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Modern Hardware

e Modern CPU
architectures
blur the
distinction
between SMA
and ccNUMA

) S e
ot [cetion]) e xielpos xe]poes Foetal Dieg teenverdonmmitadnund
miﬂuﬁm I;I% Imitzve Rng/stenena k@m

Picture: Intel, copied from c't Magazin 21/14

e Concurrent access to same data from multiple core costs
(a lot)

Caveat

e This is expert level
— but I'm not an expert

e Everything is relative
— depends on hardware
— depends on usage pattern
e Don't trust the example benchmark

— " Churchill” benchmark
— doctored to fit
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Hardware
e Memory bus
CPU Memory
. . . o e
e Getting hierarchical cpy L g Memory
< O
; — |
Q
— CPU  |5l—] Memory
8
e Going multi-socket
[0}
— CPU 12— Memory
]

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann

Atomic Counters at ACCU, Bristol, April 2015 Copyright (©2015, Detlef Vollmann 5

Counting Problem

e Counting events from different tasks
— often to detect "hot spots”

e Inherently concurrent
— really?
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Example: Random Numbers

e Two related counters
— high frequency
— lower frequency

e Performance dominated by high frequency
e Very high contention
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" Stop the World”

e Proper locking is the only correct solution with exact
results
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”Stop the World” Results
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e Scales badly
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Giving Up Correctness

e Correct version too slow
e Decouple counters

e Possibly loose some counts
— benign races?
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Benign Races

e UB is UB!
e Only actual benign race is write only, same value

e For RMW, old nice CPUs, volatile and good look may
help

— for demo only, never for production!
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Volatile Results
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count: 30870350, matches: 13779698, ratio: 2.2402
e With high contention, non-synchronized counters loose
e Definitely not worth the risk
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Atomic Count

e Correctly synchronize (separately)

e Default atomics
— sequentially consistent

o Relaxed atomics
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(Weak) Compare-And-Swap

e Atomic increment (fetch-add) is RMW
e CAS may be read-only (fail case)

— no ownership transfer required

e CAS with backoff may reduce cache-line traffic

— Dice,Lev,Moir "Scalable Statstics Counters”
— NUMA node based
— anti-starvation mechanism
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Simplex

template<typename Integral> class simplex
public bumper<Integral>
{
public:
constexpr simplex();
constexpr simplex(Integral in);
simplex(const simplex&);
simplex& operator=(const simplex&);
Integral load ();
Integral exchange(Integral to);
I
o Not distributed
e Provides interface for other counters as reducer
e Performance like atomics
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Atomic Results
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Distributed Counters

e Giving up more precision
e Count locally
e Read globally

— reducer, accumulator

e Proposal N3706 by Lawrence Crowl

template<typename Integral>
class bumper;
{
public:
void operator +=(Integral by);
void operator -=(Integral by);
void operator ++();
void operator --();
};
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Buffer

template<typename Integral> class buffer
public bumper<Integral>
{
typedef bumper<Integral> prime_type;
public:
buffer ();
buffer (prime_type& p);
buffer (const buffer&);
buffer& operator=(const bufferk);
void push();
3

e Per-task counter
e Provides push (into simplex counter)
e Must push for count being seen
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Buffer Results
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e This looks good
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Duplex

template<typename Integral> class weak_duplex
public bumper<Integral>

{

public:
weak_duplex ();
weak_duplex (Integral in);
weak_duplex (const weak_duplex&);
weak_duplex& operator=(const weak_duplex&);
Integral load ();

I

e duplex provides the reduction

e provides exact count at time of reading
— but no "stop the world”
— no synchronization for related counters
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Broker

template<typename Integral> class weak_broker
public bumper<Integral>
{
typedef weak_duplex<Integral> duplex_type;
public:
weak_broker ();
weak_broker (duplex_type& p);
weak_broker (const weak_brokeré&);
weak_broker& operator=(const weak_brokeré&);

};

e provides (internal) query interface
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Broker Results
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e This also looks good

Push vs. Pull

e push only competes with other pushes

e pull competes with actual counts
— but read only

e pull gives better precision
e performance depends on actual usage
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Results From a NUMA Machine

e Dual-core Opterons, dual-socket
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Single Socket Machine Results

e Quad-core Haswell, plus hyperthreading
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Overflow

e Long running counters will overflow
e N3706 provides exchange to drain buffers

e strong_duplex does this on pull
— now a read/write operation
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Morris’ Counter

e Morris' algorithm provides a counter up to 130000 with
8 bit
— looses precision

e Dice,Lev,Moir scale that to higher numbers

e less bit changes mean less updates

e Scales pretty well
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Distribution

e The answer to shared state

e Using local counters costs space

e Synchronization for reduction requires thought
e Avoid starvation on reduction

e Avoid false sharing for local counters
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Conclusion

Performant parallel counters are not atomic

But if you don't want to stop the world, that's the
simple truth

Modifying shared memory is expensive

Creative solutions may help
General solution is distribution
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