Modelling Archetypes

ACCU Conference 2009
Hubert Matthews
hubert@oxyware.com

Overview

Archetypes — modelling patterns
Static data modelling
_Inking to dynamic behaviour of system

Rules and constraints
Various bits of history
Extensions to SOA, ESB and other stuff

Four basic archetypes

Entities — “people, place, thing”
Transactional objects — order, loan, payment
Descriptions/specifications — title, type objects

Roles — borrower, authoriser

Entity classes

The nouns In the standard “find the nouns”
approach to OO — modelled in “green”

Fairly static, eminently cacheable

No notion of time (history or future)
Have identities (name, ID, etc)

Create, read, update, delete operations

Data only; no significant business processes
“Dull” use cases — get/set, edit/manage

Often where people stop modelling (get stuck)
Examples: customer, product, warehouse

Transactional classes

Where the interesting stuff Is!

Related to time (look for timestamps) or states
(look for status/modes)

Can deal with history and future, timespans
High-volume, dynamic
Link entities together — modelled in “pink”
Basis of business processes

Examples: loan, order, reservation, payment

Business forms are pinks that refer to green
entities

Modelling In colour

Patterns of connections between archetypes

Use colour to denote archetypes anc

connection patterns to guide model building

time and metadata
in linking class

«busn obj=
Fersan

firstName: string
lastMarne: =tring

stransactional =

multiplicity on
Loan

“hot” end

date Borrowed: date
dateDue: date
dateReturned: date

«busn obj=
Book

- title: string

no direct
entity-entity link

Description/specification objects

Entities sometimes have associated
iInformation about their types

Use a description or specification object -
modelled in “blue” (as in “blueprint”)

Examples: title (book), make/model (car)
Catalogues are collections of blues
Type Object pattern

Can be used to implement business and
configuration rules in data

Fowler's Knowledge/Operational Split pattern

Rules in data (knowledge)

associated
business
process

sdescriptions
ConnectorType |-

allowed

configurations
(knowledge)

wdescriptions

CableType

Fowler’s
knowledge-
operational
split

Only certain types of
connector/cable
pairings are valid

Use type objects to
encode rules

Connection has 1:* to
allow for time element

Could use direct
green-green link If
history/future not
required

Modelling guidelines

Connect entities via a transaction (“pink”)

Represents a step in a business process
Has time element, rules and constraints
Allows for history and future

Connections between similar archetypes are
whole-part relations (UML composition)

Multiplicity is 1 for whole, * for part
Dependent objects

“*" multiplicity on “hot” end (pink->green-
>blue)

Great check on cardinality in database schemas

Simple order example

dtransactionale
(rderheader

¥

dtransactionale
(raderLine

bl ofj»
CUstamer

4blsn ofj»
Product

¥

e
ProductType

Common Issues

Not using transactions (“pinks”) for linking

Entity-to-entity links have no notion of time

Current state only; no history or future

No place for metadata — who did what when
Confusing entities and description objects

Title v. Book

Theatre example

Nesting of pinks for
different time spans

¢transactional=
G howy

stranzactional=

—

Fee

stransactional=
Contract

Part

<busn obj=

“buy” side

*®

stransactional=
Performance

<busn obj=
Actar

stransactional=
Ticket

0.1

e

<busn abj=
Customer

“sell” side

Copyright © 2009, Hubert Matthews

N

stransactional=
Payment

<busn abj=
Seat

*

sdescription=
SeatType

Mostly

associated
-=5=.trar|fa_|:_triu:|r|a|:¢- Wwith cross-
' component
links
eobr _ . Represent
Borrawer |.l:' ru:h* Ir Bor rﬁ; n' H:II tem o | es In a
transaction
@ . Come
Persan Library
«bsn obje &pusn obj «husn obje tran SaCtl on

Persin Library Book an d e n tl tl e S

Roles (2)

An example of Proxy pattern (1:1 multiplicity across
component boundary)

Act as views on a database

Only detalls relevant to importing package
May also contain package-specific state

More advanced modelling tool - not always required

Related to Role Decoupling (a.k.a. Interface
Segregation) pattern

E.g. Person may have roles of Doctor, Patient, Parent
One green, three roles

Programming interfaces for mocks during testing

History lesson (Part 1)

“Modelling in colour” - Peter Coad (Together, now
Borland)

Only static data model —

Domain-neutral component unsuccessful attempt to
Include some process

Colours match available Post-It notes!
Object/relational mapping tools

Rails/Grails/A.N.Other ORM mappers
Static data only —

Domain-driven design (Evans) —

Jackson System Development has trees for
processes but no link to types/classes

Dynamic process modelling

Systems are built to do things, not store data

More important than data model but not as
well understood or used as often

Key Is that process model and data model
must link up

Deep synergies between the two
Not often appreciated
Based around transactional objects (“pinks”)

Statecharts v. activity diagrams

Two approaches in UML — statecharts and activity
diagrams

Statecharts are superior for modelling processes
(IMHO!)
Activity diagram issues

Unhelpful semantics in UML (Petri net — requires
branching)

Confusion over wait-on-arrows and wait-in-box
Encourage too much detail and drilldown

Statecharts tend to have limited number of states
that are relevant to business users

How do you know when you have got all of the use
cases/services? How can you check?

whole lifecycle

in one process Library process

W hereabouts kn%()r service
==

bar o ,q___|(On loan \|afterdueda

Cverdue]

e f
L
T

resheh.re retu rm return /fine

Heturned j/

recaord declared as lost || nn:d: seen for one year

superstate
é‘(an:hwe record |(Lu:ust j\@

Final

Links to data model

ctransactionals

Service/use cases have associated objects
Reporting, statements, audit, data mining, etc
Some just create new “pink” objects

Some also change existing “green” entities
e.g. update stock level

Major phases In processes

Creation/setup, during operation, cleanup

Pensions: new business, servicing, drawdown

E-commerce: quotation to order, fulfilment, invoice to
payment

Airport: before arrival, aircraft on stand, after departure

Business transactions and contracts between
phases

Often separate departments in a business
Handoff, passing of dossier/files (i.e. data flow)

Business forms are pinks that request green
Information

“Office use only” sections are process-level pinks

Major phase examples

Quotation->order, pick/pack/ship, invoice->pay

Departmental boundaries, separate systems
Real-world contracts at handoffs

Source of much integration work! (“Customer” everywhere but
may be different -> roles!)

Major phases and data model

Each phase has a new top-level pink
Quotation, order, invoice
Relationship across time is 1:0..1 or 1:0..*

Lots of conditional links because things may
not have happened yet

warehouse

Events and “pinks”

State machine is effectively a parser for
Incoming events (services/use cases)

Enforces ordering of business process events
A regular expression parser

Jackson System Development (JSD)

Has entity lifecycles that describe this grammar

No direct links to data model, however
(Previous set of linked pinks is an OO JSD tree)

Layered systems

Classic three-tier architecture

Presentation, “business logic”, data/persistence
Everything up to now is in the data layer

Middle layer not well understood
What does it do to what?
Controllers (pieces of code) publish services

that manipu
Enforce

ate pinks (and greens)

norocess statecharts and business rules

Business rules

Most rules are about whether a pink
transaction object can be created or modified

Can person X borrow book Y?
Some are read-only (access control)

Can person A look at bank account B?
Implemented in controllers in middle layer

Conceptually, controllers have a list of all
possible new pinks, I.e. all allowed actions

May also be implemented by role objects
Rules are important and often overlooked

Service-oriented architecture

Example of Spring dependency
graph showing inter-component
(.e. service) connections

SOA exposes
middle layer

Requires layering
of services to
enforce rules

c.f. Spring’s
external “wiring” of
components

Too often people
think SOA is flat
and forget rules

SOA (2)

Archetypes help distinguish process-specific services
for pinks from CRUD services for greens

Example: Create a purchase order

Simple base service just creates a pink

Huge number of rules: budgets, preferred suppliers,
approved items, payment terms, etc

Layered services enforce rules and manipulate
pinks/greens in data layer

Web services deal with processes and rules (verbs)

RESTful services deal with data and often omit rules
CRUD access to nouns (mostly “greens”)

ESB

Content-based routing

“Pink” flows through system

Process statechart implemented in parts by
iIndividual systems (major phases)

Federated collaborative approach
Orchestration

Centralised management of process statechart
“Big box in middle” approach

Data duplication — keeping “greens” up to date
Similar to data-flow diagrams

BMUF (big modelling up front)?

Lightweight models — not even attributes/fields

Used for thinking, describing, analysing and
structuring systems

Not used for code generation
Agile
(not Scott Ambler’s “agile modelling”)

History lesson (Part 2)

Approaches that fit this style

Yourdon and Schlaer-Mellor — both have objects and states
but don’t link the two (and no pretty colours!)

Jackson System Development — very close, no direct link
Colours help a lot

Names for archetypes are useful, pattern names
Modelling rules give quick check on multiplicities, etc
Inspired by Coad’s Modelling in Colour

Catalysis 1 had most of this but without colours and
wasn’t particularly approachable

Approach shown here is much easier and based on
Catalysis 2 (shameless plug....)

Summary

Joined-up modelling is both possible and necessary
Better requirements capture, easier implementation

Agile models lead to better architectures

Separation of different archetypes/colours

Transactional objects (“pinks”) are the key

Most people focus unduly on data model but not on
pinks

Insufficient attention paid to process and rules
Lightweight models aid thinking and structure

Heavyweight models and code generation don't!

