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Overview

• threading basics:

• thread objects: thread start, termination

•  synchronization, mutex, condition 
variable

• outlook: threading building blocks

• NOT: lock-free programming!



Quick Survey

• who uses STL algorithms?

• ... algorithms like sort(), lower_bound(), 
etc.?

• ... algorithms like copy(), find(), etc.?

• ... for_each()



Multi-Threading 
Problems

• dead-lock/live-lock

• race condition

• serial execution == no better performance



Thread Objects

• create a new thread: ctor + function object

• thread identity: the thread’s ID

• join with a thread

• detach a thread: explicit or by destructor



Creating Threads I

• ctor of std::thread kicks off a new thread

• joinable until detached or moved

• from a function (note: no extern “C”):
void work() { ... }
std::thread(work);



Creating Threads II

• from function passing arguments:
void work(int a1, int a2);
std::thread(work, 1, 2);

• from a bound function:
std::thread(std::bind(work, 1, 2));

• from a function object:
struct work { void operator()() { ... } };
std::thread(work());



Getting Rid Of Threads

• no cancellation support

• use implicit termination at end of work

• use explicit thread communication

• join() a joinable thread object

• detach for implicit clean-up: detach() or 
dtor



Complete Example 
bool flag(true);
void work() {

while (flag) { std::this_thread::sleep(t); }
}
int main() {

std::thread worker(work);
std::cin.ignore();
flag = false;
worker.join();

}



Race Conditions

> valgrind -q --tool=helgrind example1
...
Possible data race during write of size 1 at 0xaddr1

at 0xaddr2: main (example1.cpp:31)
Old state: owned exclusively by thread #2
New state: shared-modified by threads #1, #2
Reason:    this thread, #1, holds no locks at all



Valgrind/Helgrind

• emulates processors and observes 
programs behavior

• currently Linux only

• helgrind workable only with 3.3.0 and later

• can do other useful stuff e.g. leak detection



Errors in the Example
bool flag(true);
void work() {

while (flag) { std::this_thread::sleep(t); }
}
int main() {

std::thread worker(work);
std::cin.ignore();
flag = false;
worker.join();

}



Why Is There A 
Problem?
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Problems Due To 
Caching

• reordered writes:

initial state: bool flag(false); int value(0);
thread 1: value = 42; flag = 1;
thread 2: if (flag) std::cout << value << “\n”;
output: ???

• lost updates



Disappearing Writes
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Critical Sections

• any code accessing mutable, shared 
resources

• always requires some form of 
synchronization

• has to start with acquisition

• has to end with release

• different models on how this can be done



Critical Section Schema

acquire

release

time

changes before

changes within

changes after



Critical Sections: 
Mutexes

• preferred way for critical sections

• manually using lock()/unlock():
mutex.lock();
...
mutex.unlock();

• automatic using lock guard:
std::lock_guard<std::mutex> lock(mutex);
...



Critical Sections: 
Atomics

• limited use in general (best left to experts)

• form critical sections on their own

• critical section (may require memory 
barriers):
std::atomic<bool> flag(false);
while (!flag.load()) {} // acquire;
...                       // critical section
flag.store(false);     // release



Synchronization

• sharing mutable data requires 
synchronization

• ... but not required for immutable data 

• synchronization can be provided by

• ... using mutex, semaphore, etc. locks

• ... using atomic types or memory barriers



Fixing the Write I
std::mutex flag_mutex; bool flag(true);

int main() {
std::thread worker(work); std::cin.ignore();
{

std::lock_guard<std::mutex> lock(flag_mutex);
flag = false;

}
worker.join();

}



Fixing the Write II
std::mutex flag_mutex; bool flag(true);
void set_flag(bool value) {

std::lock_guard<std::mutex> lock(flag_mutex);
flag = value;

}
int main() {

std::thread worker(work); std::cin.ignore();
set_flag(false);
worker.join();

}



Fixing the Read
std::mutex flag_mutex; bool flag(true);

bool get_flag() {
std::lock_guard<std::mutex> lock(flag_mutex);
return flag;

}
void work() {

while (get_flag()) { std::this_thread::sleep(t); }
}



Using Atomic Types

std::atomic<bool> flag(true);
void work() { while (flag.load()) { ... } }

int main() {
std::thread worker(work);
std::cin.ignore();
flag.store(false);
worker.join();

}



Mutexes

• THE general purpose synchronization 
device

• not very expensive but not free either:
~7.5 M/s (uncontended) locks on this 
machine

• essentially: one mutex for each unit of 
shared data



Mutex Granularity

• few mutexes => a lot of contention

• each mutex should protect a complete 
entity:

• a simple variable: counter, flag

• communication device: queue

• a shared data structure



Thread-Safe Interfaces 

• internal locking (monitor objects):

• pros: user doesn’t need to know or care

• cons: useful only for “fire & forget”

• e.g.: atomics, (non-STL) queue, allocator

• external locking:

• pros: more flexible

• cons: more error prone



STL Thread Safety

• user is responsible for proper access

• one container can be ...

• ... read by multiple threads simultaneously

• ... written by only one thread and may 
not be accessed by another thread

• restrictions are per object



Dead-Lock

• threads mutually awaiting release of locks

thread 1

M1.lock();
...
M2.lock();

thread 2

M2.lock();
...
M1.lock();

time



Mutex Hierarchies

• dead-lock prevention: lock in the same 
order

• sort mutexes into numbered levels 
(essentially according to abstraction levels)

• after locking a mutex at level n, only acquire 
locks for mutexes at lower levels, i.e. < n

• locks at the same level must be acquired 



Recursive Mutexes

• obviously not allowed under hierarchy 
regime

• questionable anyway:

• critical sections represent transaction

• within inconsistencies are allowed and 
likely

• why use a nested transaction?



Refactoring for Locking
void foo() {

guard l(mutex);
...
bar();

}
void bar() {

guard l(mutex);
...

}

void foo() {
guard l(mutex);
...
intern_bar();

}
void bar() {

guard l(mutex);
intern_bar();

}



Locking and Generic 
Code

• don’t call unknown code from critical 
sections

• any such code may lock at the wrong level

• what is generic/unknown code?

• callback: function pointer, function object

• virtual function



Try-Lock

• alternate dead-lock prevention: only try-
lock

• when locking fails, bail-out of all locks

• ... undoing all work as necessary, of course

• danger: live-lock, i.e two threads starting at 
the opposite ends continuously failing

• may still cut necessary leeway for calling 



Try-Lock Example

std::mutex mutex;

std::unique_lock<std::mutex> lock(mutex,
                                   std::try_to_lock);

if (!lock)
  throw std::runtime_error(“already 
locked”);

...



Condition Variables

• synchronizing actions of threads

• have multiple threads wait for an event

• producer/consumer relationship

• event indicator is protected by a mutex

• threads waiting for the event are asleep



Two Roles
• event consumer (while holding a mutex 

lock)

• checks condition

• wait()s if the condition is not met

• event producer

• [possibly] changes the condition

• either signals one thread: notify_one()

• or broadcasts to all threads: notify_all()



The Producer
• may change condition (while holding a lock)

• sends notify, probably not holding the lock

std::queue<int> q; std::mutex mutex;
std::condition_variable condition;
void add_message(int message) {
  { std::lock_guard<std::mutex> lock(mutex);

q.push(message); }
condition.notify_one();

}



The Consumer
• gets lock, checks conditions, waits if not 

std::queue<int> q; std::mutex mutex;
std::condition_variable condition;
int pop_message() {

std::unique_lock<std::mutex> lock(mutex);
while (q.empty()) condition.wait(lock);
int rc = q.back(); q.pop_back(); return rc;

}



Notes on the 
Consumer

• holding the mutex lock

• the lock is held when calling wait()!

• it gets unlocked while waiting

• it is locked again when wait() returns

• there may be spurious returns from wait()

• the condition needs to be rechecked!



Spurious Wake-Ups

• producer notifies without meeting 
condition

• different thread may acquire the lock first

• signal may have been received by the thread

• rule avoids problems with implementations



Summary of Basics

• synchronize shared resources

• mutexes, atomics, thread start/
termination

• try to avoid use of shared resources

• stay within cache, don’t risk contention

• synchronize threads: condition variables



Implicit Parallelism

• ideally parallel execution is automated

• to this end ...

• represent program as independent tasks

• give some indication on the costs of tasks

• don’t specify number of threads



Futures

• like a function call

• returns a handle for the result

• may compute the function call in a separate 
thread

• synchronization upon accessing the result

• not yet in C++Ox working paper (i.e. 
example below is made up)



Future Example

result function(int arg) { .... }
int main()
{

std::future<result> f1(std::bind(&function, 1));
std::future<result> f2(std::bind(&function, 2));
...
result const& r1(f1.get_result());

}



Parallel Algorithms

• Threading Building Blocks offers:

• parallel_for(range, function [, splitter])

• parallel_reduce(range, function [, 
splitter]) 

• parallel_scan(range, function [, splitter])

• other algorithms can be built on top of 
these



General TBB Approach

• ranges splitable into equal-sized subranges

• ranges have an optional grainsize

• function objects splitable into multiple 
instances

• function objects responsible to process 
subranges

• subranges processed by separate threads 



TBB Precondition

• every thread needs to initialize a scheduler

• ideally, this should be done at start-up

• tbb::task_scheduler_init init(...);

• in main() and thread entry function

• termination is at corresponding scope

• future: integrated into program/thread 



tbb::parallel_for()
struct function { ...

template <typename Range>
void operator()(Range const& r) const {
  std::for_each(r.begin(), r.end(), *this);
}

};
tbb::parallel_for(

tbb::blocked_range<Iterator>(begin, end),
function(...),
tbb::auto_partitioner());



TBB Ranges

• ranges have grainsize, indicating atomic 
sizes

• grainsize may be heuristically determined

• it isn’t exact

• rule of thumb: at least 10,000 instructions

• have “split constructor”

• take a dummy argument of type tbb::split



More On TBB Ranges

• tbb::blocked_range<T> works for

• integral types

• random access iterators

• ranges can be user defined

• have to follow some simple concept



tbb::parallel_reduce()

• similar use to tbb::parallel_for()

• function object non-constant

• the result is accumulate using join() 
function
on the function object

• used e.g. for find(), min_element(), etc.



tbb::parallel_scan()

• computes a scan for some associative ⊕

• y[0] = id ⊕ x[0]

• y[i] = y[i-1] ⊕ x[i] ∀ i > 0

• two passes over each range

• dummy argument indicating which pass



Other TBB Compoents 

• usual mutex, lock, etc.

• atomic operations

• concurrent containers

• concurrent_queue<T>

• concurrent_vector<T>

• concurrent_hash_map<Key, Value, 



TBB Summary

• restores free lunch when using many tasks

• library on which to build parallel 
components

• it probably needs some baking to work 
smoothly

• ... but it is certainly an interesting approach 



Detailed Information

• Herb Sutter’s articles in Dr.Dobb’s which 
hopefully becomes “Effective Threading”

• “Programming with POSIX Threads”,
David R. Butenhof, Addison-Wesley

• “Intel Threading Building Blocks”,
James Reinders, O’Reilly

• www.sgi.com/tech/stl/thread_safety.html

http://www.sgi.com/tech/stl/thread_safety.html
http://www.sgi.com/tech/stl/thread_safety.html

