
Thoughts On
The Java Performance Model

Angelika Langer
www.AngelikaLanger.com

Klaus Kreft
klaus.kreft@siemens.com

1© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

objective

• what is the idea of a performance model?
• "C is the last programming language"

• how is it in Java?
• complex, counter-intuitive, unpredictable

• how do we measure performance in Java?
• the art of benchmarking

• where do we find reliable information?
• looking for the needle in the haystack

• how do we cope without information?
• tools, tips & techniques

2© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

agenda
• programming languages and their performance model

• Java performance model and the String’s operator +

• performance investigation and micro benchmarking

• performance related information is hard to find

• techniques and tools for performance investigations

3© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

“… the Last Programming Language”

• controversial article by Richard P. Gabriel:
“The End of History and the Last Programming Language”,

JOOP, July 1993

• a theory of what makes a successful general-
purpose programming language

4© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

what makes a successful programming language

• languages are accepted and evolved by a social
process, not a technical or technological one

• available on a wide variety of hardware

• easy to learn

• it’s implementation should be simple for it to spread

• it should be similar to existing language

5© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

(cont.)

• successful languages must ...

• not require that users have ‘mathematical sophistication’

• have modest or minimal computer resource requirements

• have a simple performance model

6© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

Richard Gabriel’s ideas were inspired ...

• by the time the article was published
• C was the most widespread language

• by his own experiences
• enthusiastic and experienced LISP and CLOS programmer

• disappointed about LISP’s lack of success

7© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

simple performance model

“One of the things I learned by watching people try to learn
Lisp is that they could write programs that worked pretty
well but they could not write fast programs.
The reason was that they did not know how things were
implemented and assumed that anything in the language
manual took a small constant time.”

“What customers really care about is price and speed. If
your program costs too much, forget it; if it’s too slow,
forget it.”

8© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

C performance model

• original Kernighan-Ritchie-C:
• each statement has similar CPU cost

• relaxed with ANSI-C

9© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

C performance model - example

• definition of a struct:

• original Kernighan-Ritchie-C:

• ANSI-C:

struct s {

int a;

char b;

}

...

struct s myS;

myS.a = 2

myS.b = ‘b’;

...

...

struct s myS = { 2, ‘b’ };

...

10© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

reason for the title of the article

“The End of History and the Last Programming Language”

• C is the last programming language
• with the advent of the OO-paradigm in the early 90ies

new programming languages will never have a
performance model as simple the one of C

• hence no new widespread general-purpose programming
language

• debate with Andrew Koenig
• who defended C++ as having a sufficiently simple

performance model to be successful

11© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

agenda

• programming languages and their performance model

• Java performance model and the String’s operator +

• performance investigation and micro benchmarking

• performance related information is hard to find

• techniques and tools for performance investigations

12© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

String and operator +

since the early days of Java you could do the following:

the compiler converts:

to:

String foo(String s1, String s2) {
return “result: “ + s1 + “ + “ + s2;

}

new String(“result”).concat(s1).
concat(“ + “).concat(s2);

“result: ” + s1 + “ + “ + s2;

13© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

(cont.)

• String is an immutable type

• each call to concate() creates a new object

• which is immediately discarded

• -> two objects overhead

14© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

recommended alternative

use StringBuffer:

• only one object overhead (the StringBuffer itself)

conclusion:
• do not follow your intuition to use what looks simpler and

more elegant

String foo(String s1, String s2) {
StringBuffer buf = new StringBuffer (“result”);
buf.append(s1).append(“ + “).append(s2);
return buf.toString();

}

15© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

recent trends (> JDK 1.4)

compiler used to convert:

to:

• no longer true for newer compilers (JDK 1.4.x)

• compiler does the String concatenation with StringBuffer

• advantages of explicit usage of StringBuffer

• JDK platform independent

• easier to understand, e.g. during debugging

new String(“result”).concat(s1).
concat(“ + “).concat(s2);

“result: ” + s1 + “ + “ + s2;

16© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

recent trends (> JDK 5.0)

• new class: StringBuilder

• same API and functionality as StringBuffer
• but no synchronization

• i.e. cannot be accessed by multiple threads concurrently

• performance improvement in most situations

• JDK 5.0 compiler uses StringBuilder for
String concatenation

17© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

(cont.)

• no JDK version independent ‘best’ solution
• if you used String’s operator +

• it was slow with JDK 1.1
• but has become fast with JDK 5.0
• better than anything else that you could implement

with 1.1 and run now under 5.0

18© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

lessons learned from this example

• Java performance model is highly complex
• what looks simple and elegant is not necessarily fast
• no JDK version independent ‘best’ solution

• Java compiler and runtime system try to iron out
the wrinkles of the performance model for you
• progressively over the JDK versions

19© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

(initially) suggested performance paradigm

• programmer cares only about high-level (design)
alternatives
• e.g. which type of collection to use

• the low-level stuff is handled by the Java compiler
and runtime system
• progressively optimized over the JDK versions

20© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

limitation of the paradigm

• your software might run into performance
problems

• high level changes do not solve these problems

• you are forced to deal with the low-level stuff

21© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

agenda

• programming languages and their performance model

• Java performance model and the String’s operator +

• performance investigation and micro benchmarking

• performance related information is hard to find

• techniques and tools for performance investigations

22© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

micro-benchmark

• !!! you are forced to deal with the low-level stuff !!!

• micro-benchmark
• typical approach to determine the performance costs

of different low-level implementation alternatives

• idea of the micro-benchmark
• small program that captures the essence of the

respective implementation

• all time spend in this few lines of code

23© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

idea of the micro-benchmark

• essential code executed in a loop
• to compensate for different underlying system effects
• to increase the time to be measured

• counter precision problems
• more precise calculation

24© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

example - micro-benchmark loop

note that setup and cleanup are not measured

Writer os = new BufferedWriter

(new FileWriter(FILENAME), bufsize);

long start = System.currentTimeMillis();

for (int i=0; i<LOOP_SIZE; i++)

os.write((int) ‘A’);

long diff = System.currentTimeMillis() - start;

os.close();

25© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

problems

not Java specific
• wrong assumptions

• e.g.: cost of serialization of a string array
• measured for an array that holds the same String
• while in the application it typically holds different Strings

• wrong implementation
• e.g.: input generation included into the test loop

Java specific
• understand the JVM behavior

26© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

understand the JVM behavior:

• most problematic to understand:
HotSpot JVM behavior

• uses runtime profiling to optimize the compilation
of the executed code

• techniques used are:
• complex
• context dependent
• intertwined

27© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

guidelines for HotSpot

• hardly any guidelines
• no simple rules for behavior
• technology is still changing

• keep an eye on:
• monomorphic call transformation
• warm-up
• on-stack replacement
• dead code elimination
• loop unrolling, lock coalescing, ...
• garbage collection
• compiler differences

28© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

monomorphic call transformation

• without HotSpot
• public, non-final methods cannot be inlined

•life was simple in pre-HotSpot times

• with HotSpot
• also public non-final methods are inlined

•based on global program analysis
•if methods are found to be used monomorphically

• potential deoptimization:
•when new classes are loaded
•which might use the inlined method polymorphically

29© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

example - dynamic deoptimization
abstract class A {

public static double x = 2.0;

abstract void aMethod();

}

class B extends A {

public void aMethod() { x = x + 1.1; }

}

class C extends A {

public void aMethod() { x = x - 1.1; }

}

class D extends A {

public void aMethod() { x = x + 2.2; }

}

30© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

example - dynamic deoptimization (cont.)

public class DeoptimizationDemo {

public static void run(A bar) {

for (int i = 0; i < 1000000; i++)

bar.aMethod();
}

public static void main(String[] args) {

A b = new B();

A c = new C();

A d = new D();

run(b); // warmup

run(b); run(c); run(d);
}

}

31© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

example - results / reason

• with server HotSpot JVM:
• B: not measured, B: 20, C: 790, D: 180

• reason:
• first loop (with B) gets optimized and compiled

• inlines call monomorphic

• second loop (with B) is extremely fast
• third loop (with C) is extremely slow

• call needs to be polymorphic now -> deoptimization

• forth loop with polymorphic dispatch

32© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

example - monomorphic call (i)

• conceivable benchmark design:
• compare two alternative implementations of an

algorithm
• implemented as two classes that implement the alternatives

• run the alternatives in a loop for measurement
• implemented as test driver that calls the alternatives

33© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

example - monomorphic call (ii)

interface Algorithm { void doIt(); }

class Algorithm_1 implements Algorithm { ... }

class Algorithm_2 implements Algorithm { ... }

class MicroBenchmark {

private static long test(Algorithm alg) {

long start = System.nanoTime();

for(long i = 0; i < 10000000L; i++) alg.doIt();

return System.nanoTime() - start;
}
public static void main(String[] args) {

long time_1 = test(new Algorithm_1());

long time_2 = test(new Algorithm_2());

... print statistics ...
}

}

polymorphic
method call

34© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

example - monomophic call (iii)

• problem: algorithm is a polymorphic method
• falls victim of monomorphic call transformation
• first execution of test() is optimized

• only one class has been loaded and doIt() is still
monomorphic

• leads to inlining

• second execution of test() is deoptimized
• second class is loaded and doIt() is now polymorphic
• roll back inlining

• observed effect:
• the alternative that runs first, looks faster

35© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

warm-up

• hot spot optimization
• happens after a fixed number of method invocations

• typically 100 000

• followed by periodical re-optimizations
• including potential deoptimizations

• stops after an unspecified amount of time
• when all possible optimizations have been applied

• conclusion: benchmark must have a warm-up phase
• repeat benchmark runs

• to make sure HotSpot has settled down and produces steady results

36© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

warm-up threshold

• finding the warm-up threshold is difficult
• early JIT compilers had a perceivable threshold

value
• more recent JIT compilers perform optimization at

less predictable times
• new techniques add to the complications

• e.g. on-stack replacement

37© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

(cont.)

• run benchmark with -XX:+PrintCompilation
• to find warm-up period
• after a while JIT should calm down

• since 5.0: compiler management beans
• CompilationMXBean

• long getTotalCompilationTime()

• returns the approximate accumulated elapsed time spent in JIT
compilation

38© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

recap: keep an eye on

• monomorphic call transformation

• warm-up

• on-stack replacement

• dead code elimination

• loop unrolling, lock coalescing, ...

• garbage collection

• compiler differences

39© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

how do we cope with HotSpot ?

• use JVM options as you would do for the real
system

• run different sized iterations
• try to determine warm-up phase
• with an eye on the real situation

• mean values may be misleading
• measure variance, too

40© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

Java does a lot for you performance wise

• downside:
• complex functionality

• typical developers are not supposed to deal with it

• information is hard to find
• little published (books, magazine, internet, …)
• high-level
• incomplete

• sometimes you are on your own

41© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

agenda

• programming languages and their performance model

• Java performance model and the String’s operator +

• performance investigation and the micro benchmarking

• performance related information is hard to find

• techniques and tools for performance investigations

42© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

situation

• database cache based on
java.lang.ref.SoftReference

• details
• some data in the database can only be changed by a

system administrator
• this is infrequently done
• idea: cache queries that target this data in memory

to increase the performance

43© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

how references work, pt. 1

• you do not refer to the object directly
• but wrap it as a reference (e.g. a SoftReference)
• the reference has a method get() which returns

the reference to the original object

attribute SoftReference

ref

get()

original
object

44© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

how references work, pt. 2

• when the object is not strongly reachable anymore

• the garbage collector might clear the SoftReference
• because of memory demands

• method get() returns then null

• optionally (depending on a ctor parameter) the cleared
SoftReference is place into a queue

• to process additional cleanup

45© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

from the SoftReference JavaDoc

Soft references are most often used to
implement memory-sensitive caches.

Direct instances of this class may be used to
implement simple caches; this class or
derived subclasses may also be used in
larger data structures to implement more
sophisticated caches.

46© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

more from the SoftReference JavaDoc

All soft references to softly-reachable objects are
guaranteed to have been cleared before the virtual
machine throws an OutOfMemoryError.

Otherwise no constraints are placed upon the time at
which a soft reference will be cleared or the order in
which a set of such references to different objects
will be cleared. Virtual machine implementations
are, however, encouraged to bias against clearing
recently-created or recently-used soft references.

47© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

cache solution, pt. 1

map

query query result

key value

• store
• query, and
• soft reference of the query result
• as key and value in a map

• cache
• before querying the database query the map

SoftReference

48© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

cache solution, pt. 2

map

query query result

key value

MySoftReference

backReference

getBackRef()

• MySoftReference

• derived from SoftReference
• stores back reference to the query
• allows to remove cleared SoftReference from the queue

and use the back reference to clear the entry from the map

cleared

queue

remove

49© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

situation

• a small test (including the database) proved the
functionality of the solution

• but with the real system the solution was a
disaster
• cache did not contain the requested data in almost all

cases
• even if it the same query was processed less than

one minute before

50© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

and then?

• we assumed that our implementation was
erroneous
• despite the small test before that was successful
• we looked for some error that was introduced when we

put the cache into the whole system

• but our investigations showed that the
SoftReferences had been cleared
• and that was the reason for the cache misses

• we re-read the Java doc

51© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

SoftReference JavaDoc

All soft references to softly-reachable objects are
guaranteed to have been cleared before the virtual
machine throws an OutOfMemoryError.

Otherwise no constraints are placed upon the time at
which a soft reference will be cleared or the order in
which a set of such references to different objects
will be cleared. Virtual machine implementations
are, however, encouraged to bias against clearing
recently-created or recently-used soft references.

52© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

and then?

• we increased the value of the JVM’s –Xmx option to
absurdly high values
• only to find out that this option seemed to have no effect

on our problem

• we started to look for information about
SoftReferences

• to find something that could be related to our problem

53© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

information about SoftReference

• a lot of articles in print or online magazines
• mostly dating back to the time references were

introduced in Java (JDK 1.2)
• content:

• explanation how references work in general
• some simple example implementation (even simpler that our

small test)

54© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

information about SoftReference

• books
• similar situation

• text books only explain the intent of soft references, if at all,
but never address practical problems

• not even "The Java Programming Language" by Arnold,
Gosling & Holmes has any information to offer

• today, "Hardcore Java" by Robert Simmons points to
the problem, but it was published years later (in 2004)

55© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

(cont.)

• online information from Sun about their JVM
• official specs (for language and JVM) do not cover

soft references
• GC is an implementation detail

• a lot of information about GC
• but no details about GC and SoftReference

• online forums
• wildest speculations, and
• most contradicting statements

56© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

online forums example, pt. 1

• in a thread about problems with references there was
one contribution that consisted of just one sentence:

• “Don’t you know that the whole reference stuff is broken !!!”

• no additional detail, nothing

• when asked the only thing the poster disclosed was that:
“This is a well known fact.”

57© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

online forums example, pt. 2

• on Sun’s ‘Java bug parade’ we found an error
description:
• ‘SoftReferences are cleared to eagerly’ (Bug ID: 4230645)
• which looked quite similar to our problem

• but
• it was against JDK 1.3 beta and closed in May 1999 with the

comment: “We added a LRU policy and stopped immediately
clearing soft refs on each gc.”

• our problem appeared with JDK 1.3.2 in October 2002
• comments added to this bug in June and August 2001 (JDK

1.3.1) showed that other people still had similar (?) problems

58© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

and then?

• the info from the ‘bug parade’ showed us that there were
problems with the aggressive clearing of SoftReferences
• which might have been fixed
• but other people had still problems

• questions that remained for us:
• when are the SoftReferences cleared in our system

• which condition(s) trigger the GC to clear them
• is it possible to change this behavior

• start our own investigations

59© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

start our own investigations

• we added a thread to our system which
• does the same read access (via the cache) to the database

repeatedly
• (timer configurable, start with: 200 msec)

• additionally we traced whether this was a cache hit or miss

• we started the JVM with the option –verbose:gc
• to trace GC activates
• to find the relationship between a certain GC activity and the moment

the database access changes from cache hits to a miss

60© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

result

• each major collection cleared the SoftReference
• happens when the remaining objects from the ‘young generation’ get

copied to the ‘old generation’
• pretty normal situation (nothing close to out of memory)

61© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

what do we learn from this

• books, magazines, etc.
• standard information
• often lack the amount of detail to help with specific

performance issues

• internet
• quality of information varies
• sometimes: unclear / confusing / contradicting

• sometimes you are forced to do your own
investigations
• because you do not get a coherent answer

62© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

agenda

• programming languages and their performance model

• Java performance model and the String’s operator +

• performance investigation and the micro benchmarking

• performance related information is hard to find

• techniques and tools for performance investigations

63© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

previous example

tools/techniques used in the previous example:

• JVM’s GC profiling functionality
• to see when GC activity is in progress

• tracing
• to see if the db access is a cache hit or miss

64© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

general rules to pick tools/techniques

• favor the approach ...
• ... that provides you with the most information related to

the open problem

• favor the least time consuming approach
• to keep the costs low
• hard to determine what is time consuming in the long run

since you are investigating an open problem
• base your decision on what is time consuming in the short run

65© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

(cont.)

• favor the least intrusive approach
• because often intrusive means effort

• keep the effort and with this the costs low

• because often intrusive means different behavior
• keep as close to the original problem as possible

• favor the most flexible approach
• since you are investigating an open problem

• things might turn out differently from what you assumed before
the test

• you might need to run different (but similar) tests additionally

66© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

leads to

• start with profiling and monitoring tools/techniques related to
your problem
• because you do not have to do any changes in your software

• little intrusive
• little bring-up effort

• provides a broad range of different information
• relative flexible

• if this is not sufficient - collect trace information
• more intrusive
• but provides information that is otherwise not explicitly visible

• example: change from cache hit to miss

67© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

profiling and monitoring tools/techniques

• non-Java specific
• system

• e.g. xosview (Linux), Task Manager (Win)
• information: CPU usage, memory usage / swapping, network traffic

(per process and for the whole computer)
• other technologies (e.g. database, EJB container, …)

• Java specific
• profiler tools

• commercial & freeware; based on JVMPI/JVMTI
• JVM diagnostics

• via JVM options
• via programming API (in 5.0)

68© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

Java profiler tools

• use JMVPI/JVMTI interface

profiler
agent

profiler
front-end

wire protocol:
allows remote

profiling

JVM
your

application

JVMPI
or

JVMTI

controls

events

JVM process

sampled data

69© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

JVMPI / JVMTI functionality

• functions that allow to enquire certain information
• runtime information:

• all loaded classes, all threads, current stack trace, field values, …
• meta data:

• fields and methods belonging to a class, …
• other information:

• time, thread specific CPU time, …

• callbacks that are triggered when certain events occur:
• method entry, method exit,
• frame pop, exception catch, field access,
• thread start, thread end, monitor enter, monitor exit,
• object allocation,
• …

70© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

Java profiler tools

• time profiler
• measures execution paths of an application on the

method level
• space profiler

• provide insight into development of the heap
• such as which methods allocate most memory

• thread profiler
• analyze thread synchronization issues

71© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

garbage collection (GCViewer - freeware)

72© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

memory leaks (OptimizeIt - commercial)

73© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

thread behavior (OptimizeIt - commercial)

74© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

diagnostics via JVM options

• standard options
• e.g. -verbose:class|gc|jni

• JVM-specific options
• e.g. in SUN's JVM:

• -Xprof (profiling data)
• -XX:+PrintGCDetails (GC details)
• -XX:+PrintCompilation (HotSpot)
• ...

75© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

• writes a GC trace to standard out:

[GC 2368K->590K(3520K), 0,0148500 secs]
[GC 2638K->879K(3520K), 0,0154419 secs]
[GC 2927K->1148K(3520K), 0,0116911 secs]
[GC 3196K->1365K(3520K), 0,0110821 secs]
[GC 3413K->1508K(3648K), 0,0071192 secs]
[Full GC 3556K->1652K(4672K), 0,1310929 secs]
[GC 3583K->1785K(4672K), 0,0233162 secs]

JVM option -verbose:GC

minor or major ?

before
GC

after
GC

total heap size

time spend for GC

76© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

JVM option -XX:+PrintCompilation

• writes HotSpot compilation info to standard out:
• useful to detect distortions in benchmarks and determine

warm-up phase

BENCHMARK RESULTS (for 10000000 loops):

6 b java.lang.String::indexOf (74 bytes)
1% !b instanceofbenchmark.Test::main @ 472 (942 bytes)

Duration instanceof: 101
7* b java.lang.Class::isInstance (0 bytes)

Duration isInstance(): 1462
8 b java.lang.String::equals (89 bytes)

Duration class name comparison: 5918
9 b java.lang.Object::equals (11 bytes)

Duration classes comparison: 1823

77© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

JVM diagnostics via programming API

• JMX = Java Management Extension
• agent-based architecture for a programming API
• a MBean (= management bean) exposes monitoring

and management functionality of a device or service
• included in JDK since 5.0

• beans for monitoring and managing the JVM
• called MXBean (= standard platform MBean)

78© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

standard JVM beans (in 5.0)

• MXBean interfaces defined in java.lang.management:
• ClassLoadingMXBean

• CompilationMXBean

• GarbageCollectorMXBean

• MemoryManagerMXBean

• MemoryMXBean

• MemoryPoolMXBean

• OperatingSystemMXBean

• RuntimeMXBean

• ThreadMXBean

79© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

MXBeans

• allow programmatic access to JVM information
• relatively intrusive
• similar to tracing

• several "experimental" tools based on MXBeans
• see JDK tool documentation
• jconsole

• simple console tool which allows to access the MXBeans

• jstat

• collects and logs statistics for a specified JVM
• jmap

• prints heap memory details
• ...

80© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

heap monitoring using jconsole
• peak heap: ~20 MB
• GC time:

• total: 4.968 ms
• pauses: 781
• per pause: 0.006 ms

• no full GC

no full GC

peak heap size: ~20 MB

GC time: 4.968 ms

81© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

heap monitoring using jconsole

82© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

tracing

• traces
• indication + timestamps
• more intrusive
• either part of your software or ad hoc
• indication of the situation that is otherwise not explicitly

visible (example)
• correlation of situations (in different process/JVMs, on

different machines, …)

83© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

tracing techniques

• add trace output to your program
• when profiling and monitoring does not suffice and application-

specific information is needed

• on an ad-hoc basis
• insert System.out.println where needed

• on a systematic basis
• using a logging API
• such as log4j (part of Apache) or JUL (=java.util.logging)

• Log4j and JUL are almost conceptually identical
• "Whatever JUL can do, Log4j can also do - and more."

84© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

Java logging (JUL)

• Java SDK supplies logging API (since 1.4)
• loosely coupled components allow great flexibility

logger handler

formatter

destinationapplication

85© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

Java logging (JUL) - example

void basics()
{
Logger l = Logger.getLogger("com.develop.test");

FileHandler h = new FileHandler("MyLog.txt");

SimpleFormatter f = new SimpleFormatter();

h.setFormatter(f);

l.addHandler(h);

l.log(Level.WARNING, "just a warning");
}

logical log name

output destination

output format

write to log

Sep 9, 2002 1:22:53 AM LogDemo basics
WARNING: just a warning

MyLog.txt contents

86© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

wrap-up

• Java does not have a simple performance model.
• statements incur non-obvious performance complexities
• numerous invisible optimizations

• Benchmarking is non-trivial.
• HotSpot technology make performance characteristics rather

unpredictable

• Performance related information is hard to find.
• often you are on your own for investigation the root of a problem

• Various tools and techniques are available.
• OS specific tools
• Java profiling and monitoring
• logging APIs

87© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

references - Richard Gabriel

Richard P. Gabriel published his thoughts about a
successful programming language

first in the article:
“The End of History and the Last Programming Language”,

JOOP, July 1993, page 90-94

and later in his book:
“Patterns of Software: Tales from the Software Community”,

Oxford University Press (ISBN 0195121236), page 111-122

the book is also available from the internet
http://www.dreamsongs.com/NewFiles/PatternsOfSoftware.pdf

88© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

references

the SoftReference bug:
http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4239645

information on tools:
http://www.AngelikaLanger.com/Conferences/PerfModelReferences.htm

89© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

authors

Angelika Langer
Training & Mentoring
Object-Oriented Software Development in C++ & Java
Email: contact@AngelikaLanger.com
http: www.AngelikaLanger.com

Klaus Kreft
Siemens Enterprise Communications Gmbh & Co. KG, Munich, Germany
Email: klaus.kreft@siemens.com

