
© 2016 Jamie Allsop Algorithmic Architecture

Algorithmic Architecture
Performant Architecture in

Evolving Regulatory Environments

Jamie Allsop
1

© 2016 Jamie Allsop Algorithmic Architecture

DSP background with a PhD in adaptive framework design

focused on C++ & standards work

passionate about agile

ended up at

now director at
2

fiddle with python pypi/cuppa for Scons

https://www.clearpool.io
https://www.cxxpanel.org.uk
http://www.agile-trac.org/blog/category/agile
https://pypi.python.org/pypi/cuppa
https://pypi.python.org/pypi/cuppa

© 2016 Jamie Allsop Algorithmic Architecture

3

Finance & Banking

Games

Source: http://blog.jetbrains.com/clion/2015/09/cpp-annotated-summer-edition/

Electronics

Other

Context (C++)

http://blog.jetbrains.com/clion/2015/09/cpp-annotated-summer-edition/

© 2016 Jamie Allsop Algorithmic Architecture

➤ regulations and change
➤ problems, people and software
➤ architecture and performance

4

© 2016 Jamie Allsop Algorithmic Architecture

2006 2007 2008 2009 2010 2011 2012 2013 2014

UK Nationalises Northern Rock

SEC: Regulation NMS:
Order Protection (Trade-Through) Rule , Market Access Rule,

Sub-Penny Rule, Market Data Rules

Subprime losses for UBS, Citigroup, Merrill Lynch, Deutsche Bank, Wachovia,
Credit Suisse, Bank of America & Barclays totalling $39 Billion

More Subprime losses for UBS & Morgan Stanley totalling $19 Billion

More Subprime losses for Bear Stearns, Citigroup & Merrill Lynch totalling $34
Billion

More losses for UBS & MBIA of $21 Billion

Losses for UBS,
Citigroup, Merrill Lynch
& RBS now totals $122

Billion

Losses for HSBC of
$17 Billion

14164.53

Subprime losses for HSBC of $17 Billion

FreddieMac stops buying subprime
mortgages & MBS

Bear Stearns liquidates two MBS funds

SEC: Uptick Rule Repealed

Short Seller “Bear Raid” on Citigroup

US: Emergency Economic Stabilization Act
2008 & UK Bank Rescue Package

Short Selling Bans

DJIADow Jones
Industrial Average

18,000

17,000

19,000

16,000

14,000

13,000

15,000

19,000

11,000

10,000

12,000

9,000

19,000

7,000

6,000

8,000

5,000

5

Panic

© 2016 Jamie Allsop Algorithmic Architecture

2006 2007 2008 2009 2010 2011 2012 2013 2014

UK Nationalises Northern Rock

SEC: Reg SHO - Rule 201: Alternative Uptick Rule—Short Sale-
Related Circuit Breaker

Lehman Brothers Bankrupt, Merrill Lynch
bought by BoA for $50 billion

Dodd-Frank Reform Act Passed (inc. Volcker Rule)

Losses for UBS,
Citigroup, Merrill Lynch
& RBS now totals $122

Billion

Losses for HSBC of
$17 Billion

6547.05

DIJA falls 1874.19 pts
in all-time worst
weekly performance

FannieMae & FreddieMac placed into
Gov. Conservatorship

Greek bonds get Junk
rating

TARP financial stabilisation package enacted

€110 Billion EU/IMF Greek
bailout

€85 Billion EU rescue for Ireland

€78 Billion EU loan for Portugal

Original BASEL III Proposal SEC: Ban on Stub Quotes

US: Emergency Economic Stabilization Act
2008 & UK Bank Rescue Package

Bailouts for Big Banks

Short Selling Bans

May 6 Flash Crash
DJIA biggest ever

intraday fall

998.5

10,750

10,500

10,250

10,000

6

Fear

© 2016 Jamie Allsop Algorithmic Architecture

2010 2011 2012 2013 2014

SEC: Reg SHO - Rule 201: Alternative Uptick Rule—Short Sale-
Related Circuit Breaker

€110 Billion EU/IMF Greek
bailout

€85 Billion EU rescue for Ireland

€78 Billion EU loan for Portugal

2nd Greek bailout of €130 Billion

Knight Capital Group accidentally
deploy test software in prod resulting

in $440 Million loss

SEC launches MIDAS: Allows full depth
market analysis

SEC Market Information Data Analytics System
(MIDAS) RFP SEC Rule 613: Consolidated

Audit Trail (CAT) RFPEU Initial MiFID II Proposal: covers OTFs,
HFTs, Consolidated Tape, Derivatives,

Increased Transparency EMIR comes into force

SEC: Sponsored Access Rule

Botched Facebook IPO

SEC: Ban on Stub QuotesOriginal BASEL III Proposal

May 6 Flash Crash
DJIA biggest ever

intraday fall

998.5

10,500

10,250

10,000

10,750

7

Mistrust

© 2016 Jamie Allsop Algorithmic Architecture

2010 2011 2012 2013 2014

SEC: Reg SCI (Systems Compliance & Integrity)

Knight Capital Group accidentally
deploy test software in prod resulting

in $440 Million loss

SEC launches MIDAS: Allows full depth
market analysis

SEC Rule 613: Consolidated
Audit Trail (CAT) RFP

EMIR comes into force

Reduction in FED stimulus of Bond Markets

J.P. Morgan Chase pays record $13 Billion fine for
selling overvalued MBSs

Phasing in of BASEL III / CRD IV Minimum
Capital Requirements

Successful Twitter IPO

“Too Big to Fail Banks”

Market Volatility

Insufficient Oversight

Unpopular Gov. Bailouts

Mistrust of Technology

Evolving
Regulatory
Landscape

8

Uncertainty

© 2016 Jamie Allsop Algorithmic Architecture

Regulations are currently seen as
the best way to protect the

markets and their participants
from themselves

9

© 2016 Jamie Allsop Algorithmic Architecture

But Regulations are
a Moving Target

Regulations Change

for many reasons but ultimately they change

stuff happens and regulations are often seen as the answer

regulations create loop-holes that need plugged

regulations create industries that themselves need regulated
10

© 2016 Jamie Allsop Algorithmic Architecture

Explosive Growth in
Regulatory Burden

11

To Infinity and...

DODD-FRANK

BANKING ACT
FEDERAL

RESERVE ACT

32 37

848

NATIONAL
BANKING ACT

29

© 2016 Jamie Allsop Algorithmic Architecture

There are often Hard Constraints

availability?

disaster recovery?

proof of compliance?

audit trails?

accuracy of data capture?

many constraints driven by regulations

minimum throughput?

average latency?

worst case latency?

12

© 2016 Jamie Allsop Algorithmic Architecture

Regulations

Business
Rules

Performance
Requirementsconflicting

Hard Constraints

Interpretation

Technology
Needed To
Satisfy All

Requirements

Let’s simplify this…

13

© 2016 Jamie Allsop Algorithmic Architecture

Addressing Difficult Problems

Regulations

Business
Decisions

Performance
Goals

Proof of
Compliance Audit Trails

Future
Proofing Performance

Constraints

Evolving
Hardware

Market
Positioning

Business
Models, Sales,

Revenue

14

© 2016 Jamie Allsop Algorithmic Architecture

How can we classify
problems?

“We fail more often because we
solve the wrong problem than because we get the

wrong solution to the right problem”

15

— Ackoff 1974

Rittel & Webber 1973, Ackoff 1974, Roth & Senge 1996, Hancock 2004, Ritchey 2013

© 2016 Jamie Allsop Algorithmic Architecture

Tame Problems

● may be simple
or highly
complex

● definitive
stopping
point

● consensus on how to proceed

Gather Data Analyse Data Formulate
Solution

Implement
Solution

● can be broken
down into parts

and solved
● solutions

can be determined
to be successful

…or not

16

© 2016 Jamie Allsop Algorithmic Architecture

Organised complexity
● clusters of interrelated or

interdependent problems
Systems of problems
● problems that cannot be solved

in relative isolation from one
another

Messes are puzzles - we don’t
solve them instead we resolve
their complexities

 Messes
Algorithmic Architecture

17

© 2016 Jamie Allsop Algorithmic Architecture

18

not sufficient to just break the system into parts and fix
components

Messes are… a Mess

instead look for patterns of interactions between parts
beware of identifying a mess as a tame problem—the
evolving mess can be even more difficult to deal with
interactive complexity—what can go wrong?
coupling—the degree to which we cannot stop an
impending disaster once it starts

© 2016 Jamie Allsop Algorithmic Architecture

19

?

coupling...

© 2016 Jamie Allsop Algorithmic Architecture

Bugfixing?

20

Refactoring?

© 2016 Jamie Allsop Algorithmic Architecture

Wickedness
21

✴ Conflicting social ethics and beliefs
✴ Smart, informed people disagree
✴ Divergent problems with

no promise of a solution
✴ Evolving set of Interlocking

Issues and Constraints
✴ Constraints change over Time
✴ Many Stakeholders

© 2016 Jamie Allsop Algorithmic Architecture

22

No definitive Problem == No definitive Solution

Know your demons…

Cannot be solved by a Linear or “Waterfall” process
Studying followed by Taming does not work
No stopping rules
Finished when we Exhaust Resources
Solutions not Right or Wrong but Better or Worse
Poor choices create more Wicked Problems

© 2016 Jamie Allsop Algorithmic Architecture

How we deal with problem complexity

Wicked Wicked
Mess

MessTame

High

Low

HighLow

Dynamic Systems
Complexity

Behavioural
Complexity

Reliance on
Quantitative
Assessment

Reliance on
Qualitative

Assessment

Solution is Scientific

Resolution is Social /
Ethical / Political /

Moral / Behavioural

23

© 2016 Jamie Allsop Algorithmic Architecture

Let’s consider the question
of Healthy Markets

24

© 2016 Jamie Allsop Algorithmic Architecture

The markets involve people The markets involve systems

25

© 2016 Jamie Allsop Algorithmic Architecture

What represents “good liquidity”?

● Tighter Spreads?

● Order Book Depth?

● What about “phantom” Orders?

Transparency?

High
Behavioural
Complexity

High
Dynamic
System

Complexity

Wicked Mess

Regulations Developed to Promote Healthy Markets

Lots of People and Lots of Systems

Characteristics of a Healthy Market?

Liquidity?

Volatility? Data Access?

26

© 2016 Jamie Allsop Algorithmic Architecture

Approaches to Wicked Problems

Timeboxing

Iterative Qualitative
Progress

Assessment
by Expert

Stakeholders
Getting the right

Stakeholders
togetherCommunication

Transparency Listening and
Establishing Trust

27
Regulatory Solutions are Too Slow to React Effectively

© 2016 Jamie Allsop Algorithmic Architecture

28

Triggered and Skewed by Events:
Flash Crash and HFTs?

© 2016 Jamie Allsop Algorithmic Architecture

29

ACCEPTED WISDOM
Boundaries for qualitative

assessment by Expert
Stakeholders

© 2016 Jamie Allsop Algorithmic Architecture

Approaches to Wicked Problems

Timeboxing

Iterative Qualitative
Progress

Assessment
by Expert

Stakeholders
Getting the right

Stakeholders
togetherCommunication

Transparency Listening and
Establishing Trust

Sounds a lot like Agile Development?
30

© 2016 Jamie Allsop Algorithmic Architecture

Agile
and We’re Done?

31

© 2016 Jamie Allsop Algorithmic Architecture

Remember our focus is on
Architecture in the context

of Wicked Messes

32

© 2016 Jamie Allsop Algorithmic Architecture

➤ The product of Design and Implementation - what
you see when you step back and look at your system

➤ Encoded in the Architecture are the choices made
and compromises reached

What do we mean by Architecture?

Whose compromises?
Whose choices?

33

© 2016 Jamie Allsop Algorithmic Architecture

Marketecture vs Tarchitecture?

Another view on Architecture

Marketecture: Anything that is concerned
with how revenue is generated for a
product or how it is marketed as working, or
how it is sold

Marketecture impacts Tarchitecture
34

© 2016 Jamie Allsop Algorithmic Architecture

ʭ Marketecture is often driven by decisions that have
no regard for the technical impact

ʭ Stakeholders change
ʭ Goal posts move
ʭ “Power without responsibility”
ʭ Poor choices baked in early
ʭ What’s most important?

Dangers in evolution

35

© 2016 Jamie Allsop Algorithmic Architecture

➤ Is often an observed sketch of the system
➤ Actual architecture exists based on the source code
➤ Pinpointing which aspects contribute to any

characteristic of the system can be difficult
➤ Changing it is usually hard

Architecture General Truths

36

© 2016 Jamie Allsop Algorithmic Architecture

➤ Hard choices early so later choices are easier
➤ Evolving to an appropriate architecture
➤ Deferring choices to last responsible moment
➤ Natural calcification along the way

Agile Architecture

Is Fragile
Architecture? Evolves to better

Architecture?

37

© 2016 Jamie Allsop Algorithmic Architecture

Agile Architecture is a good
starting point—evolving to

an appropriate architecture
Can we do better?

38

© 2016 Jamie Allsop Algorithmic Architecture

Let’s look at a
real world example
as a starting point

39

© 2016 Jamie Allsop Algorithmic Architecture

Following the Flash Crash the SEC
launched an investigation
into the causes

The SEC were presented with architectural
overviews of how the systems involved
behaved, and how they were evolved

40

© 2016 Jamie Allsop Algorithmic Architecture

Their focus was on
Market Data Publication

Slow and delayed quoting
was experienced during the

Flash Crash

41

© 2016 Jamie Allsop Algorithmic Architecture

1
What can
we tell from
looking at
this picture?

Data flow
Networking
Queuing
Decisions
Processors
Data stores

42

© 2016 Jamie Allsop Algorithmic Architecture

2Message Passing?
Synchronisation?

Bottlenecks?

43

© 2016 Jamie Allsop Algorithmic Architecture

3Let’s Fix That…

…so only trades are affected

Requirement!!! Trades must not be lost and must not be duplicated
44

© 2016 Jamie Allsop Algorithmic Architecture

4See the difference? Analytics

45

© 2016 Jamie Allsop Algorithmic Architecture

5
Task Optimisation: Sync all
outstanding writes at once

46

© 2016 Jamie Allsop Algorithmic Architecture

There are a lot of things we
cannot tell from looking at

the diagrams

47

© 2016 Jamie Allsop Algorithmic Architecture

● How are stale quotes handled during a recovery?
● When and why are zero quotes published?
● Are the recovery requirements reasonable?
● Which version was in production at the time?
● Did the system behave correctly?
● Is there information to make that determination?
● How was memory managed?
● How many cores did deployment machines have?
● Details, details, details…

What about...?

48

© 2016 Jamie Allsop Algorithmic Architecture

● Risk Averse Business
● Correctness the highest priority, then performance
● Ultimate priority was performance
● Worst case performance requirements
● Architecture should evolve to improve performance
● There were 2 versions live in production

Reasons why...?

49

© 2016 Jamie Allsop Algorithmic Architecture

A Story…
Not the Whole Story

50

© 2016 Jamie Allsop Algorithmic Architecture

Nice diagrams typically do
not reflect the reality of a

code-base

It would be nice if it did
51

© 2016 Jamie Allsop Algorithmic Architecture

Some things we can conclude
➤ Performance improved by

doing the right thing
➤ Not by optimising existing

behaviour
➤ Local optimisation only done

when solution good enough

52

© 2016 Jamie Allsop Algorithmic Architecture

Let’s look at some possible
future systems that all do

the same thing…

53

© 2016 Jamie Allsop Algorithmic Architecture

6

54

© 2016 Jamie Allsop Algorithmic Architecture

7

55

© 2016 Jamie Allsop Algorithmic Architecture

8

56

© 2016 Jamie Allsop Algorithmic Architecture

The same thing in a
different way with

different trade-offs:
Performance trade-offs

57

© 2016 Jamie Allsop Algorithmic Architecture

Improving
Performance

Achieve the same thing in
a different way

Do the current thing
better/quicker

Algorithmic Optimisation
Approach

Task Optimisation
Approach

Bubblesort O(n2) Timsort O(n log n)

DFT O(n2) FFT O(n log n)Frequency Analysis

Sorting

58

© 2016 Jamie Allsop Algorithmic Architecture

Prefer to optimise at the
highest level possible
The fastest way to do

something is not do it at all

59

© 2016 Jamie Allsop Algorithmic Architecture

➤ Architecture for wicked problems typically a “mess”
➤ Many stakeholders and evolving problem domain

over time adds “wickedness”
➤ Decomposing and understanding interactions

difficult
➤ Such architecture, good or bad, is often hard to

reason about in a way that maps directly to code
➤ Favours Task Optimisation

Environmental Influences

60

© 2016 Jamie Allsop Algorithmic Architecture

We want to reason
about this…

But we can only
see this…

61

© 2016 Jamie Allsop Algorithmic Architecture

What we really want is an Architecture that

ʛ favours algorithmic optimisation
ʛ has a clear mapping to code
ʛ allows an optimal solution
ʛ is adaptive to a changing environment

62

an “Algorithmic Architecture”

© 2016 Jamie Allsop Algorithmic Architecture

Relies on being able to
decompose the Architecture

into discrete elements
treating them as Building

Blocks

63

© 2016 Jamie Allsop Algorithmic Architecture

➤ Exposing a Vocabulary that can map to code and is
➤ Decomposable
➤ Composable
➤ Independently Orderable
➤ Compactible
➤ Substitutable

We Achieve This By

64

© 2016 Jamie Allsop Algorithmic Architecture

the first step in moving towards
an algorithmic architecture is to
identify a vocabulary suitable for
the domain

➤ implies decomposability
➤ implies extensibility

Expose a vocabulary1

65

© 2016 Jamie Allsop Algorithmic Architecture

Must be a common vocabulary

A common vocabulary’s primary
concern is not ensuring the best use
in the description of a possible
solution—rather it is focused on
ensuring that all stakeholders can
communicate sufficiently their
position within it—it is shared

66

© 2016 Jamie Allsop Algorithmic Architecture

Must be domain specific

The vocabulary must support
natural domain specific terms as
understood by most
stakeholders—it is not sufficient
to simply adopt a general
vocabulary based on general
design patterns (but they help)

67

© 2016 Jamie Allsop Algorithmic Architecture

Identify concepts

Focus on identifying concepts
over specific realisations.
Refinement to more concrete
terms is best reserved for
supporting substitutable
elements in an architecture

68

© 2016 Jamie Allsop Algorithmic Architecture

Vocabulary Checklist

➤ must add in clarity of communication
➤ should have consensus on basic meanings
➤ does not need to be complete
➤ but should be sufficient to model basic systems
➤ may capture concepts at different levels in a system
➤ should be possible to describe a system
➤ vocabularies can grow and evolve

69

© 2016 Jamie Allsop Algorithmic Architecture

Decomposable

it should be possible to
decompose the architecture into
vocabulary elements that
communicate the intent of the
system

➤ implies partitioning interfaces

2

70

© 2016 Jamie Allsop Algorithmic Architecture

composable components can be
assembled together to complete
more complex tasks

➤ implies common approach
to communication

Composable3

71

© 2016 Jamie Allsop Algorithmic Architecture

Independently orderable

it should be possible to re-order
components of the architecture
that do not have an ordering
relationship

➤ implies loose coupling

4

72

3

1

3

7

4

8
2

6

2

5

4

5

2

© 2016 Jamie Allsop Algorithmic Architecture

Compactible

it should be possible to compact
the architecture such that
placeholder vocabulary elements
can be optimised away

➤ implies facilities to offset the
cost of abstraction

5

73

© 2016 Jamie Allsop Algorithmic Architecture

Substitutable

vocabulary elements should be
replaceable by differing
implementations with differing
performance trade-offs

➤ implies consistent, clean
interfaces

6

74

© 2016 Jamie Allsop Algorithmic Architecture

Recommendations

75

Processor 1

Bus

Processor 2

ʛ Define building block vocabulary elements
template<class DataT>
void process(const DataT& Data);

template<class DataT>
void push(const DataT& Data);

template<class ProcessorT>
void connect(ProcessorT Processor);

© 2016 Jamie Allsop Algorithmic Architecture

Recommendations

Processor 1

Bus

ʛ Define building block vocabulary elements
ʛ Avoid shared state

76

Processor 2

© 2016 Jamie Allsop Algorithmic Architecture

Recommendations

77

Processor 1

Bus

Processor 2

ʛ Define building block vocabulary elements

ʛ Favour message passing
ʛ Avoid shared state

© 2016 Jamie Allsop Algorithmic Architecture

Recommendations

78

Processor 1

Bus

Processor 2

Q

ʛ Define building block vocabulary elements

ʛ Favour message passing
ʛ Avoid shared state

ʛ Make synchronisation points explicit
in the architecture
Synchronisation points are not composable. If you
hide them you run the risk of concurrency hazards
such as livelocks, starvation, deadlocks, and
convoying

© 2016 Jamie Allsop Algorithmic Architecture

Recommendations

79

Processor 1

Bus

Processor 2

Q

UDP
ʛ Define building block vocabulary elements

ʛ Support push and pull models

ʛ Favour message passing
ʛ Avoid shared state

ʛ Make synchronisation points explicit
in the architecture

enum class read_policy{ on_data, poll };
template<class ProcessorT>
void connect(ProcessorT Processor, read_policy Read);

© 2016 Jamie Allsop Algorithmic Architecture

Recommendations

80

Processor 1

Bus

Processor 2

Q

UDP

process(data)

execute(command)

ʛ Define building block vocabulary elements

ʛ Support push and pull models
ʛ Separate Data and Command paths
ʛ Static Polymorphism for Performance

ʛ Favour message passing
ʛ Avoid shared state

ʛ Make synchronisation points explicit
in the architecture

© 2016 Jamie Allsop Algorithmic Architecture

Simple Example

UDP Data Receiver

Packet Bus

Gap Handler

Message Extractor

Gap-Free Packet Bus

Message Bus

Message Processor

Packet Framer

Processed Msg Bus

UDP Publisher

Outbound Pkt Bus

UDP Data Receiver

Packet Bus

Gap Handler

Message Extractor

Message Processor

Packet Framer

UDP Publisher

Outbound Pkt Bus

Function 1

Concurrency Barrier 1

Function 2

Function 3

Concurrency Barrier 2

Design Using a
Real Vocabulary of
Real Components

Compact Architecture by
removing conceptual
components

Compile to Optimised
Implementation with zero
abstraction cost

1
2 3

81

© 2016 Jamie Allsop Algorithmic Architecture

Different Performance Trade-offs

UDP Receiver

Gap Handler

Order Extractor

Order Processor 1

UDP Packets

Order Dispatcher

Packet Bus

Order Bus 1 Bus 2 Bus n

Market Data Bus Book Data Bus

Packet Framer Packet Framer

Order Matcher

Book Builder

UDP PublisherUDP Publisher

Packet Extractor

UDP Packets

Polling UDP Receiver

Gap Handler

Packet Extractor

Order Extractor

Order Dispatcher

Order Processor 1

Market Data Bus Book Data Bus

Packet Framer Packet Framer

Order Matcher

Book Builder

UDP PublisherUDP Publisher

OP 2 OP n

Scaling Agnostic
Single Process → Multiple Processes?
Single Core → Multiple Cores?
Single Server → Multiple Servers?

Multi-threaded
Push Model

Single-threaded
Pull Model

Latency Agnostic
Coroutines?
Lock-free Queues?
Context-switches?

82

© 2016 Jamie Allsop Algorithmic Architecture

Per Channel Gap Filter

Packet Filter

Message Extractor

Packet Framer

Outbound Packet Bus

Inbound Packet Bus

Subscriber

Packet Publisher

Packet Throttler

Gap Requester Gap Handler

Framing Strategy

State Machine

Multicast Publisher

Receive Packets

Code Mapping Example

void on_packet
(const data_packet& Packet,
 int InstrumentId)
{
 const void* Data = nullptr;
 size_t Size;
 if(Packet.read(Data, Size))
 {
 InboundPacketBus_.push
 (std::allocate_shared< packet_t >
 (Allocator_,
 std::chrono::nanoseconds(clock_t::now().time_since_epoch()),
 SubscriberId_,
 InstrumentId,
 static_cast<const char*>(Data), Size));
 }
 else
 {
 // log error: cannot read message
 }
}

Inbound Packet Bus

Subscriber

Receive
Packets

Packet
Processing

Packet
Publishing

83

© 2016 Jamie Allsop Algorithmic Architecture
void process(const shared_inbound_packet& InboundPacket)
{
 if(InboundPacket->seq_num() == ExpectedSeqNum)
 {
 ExpectedSeqNum = InboundPacket->seq_num() + InboundPacket->header().num_msgs();
 GapHandler_.update_expected_seq_num(ExpectedSeqNum, ChannelId);

 if(InboundPacket->header().num_msgs()
 && InboundPacket->header().delivery_flag() == format::delivery_flag::original_message)
 {
 while(shared_message_t Message = InboundPacket->pop_front())
 {
 if(FramingStrategy_->incoming_message_triggers_send(OutboundPacket_->size(), Message->size()))
 {
 SeqNum_ += NumMsgsInPrevPacket_;
 LastFrameTime_ = clock_t::now().time_since_epoch();
 OutboundPacket_->assign_seq_num(SeqNum_);
 OutboundPacketBus_->push(OutboundPacket_);
 NumMsgsInPrevPacket_ = OutboundPacket_->header().num_msgs();
 OutboundPacket_ = std::make_shared<outbound_packet_t>(format::delivery_flag::original_message);
 }
 OutboundPacket_->push_back(Message);
 if(FramingStrategy_->packet_requires_immediate_send(OutboundPacket_->size(), Message->last_message_in_packet()))
 {
 SeqNum_ += NumMsgsInPrevPacket_;
 LastFrameTime_ = clock_t::now().time_since_epoch();
 OutboundPacket_->assign_seq_num(SeqNum_);
 OutboundPacketBus_->push(OutboundPacket_);
 NumMsgsInPrevPacket_ = OutboundPacket_->header().num_msgs();
 OutboundPacket_ = std::make_shared<outbound_packet_t>(format::delivery_flag::original_message);
 }
 }
 }
 else
 {
 // send command::category::notification - packet_discarded
 }
 }
 else if(InboundPacket->seq_num() > ExpectedSeqNum)
 {
 ExpectedSeqNum = GapHandler_.handle_unexpected_packet(InboundPacket, ExpectedSeqNum, ChannelId);
 }
 else if(InboundPacket->seq_num() < ExpectedSeqNum)
 {
 // log and ignore
 }
}

Per Channel Gap Filter

Packet Filter

Message Extractor

Packet Framer

Outbound Packet Bus

P
ac

ke
t

P
ro

ce
ss

in
g

Outbound Packet Bus

Inbound Packet Bus

84

© 2016 Jamie Allsop Algorithmic Architecture

Publish Packets
void process(const shared_outbound_packet& OutboundPacket)
{
 delay_before_send(OutboundPacket->size());
 OutboundPacket->assign_send_time(std::chrono::nanoseconds(clock_t::now().time_since_epoch()));

 MulticastPublisher_->process(OutboundPacket);
}

Vocabulary elements map directly to code
➤ Code still lives in separate ‘modules’
➤ Maintained and tested separately
➤ Communication through building block interfaces
➤ Abstraction cost removed but clarity retained
➤ Easy to change, fix, replace

Lastly…

Outbound Packet Bus

Packet Publisher

Packet Throttler

85

© 2016 Jamie Allsop Algorithmic Architecture

Additional Benefits of a
Common Vocabulary

86

© 2016 Jamie Allsop Algorithmic Architecture

Common Vocabulary → Tiered Structure

Standard & Thirdparty Libs

Domain Agnostic Libraries

Domain Specific Libraries

Product Libraries

Projects, Deployments and Configuration

Source code is arranged in tiers facilitating a layered development structure
and allowing critical code to retain high quality and performance

boost, std, asio

New York Equities Platform

matching_engine, gateway

gap_handler, format, session

multicast, bus, concurrency

87

© 2016 Jamie Allsop Algorithmic Architecture

Stable Foundations

88

Standard & Thirdparty Libs

Domain Agnostic Libraries

Domain Specific Libraries

Product Libraries

Projects, Deployments and Configuration

Tiers form a pyramid of code with the foundations formed by
re-usable components and libraries of well tested code

© 2016 Jamie Allsop Algorithmic Architecture

Developer Growth

Standard & Thirdparty Libs

Domain Agnostic Libraries

Domain Specific Libraries

Product Libraries

Projects, Deployments and Configuration

Quality and
Technical
Knowledge
required

Visibility on
progress
from a

business
perspective

Domain
Specific

Knowledge

Domain
Agnostic
Expertise
needed

Team Lead
Possibilities

➤ Allows different experience and skillsets to
be catered to throughout the team

➤ Provides clear opportunities for
progression and personal growth —
minimising turnover and helping attract
the best developers

89

© 2016 Jamie Allsop Algorithmic Architecture

Contrast with Disparate Vocabulary

● Product Siloed Development
● Competing underlying frameworks
● Explosion of Code

● Possible to adopt a Core Framework
● Product Building Focused more on Assembly
● Scales across Teams and Geographies
● Developer and Business share the vocabulary

With A Common Vocabulary
Less is More

Disparate Vocabulary
Hurts Development

90

© 2016 Jamie Allsop Algorithmic Architecture

Accelerated Development

Products based on shared framework
● Development rate increases over time
● Framework stabilises over time
● Developer turnover less impact

Minimal Toolchain possible
● Hiring Easier
● Maintenance Easier
● Faster Learning

C++ (core language, high perf, servers), Python (web-server, scripting, builds, test),
Javascript (web-clients), SCSS (presentation), Postgresql (data storage)

91

© 2016 Jamie Allsop Algorithmic Architecture

Favour a more holistic view
of development — one that

puts people as a central
aspect of architecture

92

© 2016 Jamie Allsop Algorithmic Architecture

Final Thoughts
In a highly regulated, ever-changing, environment with extreme
performance constraints it is increasingly difficult to avoid full
system rewrites to meet changing requirements

Algorithmic architecture is primarily about adhering to certain
principles and concepts where the goal is to facilitate clear
understanding within complex and changing problem domains

The goal of those principles is to allow optimisation (and general
improvement) of an architecture to occur at the highest level
possible—the architecture itself—allowing adaptivity and evolution

93

© 2016 Jamie Allsop Algorithmic Architecture

@clearpoolio

Questions?

Thank you for Listening

94

jamie.allsop @ clearpool.io

https://www.clearpool.io

