developers Forum
	They pursued it with forks and hope.By Alan Griffiths
	And now: Java!
	The C++ SIG

	Technical Sub Editor
	BCS OOP Patterns Day

	editor << letters;
	Overload Future
	Should Overload contain Java articles?
	Should Overload contain OO articles?
	Is there anything else Overload should contain?
	General comments
	Conclusion

	ACCU and the ’net
	ACCU.general
	Demon FTP site
	ACCU web page
	C++ – The UK information site
	C++ – Beyond the ARM
	Contacting the ACCU committee
	Credits
	Copyrights and Trademarks
	Copy deadline

