Diet Templates




The Myth of Bloat




“Template Bloat”

Ten years ago it was often claimed that C++ templates
caused code bloat.

At one time | was told to avoid using the STL because it
would lead to fatter, slower code.



To <T> or notto <T>?

C++ had just been standardized and the STL was
supposed to be a Good Thing.

But if it's the Standard Template Library, won't it cause
code bloat?

Will my code really be slower if it uses templates?!



Understanding Templates

So | read CUJ, Dr. Dobbs, Overload etc.
| learnt about the history and design of the STL.
| played with the compiler.

| decided template code is no bigger than “normal” code.



Instantiated as needed

Instantiating std: :vector<int> and
std: :vector<char> results iIn no more code than
hand-written vector_ int and vector_ char classes

would.

Often less code because unused member functions of
class templates won't be instantiated.



Reuse, reuse, reuse

Write your own templates once and reuse them for any
number of types.

For every instantiation you use you've saved the time of
modifying existing code to work with the new type.

The more you instantiate the more you save!



There are several advantages to using templates.

They support and encourage powerful programming
styles.

Not using them would be a mistake!

So | did.



The Reality of Bloat

F



Missed the bloat

The truth isn't quite as simple.

Some template-heavy code is bloated.

Where does this come from?

Does it matter?



Compiler support

It took some time for toolchains to implement templates
efficiently.

Template definitions must be in visible to be instantiated,
so get compiled in every file using them

- Either can't use separate compilation,
- or must manage explicit instantiations,

At least one compiler supported an instantiation model
where all template code had static linkage and every
Instantiation was duplicated in every file that used it.



Compiler support

Early implementations of the Standard Library varied in
quality and completeness.

Features such as partial specialization and member
templates weren't widely available.



Bloated object files

Template instantiations are compiled multiple times, so
compilation takes longer.

Template instantiations appear in multiple object files
... but the linker only keeps one copy

Symbol names might grow due to including template
parameters

But those are compile-time problems.



Excessive inlining

Complete definitions of templates are usually in headers.

This allows compilers to statically resolve functions calls
and perform aggressive inlining across function
boundaries.

This can be a huge advantage for optimization!

But sometimes this is undesirable — and can be hard to
control because everything is in headers.



Don't Repeat Yourself

A single template might by used to generate dozens of
distinct instantiations.

The generated code might be very similar at the
iInstruction level, maybe even identical.

e.g. std::vector<char*> and std::vector<int*>

This repetition isn't apparent in the code, because
you've only written the template once.



So what?

Aren't memory and disks always getting cheaper, bigger
and faster?

- CPU caches improve more slowly

- Some programs must be as fast as possible

The problems are not inherent in templates

If we're aware of the problems we can try to avoid them



Bloat in detail




Duplicate code

Can happen in several ways

- Separate instantiations for types with the same
representation (e.g. char* and int *)

- Non-generic functionality which doesn't need to be
In generic code

- Unnecessary dependency on template parameters



template<typename T>
class Vec {
T* ptr;
size_t size;
size_t capacity;
public:
//
void push_back (const T& t)
{
if (size == capacity)
reallocate(size+l);
ptrisizet++] = t;
}
b



_ZN3VecIPiE9push_backERKSO_:

.LFB2:
.cfi_startproc
.cfi_personality 0x3,_ gxx_personality_vO0
movqg srbx, —-16(%rsp)
movgq $rbp, -8 (%rsp)
subg $24, %rsp
.cfi _def cfa_offset 32
.cfi_offset 6, -16
.cfi_offset 3, -24
movqg $rdi, %rbx
movq %$rsi, %rbp
movq 8 (%rdi), %rsi
cmpqg 16(%rdi), S%Srsi
jne L2
addg S1, %rsi
call _ZN3VecIPiElOreallocateEm
L2
movqg 8 (%rbx), %rax
movqg ($rbx), %rdx
movq 0(%rbp), %rcx
movq $rcx, (%rdx,%rax,8)
addg $1, S%rax
movq $rax, 8 (%rbx)
movg 8 (%rsp), %rbx
movq 16 (%rsp), Srbp
addg $24, %rsp
.cfi def cfa_offset 8
ret

.cfi_endproc



_ZN3VecIPcE9push_backERKSO_ :

.LFB2:
.cfi_startproc
.cfi_personality 0x3,_ gxx_personality_vO0
movqg srbx, —-16(%rsp)
movgq $rbp, -8 (%rsp)
subg $24, %rsp
.cfi _def cfa_offset 32
.cfi_offset 6, -16
.cfi_offset 3, -24
movqg $rdi, %rbx
movq %$rsi, %rbp
movq 8 (%rdi), %rsi
cmpqg 16(%rdi), S%Srsi
jne L2
addg S1, %rsi
call _ZN3VecIPcElOreallocateEm
L2
movqg 8 (%rbx), %rax
movqg ($rbx), %rdx
movq 0(%rbp), %rcx
movq $rcx, (%rdx,%rax,8)
addg $1, S%rax
movq $rax, 8 (%rbx)
movg 8 (%rsp), %rbx
movq 16 (%rsp), Srbp
addg $24, %rsp
.cfi def cfa_offset 8
ret

.cfi_endproc



Microsoft's linker uses heuristics to determine when two
template instantiations produce the same code and can use
a single version of the code.

Manual techniques for avoiding the duplication can produce
even better results
» “Efficient Run-Time Dispatching in Generic
Programming with Minimal Code Bloat” Bourdev & Jarvi,
2006



Template hoisting

Provide a common implementation for all instantiations
which have the same behaviour and representation

Move all the code into that common implementation

Defer all real work to that common implementation



class Vec_ptr {
vold** ptr;
size_t size;
size_t capacity;
protected:
/] ...
void P_push_back (void* t)
{
1f (size == capacity)
reallocate (size+1);
ptrisizet++] = t;
}
}i
template<typename T>
class Vec<T*> : public Vec_ptr {
public:
void push_back (T* consté& t)
{ this—->P_push_back(t);}
b




This means writing more code: the original class template,
the base class and a partial specialization of the template

But the executable doesn't have duplicate instructions for all
the instantiations that store pointers

... except when it does! The compiler might still inline the
member functions of the base class into the derived class
template

But we have more control over what must be defined inline in
the header and what can be separately compiled



For vec<T*> we can see that hoisting might be useful as
soon as we write the class template

In other templates, hoisting might only become necessary as
the code evolves

A piece of code might be suitable for writing as a template,
but have extra non-generic functionality added later, which
should be factored out to non-template code.



A class template that holds N bytes and an ID field:

template<unsigned N>
struct DataBuffer<N> ({

unsigned char datal[N];

unsigned short typeld;

S/

bi

Which can be written to a socket:

template<unsigned N>
vold send(int sock, const DataBuffer<N>& buf)
{
write (sock, htons (buf.typelId), 2);
write (sock, htonl(N), 4);
write (sock, &buf.data, N);
}



Over time the function gets extended:

template<unsigned N>
vold send(int sock, const DataBuffer<N>& buf)

{

LOG (net, DEBUG) << "“Sending ” << N << “ bytes, type: "
<< buf.typeld,;

write (sock, htons (buf.typeld), 2);

write (sock, htonl(N), 4);

write (sock, &buf.data, N);

if (isCheckedType (buf.typeld)

{
// calculate checksum
// write checksum to socket




This code is not very dependent on the template parameter:

template<unsigned N>
volid send(int sock, const DataBuffer<N>& buf)

{

LOG (net, DEBUG) << “Sending " << N << ™ bytes, type: "
<< buf.typeld;

write (sock, htons (buf.typelId), 2);

write (sock, htonl (N), 4);

write (sock, &buf.data, N);

if (isCheckedType (buf.typeld)

{
// calculate checksum
// write checksum to socket

}
}

This will generate nearly identical instructions for every
different value of N used in the program




All the actual work can be hoisted out of the template, turning
compile-time template parameters into run-time function
paramters::

void send2 (int sock, unsigned short type, void* buf,
unsigned buflen);

template<unsigned N>
inline void send(int sock, const DataBuffer<N>& buf)

{
send2 (sock, buf.typeIlId, &buf.data, N);

}

The function template can be inlined now without any
negative consequences in code size




Any possible bloat due to send () is not because it's a
template

As with vector_int and vector_char, just as much code
would be generated if you wrote several functions without
using a function template:

sendl () send2 () send4 () sendl6 ()

But noone would do that! Especially not in if they care about
code size



Template hoisting is just the application of good practice for
avoiding repetition, not coding via copy'n'paste, and creating
a new class or function to replace similar code that appears
In more than one place

You wouldn't duplicate all that code by hand, so try not to do
it with templates!

The tricky part is that the repetition doesn't appear in the
source code with templates

Be vigilant!



Usually a function template's behaviour really does depend
on a template parameter, that's why it's written as a template

template<typename F>
volid Node: :apply (F f)
{
f(*this);
for (Node n : children)
if (n.leaf())
f(n);
for (Node n : children)
1f (In.leaf())
n.apply (f);

We want to be able to apply many types of function




struct PruneNode {
vold operator () (Node&) const;

s
void printNode (Node& n) { std::cout << n.label(); 1}
RootNode root = fooNodes () ;

unsigned count = 0;
root.apply( [&count] (Node consté&) { ++count; } );

if (count > limit)
root.apply ( PruneNode () );

root.apply ( PrintNode{std::cout} );

Each call instantiates the function template differently




As well as the functions themselves, the executable will
contain different instructions for all those instantiations:

vold Node: :apply<void (*) (Node consté&) >;
void Node: :apply<A>;
vold Node: :apply<PruneNode>;



C++0x to the rescue:

temptate<typetame—+>
volid Node: :apply (std: :function<void (Node&)> f)
{
f(*this);
for (Node n : children)
if (n.leaf())
f(n);
for (Node n : children)
1f (!n.leaf())

n.apply (f);

By using a function wrapper we support all the same types of
function, without having to define Node: :apply () as a
function template




Does this change in code size really matter? Does it help?

Caches are tiny and the various function types r must be
doing something, which will need to load F's instructions into
the I-cache for every call anyway

It might not matter. It might not help.
But there will only be one set of instructions for the apply

function and so there's a better chance they will be kept in L2
or L3 cache between calls



SCARY assignments

std: :set<int> sl1;

std::set<int, std::greater<int>> s2;
std: :set<int, MyCmp, MyAlloc> s3;
auto 1t = sl.begin();

1t = sZ2.begin();

1t = s3.begin();

Is this OK?!




SCARY assignments

Seemingly erroneous (appearing Constrained by conflicting
generic parameters), but Actually work with the Right
implementation (unconstrained bY the conflict due to
minimized dependencies).

From “Minimizing Dependenies within Generic Classes for
Faster and Smaller Programs”, OOPSLA'09, Tsafrir,
Wisniewski, Bacon, Stroustrup



Standard set container:

template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >

class set {

public:
// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;
typedef implementation defined iterator;
typedef implementation defined const_iterator;

So are the SCARY assignments OK?!?!




Let's assume the implementation defines them as nested structs:

template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >

class set {

public:
// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;

struct iterator;
struct const_iterator;



SCARY assignments

std: :set<int> s1;
std::set<int, std::greater<int>> s2;
std::set<int, MyCmp, MyAlloc> s3;

// std::set<int, std::less<int>, std::allocator<int>>::iterator
auto 1t = sl.begin();

// std::set<int, std::greater<int>, std::allocator<int>>::iterator

it = s2.begin(); // ERROR!

// std::set<int, MyCmp, MyAllo>::iterator
it = s3.begin(); // ERROR!

This is definitely not OK!




std::set<int> sl1;
count_if (sl.begin(), sl.end(), Pred())

// count_if<set<int, less<int>, allocator<int>>::iterator, Pred>

std::set<int, std::greater<int>> s2;
count_if (s2.begin(), s2.end(), Pred())

// count_if<set<int, greater<int>, allocator<int>>::iterator, Pred>

std::set<int, MyCmp, MyAlloc> s3;
count_1f (s3.begin(), s3.end(), Pred())

// count_if<set<int, MyCmp, MyAlloc>::iterator, Pred>



BLOAT!



But if the implementation defines the iterator separately:

template <class T>

class tree_iterator { ... };
template <class Key, class Compare = less<Key>,
class Allocator = allocator<Key> >

class set {

public:
// types:
typedef Key key_type;
typedef Key value_type;
typedef Compare key_compare;
typedef Compare value_compare;
typedef Allocator allocator_type;

typedef tree_iterator<Key> iterator;



std::set<int> sl1;
count_if (sl.begin(), sl.end(), Pred())

// count_ if<tree iterator<int>, Pred>

std::set<int, std::greater<int>> s2;
count_if (s2.begin(), s2.end(), Pred())

// count_if<tree_ iterator<int>, Pred>

std::set<int, MyCmp, MyAlloc> s3;
count_1f (s3.begin(), s3.end(), Pred())

// count_ if<tree iterator<int>, Pred>



SCARY assignments

std::set<int> s1;
std::set<int, std::greater<int>> s2;
std::set<int, MyCmp, MyAlloc> s3;

// tree_iterator<int>
auto 1t = sl.begin();

// tree_ iterator<int>

it = s2.begin(); // OK

// tree iterator<int>

it = s3.begin(); // OK

This is now OK

Seemingly erroneous (appearing Constrained by conflicting generic parameters), but
Actually work with the Right implementation (unconstrained bY the conflict due to minimized
dependencies).




The SCARY paper reports an experiment converting a
iterator-based application to SCARY (unconstrained) iterators
and obtaining performance improvements between 1.2 and
2.0 times over alternative iterator implementations



