C++0x Inttialization: lists

Bjarne Stroustrup
Texas A&M University

http://www.research.att.com/~bs

C++0x initialization: lists

o A case study
— Details matter
— Detalls are hard
— Compatibility requirements are really tricky

 \We have not forgotten the big picture
— But that’s another talk

Overview

What we want

Obstacles

Initializer lists

Generalization to all initialization

A way of eliminating narrowing conversions
Summary

Initialization — what do we want?

o [Initializer lists for containers
— as for arrays (and structs)

« Uniform initialization syntax and semantics
— One syntax and one semantics for all uses of that syntax

— In every context
» Global / namespace
* Free-store
e Local
 Member and base
* Const and non-const

— No implicit conversion surprises

— No element list vs. constructor argument ambiguity surprises
— Compatibility: Don’t break my code!

— No verbosity (compare to what we have) 4

It’s a tricky puzzle

C provided
— Xa={v}, initialization for structs, arrays, and non-aggregates
— X a=v; initialization for non-aggregates
C++ added
— new X(v);
— X a(v); for classes with constructors and non-aggregates
— X(v) temporaries and “function style” casts
— Explicit and “ordinary” constructors
— Private copy constructors
Parenthesized lists are heterogeneous but can look homogeneous
— pair<string,int>(*Hello”,10);
— vector<int>(10,2); /1 10 elements each with the value 2
Curly-brace lists can be homogeneous or heterogeneous
— struct S {intx, char*p; }s={10,0};
— inta[]] ={10,0};
Some of these syntactic differences reflects semantic differences
— most do not

Really basic examples

 [ntialization of variables:
vector<int>seq={1,2,3,5,8,13};
vector<string> loc = {
“Lillehammer”,
“Kona”,
“Oxford”,
“Portland”
};
e [nitialization in argument passing:
template<class T> sum(const vector<T>&);
Int X = sum(seq);
inty=sum({1,2,3,5,8,13});

Why?

* Fix violation of one of C++’s basic design rules

— “provide as good support for user-defined types as for
built-in types”
 Note:inta[]={1,2,3,5,8};

« Uniformity Is essential for generic programming

— We should know how to initialize a type X with a value v
for every X and for every v
» Without studying the details of every X and v

An example

 Four different syntaxes:

- Xtl=v; I/ “copy Initialization” possibly copy construction
— X1t2(v); /I direct initialization
- Xt3={v}; /] initialize using initializer list
— Xt4 = X(v); // make an X from v and copy it to t4
 All have their uses and their fans
— It’s a mess

— We can define X so that for some v,
* 0,1, 2,3, or 4 of these definitions compiles
» the values of some of the 4 variables differ

e Sometimes, we only have one syntax alternative

— new X(V); /[free-store allocation
- X(v); /[temporary of type X

An example: X Is a scalar

doublev =7.2;
typedef int X;

Xtl=v; // ok (yuck! Narrowing conversion)
X t2(v); // ok (yuck! Narrowing conversion)
Xt3={v}, /lok;seestandard 8.5; equivalent to “double t3 =v;”
X t4 = X(v); /I ok (explicit conversion)

An example: X Is a container

Intv="7;
typedef vector<int> X;

Xtl=v; /I error: vector’s constructor for int is explicit
X t2(v); Il ok
Xt3={v}, /lerror:vector<int>is not an aggregate

X t4 = X(v); [/ ok (make an X from v and copy it to t4)
Il (possibly/probably optimized)

10

An example: X Is a C-style struct

Intv="7;
typedef struct { int x; inty; } X;

Xtl=v; /] error
X t2(v); /[error

Xt3={v};, //ok:Xisanaggregate
Il (*extra members” are default initialized)
X t4 = X(v); [/l error: we can’t cast an int to a struct

11

An example: X Is a pointer

Intv="7;
typedef int* X;

Xtl=v; /] error
X t2(v); /[error
Xt3={v};, /lerror
X t4 = X(v); [/ ok:explicitly convert an int to an int*; yuck!

12

Is this a real problem?

e Yes!
— A major source of confusion and bugs

e Can It be solved by restriction?

— No
* No existing syntax can be used in all cases
inta[]={1,2,3}
new int(4);
* No existing syntax has the same semantics in all cases
typedef char* Pchar,;

Pchar p(7); // error (good!)
Pchar(7); I fine (ouch!)

13

Aggregate initializer lists

« Anice C and C++ feature, but
— it can be used only in as an initializer of array and struct variables

— It can be used only in a few contexts
« Xv={1,2,3.14}; /] as initializer (ok)

« void f1(X);
f1({1, 2, 3.14}); /[as argument (error)

14

C++0x inttializer hists

Initializer lists can be used for all initialization

Xv={1,2,3.14}; /[as initializer (ok)
void f1(X);
f1({1, 2, 3.14}); /[as argument (error)

Xg() {return {1, 2,3.14}; } /Il as return value (error)
X* p = new X{1, 2, 3.14}; // make an X on free store X (error)

class D : public X {

Xm;
D() o
: X{1, 2, 3.14}, /I base initializer (error)
0 m{1, 2, 3.14} // member initializer (error)

h

15

|dea

Allow the designer of a class to define a constructor to deal with
Initializer lists

— A "sequence constructor”
Allow initializer lists for every initialization

See all the gory detalils
— Bjarne Stroustrup and Gabriel Dos Reis: Initializer lists (Rev. 3). WG21
N2215=07-0075

— Gabriel Dos Reis and Bjarne Stroustrup: Initializer Lists for Standard
Containers. WG21 N2220=07-0080

16

Basic rule for initializer lists

If a constructor Is declared

— If there is a sequence constructor that can be called for the initializer list
o |f there is a unique best sequence constructor, use it
* Otherwise, it’s an error
— Otherwise, if there is a constructor (excluding sequence constructors)
o |f there is a unique best constructor, use it
e Otherwise, it’s an error

— Otherwise, it’s an error

Otherwise
— If we can do traditional aggregate or built-in type initialization, do it
— Otherwise, it’s an error

17

What should a sequence constructor
look like?

* This turned into a very contentious issue (syntax always does):
— template<Forward_iterator For> C<E>::C(For first, For last);
— template<int N> C<E>::C(E(&)[N));

— C<E>::C(const E*, const E*);

— C<E>::C{}(const E* first, const E* last);
- C<E>::C(E ... seq);

— C<E>::C(... E seq);

— C<E>::C(... initializer_list<T> seq);

— C<E>::C(... E* seq);

— C<E>::C ({}<E>seq);

— C<E>:;:C(E{} seq);

— C<E>::C(E seq{});

— C<E>::C(E[*] seq); I use sizeof to get number of elements
— C<E>::C(E seq[*]);
— C<E>::C(const E (&)[ND); /[N becomes the number of elements

— C<E>:C(initializer_list<T> seq);
— C<E>::C(E [N));
- C<E>::C({E});

18

What should a sequence constructor
look like?

 And the answer IS:

template<class E> class vector {
E* elem;
public:
vector (std::initializer_list<E> s) // sequence constructor
{
reserve(s.size());
uninitialized_fill(s.begin(), s.end(), elem);

}

/l ... as before ...

&

std::vector<double> v = {1, 2, 3.14};

19

Semantics

Compiler lays down array and sequence constructor copies
— For example

std::vector<double>v ={1, 2,3.14 };

— Implemented as

double temp[] = { double(1), double(2), 3.14 } ;
initializer_list<double> tmp(temp,sizeof(temp)/sizeof(double));

vector<double> v(tmp);

20

Initializer list<T> definition

template<class E> class initializer_list {
I/ representation (probably a pair of pointers or a pointer plus a length)
// constructed by compiler
// implementation defined constructor
public:
// allow uses: [first,last) and [first, first+length)

// default copy constructor and copy assignment
// no destructor (or the default destructor, which would mean the same)

constexpr int size() const; // number of elements

const E* begin() const; // first element
const E* end() const; // one-past-the-last element

21

So, what about uniformity?

o Can we generalize initializer syntax and semantics to
cover all cases?

— Yes!
e But
e But

» But now we have to deal with the really messy details

— See B. Stroustrup and G. Dos Reis: “Initializer lists” (Rev 3.)
N2215=07-0075

— Ambiguities

— Syntax

— Narrowing conversions

- C99

— Header files

— Template deduction

- .. 22

Syntax

o Every form of initialization can accept the { ... } syntax

e The = can be optionally added where it is currently allowed
X x1 = X{1,2};
X x2 ={1,2}; // the = i1s optional and not significant
X x3{1,2};
X* p2 = new X{1,2};

struct D : X {

D(int x, inty) :X{x,y}{/* ... */};
%
struct S {

int a[3];
S(int x, inty, int z) :a{x,y,z} {/* ... */ }; // solution to old problem

h ’s

Aesthetics

Do you like this notation?

Xx1={12}

X x2{1,2};
f(X{1.2});

X* p2 = new X{1,2};

Why? / Why not?

People’s reactions vary dramatically
People’s rationales vary dramatically
Give It a chance

Think about it

24

Arrays and structs

* Initializer lists do double duty:
struct S{intx,y; };

Ss={12}; /[or structs
inta[]={1,2}; /[for arrays
e We can’t change that
— People like it

— C compatibility
— C++ compatibility
e This comes back to haunt us

vector<int> v1(1,2); // one element with value 2
I/ “ordinary constructor”
vector<int> v2{1,2}; // two elements with values 1 and 2

/[assuming a sequence constructor

25

{ ... } for ordinary constructors

e To achieve uniform notation, we must allow { ... }
Initialization for “ordinary constructors™:
— It is allowed for structs and arrays
— It is allowed for scalars

e Current irregularity
— doubled={2.3}; I/ ok
— complex<double>z={2.3}; /[error in C++98
— struct Dpair { double re, im; };
Dpair dp ={ 2.3 }; Il ok

26

{ ... } for ordinary constructors

* An ordinary constructor can be invoked with the {...}
syntax (as long as there Is no sequence constructor):

complex<double>z1(1,2); // ok as always
complex<double> z2{1,2}; // ok

« The uniformity happens to solve an old problem:

complex<double> z3; I/ default initialization (0,0)
complex<double> z4(); // oops! A function
complex<double> z3{}; // default initialization (0,0)

27

Disambiguation

e To get “the old semantics” we use “the old syntax”

vector<int> v1(1,2); // one element with value 2
vector<int> v2{1,2}; // two elements with values 1 and 2
/[assuming a sequence constructor

 The initializer list notation gives precedence to the
sequence constructor if one exists

— This is not ideal
» Because it breaks the use of uniform syntax

— This is “almost necessary”
* We can’t ban the old syntax anyway
« Examples follow

— This is relatively rare

* You need a constructor of a container with elements of a type that
are also used as arguments to other constructors to get this problem

28

Disambiguation

* Sequence constructors take precedence

vector<int>v0 { }; // no elements
vector<int>v1 {3}, // one element
vector<int>v2 {1, 2}, I/ two elements

vector<int>v3{1,2,3}; [/l three elements

vector<int*> vp0 { }; // no elements
vector<int*> vpl { &il }; // one element
vector<int*> vp2 { &i1, &i2 }; I/ two elements

vector<int*> vp3 { &il, &i2, &i3 }; [/ three elements

29

Disambiguation

« \WWhy not simple overload resolution?

— Would give far too many “false alarms”

— This would be awful
vector<int>vO0 {}; //ambiguous:

//default constructor or empty initializer?
vector<int>v1 { 3 }; // ambiguous:

I/ three elements (with default values) or one element?
vector<int>v2{1,2}, /[ambiguous (with count+value iterator)
vector<int>v3{1,2,3}; [/ ok (three elements with values 1, 2, 3)

vector<int*>vpl {}; /[ambiguous
vector<int*> vpl { &il }; I/ ok (one element)
vector<int*> vpl { &i1, &i2 }; /[ambiguous (with iterator initializer)

vector<int*>vpl { &il, &i2, &i3 }; /I ok (three elements) 30

Disambiguation

e \What If we want an initializer list of a
specified type?
— Use x{...}

— For example:
void f(X);
void f(Y);
f({1,2}); // could be ambiguous
f(X{1,2}); I/ call f(X)
f(Y{1,2}); /] call £(Y)

Disambiguation

* \We tried a lot of crazy and not-so-crazy
alternatives

— See paper

32

Semantics

o { ...} nitialization is direct initialization

e For example
vector<string>vs = { “CPL”, “BCPL”,“C”, “C++" };

vector<string> verbose = {
string(“CPL"),
string(“BCPL”),
string(*“C”),
string(“C++")

33

Semantics

o { ... }initialization doesn’t narrow

vector<int>vi={1, 2.3,4,5.6 }; // error: double to int narrowing
o This is still allowed (and compatible)
chara[] ={‘a’, ‘b’, ‘c’, 0}; /[error: 0 is an int

We allow this case because we can prove that it’s not really narrowing!

 Potentially the most controversial issue

— After surveying a lot of code we find that the problem
mostly affect literals (and constant expressions) where
compilers already detect narrowing and can verify that the
conversion actually doesn’t narrow.

34

Why mess with narrowing?

e (Casting!
* Function-style cast looks innocent, but isn’t:

typedef char* Pchar,;

Inti;

I...

Pchar p = Pchar(i); // no obviously nasty reinterpret_cast

« There is no general syntax for construction in generic code:

template<class T, class V> void f(T t, V v)

{

T X;
...
X = T(v); // construct (but for some types it casts)

...

35

Why mess with narrowing?

e Solution:

template<class T, class V> void f(T t, V v)
{
T X;
...
X = T{v}; // constructs; no nasty casting (or narrowing)

}

« Consider the uniformity requirement:
- T{v}
- Tx{v};
- Ty={v};
- Ta[] ={v};
— p =new T{v}

o The values of T{v}, X, y, a[0], and *p must be identical.

36

It 1S worth while

vector<int>v={1,2,3,4};
map<string,int> m = { {*ardwark™,91}, {**bison”, 43} };
f(vector<int>&); ... f({ 1.2, 4.5, 8.9});

doubled=2.3; ... intx={d }; /[error: narrowing

37

Will it happen?

Initializer lists
Ban on narrowing conversions in {...} initialization

| hope so

| think so
— based on “evolution working group” votes and feedback

Nothing is certain until the votes are In
— | hope for next week!

38

	C++0x initialization: lists
	C++0x initialization: lists
	Overview
	Initialization – what do we want?
	It’s a tricky puzzle
	Really basic examples
	Why?
	An example
	An example: X is a scalar
	An example: X is a container
	An example: X is a C-style struct
	An example: X is a pointer
	Is this a real problem?
	Aggregate initializer lists
	C++0x initializer lists
	Idea
	Basic rule for initializer lists
	What should a sequence constructor look like?
	What should a sequence constructor look like?
	Semantics
	Initializer_list<T> definition
	So, what about uniformity?
	Syntax
	Aesthetics
	Arrays and structs
	{ … } for ordinary constructors
	{ … } for ordinary constructors
	Disambiguation
	Disambiguation
	Disambiguation
	Disambiguation
	Disambiguation
	Semantics
	Semantics
	Why mess with narrowing?
	Why mess with narrowing?
	It is worth while
	Will it happen?

