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~ Aims and Objectives of the Session

« Raise awareness that threads are the problem as
much as the solution.

* Show that threads are a low-level language
implementation tool not an application
programming tool.

e Show that higher-level abstractions are needed
to manage parallelism in the brave, new,
multicore world.
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e Look at the threads support in Java, C++, and C.

* Look at some of the most obvious problems.

* Look at how Erlang and Occam deal with this.

* Tentatively, propose a new next layer model for
Java, C++, and C.
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s and Objectives

To convince people that learning and using
multiple programming paradigms is the road to
improved competence.
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» Expertise is not the number of years of
experience in a given language — though that is
a factor.

* Expertise is strongly related to the number of
different types of language a person is fluent in.

. Learning and being able to use C, C++,
N Java, Python, Ruby, Groovy, Fortran,
Haskell, Erlang, etc. properly makes
you a better programmer.
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Subliminal Advertising

Python for Rookies

\ Sarah Mount, James Shuttleworth and
Russel Winder

Thomson Learning
>
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Now called Cengage Learning.
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More Subliminal Advertising

Developing Java Software
\ Third Edition

Russel Winder and Graham Roberts

Wiley
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Developing C++ Software

Second Edition

Russel Winder

Wiley
Only buy this book is you are
studying the history of C++
and how it was taught.
N

Lecrners of C++ 1iszdd to need this book, |
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Camera and Me

Dr Russel Winder
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Partner, Concertant LLP
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he Keywords
* Multiprogramming .
e Multitasking .
e Multithreading .
 Concurrency .

~ » Multiprocessing

o Parallelism
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e Multicore
« Data parallel o Cluster
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« Tightly coupled

* Loosely coupled

e Livelock
 Deadlock
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A Bit of History
In the Beginning

*’ » Computer hardware was expensive and hard to
| find; maximizing utilization was critical.

* Multitasking (multiple concurrent processes) was
crucial for maximizing availability and utilization.

e Virtualization was flirted with, but it did not
become mainstream — though recently it has
become de rigeuer.
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A Bit of History
he Early Middle Period

e Tasks/processes seen as too heavyweight.
» Lightweight processes, aka threads, introduced.

e |ssues:

— Tasks/processes had hardware and operating
system support, threads did not.

~ — Tasks/processes have separate memory; threads
~_are a shared memory approach.
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Late Middle Period

Sun LWP

PThreads
777
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A Bit of History
Modern Times

f * Java integrates threads in the core model.

- One model makes programming more consistent.

— Monitors as well as locks are an integral part of
the language.

* C++ has no standard so the plethora remains.

— C++40x shows that the C++ committee consider
threads need standardizing.

- Basically PThreads.
- What happened to Boost.Thread?

- No integration of higher-level mechanisms.
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e Who said:

“Multithreaded programming is fraught with many
challenges, and can rightly be considered
something that the majority of programmers
should steer clear of.”
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onsequences

» All computers are parallel processors.

* Multicore processors and multiprocessor systems
offer threads as the mechanism of control.

—

e The majority of programmers should steer clear
of computers.
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. Only write single-threaded programs.
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“Thread Safety

 Java really brought thread-based programming
to the masses.

e C and C++ had threads but they were an add
on.

 Java brought “thread safety” front and centre:

- Library classes made thread safe.

- Programmers taught to think about concurrency
and thread safety.

- Thread safety kills performance of single-threaded
applications.
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e StringBuffer Problem

» StringBuffer is a thread-safe class (well as much
as possible).

It is heavyweight and slow.

String manipulation is at the core of everything.

StringBuilder is a necessity.

Is there “too much thread safety”?

No just inappropriate thread safety.
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 The basic data structures are not thread safe,
they are as fast as possible in a single-threaded
context.

* Thread safety is achieved through added
adapters.

Collection.synchronizedSet
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Collections as Anti-Pattern?

public static <T> Set<T> synchronizedSet(Set<T> s)

Returns a synchronized (thread-safe) set backed by the specified set. In order to guarantee serial

access, it is critical that all access to the backing set is accomplished through the returned set.

It is imperative that the user manually synchronize on the returned set when iterating over it:
Set s = Collections.synchronizedSet(new HashSet()):

synchronized(s) {
Iterator i = s.iterator(); // Must be in the synchronized block
while (i.hasNext())

foo(i.next());
}

Failure to follow this advice may result in non-deterministic behavior.
The returned set will be serializable if the specified set is serializable.
Parameters:
s - the set to be "wrapped" in a synchronized set.
Returns:
a synchronized view of the specified set.
From Sun’s APl manual


file:///opt/java-6_docs/api/java/util/Set.html
file:///opt/java-6_docs/api/java/util/Set.html
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Util Concurrent

Does ConcurrentSkipListSet solve the problem?

Possibly, but probably not.
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Dissention

e Concurrency in Java is hard:

— Threads is the biggest problem in all Java training.

— java.util.concurrency still doesn’t make it easy
enough.

* Occam and Erlang never bought into the
threads model for programming:

- Message passing is the only model.

- No synchronization because there is no shared
memory.
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he Problems of Threads ~_
HM\”&.
 Shared memory. * Flow control.
* Flow control. « Shared memory.
e Shared memory. * Flow control.
* Flow control. e Shared memory.
* Shared memory. * Flow control.
-"‘“\Ii ow control. * Share memory.
N
e Shared memory. * Flow control.
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ent-driven Programming

e Event loop
» Callbacks/even handlers to deal with things.

e Standard architecture for GUI and networking.
- Swing/AWT

— Gnome

— Twisted Internet

Does this solve the problem
— no.
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onomy Of Parallelism

Shared memory.
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e Distributed Memory:

- Slow
communications:

* errors likely.

— Fast
communications:

* errors unlikely.
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ter Parallelism

Processes on separate
computers.

Communication by
message passing.

Copyright © 2008 Russel Winder

« PVM
« MPI
 Erlang

Concertant LIP
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Single system.

- Shared memory.

— Bus-based message
passing.
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Itiprocessor Parallelism

Concertant LIP

* Processes/IPC

* Threads

* Message passing:
- Occam

- Erlang
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at To Do

» Refuse to use multiple
threads.

e Never use shared
mutable state.

Concertant LIP

« Always use message
passing.

Put a layer on Java for doing
message passing.

Something pairing with
java.util.concurrent.

Copyright © 2008 Russel Winder
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at have the HPC People Done?
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e OpenMP  MPI:
— Data parallelism. - Message passing.
— Fine-grain — Cluster-level
parallelism. parallelism.
— Thread - Process

implemented. implemented.
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e Threads are needed but they are not a
programmer tool.

* Why bother with an explicit threads APl when
OpenMP is available?

* Why not use a language that supports
~ parallelism directly:

- Erlang

\\‘H@skell

— Occam
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