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Safe Harbor Statement

The following is intended to outline our general product 
direction. It is intended for information purposes only, and 
may not be incorporated into any contract. It is not a 
commitment to deliver any material, code, or functionality, 
and should not be relied upon in making purchasing 
decisions. The development, release, and timing of any 
features or functionality described for Oracle’s products 
remains at the sole discretion of Oracle.
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Agenda

● Clang
● Why porting?
● How it was done
● Challenges
● Results & conclusion
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Clang

● C/C++ compiler frontend
● Part of LLVM project
● Supports all modern standards
● Modular
● IDE friendly

– libclang

– clangd



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Clang modules
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Why porting?

● Native Clang library requirements without 
functional regressions:
– Full access to the strength of technology

– All Java-aware platforms

– Safety 

– Debug

– Performance of native clang

– JNI/JNA Bridging overhead

– Upgrade to new Clang release
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Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety 
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release
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● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower
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– Need to expose whole AST API

● Upgrade to new Clang release

Conclusion: Clang doesn't bring any extra value?
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A loud, sharp sound or series of sounds, typically made by 
pieces of metal meeting or being struck together
- Oxford Dictionary

17

Clank - Pronunciation: /klaNGk/

A loud, resonant metallic sound or series of sounds
- Oxford Dictionary

Clang - Pronunciation: /klaNG/
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How it was done

● Converter
– Based on Clang

– Inspired by -ast-print in Clang

– Produces semantically equivalent code 

– Keeps code as close as possible to original

– Keeps comments
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How it was done

● Converter's output

Java C++
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How it was done

● Converter's output

Java C++
C++ Java
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How it was done

● Bottom up approach
– for API

 

Llvm ADT/Support
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How it was done

● Followed by Top down approach
– for implementations

Llvm ADT/Support

Llvm Option Clang/Basic

Clang/Lex
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C++ in Java Technical Challenges

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Temporary objects lifecycle
– Diagnostics are not printed

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● Java code performance
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All of them are solvable

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Temporary objects lifecycle
– Diagnostics are not printed

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● Java code performance
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Class Base

...

Class B

Constructor B(char Param)

Operation OpB

Property PropB

Class C

Constructor C(Params...)

Operation OpC

Property PropC

Multiple inheritance: class C : Base, A, B {...}

Class A

Constructor A(int Param)

Operation OpA

Property PropA
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Class A

Constructor A(int Param)

Operation OpA

Property PropA

Interface A

A$Fields $A(int Param);

A$Fields $A$Fields();

Operation OpA

Class A$Fields

Constructor A$Fields(int Param);

Property PropA

Constructor of class A became method $A All accesses to fields 
in class A are prepended 
with a call to $A$Fields() 

Initializations of fields 
from “Constructor A” are 
here

Java: class A → interface A
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Java: class B → interface B

Class B

Constructor B(char Param)

Operation OpB

Property PropB

Interface B

B$Fields $B(char Param);

B$Fields $B$Fields();

Operation OpB

Class A$Fields

Constructor B$Fields(char Param);

Property PropB

Constructor of class B became method $B All accesses to fields 
in class B are prepended 
with a call to $B$Fields() 

Initializations of fields 
from “Constructor B” are 
here

Exactly the same way as it is done with class A
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Java: class C
Class C extends Base

A$Fields F_A;

A$Fields $A$Fields();

B$Fields F_B;

B$Fields $B$Fields();

Constructor C(Params...)

Operation OpC

Property PropC

Interface A

A$Fields $A(int Param);

A$Fields $A$Fields();

Operation OpA

Interface B

B$Fields $B(char Param);

B$Fields $B$Fields();

Operation OpB

Constructor C(Params...) {
  super(...); // Base ctor
  this.F_A = $A(Param1);
  this.F_B = $B(Param2);
  … // rest of initialization
}

$BFields $B$Fields() {
  return F_B;
}

$AFields $A$Fields() {
  return F_A;
}

implements

implements
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Method in a class turned into interface
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Temporary object lifecycle

C++ AST
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Temporary object lifecycle

AST

Java
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Clank: Upgrade to Clang 3.9

● Tooling
– Analyze diffs

– Analyze dependencies

– Detect Changed Entities

– Prepare TODO actions

– Process Moved and Renamed actions first

– Drive upgrade

– Mark progress

– Track progress

● 1 person – 4 weeks for 1.1MLoc
● Improve Upgrade Tools based on feedback
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Clank: Upgrade to Clang 3.9

● Update view
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Clank: Upgrade to Clang 3.9
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Results

● C/C++ Frontend in Java



Copyright © 2017, Oracle and/or its affiliates. All rights reserved.  

Results

● C/C++ Frontend in Java
– Provides AST

Clang Clank
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Results

● C/C++ Frontend in Java
– Provides AST

– Provides CFG

– Provides diagnostics

– Provides different tools
● Static Analyzer
● clang-tidy
● clang-format
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Conclusion

● C/C++ conversion to Java is possible 
– Clank

● ~1.6M lines of code
● Up to 10x slower than native after conversion

– On par after optimizations
● Preprocessor is already included in NetBeans IDE
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Thank you!
Clank Clang
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