Thoughts On
The Java Performance Model

Klaus Kreft Angelika Langer

klaus.kreft@siemens.com www.AngelikaLanger.com

objective

what is the idea of a performance model?
e "C Is the last programming language"

how is it In Java?
e complex, counter-intuitive, unpredictable

how do we measure performance in Java?
 the art of benchmarking

where do we find reliable information?
 |looking for the needle in the haystack

how do we cope without information?
 tools, tips & techniques

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

agenda

e programming languages and their performance model
« Java performance model and the String’s operator +
o performance investigation and micro benchmarking

o performance related information is hard to find

e techniques and tools for performance investigations

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

“... the Last Programming Language”

o controversial article by Richard P. Gabriel:
“The End of History and the Last Programming Language”,

JOOP, July 1993

e atheory of what makes a successful general-
purpose programming language

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

what makes a successful programming language

e languages are accepted and evolved by a social
process, not a technical or technological one

e avallable on a wide variety of hardware
e easy to learn
e It’s Implementation should be simple for it to spread

e It should be similar to existing language

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

(cont.)

» successful languages must ...

* not require that users have ‘mathematical sophistication’
* have modest or minimal computer resource requirements

* have a simple performance model

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 5
last update: 4/30/2007 ,21:46

Richard Gabriel’s ideas were inspired ...

* by the time the article was published
* C was the most widespread language

* by his own experiences
» enthusiastic and experienced LISP and CLOS programmer

» disappointed about LISP’s lack of success

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 6
last update: 4/30/2007 ,21:46

simple performance model

“*One of the things | learned by watching people try to learn
Lisp is that they could write programs that worked pretty
well but they could not write fast programs.

The reason was that they did not know how things were

Implemented and assumed that anything in the language
manual took a small constant time.”

“What customers really care about is price and speed. If

your program costs too much, forget it; if it's too slow,
forget it.”

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

C performance model

 original Kernighan-Ritchie-C:
e each statement has similar CPU cost

e relaxed with ANSI-C

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

C performance model - example

struct s {

e definition of a struct: int a:
char b;

}

 original Kernighan-Ritchie-C: ;;gugt Szmys:

myS.b “‘b”;

° /\Pd53|_(:: éé;uct smyS = {2, “b” };

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

reason for the title of the article

“The End of History and the Last Programming Language”

* C s the last programming language

« with the advent of the OO-paradigm in the early 90ies
new programming languages will never have a
performance model as simple the one of C

* hence no new widespread general-purpose programming
language

* debate with Andrew Koenig

 who defended C++ as having a sufficiently simple
performance model to be successful

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 10
last update: 4/30/2007 ,21:46

agenda

e programming languages and their performance model
e Java performance model and the String’s operator +
o performance investigation and micro benchmarking

« performance related information is hard to find

« techniques and tools for performance investigations

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 1 1
last update: 4/30/2007 ,21:46

String and operator +

since the early days of Java you could do the following:

String foo(String sl1, String s2) {
return “result: “ + sl + “ + “ + s2;

}

the compiler converts:

to:

“result: ” + s1 + “ + “ + s2;

new String(““result”).concat(sl).
concat(* + “).concat(s2);

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

12

(cont.)

e String Is an immutable type
e each call to concate() creates a new object
« which is iImmediately discarded

e —> two objects overhead

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

13

recommended alternative

use StringBuffer:

String foo(String sl, String s2) {
StringBuffer buf = new StringBuffer (“result”);
buf.append(sl).append(* + ““).append(s2);
return buf.toString(Q);

}

e only one object overhead (the StringBuffer itself)

conclusion:

 do not follow your intuition to use what looks simpler and

more elegant

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

14

recent trends (> JDK 1.4)

compiler used to convert:

“result: ” + s1 + “ + “ + s2;

to:

new String(*““result”).concat(sl).
concat(* + “).concat(s2);

* no longer true for newer compilers (JDK 1.4.x)

» compiler does the String concatenation with StringBuffer
» advantages of explicit usage of StringBuffer
« JDK platform independent

e easier to understand, e.g. during debugging

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved. 15

http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

recent trends (> JDK 5.0)

e new class: StringBuilder

 same API and functionality as StringBuffer

e but no synchronization
« i.e. cannot be accessed by multiple threads concurrently

e performance improvement in most situations

* JDK 5.0 compliler uses StringBui lder for
String concatenation

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

16

(cont.)

* no JDK version independent ‘best’ solution

e If you used String’s operator +
e it was slow with JDK 1.1
* but has become fast with JDK 5.0

 better than anything else that you could implement
with 1.1 and run now under 5.0

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 17
last update: 4/30/2007 ,21:46

lessons learned from this example

« Java performance model is highly complex
« what looks simple and elegant is not necessarily fast
* no JDK version independent ‘best’ solution

e Java compiler and runtime system try to iron out
the wrinkles of the performance model for you

» progressively over the JDK versions

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 18
last update: 4/30/2007 ,21:46

(initially) suggested performance paradigm

e programmer cares only about high-level (design)
alternatives
e e.g. which type of collection to use

» the low-level stuff is handled by the Java compiler
and runtime system
e progressively optimized over the JDK versions

19

limitation of the paradigm

e your software might run into performance
problems

* high level changes do not solve these problems

e you are forced to deal with the low-level stuff

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

20

agenda

e programming languages and their performance model
e Java performance model and the String’s operator +
o performance investigation and micro benchmarking

« performance related information is hard to find

« techniques and tools for performance investigations

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 2 1
last update: 4/30/2007 ,21:46

micro-benchmark

o Illl'you are forced to deal with the low-level stuff !!!

e micro-benchmark

 typical approach to determine the performance costs
of different low-level implementation alternatives

e |dea of the micro-benchmark

« small program that captures the essence of the
respective implementation

o all time spend in this few lines of code

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 22
last update: 4/30/2007 ,21:46

Idea of the micro-benchmark

e essential code executed in a loop
* to compensate for different underlying system effects

* to increase the time to be measured
e counter precision problems
e more precise calculation

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

23

example - micro-benchmark loop

Writer os = new BufferedWriter

long start = System.currentTimeMillis();

for (int 1=0; 1<LOOP_SIZE; i1++)
os.write((int) “A%);

long diff = System.currentTimeMillis() - start;

os.close();

(new FileWriter(FILENAME), bufsize);

/nvote that setup and cleanup are not measured

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

24

problems

not Java specific

e Wwrong assumptions

* .9.: cost of serialization of a string array
 measured for an array that holds the same String
e while in the application it typically holds different Strings

e wrong implementation
 .g.: input generation included into the test loop

Java specific
e understand the JVM behavior

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

25

understand the JVM behavior:

 most problematic to understand:
HotSpot JVM behavior

e uses runtime profiling to optimize the compilation
of the executed code

e technigues used are:
e complex
e context dependent
e Intertwined

26

guidelines for HotSpot

« hardly any guidelines

no simple rules for behavior
technology is still changing

e Kkeep an eye on:

monomorphic call transformation
warm-up

on-stack replacement

dead code elimination

loop unrolling, lock coalescing, ...

garbage collection
compiler differences

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLan

ger.com/
1:

last update: 4/30/2007 ,21:46

27

monomorphic call transformation

e without HotSpot

public, non-final methods cannot be inlined
olife was simple in pre-HotSpot times

o with HotSpot

 also public non-final methods are inlined
*based on global program analysis
if methods are found to be used monomorphically

e potential deoptimization:
when new classes are loaded
swhich might use the inlined method polymorphically

lika Langer & Klaus Kreft. All Rights Reserved. 28

example - dynamic deoptimization

abstract class A {
public static double x = 2.0;
abstract void aMethod();

}

class B extends A {
public void aMethod() { X

X + 1.1; }
}
class C extends A {

public void aMethod() { x = x - 1.1; }
}
class D extends A {

public void aMethod() { X

X + 2.2; }

}

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

29

example - dynamic deoptimization (cont.)

public class DeoptimizationDemo {
public static void run(A bar) {
for (int 1 = 0; 1 < 1000000; 1++)
y bar.aMethod();

public static void main(String[] args) {
A b = new BQ;
A c = new CQ;
A d = new DQ;
run(b); // warmup
run(b); run(c); run(d);

}

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 30
last update: 4/30/2007 ,21:46

example - results / reason

e with server HotSpot JVM:
e B: not measured, B: 20, C: 790, D: 180

* reason.

 first loop (with B) gets optimized and compiled
e inlines call monomorphic

e second loop (with B) is extremely fast

o third loop (with C) is extremely slow
» call needs to be polymorphic now -> deoptimization

« forth loop with polymorphic dispatch

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

31

example - monomorphic call (1)

e conceivable benchmark design:

e compare two alternative implementations of an
algorithm
* implemented as two classes that implement the alternatives

e run the alternatives in a loop for measurement
* implemented as test driver that calls the alternatives

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 32
last update: 4/30/2007 ,21:46

example - monomorphic call (i)

interface Algorithm { void dolt(); }
class Algorithm_ 1 implements Algorithm { ... }
class Algorithm 2 implements Algorithm { ... }

class MicroBenchmark {
private static long test(Algorithm alg) {
long start = System.nanoTime(); __[

for(long 1 = O; 1 < 10000000L; i++) alg.dolt() ;-
return System.nanoTime() - start;

polymorphic
method call

public static void main(String[] args) {
long time_1 = test(new Algorithm _10);
long time 2 = test(new Algorithm 2(0));
... print statistics ...

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 33
last update: 4/30/2007 ,21:46

example - monomophic call (i)

e problem: algorithm is a polymorphic method
o falls victim of monomorphic call transformation

o first execution of test() is optimized

« only one class has been loaded and dolt() is still
monomorphic

 leads to inlining

« second execution of test() Is deoptimized
» second class is loaded and do1t() is now polymorphic
* roll back inlining

e observed effect:
e the alternative that runs first, looks faster

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

34

warm-up

* hot spot optimization
e happens after a fixed number of method invocations
* typically 100 000

 followed by periodical re-optimizations
* including potential deoptimizations

» stops after an unspecified amount of time
* when all possible optimizations have been applied

e conclusion: benchmark must have a warm-up phase

e repeat benchmark runs
* to make sure HotSpot has settled down and produces steady results

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 35
last update: 4/30/2007 ,21:46

warm-up threshold

 finding the warm-up threshold is difficult

o early JIT compilers had a perceivable threshold
value

 more recent JIT compilers perform optimization at
less predictable times

* new techniques add to the complications
e e.g. on-stack replacement

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 36
last update: 4/30/2007 ,21:46

(cont.)

e run benchmark with -XX:+PrintCompilation
 to find warm-up period
 after a while JIT should calm down

e since 5.0: compiler management beans

e CompilationMXBean
e« long getTotalCompilationTime()

e returns the approximate accumulated elapsed time spent in JIT
compilation

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

37

recap: keep an eye on

« monomorphic call transformation
e warm-up
e on-stack replacement

e dead code elimination

* loop unrolling, lock coalescing, ...

e garbage collection

« compiler differences

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

38

how do we cope with HotSpot ?

e use JVM options as you would do for the real
system

* run different sized iterations
e try to determine warm-up phase
e Wwith an eye on the real situation

« mean values may be misleading
e measure variance, too

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

39

Java does a lot for you performance wise

e downside:

« complex functionality
 typical developers are not supposed to deal with it

e Information is hard to find

« little published (books, magazine, internet, ...)
* high-level
e iIncomplete

e sometimes you are on your own

agenda

e programming languages and their performance model
e Java performance model and the String’s operator +

o performance investigation and the micro benchmarking
« performance related information is hard to find

« techniques and tools for performance investigations

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 41
last update: 4/30/2007 ,21:46

situation

e database cache based on
jJava. lang.ref.SoftReference

e detalls

 some data in the database can only be changed by a
system administrator

o this is infrequently done

» Idea: cache queries that target this data in memory
to increase the performance

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

42

how references work, pt. 1

* you do not refer to the object directly
e but wrap it as a reference (e.g. a SoftReference)

e the reference has a method get() which returns
the reference to the original object

attribute 1 SofFtReference

| original
object

ref

get(Q)

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 43
last update: 4/30/2007 ,21:46

how references work, pt. 2

* when the object is not strongly reachable anymore

» the garbage collector might clear the SoftReference
* because of memory demands

 method get() returns then nul

» optionally (depending on a ctor parameter) the cleared
SoftReference is place into a queue

 to process additional cleanup

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

44

from the SoftReference JavaDoc

Soft references are most often used to
Implement memory-sensitive caches.

Direct instances of this class may be used to
Implement simple caches; this class or
derived subclasses may also be used In
larger data structures to implement more
sophisticated caches.

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 45
last update: 4/30/2007 ,21:46

more from the SoftReference JavaDoc

All soft references to softly-reachable objects are

guaranteed to have been cleared before the virtual
machine throws an outofMemoryError.

Otherwise no constraints are placed upon the time at
which a soft reference will be cleared or the order Iin
which a set of such references to different objects
will be cleared. Virtual machine implementations
are, however, encouraged to bias against clearing
recently-created or recently-used soft references.

cache solution, pt. 1

e store

e query, and
 soft reference of the query result

e as key and value in a map

e cache

e before querying the database query the map

key

query

map

value

SoftReference

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

query result

a7

cache solution, pt. 2

e MySoftReference

« derived from SoftReference
« stores back reference to the query

» allows to remove cleared SoftReference from the queue
and use the back reference to clear the entry from the map

key majp value
query // MySoftReference
T backReference
queue getBackRef()
remove
cleared

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

X ;

query result

situation

e a small test (including the database) proved the
functionality of the solution

e but with the real system the solution was a
disaster

« cache did not contain the requested data in almost all
cases

e even if it the same query was processed less than
one minute before

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 49
last update: 4/30/2007 ,21:46

and then?

e we assumed that our implementation was
erroneous

» despite the small test before that was successful

 we looked for some error that was introduced when we
put the cache into the whole system

e but our investigations showed that the
SoftReferences had been cleared

e and that was the reason for the cache misses

e we re-read the Java doc

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 50
last update: 4/30/2007 ,21:46

SoftReference JavaDoc

All soft references to softly-reachable objects are
guaranteed to have been cleared before the virtual
machine throws an outofMemoryError.

Otherwise no constraints are placed upon the time at
which a soft reference will be cleared or the order in
which a set of such references to different objects
will be cleared. Virtual machine implementations
are, however, encouraged to bias against clearing
recently-created or recently-used soft references.

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 51
last update: 4/30/2007 ,21:46

and then?

e we Increased the value of the JVM’s —Xmx option to
absurdly high values

 only to find out that this option seemed to have no effect
on our problem

e we started to look for information about
SoftReferences

 to find something that could be related to our problem

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 52
last update: 4/30/2007 ,21:46

iInformation about SoftReference

« alot of articles in print or online magazines

e mostly dating back to the time references were
Introduced in Java (JDK 1.2)

e content:

» explanation how references work in general

* some simple example implementation (even simpler that our
small test)

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 53
last update: 4/30/2007 ,21:46

iInformation about SoftReference

e books
e similar situation

» text books only explain the intent of soft references, if at all,
but never address practical problems

* not even "The Java Programming Language" by Arnold,
Gosling & Holmes has any information to offer

e today, "Hardcore Java" by Robert Simmons points to
the problem, but it was published years later (in 2004)

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/

last update: 4/30/2007 ,21:46

(cont.)

e online information from Sun about their JVM

o official specs (for language and JVM) do not cover
soft references
 GC is an implementation detall

e a lot of information about GC
e but no details about GC and SoftReference

e online forums
» wildest speculations, and
e most contradicting statements

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

55

online forums example, pt. 1

e In athread about problems with references there was
one contribution that consisted of just one sentence:

* “Don’t you know that the whole reference stuff is broken !!!”
* no additional detail, nothing

 when asked the only thing the poster disclosed was that:
“This is a well known fact.”

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

56

online forums example, pt. 2

e on Sun’s ‘Java bug parade’ we found an error
description:
o ‘SoftReferences are cleared to eagerly’ (Bug ID: 4230645)
» which looked quite similar to our problem

e bhut

» it was against JDK 1.3 beta and closed in May 1999 with the
comment: “We added a LRU policy and stopped immediately
clearing soft refs on each gc.”

e our problem appeared with JDK 1.3.2 in October 2002

« comments added to this bug in June and August 2001 (JDK
1.3.1) showed that other people still had similar (?) problems

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 57
last update: 4/30/2007 ,21:46

and then?

* the info from the ‘bug parade’ showed us that there were
problems with the aggressive clearing of SoftReferences
« which might have been fixed
* but other people had still problems

e (uestions that remained for us:

 when are the SoftReferences cleared in our system
» which condition(s) trigger the GC to clear them

* Is it possible to change this behavior

 start our own investigations

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

58

start our own investigations

e we added a thread to our system which

» does the same read access (via the cache) to the database
repeatedly

 (timer configurable, start with: 200 msec)
» additionally we traced whether this was a cache hit or miss

« we started the JVM with the option —verbose:gc
» to trace GC activates

 to find the relationship between a certain GC activity and the moment
the database access changes from cache hits to a miss

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 59
last update: 4/30/2007 ,21:46

result

« each major collection cleared the SoftReference

* happens when the remaining objects from the ‘young generation’ get
copied to the ‘old generation’

o pretty normal situation (nothing close to out of memory)

C Vit
ile Vi

ewer - 04|
ew Help
g8
027
0.26:
25z

uuuuuuuu | ‘mT

T T

EEERER
—ﬁ_ g i

——
— ‘

= H W 0 @ & =
o o o o o = o
I I I I I= = I=
I =] I I =] = =]
= = = = = = =

e T e I e T e e e I L e O e O O T e T e O T ol T I S A

Lkl BB E Bl R E B E R R R

G I I S e
| —

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 60
last update: 4/30/2007 ,21:46

what do we learn from this

* books, magazines, etc.
e standard information

 often lack the amount of detail to help with specific
performance issues

e Internet
 quality of information varies
e sometimes: unclear / confusing / contradicting

e sometimes you are forced to do your own
Investigations

* because you do not get a coherent answer

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 6 1
last update: 4/30/2007 ,21:46

agenda

e programming languages and their performance model
e Java performance model and the String’s operator +

o performance investigation and the micro benchmarking
« performance related information is hard to find

« techniques and tools for performance investigations

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 62
last update: 4/30/2007 ,21:46

previous example

tools/techniques used In the previous example:

 JVM’s GC profiling functionality
* to see when GC activity is in progress

* tracing
 to see if the db access is a cache hit or miss

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

63

general rules to pick tools/techniques

« favor the approach ...

e ... that provides you with the most information related to
the open problem

« favor the least time consuming approach
* to keep the costs low

e hard to determine what is time consuming in the long run
since you are investigating an open problem
* base your decision on what is time consuming in the short run

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 64
last update: 4/30/2007 ,21:46

(cont.)

« favor the least intrusive approach

» because often intrusive means effort
» keep the effort and with this the costs low

e because often intrusive means different behavior
» keep as close to the original problem as possible

« favor the most flexible approach

e since you are investigating an open problem

» things might turn out differently from what you assumed before
the test

e you might need to run different (but similar) tests additionally

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 65
last update: 4/30/2007 ,21:46

leads to

o start with profiling and monitoring tools/techniques related to
your problem
* because you do not have to do any changes in your software

 little intrusive
 little bring-up effort

» provides a broad range of different information
« relative flexible

e |f this Is not sufficient - collect trace information
* more intrusive

» but provides information that is otherwise not explicitly visible
« example: change from cache hit to miss

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 66
last update: 4/30/2007 ,21:46

profiling and monitoring tools/techniques

e non-Java specific
e system
e e.g. xosview (Linux), Task Manager (Win)

« information: CPU usage, memory usage / swapping, network traffic
(per process and for the whole computer)

« other technologies (e.g. database, EJB container, ...)

e Java specific
» profiler tools
 commercial & freeware; based on JVMPI/JVMTI
 JVM diagnostics

* via JVM options
 via programming API (in 5.0)

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

67

Java profiler tools

e use JMVPI/IJVMTI interface

sampled data

AN

profiler
front-end

:

wire protocol:

alows remote
profiling

JVMPI
or
JVMTI
rofiler || controls our
J P : NM your
agent ovents application
JVM process

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.

http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

68

JVMPI / IVMTI functionality

« functions that allow to enquire certain information
* runtime information:

» all loaded classes, all threads, current stack trace, field values, ...

* meta data:
» fields and methods belonging to a class, ...

» other information:
» time, thread specific CPU time, ...

» callbacks that are triggered when certain events occur:

* method entry, method exit,

« frame pop, exception catch, field access,

» thread start, thread end, monitor enter, monitor exit,
* object allocation,

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

69

Java profiler tools

e time profiler

* measures execution paths of an application on the
method level

e space profiler
e provide insight into development of the heap
e such as which methods allocate most memory

o thread profiler
e analyze thread synchronization issues

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

70

garbage collection (GCViewer - freeware)

EiGcviewer - D:\Courses' CurriculumHighPerformancelava'Labs ' Code'\Solutions',08.02.GC Tuning \gcviewer L gc. -[O] x|
Datei Ansicht Hilfe

=ae @
oo

T 0:00.10 o
0,080
0,050
0.040= "
10,000K l
Daten
0,030s
L Gesamtpausenzeit 1,57s
Durchschn. Pause 0,00436s
0,020s r r Kiirzeste Pause 0,0003s
. Lingste Pause 0,07114s
Gesamtlaufzeit 13,865
0,010s Maximale HeapgroRe 19.176K
Bereinigter Speicher 247 116K
Bereinigter SpeicherMin 1.069.612K/min
ok o000s il i ik hlﬁ_d[. Il Dusichsats S0.000

Daten

Gesamtpausenzeit 1,57s
Durchschn. Pause 0,00436s
Kiirzeste Pause 0,0003s
Langste Pause 0,07114s
Gesamtlaufzeit 13,865

Maximale Heapgrike 19.176K
Bereinigter Speicher 247.116K
Bereinigter SpeicherM™in 1.069.612K/min
Durchsatz 88.68%

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 7 1
last update: 4/30/2007 ,21:46

memory leaks (Optimizelt - commercial)

=10l x|

NOEY
Heap

Virtual machine running

il

-~

lockingQuele

MNone

MNone

Filters:|

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

= —

207 +173 34 K +17 K 1059 + 469
203 +173 4872 b + 41520 533 + 160
T3 L Tone T76 TIore TS T
Object]] 41 [|+4 |2288 b +888b 86 +7
short]] 30 [| MNaone 1448 b Maone 36 MNone
java.lang.Class 26 [| +4 2288h +352h 0 Mone
byt 22 (| |Mone [10K None 30 None
java.util HashMap$Entry B [] MNone 144 b Mone 0 MNone
javalang. Thread 4 1 Mone 384 b Mone 0 MNone
java.security AccessContralContext 4 1 |None |96 b Mone] Maone
java.lang.Object 4 1 MNone 32h MNone 0 MNone
java.util. HashMap 2 1 Mone 80 b Mone 0 Mone
java.util ArrayList 2 1 |Mone |48 b Mane 0 Mone
java.io FilePermissionCollection 1 | Mone 16 b Mone 0 MNaone
test TestiDisplayer 1 | Mone 8h Mone 0 MNone
java.util. Hashtable$Entry 1 | _None _24 b MNone 0 MNone
java.security. Permissions 1 1 MNone 24h Mone 0 MNone
java.io FileReader 1 | MNaone 24 b Mone 1] Maone
java.lang.ref SoftReference 1 | |None |32b Mane 0 Mone
sun.nio.cs.StreamDecoder§CharsetSD 1 | Mone 40 b Mone 1] Mone
java. security BasicPermissionCollection 1 | MNone 24 b MNone 0 MNonhe
java.nio.HeapByleBuffer 1 | MNone 43 b MNone 0 MNone
java.io FileDescriptor 1 | MNone 24 b Maone B MNone
java.lang.ref Finalizer 1 | |MNone |32b Mone 4] Maone
java.security.ProtectionDomain 1 | MNone azh MNaone 0 MNone
java.lang.Package 1 | Mone 48 h None 0 MNane
java.io FilelnputStream 1 | |None |16 b Mone B MNone
java.io. FilePermission 1 | MNone 32hb MNone MNone
1

None

_]Disahle garbage collector

72

thread behavior (Optimizelt - commercial)

Optimizeit Thread Debugger 1.4 Enterprise Edition - D:'Code' Optimizeit’, ThreadActivity. SupermarketSimulationii - O] x|
File Edit Program Tools Optimizeit Info

SEE=

Threads and monitors Press play to start
P Thread name | Blocked | Blocked O wait | wraittime ©| 00:04.0 00:05.0 00:06.0 00:07.0
Finalizer i oms 2 45 fis |
Reference Handler 0 Orns 2 45 65
Signal Dispatcher 0 Oms 0 Oms
Thread-0 26 1348ms] oms
Thread-1 27 15587ms a ams -
main 1] Oms 1 458z
paol-1-thread-1 2 108ms 0 Oms
pool-1-thread-2 11 av2ms a ams
poal-1-thread-2 7 382ms a ams
pool-1-thread-4 4 B0ms 0 Oms e
pool-1-thread-5 2 156ms a ams
>

-] e

Running s Blocking Wyaiting Blocking (10 s— _L/JUpdate cantinuously

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 73
last update: 4/30/2007 ,21:46

diagnostics via JVM options

e standard options

* e.g. -verbose:classj]gc]|jni

« JVM-specific options
e e.g.In SUN's JVM:

e —-Xprof (profiling data)
e -XX:+PrintGCDetails (GC detalls)
e -XX:+PrintCompilation (HotSpot)

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

74

JVM option -verbose:GC

e writes a GC trace to standard out:

[GC 2368K->590K(3520K), 0,0148500 secs]

[GC 2638K->879K(3520K), 0,0154419 secs]

(GC 2927K->1148K(3520K), 0,0116911 secs]
[GC 3196K->1365K(3520K), 0,0110821 secs]
GC 3413K->1508K(3648K), 0,0071192 secs]
[Full GC 3556K->1652K(4672K), 0,1310929 secs]
(GC 3583K->1785K(4672K), 0,0233162 secs]

beé(():re aétgr time spend for GC

minor or major ? total heap size

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

75

JVM option —-XX:+PrintCompilation

e writes HotSpot compilation info to standard out:

» useful to detect distortions in benchmarks and determine
warm-up phase

BENCHMARK RESULTS (for 10000000 loops):

6 b java.lang.String::indexOf (74 bytes)
1% b instanceofbenchmark.Test::main @ 472 (942 bytes)
Duration instanceof: 101
7* b java.lang.Class::islnstance (0 bytes)
Duration islnstance(): 1462
8 b java.lang.String::equals (89 bytes)
Duration class name comparison: 5918
9 b java.lang.Object::equals (11 bytes)
Duration classes comparison: 1823

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 76
last update: 4/30/2007 ,21:46

JVM diagnostics via programming AP

« JMX = Java Management Extension
e agent-based architecture for a programming API

e a MBean (= management bean) exposes monitoring
and management functionality of a device or service

e Included in JDK since 5.0

e beans for monitoring and managing the JVM
» called MXBean (= standard platform MBean)

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 77
last update: 4/30/2007 ,21:46

standard JVM beans (in 5.0)

« MXBean interfaces defined in java. lang.management:
e ClassLoadingMXBean
e« CompilationMXBean
e GarbageCollectorMXBean
 MemoryManagerMXBean
 MemoryMXBean
e MemoryPoolMXBean
e OperatingSystemMXBean
e RuntimeMXBean
e ThreadMXBean

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

78

MXBeans

« allow programmatic access to JVM information

 relatively intrusive
* similar to tracing

o several "experimental” tools based on MXBeans

* see JDK tool documentation

e jconsole
» simple console tool which allows to access the MXBeans

e jstat

 collects and logs statistics for a specified JVM
= Jmap

* prints heap memory details

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

79

heap monitoring using jconsole

£.J2SE 5.0 Monitoring & Management Console: 2704@localhost =lo] x| M B
e peak heap: ~20

rSummary rMemory rThreads rCIasses rMBeans vM |

Chart: |HeapMemon¢rUsage |V| Time Range: Perform GC ° GC time_
.
20 Mb—
e total: 4.968 m
Otal. 4. S
15 Mb
.
e pauses: 781
: 0.006 m
* per pause: v. S
e no full GC
0,0 Mb-L
17:06 17:07 17:08 17:09 17:10 1711 17:12 1713 1714 1715
Details
Time: 2005-05-16 17:1505 100% -
.
Used: 5. 537 kbytes — .
Committed: 22. 068 khytes : o
Max: £5. 058 koytes .
GC time: 4,968 seconds seconds on Copy (781 collections) 5% -
0,000 seconds seconds on MarkSweepCompact (0 collections) 0 -

Used: 5.597 kbytes — GCtime 4.968 ms

Committed: 22.068 kbytes
Max: 65. 085 kbytes
GC time: | 4,965 secnndsbm;r {781 collections)

0,000 seconds seconds on I'-.-'Ia.rkSweepCDmpac<_ no fUI I GC

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 80
last update: 4/30/2007 ,21:46

heap monitoring using jconsole

Chart: IHeap Memory Usage |v ‘ Tirne Range: [10 min i Perform GC Chart: [Memory Pool “Eden Space” |V| Time Range: !10 min | v Perform GC

20 Mh— 2,0 Mb—
15 Mg 1,5 Mb Used
4 1305744
10 Mb ! 1,0 Mb
Used
4 5.732.208
5,0 Mb 0,5 Mb
0,0 Mb-L 0,0 MbL
17.08 17:07 17:.08 17:09 17:10 171 1712 1713 17:14 17:15 1705 1708 17.07 17.08 17:09 17:10 1711 1712 1713 17:14
Chart: [Memory Pool "Survivor Space” |v | Time Range: 10min | v | Perform GC Chart: |Memory Pool “Tenured Gen™ \ v| Time Range: |10 min - Perform GC |

200 Kb— 20 Mb—
150 Kb 15 M
100 Kb ! 10 Mb

Used
50 Kb 50 M [/_,_,—/_/_’—/ Lk

Used

0.0kp-L il 0,0 MbL

17:05 17:06 17:07 17:08 17:09 17:10 17:11 1712 1713 17:14 17:05 17:08 17:.07 17:08 17:08 1710 17:11 1712 1713 17:14

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 8 1
last update: 4/30/2007 ,21:46

tracing

e traces

 Indication + timestamps

e more intrusive

 either part of your software or ad hoc

* Indication of the situation that is otherwise not explicitly
visible (example)

 correlation of situations (in different process/JVMs, on
different machines, ...)

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

82

tracing techniques

e add trace output to your program

» when profiling and monitoring does not suffice and application-
specific information is needed

e on an ad-hoc basis
e insert System.out.println where needed

e 0N a systematic basis
e using a logging API
e such as log4j (part of Apache) or JUL (=java.util.logging)

* Log4j and JUL are almost conceptually identical
* "Whatever JUL can do, Log4j can also do - and more."

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

83

Java logging (JUL)

e Java SDK supplies logging API (since 1.4)
* loosely coupled components allow great flexibility

-

-

application

~

J

—> > [handler } —> [destination }

II

[formatter }

84

Java logging (JUL) - example

void basics()
logical log name—> { Logger | = Logger.getLogger('com.develop.test');
output destination—- FileHandler h = new FileHandler("*"MyLog.txt");
output format—= SimpleFormatter T = new SimpleFormatter();
h.setFormatter(f);

I .addHandler(h);

write to log—> 1.log(Level .WARNING, "just a warning');

MvLo tXtCONEHB——aj Sep 9, 2002 1:22:53 AM LogDemo basics
ek i WARNING: just a warning

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 85
last update: 4/30/2007 ,21:46

wrap-up

Java does not have a simple performance model.
« statements incur non-obvious performance complexities
* numerous invisible optimizations

Benchmarking is non-trivial.

 HotSpot technology make performance characteristics rather
unpredictable

Performance related information is hard to find.

« often you are on your own for investigation the root of a problem
Various tools and technigues are available.

* OS specific tools

« Java profiling and monitoring
* logging APIs

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 86
last update: 4/30/2007 ,21:46

references - Richard Gabriel

Richard P. Gabriel published his thoughts about a
successful programming language

first in the article:

“The End of History and the Last Programming Language”,
JOOP, July 1993, page 90-94

and later in his book:

“Patterns of Software: Tales from the Software Community”,
Oxford University Press (ISBN 0195121236), page 111-122

the book is also available from the internet
http://www.dreamsongs.com/NewFiles/PatternsOfSoftware.pdf

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 87
last update: 4/30/2007 ,21:46

references

the SoftReference bug:
http://bugs.sun.com/bugdatabase/view _bug.do?bug 1d=4239645

Information on tools:

http://www.AngelikaLanger.com/Conferences/PerfModelReferences.htm

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/ 88
last update: 4/30/2007 ,21:46

authors

Angelika Langer

Training & Mentoring

Object-Oriented Software Development in C++ & Java

Email: contact@AngelikaLanger.com
http: www.AngelikaLanger.com

Klaus Kreft

Siemens Enterprise Communications Gmbh & Co. KG, Munich, Germany
Email: klaus.kreft@siemens.com

© Copyright 2005-2007 by Angelika Langer & Klaus Kreft. All Rights Reserved.
http://www.AngelikaLanger.com/
last update: 4/30/2007 ,21:46

89

