Erlang Solutions Ltd.

How never to learn from failure

Ulf Wiger, CTO Erlang Solutions Ltd
ACCU, Oxford 201 |

w © 1999-201 1 Erlang Solutions Ltd.

About me

® 6 years working with Military C? and
Disaster Response in Alaska

® |3 years as Software Architect at Ericsson

®) years at Erlang Solutions as CTO

W © 201 | Erlang Solutions Ltd.

To not learn from history

® “We learn from history that we do not learn
from history G.FW. Hegel

® “Human history is a drama in which the stories
stay the same, the scripts of those stories change
slowly with evolving cultures, and the stage
settings change all the time.”

Fred Brooks,“Mythical Man-Month, Anniversary Ed.”

w © 201 | Erlang Solutions Ltd.

Programmers are Optimists

® “All programmers are optimists. Perhaps this
modern sorcery especially attracts those who
believe in happy endings and fairy godmothers”

Fred Brooks, “Mythical Man-Month”

® Possible problem:Why learn from others’
mistakes, when it is so much fun to make your
own!

w © 201 | Erlang Solutions Ltd.

Taxonomy of Programming

Programming

Product
Development

® Survey

® Select

Experiment Research

® Enhance
e Ship

w © 201 | Erlang Solutions Ltd.

Taxonomy of Programming

Programming

Product
Development

~
~
L]
~
~
~
~
..
~

Experiment Research
® Enhance

e Ship

w © 201 | Erlang Solutions Ltd.

AC2SMAN - My formative years

® Alaskan Command & Control System
Military Automated Network

= Built in 4 months by a fighter pilot
from Memphis, and some geeks

= First ever “Overall Outstanding”
rating given by NORAD 1989

© 201 | Erlang Solutions Ltd.

Cool Lesson

® Running exercises with 50,000 soldiers
® Number of exercise controllers went down
= from 900 without the system
= to 30 with the system
® |ater, during Desert Storm
= The first ever fully simulated battle exercise

® Huge potential for reducing admin overhead

w © 201 | Erlang Solutions Ltd.

The C2 System Design Challenge

® Mission-critical

® Soft real-time

® |nhconsistent data input

® Varying operating conditions [

® Potentially global scale

® No single point of failure (4O-I; sites)

® Live, simulation and exercise
— sometimes simultaneously

w © 201 | Erlang Solutions Ltd.

e | NE€ Feed Aggregation Problem

® Real-time subscription feed for
tactical map workstations

® Messaging server was a big
pile of C++ code

® Single point of failure

® Ran out of memory daily

® (Not due to programmer
incompetence)

= Purify was invented in 1990 i | G ~

w © 201 | Erlang Solutions Ltd. |

| was Searching for a Solution

® TJons of approaches
evaluated

= CASE Tools, Client-Server ﬁ

middleware, Al middleware.ﬁ\

\

® Eventually landed in ﬁ/

telecoms 1992
I'ed

= "Computers in
Telecommunictions” 25-lines switchboard,

course at KTH. Stockholm Natal Province, South Africa 1897
’ Cross-switchboard calls required

human interaction.

= Teachers: B Dacker, R Virding

w © 201 | Erlang Solutions Ltd.

Erlang, Intuitively

4

© 201 | Erlang Solutions Ltd.

Erlang, Intuitively

* One concurrent process
for each naturally
concurrent
activity

© 201 | Erlang Solutions Ltd.

Erlang, Intuitively

* One concurrent process
for each naturally
concurrent
activity

© 201 | Erlang Solutions Ltd.

Client-server in Erlang

Client monitors server

Client sends a request

@ Request (Mref) " |

|
|
|
|
[
|
|
v

Reply (M
@/ eply (Mref) ‘ Server sends reply
w © 201 | Erlang Solutions Ltd.

(Blocks while waiting)

Client-server in Erlang

call(S, Request, Timeout) ->
Mref = monitor(process, S),
S ! {call, Mref, Request},
awaiting_reply(Mref, Timeout).

awaiting_reply(Mref, Timeout) ->
receive
{Mref, Reply} ->
Reply;
{’DOWN’, Mref, _, _, Reason} ->
error(Reason)
after Timeout ->
error(timeout)
end.

w © 201 | Erlang Solutions Ltd.

Ericsson — ['he Mythical Project

® | joined Ericsson 1996 to work with Erlang
® A very large project had just been canceled
= A very public failure

® Distributed real-time, fault-tolerant complex
systems in C++

w © 201 | Erlang Solutions Ltd.

Why did it crash?

® No obvious single culprit

= Discussions about what went wrong dragged
on for years

® Obviously, the size of the project was a problem
= But why so large!?

® OO mania, featuritis, hubris!?

® My thought: failure to contain the problem

w © 201 | Erlang Solutions Ltd.

AXD301 —The Pickup Project

® 200 people put into one building
® Mission: Build a product within 2 years

= “Something in the ATM domain with Telecom
Characteristics”

® Erlang/OTP

w © 201 | Erlang Solutions Ltd.

Pragmatic thinking

® Shell shocked from previous project

® Fall back on what'’s known to work

® Straight and simple took us pretty far
= Design for what we need right now

- Rework later if necessary

w © 201 | Erlang Solutions Ltd.

Some figures

® Up to I6x16 =256 interconnected boards
® Up to 32 control plane processors

® Up to 500k simultaneous phone calls

® > 99.999% consistent uptime

= (including maintenance & upgrades)

Pretty big and

robust...

w © 201 | Erlang Solutions Ltd.

Failed evangelism

® VWe estimated 4x fewer lines of code, compared
to similar systems in C++

= Same fault density
= Similar LOC/hr productivity
= 4x higher quality and productivity

® |ater, we reduced the fault density by another
2.5%, while adding functionality

® This had little impact on our political standing

w © 201 | Erlang Solutions Ltd.

Life in a Big Company

® Big possibilities, big frustrations

® Big companies are like small societies
= Complete with politicians and all

® Size drives hierarchies

® Hierarchies need middle-men

® Middle-men mainly relay and aggregate
information

= How do you ensure that the “right”
information is conveyed?

w © 201 | Erlang Solutions Ltd.

Flow of Information

® “An organization loses its intuition when
the person who has the answer isn’t talking
to the person who has the question”™

Tim Berners-Lee: “VWWeaving the Web”
® The key information flow

is bottom-up—not top-down
Manage

Aggregate/link

./\../ @

Do/report

w © 201 | Erlang Solutions Ltd.

Flow of Information

® “An organization loses its intuition when
the person who has the answer isn’t talking
to the person who has the question”™

Tim Berners-Lee: “VWWeaving the Web”

® The key information flow
is bottom-up—not top-down
Manage

Aggregate/link

Do/report

w © 201 | Erlang Solutions Ltd.

State Machine Hell

T [*1| ...but quite doable with Erlang
SUS : ' ' I ' =
Traffic I P |
e + pe Legacy Phone Switch PLEX
o .
<€ | Switch Emulator and Erlang
H.243 ancoding MGW Voice-over-ATM Controller
AXD 301
/ I \ Teleph

Extremely complex state machines
Aggregation/suppression of messages

© 201 | Erlang Solutions Ltd.

——

Abstractions for non-determinism

® We were building complex distributed message-
passing systems

® Key challenge: contain the non-determinism!

® Prevent explosion of the state-event matrix

® This had been identified by Ericsson already in
the late 70s...

= First experienced in the 60s
= |dentified and explained late 70s
= Coloured EriPascal, Erlang, CHILL, et al

w © 201 | Erlang Solutions Ltd.

Some similar projects

® |n one (mature) UML/C++ project,
10% of all bugs were related to
unexpected order of events

® |nadequate methods for abstracting away
accidental ordering

® (Confusion as to whether OO abstractions
actually helped this issue

W © 201 | Erlang Solutions Ltd.

Analogy: Tetris Management

® The age-old classic has
coined a new time
management method

® The idea:learn to keep
the pile small

w © 201 | Erlang Solutions Ltd.

Tetris Management

® Used in a derogatory Tetris
sense at a major
software development '
project s

Lines 0

Level 8

® As in “reactive
management without a

plan”

v Next Piece

® Basically, don’t let your
project become a tetris
ga m e USE ARROW KEYS, Z, X

2007 Emperor cJ

w © 201 | Erlang Solutions Ltd.

A different kind of puzzle

® What if your puzzle resembles this?

® Would you attack this problem with a Tetris
approach?

" . : > Wit
X L Sl il IRy TS 8 D

http://www.worldslargestpuzzle.com/hof-008.html

w © 201 | Erlang Solutions Ltd.

Event-handling Strategies

’jﬂ
»
L A/ =

® T[wist and place the ® Search for a specific
next piece before it piece
lands : .
® Put aside pieces that
® |n cheat mode, you don't fit
get to peek at the : —
next piece ® Keep at it until fitting

piece found
® Otherwise, hope for
the best

w © 201 | Erlang Solutions Ltd.

Event-handling in Software

/ j”;
4 '

ﬁ 5 - 1
P

FIFO Run-to- ® Blocking, selective
completion event receive
handlin : .
5 ® Wait until the next
® Not allowed to block desired message arrives
® Fine,as long as the ® Buffer unknown
pieces (messages) fit messages

w © 201 | Erlang Solutions Ltd.

(Movie tip)

® Memento (2000)

® Human FIFO Run-to- |
completion event
handling

® Storing context for ‘
future reference

Memento (2000) http://www.imdb.com/title/tt0209 | 44/

w © 201 | Erlang Solutions Ltd.

Attempt at Pedagogy

® Demo system used in
Ericsson’s Introductory Erlang
Course

= W/rite a control program for a
POTS subscriber loop

® Here: rewrite the control loop
using different semantics

= Selective message passing
= Event dispatch

® A few minds converted...

w © 201 | Erlang Solutions Ltd.

The Simon P- Test

® |nvited to talk at WG?2.8 at West Point 2004

® TJopic:A plea to teach this pattern in college

® [ried the idea on a severely jetlagged
Simon Peyton Jones (ICFP, Snowbird)

® He verified that it is not well known

® Not sure if it is in the curriculum now...

w © 201 | Erlang Solutions Ltd.

One Wonders...

® Why several projects, even when approached
with this explanation, chose to try their own
event-based C++ variant!

= They all invariably fell into the same hole

® Problems not apparent in early prototypes

® The complexity sneaks up on you
= As you start implementing the exception flows
= As you add new protocols and features

= As increased load changes timing aspects

w © 201 | Erlang Solutions Ltd.

Putt’s Law

® “Technology is dominated by two types of
people:

= those who understand what they do not manage
and those who manage what they do not understand.”

® Corollary:

= “Every technical hierarchy, in time,
develops a competence inversion.”

Archibald Putt;:“Putt’s Law and the Successful Technocrat”

® |f you're out of your depth, being wrong is scary

w © 201 | Erlang Solutions Ltd.

Big organisation—Bell Curve

® |deally, the few top designers/architects
should drive concept and architecture work

® |n practice, it tends to be driven by people closer
to the middle

5 « 5 =
w © 201 | Erlang Solutions Ltd.

Division of Labour—W.issenwurst

® Knowledge is chopped
Into pieces

® Rather than grown
continuously

® People can deal with
enormous complexity
if given time to digest

w © 201 | Erlang Solutions Ltd.

In Conclusion

® Many non-technical issues interfere with
learning from our past mistakes

® [ransparency in communication is vital

® Continuity of learning

® Dare to be wrong!

w © 201 | Erlang Solutions Ltd.

