Atomic Counters

A Lesson on Performance and Hardware Concurrency

Detlef Vollmann

vollmann engineering gmbh, Luzern, Switzerland

ACCU Conference, Bristol, April 2015

Overview

Introduction

Stop the World
Uncertainity

Atomic Solutions
Distributed Solutions
Back to the Future
Wrap-Up

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 3

Modern Hardware

e Modern CPU
architectures
blur the
distinction
between SMA
and ccNUMA

) S e
ot [cetion]) e xielpos xe]poes Foetal Dieg teenverdonmmitadnund
miﬂuﬁm I;I% Imitzve Rng/stenena k@m

Picture: Intel, copied from c't Magazin 21/14

e Concurrent access to same data from multiple core costs
(a lot)

Caveat

e This is expert level
— but I'm not an expert

e Everything is relative
— depends on hardware
— depends on usage pattern
e Don't trust the example benchmark

— " Churchill” benchmark
— doctored to fit

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

Hardware
e Memory bus
CPU Memory
. . . o e
e Getting hierarchical cpy L g Memory
< O
; — |
Q
— CPU |5l—] Memory
8
e Going multi-socket
[0}
— CPU 12— Memory
]

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 5

Counting Problem

e Counting events from different tasks
— often to detect "hot spots”

e Inherently concurrent
— really?

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

Example: Random Numbers

e Two related counters
— high frequency
— lower frequency

e Performance dominated by high frequency
e Very high contention

Atomic Counters at ACCU, Bristol, April 2015

" Stop the World”

e Proper locking is the only correct solution with exact
results

Copyright ©2015, Detlef Vollmann 7

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 8

”Stop the World” Results

45000 T

mutex —+—

40000 1 g
\

35000 |\ g

30000 -\ R

25000 |- \ R

20000 | \ B

15000 - __ g

10000 |- T~ B

5000 L L L
1 2 4 8 16

e Scales badly

Atomic Counters at ACCU, Bristol, April 2015

Copyright ©2015, Detlef Vollmann 9

Giving Up Correctness

e Correct version too slow
e Decouple counters

e Possibly loose some counts
— benign races?

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 10

Benign Races

e UB is UB!
e Only actual benign race is write only, same value

e For RMW, old nice CPUs, volatile and good look may
help

— for demo only, never for production!

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 1].

Volatile Results

120000 . .

T
volatile —+—
100000 volatile2 —x<— _|

80000 |~
60000 |~ —
40000 — -

20000 |~ —

0 1 1 1
1 2 4 8 16

count: 30870350, matches: 13779698, ratio: 2.2402
e With high contention, non-synchronized counters loose
e Definitely not worth the risk

Copyright ©2015, Detlef Vollmann]. 2

Atomic Counters at ACCU, Bristol, April 2015

Atomic Count

e Correctly synchronize (separately)

e Default atomics
— sequentially consistent

o Relaxed atomics

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

13

(Weak) Compare-And-Swap

e Atomic increment (fetch-add) is RMW
e CAS may be read-only (fail case)

— no ownership transfer required

e CAS with backoff may reduce cache-line traffic

— Dice,Lev,Moir "Scalable Statstics Counters”
— NUMA node based
— anti-starvation mechanism

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

15

Simplex

template<typename Integral> class simplex
public bumper<Integral>
{
public:
constexpr simplex();
constexpr simplex(Integral in);
simplex(const simplex&);
simplex& operator=(const simplex&);
Integral load ();
Integral exchange(Integral to);
I
o Not distributed
e Provides interface for other counters as reducer
e Performance like atomics

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

Atomic Results

90000 ¢
o No measurable \
difference

— RMW requires ownership | 7
transfer

80000

60000
e Still no real scalability
— Starvation

50000

40000 -

T
atomics-cst —+—
atomics-relaxed —<—

30000 L L
1

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

Distributed Counters

e Giving up more precision
e Count locally
e Read globally

— reducer, accumulator

e Proposal N3706 by Lawrence Crowl

template<typename Integral>
class bumper;
{
public:
void operator +=(Integral by);
void operator -=(Integral by);
void operator ++();
void operator --();
};

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

16

Buffer

template<typename Integral> class buffer
public bumper<Integral>
{
typedef bumper<Integral> prime_type;
public:
buffer ();
buffer (prime_type& p);
buffer (const buffer&);
buffer& operator=(const bufferk);
void push();
3

e Per-task counter
e Provides push (into simplex counter)
e Must push for count being seen

17

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

18

Buffer Results

550000 :
buffer —+—
500000 |- e
-
450000 / g
/
400000 |- / -
350000 | / -
300000 - / -
/

250000 - / B
200000 g
150000 |- g
100000 L L L

1 2 4 8 16

e This looks good

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

19

Duplex

template<typename Integral> class weak_duplex
public bumper<Integral>

{

public:
weak_duplex ();
weak_duplex (Integral in);
weak_duplex (const weak_duplex&);
weak_duplex& operator=(const weak_duplex&);
Integral load ();

I

e duplex provides the reduction

e provides exact count at time of reading
— but no "stop the world”
— no synchronization for related counters

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

21

Broker

template<typename Integral> class weak_broker
public bumper<Integral>
{
typedef weak_duplex<Integral> duplex_type;
public:
weak_broker ();
weak_broker (duplex_type& p);
weak_broker (const weak_brokeré&);
weak_broker& operator=(const weak_brokeré&);

};

e provides (internal) query interface

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 20

Broker Results

550000

500000 |- |
450000 Ve B B

400000 / B

350000 - i
300000 - / 4
250000 |- B
200000 [i

150000 - -

100000 L L L
p

e This also looks good

Push vs. Pull

e push only competes with other pushes

e pull competes with actual counts
— but read only

e pull gives better precision
e performance depends on actual usage

550000 :
500000 pulter ——
450000
400000
350000
300000
250000
200000
150000
100000 L L
P

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

23

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 22

Results From a NUMA Machine

e Dual-core Opterons, dual-socket

160000

atomics-cst —+—
atomics-relaxed —x—
140000 [buffer —%— |

120000

volatile

100000 [~

80000 -

60000 -

40000 B

200008 \7 i
0 o & o
1 2 4 8 16
Atomic Counters at ACCU, Bristol, April 2015 Copyright ©2015, Detlef Vollmann 24

Single Socket Machine Results

e Quad-core Haswell, plus hyperthreading

600000

T
atomics-cst —+—
atomics-relaxed ——
buffer —%—
500000 [#guplex
/ mutex —m—
2 simplex —o—
volatile
400000 |- volatile2 —2— o

300000 -

200000

e
100000

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

25

Overflow

e Long running counters will overflow
e N3706 provides exchange to drain buffers

e strong_duplex does this on pull
— now a read/write operation

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

Morris’ Counter

e Morris' algorithm provides a counter up to 130000 with
8 bit
— looses precision

e Dice,Lev,Moir scale that to higher numbers

e less bit changes mean less updates

e Scales pretty well

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 26

27

Distribution

e The answer to shared state

e Using local counters costs space

e Synchronization for reduction requires thought
e Avoid starvation on reduction

e Avoid false sharing for local counters

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 28

Conclusion

Performant parallel counters are not atomic

But if you don't want to stop the world, that's the
simple truth

Modifying shared memory is expensive

Creative solutions may help
General solution is distribution

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

29

References

e N3706, Lawrence Crowl, " C++ Distributed Counters”
http://open-
std.org/jtcl/sc22/wg21/docs/papers/2013/n3706.html

e "Scalable Statstics Counters”

Dave Dice, Yossi Lev, Mark Moir; SPAA’'13, June 23-25,
2013, Montreal Quebec, Canada

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 30

