How to evolve your way out of a
paper bag

April 2016
Frances Buontempo
@fbuontempo
frances.buontempo@gmail.com
overload@accu.org
https://github.com/doctorlove/paperbag

mailto:frances.buontempo@gmail.com
mailto:overload@accu.org
https://github.com/doctorlove/paperbag

Objectives

Evolution

Genetic algorithms

Artificial life

Testing — property based, fuzz, mutation, ...
Automate EVERYTHING — even the code gen?

Background

Randomness?

o e

Suitable Not suitable

C4.5 see
https://www.rulequest.com/

| S

http://Imgtfy.com/?qg=frances+buontempo+paper+bag

Today - evolution

Jﬁ&éé&tf&

fithness

Genetic algorithms

Al

— Never forget the Turing Test

— How the zebra got its stripes
* Reaction-diffusion, morphogens

* “Turing systems are completely self-contained, self-
starting and self-organising. “

GA
Ballistics — 2 parameters
Possible extensions

Aside - zebras

,.(‘cc

e e Y
. % =7 @\b XK
OGP

D 7
RS \
7 G

* https://en.wikipedia.org/wiki/Reaction%E2%8
0%93diffusion system

https://en.wikipedia.org/wiki/Reaction%E2%80%93diffusion_system
https://en.wikipedia.org/wiki/Reaction%E2%80%93diffusion_system
https://en.wikipedia.org/wiki/Reaction%E2%80%93diffusion_system

Some of Turing’s drawings

http://www.turingarchive.org/browse.php/K/3

http://www.turingarchive.org/browse.php/K/3
http://www.turingarchive.org/browse.php/K/3

Ballistics

Equation

X = vtcosb

_ 1
y = vtsin — = gt*
v 2

Overload, 21(118):7-9, December 2013
— http://accu.org/index.php/journals/1821

http://accu.org/index.php/journals/1821
http://accu.org/index.php/journals/1821

Algorithm

 Random initial generation of n items
— Pairs of (angle, velocity)
— How many? (More than 1)

 For a while
— Launch

— Crossover — some of the “best”
— Mutate

Random start

n pairs of (angle, velocity)
— each within a range

run the trial
— launch and observe

Initial attempt

18

16

14

12

10

—th

0
-50 -40 -30 -20 -10

Initialise

def init_random_generation(items):
generation = []
for i in range(items):
theta = random.uniform(@, 180) * math.pi/180
v = random.uniform(2, 20)
generation.append((theta, v))
return generation

Next generation

* From the current generation
* Breed a new generation

— None live for more than one generation
— Could try keeping some of the best instead

* How?
— Select parents (fitness)

— Crossover
— Maybe mutate

Which?

* Fitness function
— Best, better?
— Any that escaped?
— What if none escape?
— What if some nearly escape?

* When do they die?
* Should the population size stay stable?

Selection schemes

* How do you select a selection scheme?
— ranking selection (Baker 1985)
* linear ranking

— proportionate reproduction
* roulette wheel (DeJong 1975)

— tournament (Brindle 1981)
* binary, best of three,...

* Do we keep the best ones?
— “steady-state” birth and death via ranking

(bad) choice gal.py

def get choices(gen, results):
choices = [(gen [1][@], gen [i][1]) \
for i in range(len(gen)) if escaped(results[i])]
return choices

choices = get choices(generation, results)
if len(choices) ==
return init_random_generation(items)

What happens if none escape?

Crossover

Spawn

def crossover(gen, res):
choices = get choices(generation, results)
next generation = []
for i in range(@, len(generation)):
mum = generation[choose(choices)]
dad = generation[choose(choices)]
t = (mum[@], dad[1])
next generation.append(t)
return next_generation

Mutation

BECE CECE

EOCEN RN

Godzilla

def mutate(generation):
for 1 in range(len(generation)):

(theta, V) = gener‘ation[i] Maybe Gaussian is

if random.random() < ©.1: etter
theta += random.uniform(-10, 10) \
* math.pi/1860
if random.random() < ©.1:
v *= random.uniform(©.9, 1.1)

generation[i] = (theta, v)

Pulling it together

#epochs = 10, items = 12, height = 5, width = 10
gen = init _random_generation(items)
results = launch(gen, height, width) #or do the maths
for i in range(1l, epochs):
gen = crossover(gen, results, height, width)

mutate(gen)
results = launch(gen, height, width)

Action!

* (Note to self —do a demo)

Fitness again

* Something either ends in or out of the bag
e But some fail cases are less bad than others

* 3 escape
e 2 on left get “close”
* Could “close” mean
height (at edge of
bag)?
* Fitness = height

Roulette wheel — more likely to pick

better chromosomes

6.0 it Liivncs
(01, v1)

(62,v2) 1 16

(83,v3) 8 24

(04,v4) 6 30

Chose a number in range [0, 30) and select the corresponding
chromosome pair (6i, vi)

@ (61, vl)
0(62, v2)
@ (63, v3)
W (64, v4)

(better) choice ga2.py

def cumulative probabilities(results):
cp = []
total = ©
for res in results:
total += res[1l] # height
cp.append(total)
return cp

#choices = cumulative probabilities(results)
def choose(choices):
p = random.uniform(©, choices[-1])
for i in range(len(choices)):
if choices[i] >= p: s this a bit untidy?
return 1
return 1

Observation

It’s quicker to do the maths and calculate where
it is at the bag width or if it goes out the top,
than to run the “experiment” and interpolate
between points at the bag width

Action...

* (Note to self —do a demo)

— Saw gal.py
» “Escaped” fitness function - slower

— ga2.py

* Better fitness function - quicker

— 84.py
* No interpolation
e Better fitness function

— Worst names in the world!

Why?

* Forces

— Recombination (crossover) + mutation = diversity
— Selection = quality

* Potentially explore all the space
— Avoid local minima/maxima

See e.g. A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing,
Springer,

First edition, 2003, ISBN 3-540-40184-9, Corrected 2nd printing, 2007,
ISBN: 978-3-540-40184-1

http://www.cs.vu.nl/~gusz/ecbook/ecbook.html

Magic numbers

* Lots of magic numbers
— Bag size, gen size, epochs
* Including g =9.81
— Could we go into orbit around the bag instead?

— Should it be circular?

— Why not let it choose the best gravity
e and the number in each generation
* and how many epochs
e and how much mutation

— Metaheuristics

Shape of GA

* Fixed length vector of parameters

g ol v ol viuaw
* More than 2 — where to split?

I

I

* Can we have varying number of parameters or
a tree structure?

Further reading

J. Holland,

— Adaptation in Natural and Artificial Systems Uni Of Michigan Press 1975

— “Genetic Algorithms,” Scientific American, Vol. 267, No. 1, 1992, pp. 66-
72

D. Goldberg

— Genetic Algorithms in Search, Optimization and Machine Learning,
Kluwer 1989

 Some coded for you
— WEKA*, http://pyevolve.sourceforge.net/, lots of C++ *
— .Net: http://johnnewcombe.net/gaf/

e Distributed evolutionary algos in Python
https://github.com/deap/deap

 Koza: http://www.genetic-programming.com/

*http://www.omicsonline.org/open-access/applying-weka-towards-machine-learning-with-genetic-algorithm-and-
backpropagation-neural-networks-2153-0602.1000157.pdf

*Gagné, Christian, and Marc Parizeau. "Open BEAGLE: A New Versatile C++ Framework for Evolutionary Computation." GECCO
Late Breaking Papers. 2002. http://w3.gel.ulaval.ca/~cgagne/pubs/Ibp-gecco02.pdf

http://pyevolve.sourceforge.net/
http://pyevolve.sourceforge.net/
http://pyevolve.sourceforge.net/
http://johnnewcombe.net/gaf/
https://github.com/deap/deap
https://github.com/deap/deap
http://www.genetic-programming.com/
http://www.genetic-programming.com/
http://www.genetic-programming.com/
http://www.genetic-programming.com/
http://w3.gel.ulaval.ca/~cgagne/pubs/lbp-gecco02.pdf

Artificial life

Man-made systems

Behavioural characteristics

Software, hardware, wetware

Resources

nttp://www.mitpressjournals.org/loi/artl

nttp://www.alife.org/

nttp://sig.sigevo.org/index.html/tiki-index.php

« E.g. GECCO

http://www.mitpressjournals.org/loi/artl
http://www.mitpressjournals.org/loi/artl
http://www.alife.org/
http://www.alife.org/
http://sig.sigevo.org/index.html/tiki-index.php
http://sig.sigevo.org/index.html/tiki-index.php
http://sig.sigevo.org/index.html/tiki-index.php
http://sig.sigevo.org/index.html/tiki-index.php
http://sig.sigevo.org/index.html/tiki-index.php

History lesson

Von Neumann introduced idea of

— “self-reproducing cellular automata: computer
programs capable of making copies of themselves”

— “contain a set of instructions that are then copied to
the offspring”

— Maybe in the 1950s, maybe with Stanislaw Ulam
c.f. DNA
Holland picked up the idea

A link with nonlinear feedback shift registers and
cryptography

Barricelli

* 1953

* |AS machine, Princeton
— Weather forecasting/Los Alamos nuclear weapons

— He “ finagled time on the computer to model the
origins and evolution of life.”

e http://nautil.us/issue/14/mutation/meet-the-father-of-
digital-life

— Made artificial universes, using randomly shuffled
playing cards for random inputs

* “Numerical organisms”

http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life
http://nautil.us/issue/14/mutation/meet-the-father-of-digital-life

The rise of the machines

Turing's hope that "[...] machines will eventually compete
with men in all purely intellectual fields" is far from
accomplished. ...

When Alife began to lose its momentum several years
ago, biologically inspired (or nature-inspired) computer
science became a buzzword and new ultimate design
paradigm, whose broadly defined mission is—not unlike
Alife—was to mimic instead of copy nature. The field of
biologically inspired computer science is generally more
concerned with solving real problems and building more
powerful machines, unlike the Alife mantra of
"discovering how life works by building it."

Biologically uninspired computer science, Teuscher, Communications of the ACM 49.11 pp27-29

Machines or people?

* Orsecurity?

What's the point?

“Discovering the laws of urbanisation” Filippo
Simini, Charlotte James 2015

Computer generated art, music...
Evolvable hardware

Optimisation problems esp multi-objective
Scheduling

Pretty pictures, fun, ...

Aside

* Creatures (Norns, etc) — Steve Grand
— A neural network (but you interact)?
— https://en.wikipedia.org/wiki/Artificial life
— http://creatures.wikia.com/wiki/Creatures

https://en.wikipedia.org/wiki/Artificial_life
https://en.wikipedia.org/wiki/Artificial_life
http://creatures.wikia.com/wiki/Creatures
http://creatures.wikia.com/wiki/Creatures
http://creatures-online.co.uk/what-is-creatures

Steve Grand

How 1o Bulld an Androld
in Twenty Easy Steps

STEVE GREAHND

https://stevegrand.wordpress.com/106-2/

https://stevegrand.wordpress.com/106-2/
https://stevegrand.wordpress.com/106-2/
https://stevegrand.wordpress.com/106-2/
https://stevegrand.wordpress.com/106-2/

Conway’s Game of Life

The fantastic combinations of John Conway's new solitaire game "life”
Martin Gardner Scientific American 223 (October 1970): 120-123.
http://www.ibiblio.org/lifepatterns/october1970.html

Rules:
1. Fewer than two live neighbours dies

m 2. Two or 3 live neighbours lives
HEEE 3. More than three neighbours dies
4. Dead cell with exactly 3 live

neighbours lives

* http://catagolue.appspot.com/

e @conwaylife -

http://catagolue.appspot.com/
http://catagolue.appspot.com/
http://catagolue.appspot.com/
https://twitter.com/conwaylife
https://twitter.com/conwaylife
http://www.ibiblio.org/lifepatterns/october1970.html
http://www.ibiblio.org/lifepatterns/october1970.html

Train of thought

* Michael Feathers on the future
— reactive patterns
— microservices
— “collection pipeline programming”
— GolL in APL

ifeé{ ™1 wV.A34=+/,7101.6710 1o.Cw}

https://en.wikipedia.org/wiki/APL (programming language)#Game of Life

https://en.wikipedia.org/wiki/APL_(programming_language)#Game_of_Life
https://en.wikipedia.org/wiki/APL_(programming_language)#Game_of_Life

Known patterns

* Still life "

— Stable shapes

* Oscillators
— Cycle back to starting point in n steps = period
— Some with >> 100
— None found (yet) with 19, 23, 38 and 41

— See http://www.conwaylife.com/wiki/Oscillator
e Spaceship
— Oscillator like but moves

http://www.conwaylife.com/wiki/Oscillator
http://www.conwaylife.com/wiki/Oscillator

Pictures in C++

#include <SFML/Graphics.hpp> // http://www.sfml-dev.org/

int main() {
sf::RenderWindow window(sf::VideoMode (800, 600), "My window");

while (window.isOpen()) {
// check all the window's events
sf::Event event;
while (window.pollEvent(event)) {
// "close requested" event: we close the window
if (event.type == sf::Event::Closed)
window.close();

window.clear(sf::Color: :Black);

// draw everything here...
// window.draw(...);

window.display();

http://www.sfml-dev.org/
http://www.sfml-dev.org/
http://www.sfml-dev.org/

Finally, some code

class World

{
public:
//Constructors
bool Alive(size t x, size t y) const
{
return state[y*max x + x];
}
bool Update();
private:

const size t max_Xx;
const size t max_ y;
std: :vector<bool> state;//evil

}s

Evil vector bool

* https://isocpp.org/blog/2012/11/0on-
vectorbool

 Why is vector bool so evil anyway?

https://isocpp.org/blog/2012/11/on-vectorbool
https://isocpp.org/blog/2012/11/on-vectorbool
https://isocpp.org/blog/2012/11/on-vectorbool
https://isocpp.org/blog/2012/11/on-vectorbool

If you thought that was euvil...

void walk neighbours(size t x, size t vy, size t max x, size t max vy,
std::function<void(size t, size t)> action) {
if(y>0) {
if(x>0)
action(x-1,y-1);
action(x,y-1);
if(x<max x-1)
action(x+1l,y-1);
}
if(x>0)
action(x-1,vy);
if(x<max x-1)
action(x+1,vy);
if(y<max y-1) {
if(x>0)
action(x-1,y+1);
action(x,y+1);
if(x<max_x-1)
action(x+1,y+1);

A slight oversight

Edges make it all go wrong
Allow wrapping?

BUT there’s no way out...
(note to self —demo)

Stabilised

Wrapping — spot the glider

Let me out of here

Doesn’t stabilise as quickly if it wraps

But the top joins the bottom so none escape
Make the world taller than the bag

Some may not escape...

Above the bag

...but not all of them

Action...

* (Note to self —do a demo)

— Evo
— Evo

— Evo

ution.exe
ution.exe wrap

ution.exe out

Mutate the rules

* GA the number of neighbours
— 0 to 8 immediate ones
— Each is either dead or alive
— Lookup table?
— Fill the bag — might bust the edges ©

e Left as an exercise for the listener

Other Cellular Automata

Langton’s ant
— https://en.wikipedia.org/wiki/Langton%27s ant

Wormes...

“Rock, paper, scissors” (warning — unpleasant
colours) [red eats blue, green eats red, and blue
eats green]
https://www.youtube.com/watch?v=M4cVOnClZoc

And many more

https://en.wikipedia.org/wiki/Langton's_ant
https://en.wikipedia.org/wiki/Langton's_ant
https://www.youtube.com/watch?v=M4cV0nCIZoc
https://www.youtube.com/watch?v=M4cV0nCIZoc
https://www.youtube.com/watch?v=M4cV0nCIZoc

Testing, testing

e How do we test our code?
 Manually

e Automatically
— Hand rolled unit tests
— Integration tests
— Static analysis
— LLVM fuzzers
— Mutation testing
— Property based testing

ACCU2016

* Talking of testing

* Thurs?
— Mutation Testing in Python, Austin Bingham
* Fri?

— Property Based Testing Hands-on in Haskell or
Javascript, Willem van der Ende + Marc Evers

Property based testing

“Generating test cases so you don’t have to”
State properties that should hold

— it tries to find cases where they don’t

Roots in Haskell: QuickCheck

C++

— RapidCheck

— https://github.com/emil-e/rapidcheck

— https://labs.spotify.com/2015/06/25/rapid-check/
Python

— Hypothesis

— http://hypothesis.readthedocs.org/en/latest/

https://github.com/emil-e/rapidcheck
https://github.com/emil-e/rapidcheck
https://github.com/emil-e/rapidcheck
https://github.com/emil-e/rapidcheck
https://labs.spotify.com/2015/06/25/rapid-check/
https://labs.spotify.com/2015/06/25/rapid-check/
https://labs.spotify.com/2015/06/25/rapid-check/
https://labs.spotify.com/2015/06/25/rapid-check/
http://hypothesis.readthedocs.org/en/latest/
http://hypothesis.readthedocs.org/en/latest/
http://hypothesis.readthedocs.org/en/latest/

Mutation testing

WHO * “Quis custodiet ipsos

WATCHES custodes?”
THE o

* How good are my tests?
* High coverage =>

— No missing checks

— Loopholes

— Edge cases cause trouble
— Combinations

* (only in prod of course)

What is it doing?

e Write tests and run them

* Make small changes (mutants) to code and re-run
tests

* Mutants usually go against the specifications so
tests should fail
— E.g. replace > with <, | with !, ...

* |f tests still pass => problems

e “The mutant is killed if at least one of the unit

test cases has raised an assertion”
https://miketeo.net/wp/index.php/projects/python-mutant-testing-pymutester

https://miketeo.net/wp/index.php/projects/python-mutant-testing-pymutester
https://miketeo.net/wp/index.php/projects/python-mutant-testing-pymutester
https://miketeo.net/wp/index.php/projects/python-mutant-testing-pymutester
https://miketeo.net/wp/index.php/projects/python-mutant-testing-pymutester
https://miketeo.net/wp/index.php/projects/python-mutant-testing-pymutester
https://miketeo.net/wp/index.php/projects/python-mutant-testing-pymutester
https://miketeo.net/wp/index.php/projects/python-mutant-testing-pymutester
https://miketeo.net/wp/index.php/projects/python-mutant-testing-pymutester

Hang on....

* Should changing code ALWAYS make a test
fail?
* TDD
— Write a failing test
— Get that test to pass
— Refactor the code and the tests still pass

Do it!

* https://github.com/miketeo/PyMuTester
* Point at my ballistic tests

from mutester.nose_main import main

if name_ == ' main__ ':

main()

https://github.com/miketeo/PyMuTester
https://github.com/miketeo/PyMuTester

Kill all mutants

>python pymurun.py --mutant-path .

Mutant Test Results
Total: 46
Alive: 0 (0.0%) Killed: 37 (80.4%) Unreachable: 9 (19.6%)

>grep " Mutant" pymuout

*** IFNOT-1... Mutant killed

*** IFNOT-2... Mutant killed

**% SKIPLOOP-1... Mutant killed

*** IFNOT-1... Mutant killed
***IFNOT-2... Mutant killed
***IFNOT-1... Mutant killed
***IFNOT-2... Mutant killed

**% SKIPLOOP-1... Mutant not reached
***IFNOT-1... Mutant killed ...

Use the AST

Tree crossover?

°
e T

e

I -
= b

e

Genetic Programming

Genetic algorithms operated on an array
Mutation testing can use an abstract syntax tree
GA -> GP

— Crossover and mutate *trees*
— http://www.genetic-programming.org/

Search based software engineering (SBSE)

— Dr Chris Simons @chrislsimons

— “Metrics are not enough”

* http://people.uwe.ac.uk/Pages/person.aspx?accountname=campus%5Ccl-simons

http://www.genetic-programming.org/
http://www.genetic-programming.org/
http://www.genetic-programming.org/
http://www.genetic-programming.org/
https://twitter.com/i/redirect?url=https://twitter.com/chrislsimons?cn=cmVwbHk=&refsrc=email&t=1&cn=cmVwbHk=&sig=cbb6f1837f2768daaf6b7f36d563eecfac211d5b&iid=017678a72d1e4fd890744c93a9fa57bb&uid=179914254&nid=27+1262
https://twitter.com/i/redirect?url=https://twitter.com/chrislsimons?cn=cmVwbHk=&refsrc=email&t=1&cn=cmVwbHk=&sig=cbb6f1837f2768daaf6b7f36d563eecfac211d5b&iid=017678a72d1e4fd890744c93a9fa57bb&uid=179914254&nid=27+1262
http://people.uwe.ac.uk/Pages/person.aspx?accountname=campus/cl-simons
http://people.uwe.ac.uk/Pages/person.aspx?accountname=campus/cl-simons
http://people.uwe.ac.uk/Pages/person.aspx?accountname=campus/cl-simons
http://people.uwe.ac.uk/Pages/person.aspx?accountname=campus/cl-simons

Back to paper bags

Looked at GA
Looked at CA

They didn’t all escape
.. S0

GA CA

N

GACA

Very simple cellular automaton

 What if we just go up one row at a time?

GA a CA?

Evolve some rules or starting cells
Using GA
What’s the best starting cell?

— For rule “flip bits”
° [1) 11 O) O] -> [0; O; 1; 1]
— For rule “stay same”

* [_r — _] -> [_r — _]

What’s the best rule for a given cell?

Algo

* Generate starting cells randomly [1, O, O, 1]

 For a while

— Generate some rules
* cells pattern -> cells pattern
[1,0,0,1]->11,0, 1, O]
* Note — lazy generation is quicker!
— Fitness = how many survive to the top
— Crossover, mutate

— Report best each time

Initial cell patterns

Choose cell size
Each cell is on or off
- 11,0, 0, 1]

Possible extensions

— Colour

Do we want uniform distributions?

— Permutations of a half on/off?
— Most alive? Most dead?...

Generate a cell

typedef std: :VM Cells;

Cells CellGenerator::generate() {
Cells cells;
for(size_t 1 = @; i < cell_size; ++i) {
cells.push back(uniform dist(gen) == 0);
}

return cells;

More likely to die

#include <iostream>

#include <random>

int main() {
std::random device device; std::mt19937 gen(device());
std::bernoulli distribution coin flip(0.2);

for (int trials = 0; trials < 100; ++trials) {

std::cout << trials << ',';
for (int i = 0; i < 4; ++i) {
bool outcome = coin_ flip(gen);

std::cout << std::boolalpha << outcome << ',';

}

std::cout << '\n';

What’s a rule?

EEEE EEEE
zlass Rule EEEE BEEEE

public:

- HEE

virtual Cells operator()
(const Cells & cells) const = 0;

s

Generating a rule

~or a given cell, we want to return another cell
Randomly

Here’s a function we made earlier:

CellGenerator::generate()

How many rules?

There are lots - maybe 2™ ?
Do we need good initial coverage?

— Or will mutation find missing places?
What starting cell(s) should we use?
How do we represent them

— Especially so we can do “crossover”
— Input -> output
* [1/ O/ O/ 1] -> [11 O; 1; O]

Generating a rule JIT

Cells

JitRule: :operator()(const Cells & cells) const
{
auto it = lookup.find(cells);

if(it !'= lookup.end())
return it->second;
Cells return_cell = gen.generate();
lookup[cells] = return_cell;
return return_cell;

Crossover?

e Rule: map<Cells, Cells>

Mutation?

e Simple!
* Rule: Cells -> Cells

* Rule[random] = new random cell

Fitness?

e *whistle*

e Also

— How do we really crossover or mutate “Just in
Time” rules?

— Left as an exercise....

Another algo

* Find the best starting cells for a fixed rule
* For a while

— Generate random starting points

* [1,0,0, 1]
— Fitness = how many survive to the top
— Report best each time

— Crossover, mutate the starting cells

Some code

Rule rule = [](const Cells & cell) {
return cell;

}s

CellGenerator cell generator(seed, cell size);
std::vector<Cells> population;//fill using generator

for(size t epoch = 0; epoch < 25; ++epoch) {
for(auto cell : population)
auto alive = run_trial(rule, cell);
crossover(population);

mutate(population);
}

//return best and show it

Crossover — who?

* Tournament

— best of 3 (or some other magic number)
 What if the child is worse?

-

Fithess

e Need to rank solutions

— Need a number -> ordering
* Use how many alive
* Could

— keep any that leave cells alive at top
— keep the best one

— vary population size

— vary crossover point

Mutation

* Flip a bit - or several
* How often? Always? Everything?

* 50% seems good enough, via experimentation

Cells Mutation::mutate(Cells cell) {
auto maybe = uniform_dist(gen);
if (maybe < cell.size()/2) {
auto index = uniform_dist(gen);
cell[index] = lcell[index];
}

return cells;

It can find the best (sometimes)

Action...

* (Note to self —do a demo)

— Evolution.exe gaca population=25 find_start

Questions

* How often does it find the best starting cell?

 What difference do the parameters make?
— Population size
— Epochs — and could bail early if all live
— Mutation probability
— Crossover point(s)

* Magic numbers!

Machines don’t learn

 We have chosen the parameters
— epochs
— population size
— crossover point
— mutation rate

* Experimentation finds the best
— Or good enough

 We could GA these too!
— Or similar: “metaheuristic parameter selection”

Random rule(s)

* For now we will just generate one rule
— an exercise for the listener to define “best”
— “human in the loop”?

* Action...
— (Note to self - do demo)

— Evolution.exe gaca
— Evolution.exe gaca find_start rand_start

IS possible

mg

-
)
S
C
(qu)
QU 5=
Ll
Q
-
W
O
—
O
2 |
<

:ﬁ.&% .ﬁzr%ﬂ“i_tnnfiﬂu ﬂ
- R
._B.Wdll_rqdﬂw v -

, JJIS._nﬂrv.T o - {8 GRS —A-TLE Fm-.l:ax
—&E Pe 2y

P " \1\ t_ﬂl.}
briAe g = M e

S e N
Jur

1%#@?3_._C):§_»H.ﬂ..if.___n._w..:
1...\1_ <T::.t t A ml

Hul..)’.- u\ lt..r_afll
o L ol S 0 |

F LM T A LD LTS el |
}..limu... ARG TSI | iy S Q=T
wﬁmnxtﬂ..v R
S S
D VT Moo il daddn

n.v
qu.ﬂ.ru,r il e 1 KEma | (vl &0

m. By T -
s B Uy L= =

m~ N.l wiih e e m
_T.ld m m .C (Y T -
" I!.....:.
il e H.lﬂ. ;thtﬁ_nrlgk.lﬂol
wlﬂ.. AT Ty a?xt
SRR (LI ¥ v

WONTETK 5B B

LA 2000 |

" ,l_ﬂﬂl. N0 eATE
& AID ol w .

Round up

GA
CA

GACA
— What’s a “good” rule?

Random trials are good
— c.f. scratch refactoring
— As long you can define “good”

Computers can test (and generate code) for us

