[y

Defining Domain-Specific
Modelling Languages

22 April 2009

Juha-Pekka Tolvanen, Ph.D.
m MetaCase

Y

Outline

Introduction

The vision of Model Driven Development
Examples and case studies

Architecture for defining and using MDD
Implementing MDD

Summary

© 2009 Juha-Pekka TolvaneMetaCase 2

Defining Domain-Specific Modelling Languages - Tolvanen

[y

Outline

B Introduction

B The vision of Model Driven Development
- DSM: Domain-Specific Modelling
- SF: Software Factories
- MDA: Model Driven Architecture

© 2009 Juha-Pekka TolvaneMetaCase 3

o,

How has productivity improved?

B "The entire history of software T
engineering is that of the rise in [|
levels of abstraction” . 3

Mumber of new product features
implemented in a given time
(productivity proportional to Assembler) 30

B New programming languages
have not increased productivity

B UML and visualization of code
have not increased productivity

B Abstraction of development can
be raised above current level...

B ... and still generate full
production code (and ignore it!)

Assembler Forran Basic G Jawa Domain-
ML) (UML) Specific

*Software Productivity Research & Capers Jones, 2002

© 2009 Juha-Pekka TolvaneMetaCase 4

Defining Domain-Specific Modelling Languages - Tolvanen

(g

Modelling functionality vs. modelling code
1))
E Map to code, implement Finished
g = Asssmbler ----- Product
c S
‘©
5 d [’
Map to code, implement :
z P Code
iE) Generate,
e Add bodies
& Map to UML
v UML Model
©
0
No need Modelin Generatecode .. Domain,
to mapl Ianguage Frameworﬁ
© 2009 Juha-Pekka TolvaneMetaCase 5

o,

DSM: Domain-Specific Modelling

B Captures domain knowledge (as opposed to code)
Raise abstraction from implementation world

Uses domain abstractions

Applies domain concepts and rules as modelling constructs
Narrow down the design space

Focus on a single range of products

B Lets developers design products using domain
terms
= Apply familiar terminology
=> Solve the RIGHT problems
= Solve problems only ONCE!
— directly in models, not again by writing code, UML, docs etc.

© 2009 Juha-Pekka TolvaneMetaCase 6

Defining Domain-Specific Modelling Languages - Tolvanen

[y

Example: Digital wristwatch

Product family Finished

- Models: His, Hers, Sport, Kid, Traveler, Product
Diver...

Reusable component applications

- Time, Alarm, Timer, WorldTime, StopWatch...
Hide complexity from modeller

- Model-View-Controller separation

- Separate thread for real-time display
Implementation in Java

- Also in MIDP and in C

No need Model in Generate code Domain

to mapl Iar?gsuhgge Frameworﬁ

© 2009 Juha-Pekka TolvaneMetaCase

=
Comparing Code, UML, DSM

DIIUEILE m Let’s add a new killer feature! Finished
Idea - Stopwatch with lap-time function Product

B Points of comparison:

- Where are we thinking: domain or code
world?

- Support for getting the right domain
solution?

- How long does it take?
- Can we do it right first time?
- Is everything updated that should be?

No need Model in..... Generate O
DSM E
| ramewor
to map! |anguage
© 2009 Juha-Pekka TolvaneMetaCase 8

Defining Domain-Specific Modelling Languages - Tolvanen

Code-based approach

Down

& Exploring - C:\MetaE dit\MetaE dit MWB 3.0\Reporls
Fie Edt Vew Go Favoies Toos Hel

Address [CAMetaEditMetaEdit MWE 3.00Reports =l

Calculate
Name [Size [Type [Modified

oot ecaioniars 50 inva e laptime
[P i rroorarmer's e Edtor - Dstopmatchioval 2 JRI=TE

S Alaml [Flo Edt Options Tempite Execute Mocro Window Hep

2] Celestre
[3] Colesti
=

Decom

Display laptime

50| e clcs Stopymten extonds abstracin

(2] Displeg! e
S vert oiie i i stepiine' = nev miine))]
o P ETIne geistartTine) ¢ 1. Read the d t
g y vt starttine . ea e aocuments
3] Displayt public veid setstartTime(METime t1) { . .
Bowks| sttt " i 2. Find the solution

leonan, PuBLIc HETine Getstoptimet) ¢ .

b sy .

o] Find th I t cod
Buml 3. Fin e relevant code
2] simple.j 5 \ .

B < 4. Change the right cod
Aol e e e . ange the ri codae
25 e
K addTransition ("Start [Wateh]”, *%, 7, "Stopped™)s D t th d h

B 5. Documen e code change

Time.jar agd¥ransition (“Stepped™, “Hode™, ", “Stpy e8i*);
@TWE,"E asdiransition (“Stopped™, “Bawn”, “a32 135K, "Stopped”);
2o S ansition C-Stapped, Ui “azs 1817, Ahumning'): 6. Test the chan ges

nyTer agdfiansition (Busning’, “Hade®, U “Stap {aten}” .
i Chnantiaes e PR G

"Watch, 1
B s cma, -1, e seian, s | | 7. DOCUMent the solution
Bl | nee e s
3] wordT i
Ly . public Object a22_7180)

- Tt calt ® | WAl [reconNowiesPosTS ||
93 obect(s) TESKE [k free space 1) My ompuler 7l

© 2009 Juha-Pekka TolvaneMetaCase 9

Desameran | [S e [e) [

& Exploi Metak dit MWB 3.0\Reports ame “biking Geortiare | [HOUR_DF AT || saeton e e
Fle Edt Yiew Go Favortes Tools Hep won_| | st || deondidge e Aargettae display 4390

e s
HUNDREDTH e

Adess [CAMetaEditMetaE it MW 30\Reports | J Dispiayinfo0 sias laritg

doskrize

Nome [Siee[Tope T Miodfed Simpe e e’

2 Abstactwatchbppiicationjava KB JAVA File 1220011325 START buttonPans!

[3) dam.java KB JANA File 1220011328 o g Timer il ~

3] AlamClock java 3B JAVA File 1220011325 decommmontions v o appFieid

2] Celestrajava KB JAVA File 1220011325 state Transitions. 12 19300 sengthLett stateField wSpoty0

[2] Celestion ava KB JAVa Fie 1220011325 SmeDiplys T 00
DecompPaitiava KB JAVA Fie 1220011325 STaRT Soetingth w0

3] Deleiajava KB JAVA Fle 1220011325 sT0P worldTime e ey \i Varturer

[2] Dispegirfo ava K JAVA Fie 122001 1325 e o ity o
Displa022 v KB JAVA Fie 1220011325 StmeTansiions v geisopTine; +par

e #ots oo R

(3] Displag025 ava 1K JAVA File 131220001553 stteDiplys ssastisa) g o

[5]Dipay032iava e e e 1220011325 derme) i st e

(3] Displagi125 v KB A Fie 1220011013 a0 w22 2500 O, L

3] Displayi234,ava KB JAVA File 1220011325 s o o) g e

5] Displa334 v KB VA Fie 1200011325 et przgittd w0 vTechnge)
leanjava KB JAVA Fie 1220011325 sgusysTime) - N H) e

a2 21050 aseamO)

[3] 1w _1 java 26 VA Fie 1220011013 et

5] METime.va X8 v Fie V22001325 > s w0

%Rmmm 1K JAVA File 122001 1325 Wm0 ateong T
Simpejava TKE JAVA Fie 1220011325 “alTanchion, [pmmczz]

2] Spoty.ava KB JAVA File 1220011325 el I times.

[2] Stopuaich.java KB JAVA File 1220011325 et utans

2] TAST jova K JaA e 122001 1325) /V

[2] TASTW java 28 Java Fie 1220011325 a0 Time | [Siaesa

[2] Timejava 3, JAVA Fie 1220011325 “pertom im0 D@0

(2] Timerava 4KE JAva Fie 1220011325 +Sbstractatchpliszion 25240

(3] TingT ewFidiova K JAA e 122001 1013 ectosim w00

tlooTima) ST e

[3] 5T java KB JAVA Fie 1220011325 SarisysTine) S0

Blwatchiara 2 VA Fie 41220001613 macheizn e N —— A

[3] walch X125 ava KB JAVA Fie 8122000 1813 Py i)

3] Venturer java KB JAv File 1220011325 i i N AocalTime Auareness.
WorldTime. java KB JaVA e 1220011325 e nenen0 Alametod ity
Zone java KB JAVA Fie 1220011325 sacSalizplagd e Stopwatch it

B AlermClock. doc 320KB Misrosoft word Docum... 11.12.200014:24 o getalamTimes) D Aampgpliation

KTin : o - S | »rI ioonnfi) eatamiTiney il locaTimabumrenes=

prosdvit Hamlo: gD alamoe

[S3abict) [EG5KE (i hee spact 5 Hy Compter Poviiat i namonag e

e Jomsridind i
iy o) "
S s
) im0 g,
+az2 10370 a0 o
P 0
© 2009 Juha-Pekka TolvaneMetaCase 10

Defining Domain-Specific Modelling Languages - Tolvanen

|

UML Modelling

1. Read the documents

2. Find the solution

3. Find the relevant models¢;

4. Change the right code
and models i

5. Document the code and

model changes .
6. Update models (Use
cases, Class models,
Message sequences
models, State models
etc.) o
7. Test the changes S
8. Document the solution Emr—=rm

© 2009 Juha-Pekka TolvaneMetaCase 11

Domain-Specific Modelling

1. Find the relevant models
2. Change the models

e add feature

e generate code
3. Test the changes

he current time and shows it on &
[-IBIB\ lay. It keeps the stopwatch still !
ol (e
i
© 2009 Juha-Pekka TolvaneMetaCase 12

Defining Domain-Specific Modelling Languages - Tolvanen

b

Why is the vision possible (nhow)?

B Need to fit only one company’s requirements!
B Modelling is Domain-Specific
- Works for one application domain, framework, product
family etc.
- Language has concepts people are already familiar with
- Models used to solve the problem, not to visualize code
B Generator is Domain-Specific
- Generate just the code needed from models
o Efficient full code
¢ No manual coding afterwards
¢ No reason for round-tripping

- Generator links to existing
primitives/components/platform services etc.

- Can generate 3GL, Assembler, object-oriented, XML, etc.

© 2009 Juha-Pekka TolvaneMetaCase 13

=

MDA: Model Driven Architecture

B Hard to pin down: all things to all men
B Strong lock-in to OMG
- Initially "you must use UML"
- But later, in MDA manifesto, Booch et al. say:
"The full value of MDA is only achieved when the
modelling concepts map directly to domain concepts
rather than computer technology concepts"
- Now: "you can have any language you like, as long as it's
like UML" - only allowed to build languages with MOF
B Schism into two schools of thought:
- Elaborationist (OMG): Model a bit, transform, edit
transformed models, generate, edit generated code
- Translationist (XUML): Generate directly from high level
UML-like models

© 2009 Juha-Pekka TolvaneMetaCase 14

Defining Domain-Specific Modelling Languages - Tolvanen

b

MDA Pros & Cons

+ OMG: Some claim to vendor-independence (IBM?)
— Standard is missing major areas

— Based on UML, largest and most bug-ridden standard
— Large number of other coupled standards

— MOF, XMI, OCL, QVT - all moving targets, unproven
+ Focused on one domain anyway

+ Business apps with db and web or GUI front-end

+ Largely an accident: just didn't know other domains
+ Vendors will make something work

— But you won't be able to make your own language
— Productivity gains minimal

— E.g. +30% in vendor-sponsored test

© 2009 Juha-Pekka TolvaneMetaCase 15

=

How is DSM different from MDA?

Same idea on using models and transformations, but...
DSM is always full code direct from models
- Not OMG MDA (elaborationist)
- Simpler in terms of versioning and management
B DSM = domain-specific language and generators
- MDA is UML-based*
B No reverse- or round-trip engineering in DSM
- We want a real lift in the level of abstraction
- How often do you reverse engineer assembler to code?
Separation of concerns

- You are the experts in your domain and code (not the
vendor)

B DSM is agile: as much or as little as you want
* official definition, www.omg.org
© 2009 Juha-Pekka TolvaneMetaCase 16

Defining Domain-Specific Modelling Languages - Tolvanen

b

SF: Software Factories

Strongly Microsoft-oriented

- But main figures from outside Microsoft:
Greenfield: Rational, Short: TI, Cook: IBM, Kent: Kent

Grand Unified(?) Theory
- 666 pages
- Patterns, AOP, reuse, platforms, components, services
- DSLs, generators, frameworks
Vision varies under commercial pressure
- First own languages, then wizards, now MS designers
Focus on MS & partners building and selling DSLs
- ISV sells same DSM solution to many companies
e Less domain-specific, companies have less control
- Offsets the "massive effort"* of using their tools
e *Quote from Prashant Sridharan, lead product manager

© 2009 Juha-Pekka TolvaneMetaCase 17
SF Pros & Cons
+ Microsoft: Massive resources, will get it made:
Windows 1.0 2.0 3.0 3.1
announced |released |released released released
1983 1985 1987 1990 1992
— Microsoft: too many cooks and agendas
— Building meta-tools requires strong leadership, focus
— Will the project be continued (remember Rose in VS?)
— MS team lacked real-world experience in DSM
— Will need a rewrite, but will it happen?
+ Basic ideas are sound
+ Book mostly better than later marketing
© 2009 Juha-Pekka TolvaneMetaCase 18

Defining Domain-Specific Modelling Languages - Tolvanen

[y

DSM Pros & Cons

+ Fundamental productivity and quality improvements
+ 300% faster in scientific study

+ 500-1000% reported by companies

+ 50% less errors in scientific study

Gives full control to the company

+ Their experienced developers are in the driver’s seat
Requires expertise and resources from the company
Minimal vendor lock

+ Metamodel-driven tools are open

+ You can translate & transform models to other tools and
formats

Most tools not mature or “industrial strength”
— Do not scale to multiple developers or models
— Do not handle evolution and maintenance

=+

+

© 2009 Juha-Pekka TolvaneMetaCase

19

o,

Outline

|

|

B Examples and case studies
- Smartphone applications
- eCommerce marketplace

© 2009 Juha-Pekka TolvaneMetaCase

20

Defining Domain-Specific Modelling Languages - Tolvanen

10

|

Enterprise apps in smartphones

Symbian/Series 60 for enterprise application
development

Platform provides basic services

Modelling language to define application logic using
basic widgets and services

Code generator produces 100% of implementation

Complete chain from model to running app

© 2009 Juha-Pekka TolvaneMetaCase 21
E Application: Conference registration, May 26, 2004, 14:19.
Graph Edit Yiew Types Help
RN R
OTfOoOfFEoBHo=—@ @E & 6o fio |
== LSS e il =
l Payment method
Cores Gy H_
Registration 1 N Ree rvoice T
Welcame Credit card
o
Tew program !
Cancel registration program
12345674 Registration
+Pershiames, +Payment
Cancyl
registration
S Registration made &
12345675 Cancel Cancel o
6 Program
on e
By o ZSystemiepsHPythentiilicsath
3MS cancellation ﬁ 4
- e L)
1
% | >
Active: None | Subgraphis): None | Grid: 10@10 | Zoom: 100%
© 2009 Juha-Pekka TolvaneMetaCase 22

Defining Domain-Specific Modelling Languages - Tolvanen

11

[y

. Conference

O T2: Jackson

O T3: Holland
T4: Cohen
T7: Dawson
.fj Cancel
© 2009 Juha-Pekka TolvaneMetaCase 23

o,

Insurance products & eCommerce

B Developing portal for insurances and financial
products

B Need to specify several hundred financial products

B Insurance experts visually specify insurance
products and generate code to the portal

B Comparison to writing directly Java after first 30
products = DSM at least 3 times faster, fewer errors

© 2009 Juha-Pekka TolvaneMetaCase 24

Defining Domain-Specific Modelling Languages - Tolvanen

12

roductmodell: Vehicle Insurance, August 20, 2003, 1

Vs Types Help
YR oo B oo®s
Am:

| k43

= Elem A BSCOICO(5) F [0 a5 Den Bt ce

Comprehensive
CarTiwmer Takes Coverage

Thett Fire

Collision

W

/

Animal

ard Party

Damage 31d
party

Damage \

public class Basis extends ProductRepository
<

Car Driver Passenger 3rd Party
o
< s |
| Active: None | subgraph(s): None [Grig: 1010 [Zoom: 100 |
© 2009 Juha-Pekka TolvaneMetaCase 25
3 TR
e Edt Options Templte Execute Macro Window Help 8l x|

public Basis{String name)

¢
super(name);
PRODUCT_NAHE = Basis;

MoFPackage productpackage = createproduct();
this. addHofPackage (productpackage:
¥

public Basis()
<

name of namespace ProductRepository not used
this(Basis);
y

private MofPackage createProduct()
<

productpackage.

new HofPackage(PRODUCT_NAHE) 5

// Global Instances, will be re-used by each section
Hofattribute attribute;

Mofassociation mofAssociation;

Constant constant;

AssociationEnd end1;

AssociationEnd endz;

Reference reference;

7"

17 Tags

7.

beitragssicht_ = neu Tag(“Tarifierung”,MofHodelConstants . TAGID_TARIFII
productpackage_.addContainedTag(beitragssicht_|

selektionssichtTrue_ = new T

Selektion_true™,HofHodelGonstants . TAG
selektionssichtTrue_.addValue("True");
pmnuctpx:kzge,.anncnntamenng(suektinnssicnurue 3

angebotssicht_ - new Tag("Angebot",HofHodelConstants. TAGID_ANGEBOT);
productpackage_.addContainedTag(angebotssicht_);

=l
|
= Hi=l E3
B2 |
| Hungsnaten |

65Dk von pecte, Harry
e—

Hior e Sie e Resgstricrungs deen ndern

1 i Gasae 120
3 Kontabtmagizrieten
—1. Tateton: 09000234 g Foer
| |2 ez rgzer
3 Fax () Voreors.
- Bankver

N
nz | E— =G
Sna

7
71 Exceptions

HoFException Exception1 = new MoFException (“Exceptiont™)

parameter - new Parameter (“ExcepParani”, neuw DataType(*Haftun
-addParamet er (paraneter

parameter = new Parameter (“ExceptionParanz”, mew DataType(string™));
-addParameter (paraneter)

‘
Ln1Col1 [70 [WR[

[Rec Off [No'whap [DOS INS NUM |

e

© 2009 Juha-Pekka TolvaneMetaCase

26

Defining Domain-Specific Modelling Languages - Tolvanen

13

[y

Where to apply DSM

B Repetitive development tasks

- Large portion of the work similar to earlier products
(or several products made in parallel)

B Domain expertise needed
- Non-programmers can participate

B These normally include:
Product Family
Platform-based development
Configuration

Business rule definitions
Embedded devices

© 2009 Juha-Pekka TolvaneMetaCase

27

o,

Outline

Architecture for defining and using DSM
- Implementing and using DSM
- Tools for DSM creation and use

© 2009 Juha-Pekka TolvaneMetaCase

28

Defining Domain-Specific Modelling Languages - Tolvanen

14

<
Modelling domain vs. modelling code

Map to code, implement Finished
= Asssmbler ----- Product

Map to code, implement g
P Code

Generate,
Add bodies

Map to UML
UML Model

Solve problem in domain terms

No need Model in -
AT Generate code Domain

..

to map! "Language Framework

© 2009 Juha-Pekka TolvaneMetaCase 29

o,

Domain

How to implement DSM

i 1
Done a few times before! Finished

Product

Expert
(few) DSM Code Framework
language generator code
/' j
J

/4 i "
S\ e . :

Normal Ly Modelin | .Generate code . Domain ...

(many) language Framework
© 2009 Juha-Pekka TolvaneMetaCase 30

Defining Domain-Specific Modelling Languages - Tolvanen 15

b

DSM environment

DSM environment

B Three things are required for a complete DOMAIN.

DSM environment: SPECIFIC
. . . MODELING
1. Domain-specific modelling language LANGUAGE

- Metamodel (of the language) maps to
problem domain (not to coding concepts)
- Metamodel bounds allowed design space

DOMAIN-
2. Code generator(s) SPECIFIC
CODE
- Generators read models to produce code ENERATER

- Provide variation for output formats

3. Domain framework

- Include common aspects used as
primitives/components/platform services DOMAIN

- Called by the generated code FRAMEWORK

© 2009 Juha-Pekka TolvaneMetaCase

=

Defining a DSM solution: steps

1. Identify abstractions
- Concepts and how they work together
2. Specify the metamodel
- Language concepts and their rules
3. Create the notation
- Representation of models
4. Define the generators
- Various outputs and analysis of the models
B Apply and refine existing components and libraries
B The process is iterative: try solution with examples

- Define part of the metamodel, model with it, define
generator, extend the metamodel, model some more,

© 2009 Juha-Pekka TolvaneMetaCase

32

Defining Domain-Specific Modelling Languages - Tolvanen

16

[y

Tools for DSM creation and use

B 6 ways to get the tools we need for DSM
Write own modelling tool from scratch
Write own modelling tool based on frameworks
Metamodel, generate modelling tool skeleton, add code
Metamodel, generate full modelling tool over a framework
Metamodel, output configuration for generic modelling tool
6. Integrated modelling and metamodeling environment
B Good tools minimize resource use (few man-weeks)
- creating modelling tools and generators data-like, not code
- guide in DSM creation
- allow you to test DSM throughout domain design process
B Good tools allow DSML to change, and reflect changes:
- to modelling tools
- to design models already made

[

aua b wWN

© 2009 Juha-Pekka TolvaneMetaCase 33

o,

Implementing DSM

- Identifying modelling concepts and rules
- Building generators

- Building a domain framework

© 2009 Juha-Pekka TolvaneMetaCase 34

Defining Domain-Specific Modelling Languages - Tolvanen

17

b

| Implementing modelling

languages

B The most important asset of a DSM
environment ggE“c":f\Flu'f:
- application engineers use it AN
- generator and framework largely

invisible

B Often includes elements of familiar —
modelling paradigms SPECIFIC
- state machine GENERATOR
- flow model

- data structure, etc.
B Language specified as a metamodel

DOMAIN
FRAMEWORK

© 2009 Juha-Pekka TolvaneMetaCase 35

=

Identifying DSM constructs

B Use domain concepts directly as modelling constructs
- already known and used
- established semantics exist
- natural to operate with
- easy to understand and remember
- requirements already expressed using them
- architecture often operates on domain concepts
B Focus on expressing design space with the language
- use parameters of variation space
- keep the language simple
- try to minimize the need for modelling
- do not visualize product code!
e better to “forget” your current code
B Apply suitable computational model(s) as a starting
point

© 2009 Juha-Pekka TolvaneMetaCase 36

Defining Domain-Specific Modelling Languages - Tolvanen

18

Approaches to identify concepts

B “How do I start to do DSM?”
- Hard problem for DSM beginners

- Analyzed over 20 cases to find good toolbox of
approaches

m Initial analysis suggested five approaches:
1. Domain expert’s or developer’s concepts

2. Generation output
3. Physical structure
4. Look and feel of the system built
5. Variability space
© 2009 Juha-Pekka TolvaneMetaCase 37
Problem domain Solution domain/ generation target Approach
Telecom services Configuration scripts
Insurance products J2EE
Business processes Rule engine language
Industrial automation 3GL
Platform installation XML
Medical device configuration XML
Machine control 3GL 1,2
Call processing CPL 2, (1)
Geographic Information System 3 GL, propriety raaduage, data structures 2
SIM card profiles Configuration scripts and parangete 2
Phone switch services CPL, Voice XML, 3 GL 2, (4
eCommerce marketplaces J2EE, XML 2, (4
Automation network C
Crane operations C/C++
SIM card applications 3GL
Applications in microcontroller 8-bit assembler
Household appliance features 3GL
Smartphone Ul applications Scripting language
ERP configuration 3GL 4,5
ERP configuration 3GL 4,5
Handheld device applications 3GL 4,5
Phone Ul applications C 5, (4)
Phone Ul applications C++ 5, (4)
© 2009 Juha-Pekka TolvaneMetaCase 38

Defining Domain-Specific Modelling Languages - Tolvanen

[y

1. Domain expert’s concepts

Concepts from domain
Mostly made without help
Simple MoC

Simple code generation
OK in established domain
Usable by non-coders

e e G| Zoome e

Insurance products/J2E

© 2009 Juha-Pekka TolvaneMetaCase 39

o,

2. Generation output

B Modelling constructs come from
code artefacts
B Static parts are easy
- Data structures
- Core XML elements
B Dynamic behaviour hard
- Full programming language?
- Need domain framework :
B Danger: low level of abstraction |
- Little productivity gain b= e e
® But works well with DSL or XML Internet telephony/CPL
- As opposed to generic 3GL

© 2009 Juha-Pekka TolvaneMetaCase 40

Defining Domain-Specific Modelling Languages - Tolvanen

20

|

3. Physical structure

Best for physical systems
- Networks, logistic systems,
HW architecture, train control,
factory automation, etc.
B Often static data model MoC

- Also describes connections
and dependencies

- May include behavioural
elements
m Visible domain concepts
- Easy to identify
- High level of abstraction
B Usually linked to other models
(and DSLs) to achieve more
comprehensive code
generation

© 2009 Juha-Pekka TolvaneMetaCase

| s e)

Automotive
HW architecture

41

4. Look and feel of the system

B Best for physical end product
- UI on PC, embedded, speech
® Often state machine MoC
- Also data & control flow
- Power of relationships
m Visible domain concepts
- Easy to identify
- High level of abstraction
B Domain framework hides code
- Don't write code in models...
- ...unless you really have to!
B Generators considered easy

© 2009 Juha-Pekka TolvaneMetaCase

s [Subgraphit ire [Gra: oa10_| Zoom vz

Smartphone apps/Python

42

Defining Domain-Specific Modelling Languages - Tolvanen

21

b

5. Variability space

Language concepts capture variability space
Modeller makes variant choices

- Composition, relationships, values
Infinite variability space (Czarnecki)

- Not just feature tree: unbounded product family
Used to create hardest DSM languages

- Handled most complex domains, kept modelling

simple

Static variance easy, dynamic harder
Consultant should be good coder
Customer expert in his domain and code

- Consultant should also be able to program
Predict future variability = high level of abstraction

© 2009 Juha-Pekka TolvaneMetaCase

=

Evaluation of the Approaches

Only certain pairs of approaches occurred
Hierarchy of approaches

- From less to more experienced DSM practitioners
Domain expert’s concepts - "we just did it"
Generation output

- Generic/ad hoc language not so good

- Established DSL good

Physical structure

- To support specifications in other DSM languages
Look and feel: common, easy, true DSM

. Variability space: adds power to handle complexity

- Found in very different domains

Best results combined 4 (L&F) and 5 (Variability)
- 4 gives objects, 5 gives relationships and properties

© 2009 Juha-Pekka TolvaneMetaCase

Defining Domain-Specific Modelling Languages - Tolvanen

22

Defining a metamodel

B Metamodel describes the modelling language
- e.g. class diagram (partially below) or any other language

Operation

Name:String
Return type:String

verridabiity: String [Overridable List]
Sterectype:String [Edtable List]
Wisibiity: String [Fixed List]

peration type: String [Fixed List]

Body: Text

ocumertation: Text

Parameters

am
arameter name: Siring
* DataType:String

Super
lass name:String urigus
Dvertidabilty: String (Overridable List] perations
Inherttance Eterectype: String [Exditable List]
Stk lapstractBoclean
TN bocumentation:Text
Assogition |, b
dass h
0N 1
Template parameters
Comment
N
ote et TR comment
ommen
o Aggregation Qualifiers *
Part
Whole Role name: String

Mutiplicity:String [Overtidable List]
OrderectBoolean
Navigable:Boolean

Multpiicity:String [Overridable List]
Compositior:Boolean

© 2009 Juha-Pekka TolvaneMetaCase

Attribute

piame:String
taType:String
efault value:String
ersistentBoolean
Stersctype:String [Edtable List]
‘Scope String [Fixed List]
Wcoess:String [Overridable List]
Wisibiity: String [Fixed List]
ocumentatior: Text

irection String [Fixed List]
efaut value: String

Set

Set
Get

Ninus
oM
Plus
oM

Variable

ame:String
e String [Fized List]
ocumertation: Text

Get Mius Pus
ON 0N

46

Metamodel of istwatch apps
- Example (partial):
Event
o1
State
ate name: String From g
lirking: String [Overridable List] rensiioy
ocumentation: Text
Action
i
:nnlD'Slrl!"\? Foceet sty | Bo0lean_ o ActionBody [Action | ActionBody Rall
ActionBody o
- ActionBiady
ActionBody
off
ey
lame:String alarm
Senzes Local Time:Boolean
© 2009 Juha-Pekka TolvaneMetaCase

Defining Domain-Specific Modelling Languages - Tolvanen

<y

Rules [1/2]

B The domain concepts of a modelling language are
bound together with rules
B Putting the rules into the language:
- prevents creation of illegal models
- informs about missing data
- ensures model consistency
B Prefer having rules as part of metamodel to having
separate checker
- Support early error prevention and provide guidance
- But going overboard can hinder flow of modeller

© 2009 Juha-Pekka TolvaneMetaCase 47

B

Rules [2/2]

B How rules are visible to modellers

- During modelling action

- Inform when illegal design is made

- In a separate model check window

- By highlighting element(s) with errors or missing data
B When to run a separate model check

- On demand
After certain model editing actions
Before code generation
Show in produced review documentation
Before versioning etc.

© 2009 Juha-Pekka TolvaneMetaCase 48

Defining Domain-Specific Modelling Languages - Tolvanen

24

b

Defining notation [1/2]

Vital for acceptance and usability
Symbols can vary from boxes to photorealism

- Best to resemble closely the actual domain
representation

- Worst is having everything a box and special text to
show the difference (cf. stereotypes)

- Design information needs space: compromise
B Don't create notation from scratch
- Use known/existing elements (and, or, start, stop etc)
Hint: ask users to define the notation
- It is much easier to introduce their own language than
something you created
- Remember also model readers

e managers, test engineers, customers, deployment,
configuration, packaging and even sales

© 2009 Juha-Pekka TolvaneMetaCase

49

=

Defining notation [2/2]

B Consider also other representational styles

- Matrices focus on relationships, avoid line-crossings, help
identify high cohesion and low coupling

- Tables and forms show details and support sorting,
categorization, comparison

- Diagrams good in finding patterns and organizing model
elements into non-linear structures

m Multiple representations possible for the same data
- E.g. as a relationship line and as an object
- Can also make symbols and texts retrieve others' info
- Changes in one representation update the others
B Use common symbol elements to improve readability
- Show if concept is reused, has a submodel etc.
B Use symbols to indicate the state of the model
- Missing information, errors, default value is not used etc.

© 2009 Juha-Pekka TolvaneMetaCase

50

Defining Domain-Specific Modelling Languages - Tolvanen

25

b

Generator

DSM environment

Generator translates the

R . . DOMAIN-
computational model into a required SPECIFIC
MODELING

OUtPUt LANGUAGE

1. crawls through the models
- navigation according to metamodel
2. extracts required information
. DOMAIN-
- access data in models SPECIFIC
T CODE
3. translates. it into thg code GENERATOR
- translation semantics and rules
4. using some output format
- possibility to define output format

DOMAIN

FRAMEWORK

© 2009 Juha-Pekka TolvaneMetaCase 51

=

How to design a generator
B Make the generator just for your situation
- Trying to make general purpose generator often fails
B Make generation process complete, target 100% output
- Never edit generated code: edit generator or framework
- Do you try to edit Assembler and keep C in synch with it?!
B Don't visualize code
- Generating one class header from one class in a diagram
helps very little, if at all...
B Put domain rules up-front to the language
- Generator definition becomes easier when the input is
correct
B Keep generator and generated code as simple as
possible
- Raise variation to the modelling language
- Push low-level implementation issues to the framework
© 2009 Juha-Pekka TolvaneMetaCase 52

Defining Domain-Specific Modelling Languages - Tolvanen

26

<y

Domain framework

B Provides an interface for the target
platform and programming language

B Raise the level of abstraction on the
platform side

B Achieved by atomic implementations
of commonalities and variabilities
- especially for behaviour

- implementation as templates and
components

B Include interface for the code to be
generated

- often the only needed part for static
variation (e.g. for XML schema)

© 2009 Juha-Pekka TolvaneMetaCase

DSM environment

DOMAIN-
SPECIFIC

MODELING
LANGUAGE

1

DOMAIN-
SPECIFIC
CODE
GENERATOR

DOMAIN
FRAMEWORK

53

B

Configuration
Testing and analysis

execution

Help text

User guides
Documentation and review

© 2009 Juha-Pekka TolvaneMetaCase

Checking completeness and uniformity

Generators aren’'t just for code...

Automated build - automating compile and

54

Defining Domain-Specific Modelling Languages - Tolvanen

27

[y

Concluding remarks
- Summary
- Q&A

© 2009 Juha-Pekka TolvaneMetaCase 55

o,

Summary

B Productivity can be improved by a raise in abstraction
B DSM solves the pitfalls of CASE and UML.:
metamodel and generators can be custom built
B DSM has a big organizational impact
- Experts make the DSM environment
- Other developers do model-driven development
B Building your own tool is hard, but meta-tools exist
- Meta-tools make moving to DSM feasible
B DSM makes the best possible use of your expert(s)
- And they'll love it!

© 2009 Juha-Pekka TolvaneMetaCase 56

Defining Domain-Specific Modelling Languages - Tolvanen

28

|

Thank you!

Free evaluation download: www.metacase.com
Build your first DSM language in an hour!

<plug>If you like it after 31 days, see 150€ Intro offer</plug>

MetaCase

Juha-Pekka Tolvanen
jpt@metacase.com

www.metacase.com/blogs

© 2009 Juha-Pekka TolvaneMetaCase 57

Domain-
Specific
Modeling
Literature and further links '
B DSM Forum, www.dsmforum.org
B Blogs: www.metacase.com/blogs

B Brinkkemper, S., Lyytinen, K., Welke, R., Method Engineering -
l;giggiples of method construction and tool support, Chapman & Hall,

m Czarnecki, K., Eisenecker, U., Generative Programming, Methods,
Tools, and Applications, Addison-Wesley, 2000.

® Gray, J., Rossi, M., Tolvanen, J-P, (eds.) Special issue of Journal of
Visual Languages and Computing on Domain-Specific Modelling with
Visual Languages, Vol 15 (3-4), 2004

m Kelly, S., Tolvanen, J.-P., Domain-Specific Modeling: Enabling Full Code
Generation, Wiley, 2008. http://dsmbook.com

m Kieburtz, R. et al., A Software Engineering Experiment in Software
Component Generation, Proceedings of 18th International Conference
on Software Engineering, Berlin, IEEE Computer Society Press, 1996.

B Pohjonen, R., Kelly, S., Domain-Specific Modelling, Dr. Dobb's, 8, 2002

®m Tolvanen, J.-P., Kelly, S., Defining Domain-Specific Modelling
Languages to Automate Product Derivation: Collected Experiences.
Procs of the 9th International Software Product Line Conference,
Springer-Verlag, 2005.

m Weiss, D., Lai, C. T. R., Software Product-line Engineering, Addison
Wesley Longman, 1999.

© 2009 Juha-Pekka TolvaneMetaCase 58

Defining Domain-Specific Modelling Languages - Tolvanen

29

