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C++0x initialization: lists

o A case study
— Details matter
— Detalls are hard
— Compatibility requirements are really tricky

 \We have not forgotten the big picture
— But that’s another talk



Overview

What we want

Obstacles

Initializer lists

Generalization to all initialization

A way of eliminating narrowing conversions
Summary



Initialization — what do we want?

o [Initializer lists for containers
— as for arrays (and structs)

« Uniform initialization syntax and semantics
— One syntax and one semantics for all uses of that syntax

— In every context
» Global / namespace
* Free-store
e Local
 Member and base
* Const and non-const

— No implicit conversion surprises

— No element list vs. constructor argument ambiguity surprises
— Compatibility: Don’t break my code!

— No verbosity (compare to what we have) 4



It’s a tricky puzzle

C provided
— Xa={v}, initialization for structs, arrays, and non-aggregates
— X a=v; initialization for non-aggregates
C++ added
— new X(v);
— X a(v); for classes with constructors and non-aggregates
— X(v) temporaries and “function style” casts
— Explicit and “ordinary” constructors
— Private copy constructors
Parenthesized lists are heterogeneous but can look homogeneous
— pair<string,int>(*Hello”,10);
— vector<int>(10,2); /1 10 elements each with the value 2
Curly-brace lists can be homogeneous or heterogeneous
— struct S {intx, char*p; }s={10,0};
— inta[]] ={10,0};
Some of these syntactic differences reflects semantic differences
— most do not



Really basic examples

 [ntialization of variables:
vector<int>seq={1,2,3,5,8,13};
vector<string> loc = {
“Lillehammer”,
“Kona”,
“Oxford”,
“Portland”
};
e [nitialization in argument passing:
template<class T> sum(const vector<T>&);
Int X = sum(seq);
inty=sum({1,2,3,5,8,13});



Why?

* Fix violation of one of C++’s basic design rules

— “provide as good support for user-defined types as for
built-in types”
 Note:inta[]={1,2,3,5,8};

« Uniformity Is essential for generic programming

— We should know how to initialize a type X with a value v
for every X and for every v
» Without studying the details of every X and v



An example

 Four different syntaxes:

- Xtl=v; I/ “copy Initialization” possibly copy construction
— X1t2(v); /I direct initialization
- Xt3={v}; /] initialize using initializer list
— Xt4 = X(v); // make an X from v and copy it to t4
 All have their uses and their fans
— It’s a mess

— We can define X so that for some v,
* 0,1, 2,3, or 4 of these definitions compiles
» the values of some of the 4 variables differ

e Sometimes, we only have one syntax alternative

— new X(V); /[ free-store allocation
- X(v); /[ temporary of type X



An example: X Is a scalar

doublev =7.2;
typedef int X;

Xtl=v; // ok (yuck! Narrowing conversion)
X t2(v); // ok (yuck! Narrowing conversion)
Xt3={v}, /lok;seestandard 8.5; equivalent to “double t3 =v;”
X t4 = X(v); /I ok (explicit conversion)



An example: X Is a container

Intv="7;
typedef vector<int> X;

Xtl=v; /I error: vector’s constructor for int is explicit
X t2(v); Il ok
Xt3={v}, /lerror:vector<int>is not an aggregate

X t4 = X(v); [/ ok (make an X from v and copy it to t4)
Il (possibly/probably optimized)
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An example: X Is a C-style struct

Intv="7;
typedef struct { int x; inty; } X;

Xtl=v; /] error
X t2(v); /[ error

Xt3={v};, //ok:Xisanaggregate
Il (*extra members” are default initialized)
X t4 = X(v); [/l error: we can’t cast an int to a struct
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An example: X Is a pointer

Intv="7;
typedef int* X;

Xtl=v; /] error
X t2(v); /[ error
Xt3={v};, /lerror
X t4 = X(v); [/ ok:explicitly convert an int to an int*; yuck!
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Is this a real problem?

e Yes!
— A major source of confusion and bugs

e Can It be solved by restriction?

— No
* No existing syntax can be used in all cases
inta[]={1,2,3}
new int(4);
* No existing syntax has the same semantics in all cases
typedef char* Pchar,;

Pchar p(7); // error (good!)
Pchar(7); I fine (ouch!)

13



Aggregate initializer lists

« Anice C and C++ feature, but
— it can be used only in as an initializer of array and struct variables

— It can be used only in a few contexts
« Xv={1,2,3.14}; /] as initializer (ok)

« void f1(X);
f1({1, 2, 3.14}); /[ as argument (error)
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C++0x inttializer hists

Initializer lists can be used for all initialization

Xv={1,2,3.14}; /[ as initializer (ok)
void f1(X);
f1({1, 2, 3.14}); /[ as argument (error)

Xg() {return {1, 2,3.14}; } /Il as return value (error)
X* p = new X{1, 2, 3.14}; // make an X on free store X (error)

class D : public X {

Xm;
D() o
: X{1, 2, 3.14}, /I base initializer (error)
0 m{1, 2, 3.14}  // member initializer (error)

h
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|dea

Allow the designer of a class to define a constructor to deal with
Initializer lists

— A "sequence constructor”
Allow initializer lists for every initialization

See all the gory detalils
—  Bjarne Stroustrup and Gabriel Dos Reis: Initializer lists (Rev. 3). WG21
N2215=07-0075

—  Gabriel Dos Reis and Bjarne Stroustrup: Initializer Lists for Standard
Containers. WG21 N2220=07-0080
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Basic rule for initializer lists

If a constructor Is declared

— If there is a sequence constructor that can be called for the initializer list
o |f there is a unique best sequence constructor, use it
*  Otherwise, it’s an error
—  Otherwise, if there is a constructor (excluding sequence constructors)
o |f there is a unique best constructor, use it
e  Otherwise, it’s an error

—  Otherwise, it’s an error

Otherwise
—  If we can do traditional aggregate or built-in type initialization, do it
—  Otherwise, it’s an error

17



What should a sequence constructor
look like?

* This turned into a very contentious issue (syntax always does):
— template<Forward_iterator For> C<E>::C(For first, For last);
— template<int N> C<E>::C(E(&)[N));

— C<E>::C(const E*, const E*);

— C<E>::C{}(const E* first, const E* last);
- C<E>::C(E ... seq);

— C<E>::C(... E seq);

— C<E>::C(... initializer_list<T> seq);

— C<E>::C(... E* seq);

— C<E>::C ({}<E>seq);

— C<E>:;:C(E{} seq);

— C<E>::C(E seq{});

— C<E>::C(E[*] seq); I use sizeof to get number of elements
— C<E>::C(E seq[*]);
— C<E>::C(const E (&)[ND); /[ N becomes the number of elements

— C<E>:C(initializer_list<T> seq);
— C<E>::C(E [N));
- C<E>::C({E});
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What should a sequence constructor
look like?

 And the answer IS:

template<class E> class vector {
E* elem;
public:
vector (std::initializer_list<E> s) // sequence constructor
{
reserve(s.size());
uninitialized_fill(s.begin(), s.end(), elem);

}

/l ... as before ...

&

std::vector<double> v = {1, 2, 3.14};
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Semantics

Compiler lays down array and sequence constructor copies
— For example

std::vector<double>v ={1, 2,3.14 };

— Implemented as

double temp[] = { double(1), double(2), 3.14 } ;
initializer_list<double> tmp(temp,sizeof(temp)/sizeof(double));

vector<double> v(tmp);
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Initializer list<T> definition

template<class E> class initializer_list {
I/ representation (probably a pair of pointers or a pointer plus a length)
// constructed by compiler
// implementation defined constructor
public:
// allow uses: [first,last) and [first, first+length)

// default copy constructor and copy assignment
// no destructor (or the default destructor, which would mean the same)

constexpr int size() const; // number of elements

const E* begin() const; // first element
const E* end() const; // one-past-the-last element
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So, what about uniformity?

o Can we generalize initializer syntax and semantics to
cover all cases?

— Yes!
e But
e But

» But now we have to deal with the really messy details

— See B. Stroustrup and G. Dos Reis: “Initializer lists” (Rev 3.)
N2215=07-0075

— Ambiguities

— Syntax

— Narrowing conversions

- C99

— Header files

— Template deduction

- .. 22



Syntax

o Every form of initialization can accept the { ... } syntax

e The = can be optionally added where it is currently allowed
X x1 = X{1,2};
X x2 ={1,2}; // the = i1s optional and not significant
X x3{1,2};
X* p2 = new X{1,2};

struct D : X {

D(int x, inty) :X{x,y}{/* ... */};
%
struct S {

int a[3];
S(int x, inty, int z) :a{x,y,z} {/* ... */ }; // solution to old problem

h ’s



Aesthetics

Do you like this notation?

Xx1={12}

X x2{1,2};
f(X{1.2});

X* p2 = new X{1,2};

Why? / Why not?

People’s reactions vary dramatically
People’s rationales vary dramatically
Give It a chance

Think about it
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Arrays and structs

* Initializer lists do double duty:
struct S{intx,y; };

Ss={12}; /[ or structs
inta[]={1,2}; /[ for arrays
e We can’t change that
— People like it

— C compatibility
— C++ compatibility
e This comes back to haunt us

vector<int> v1(1,2); // one element with value 2
I/ “ordinary constructor”
vector<int> v2{1,2}; // two elements with values 1 and 2

/[ assuming a sequence constructor

25



{ ... } for ordinary constructors

e To achieve uniform notation, we must allow { ... }
Initialization for “ordinary constructors™:
— It is allowed for structs and arrays
— It is allowed for scalars

e Current irregularity
— doubled={2.3}; I/ ok
— complex<double>z={2.3}; /[ error in C++98
— struct Dpair { double re, im; };
Dpair dp ={ 2.3 }; Il ok

26



{ ... } for ordinary constructors

* An ordinary constructor can be invoked with the {...}
syntax (as long as there Is no sequence constructor):

complex<double>z1(1,2); // ok as always
complex<double> z2{1,2}; // ok

« The uniformity happens to solve an old problem:

complex<double> z3; I/ default initialization (0,0)
complex<double> z4(); // oops! A function
complex<double> z3{}; // default initialization (0,0)

27



Disambiguation

e To get “the old semantics” we use “the old syntax”

vector<int> v1(1,2); // one element with value 2
vector<int> v2{1,2}; // two elements with values 1 and 2
/[ assuming a sequence constructor

 The initializer list notation gives precedence to the
sequence constructor if one exists

— This is not ideal
» Because it breaks the use of uniform syntax

— This is “almost necessary”
* We can’t ban the old syntax anyway
« Examples follow

— This is relatively rare

* You need a constructor of a container with elements of a type that
are also used as arguments to other constructors to get this problem

28



Disambiguation

* Sequence constructors take precedence

vector<int>v0 { }; // no elements
vector<int>v1 {3}, // one element
vector<int>v2 {1, 2}, I/ two elements

vector<int>v3{1,2,3}; [/l three elements

vector<int*> vp0 { }; // no elements
vector<int*> vpl { &il }; // one element
vector<int*> vp2 { &i1, &i2 }; I/ two elements

vector<int*> vp3 { &il, &i2, &i3 }; [/ three elements

29



Disambiguation

« \WWhy not simple overload resolution?

— Would give far too many “false alarms”

— This would be awful
vector<int>vO0 {}; //ambiguous:

//default constructor or empty initializer?
vector<int>v1 { 3 }; // ambiguous:

I/ three elements (with default values) or one element?
vector<int>v2{1,2}, /[ ambiguous (with count+value iterator)
vector<int>v3{1,2,3}; [/ ok (three elements with values 1, 2, 3)

vector<int*>vpl {}; /[ ambiguous
vector<int*> vpl { &il }; I/ ok (one element)
vector<int*> vpl { &i1, &i2 }; /[ ambiguous (with iterator initializer)

vector<int*>vpl { &il, &i2, &i3 }; /I ok (three elements) 30



Disambiguation

e \What If we want an initializer list of a
specified type?
— Use x{...}

— For example:
void f(X);
void f(Y);
f({1,2}); // could be ambiguous
f(X{1,2}); I/ call f(X)
f(Y{1,2}); /] call £(Y)



Disambiguation

* \We tried a lot of crazy and not-so-crazy
alternatives

— See paper
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Semantics

o { ...} nitialization is direct initialization

e For example
vector<string>vs = { “CPL”, “BCPL”,“C”, “C++" };

vector<string> verbose = {
string(“CPL"),
string(“BCPL”),
string(*“C”),
string(“C++")

33



Semantics

o { ... }initialization doesn’t narrow

vector<int>vi={1, 2.3,4,5.6 }; // error: double to int narrowing
o This is still allowed (and compatible)
chara[] ={‘a’, ‘b’, ‘c’, 0}; /[ error: 0 is an int

We allow this case because we can prove that it’s not really narrowing!

 Potentially the most controversial issue

— After surveying a lot of code we find that the problem
mostly affect literals (and constant expressions) where
compilers already detect narrowing and can verify that the
conversion actually doesn’t narrow.
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Why mess with narrowing?

e (Casting!
* Function-style cast looks innocent, but isn’t:

typedef char* Pchar,;

Inti;

I...

Pchar p = Pchar(i); // no obviously nasty reinterpret_cast

« There is no general syntax for construction in generic code:

template<class T, class V> void f(T t, V v)

{

T X;
...
X = T(v); // construct (but for some types it casts)

...

35



Why mess with narrowing?

e Solution:

template<class T, class V> void f(T t, V v)
{
T X;
...
X = T{v}; // constructs; no nasty casting (or narrowing)

}

« Consider the uniformity requirement:
- T{v}
- Tx{v};
- Ty={v};
- Ta[] ={v};
— p =new T{v}

o The values of T{v}, X, y, a[0], and *p must be identical.

36



It 1S worth while

vector<int>v={1,2,3,4};
map<string,int> m = { {*ardwark™,91}, {**bison”, 43} };
f(vector<int>&); ... f({ 1.2, 4.5, 8.9} );

doubled=2.3; ... intx={d }; /[ error: narrowing

37



Will it happen?

Initializer lists
Ban on narrowing conversions in {...} initialization

| hope so

| think so
— based on “evolution working group” votes and feedback

Nothing is certain until the votes are In
— | hope for next week!

38



	C++0x initialization: lists
	C++0x initialization: lists
	Overview
	Initialization – what do we want?
	It’s a tricky puzzle
	Really basic examples
	Why?
	An example
	An example: X is a scalar
	An example: X is a container
	An example: X is a C-style struct
	An example: X is a pointer
	Is this a real problem?
	Aggregate initializer lists
	C++0x initializer lists
	Idea
	Basic rule for initializer lists
	What should a sequence constructor look like?
	What should a sequence constructor look like?
	Semantics
	Initializer_list<T> definition
	So, what about uniformity?
	Syntax
	Aesthetics
	Arrays and structs
	{ … } for ordinary constructors
	{ … } for ordinary constructors
	Disambiguation
	Disambiguation
	Disambiguation
	Disambiguation
	Disambiguation
	Semantics
	Semantics
	Why mess with narrowing?
	Why mess with narrowing?
	It is worth while
	Will it happen?

