
Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

LLVM C/C++ compiler frontend
in Java
Sharing the NetBeans Team’s Experience

Petr Kudriavtsev
Vladimir Voskresensky
Oracle

April 26, 2017

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Safe Harbor Statement

The following is intended to outline our general product
direction. It is intended for information purposes only, and
may not be incorporated into any contract. It is not a
commitment to deliver any material, code, or functionality,
and should not be relied upon in making purchasing
decisions. The development, release, and timing of any
features or functionality described for Oracle’s products
remains at the sole discretion of Oracle.

2

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Agenda

● Clang
● Why porting?
● How it was done
● Challenges
● Results & conclusion

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang

● C/C++ compiler frontend
● Part of LLVM project
● Supports all modern standards
● Modular
● IDE friendly

– libclang

– clangd

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang modules

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Why porting?

● Native Clang library requirements without
functional regressions:
– Full access to the strength of technology

– All Java-aware platforms

– Safety

– Debug

– Performance of native clang

– JNI/JNA Bridging overhead

– Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Conclusion: Clang doesn't bring any extra value?

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We hadn't have Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Wait! Let's try Clang in Java!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clang Technology evaluation
(JNI/JNA prototyping)

● Full access to the strength of technology
– Including AST, ASTRecursiveVisitors, ASTMatchers, CFG …

● All Java-aware platforms
– MacOS, Linux, Windows, and Solaris

– X86 and SPARC

– 32 and 64bits

● Safety
– Forgot QualType.isNull() check in your Java call? Welcome to JVM Core Dump!

● Debug
– We haven't had Mixed-dev in NetBeans yet...

● Performance of native clang
– Clang preprocessing itself is 2 times slower, parsing is 10x slower

● JNI/JNA Bridging overhead
– Need to expose whole AST API

● Upgrade to new Clang release

Wait! Let's try Clang in Java!

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

A loud, sharp sound or series of sounds, typically made by
pieces of metal meeting or being struck together
- Oxford Dictionary

17

Clank - Pronunciation: /klaNGk/

A loud, resonant metallic sound or series of sounds
- Oxford Dictionary

Clang - Pronunciation: /klaNG/

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

How it was done

● Converter
– Based on Clang

– Inspired by -ast-print in Clang

– Produces semantically equivalent code

– Keeps code as close as possible to original

– Keeps comments

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

How it was done

● Converter's output

Java C++

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

How it was done

● Converter's output

Java C++
C++ Java

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

How it was done

● Bottom up approach
– for API

Llvm ADT/Support

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

How it was done

● Bottom up approach
– for API

Llvm ADT/Support

Llvm Option Clang/Basic

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

How it was done

● Bottom up approach
– for API

Llvm ADT/Support

Llvm Option Clang/Basic

Clang/Lex

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

How it was done

● Followed by Top down approach
– for implementations

Llvm ADT/Support

Llvm Option Clang/Basic

Clang/Lex

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

How it was done

● Followed by Top down approach
– for implementations

Llvm ADT/Support

Llvm Option Clang/Basic

Clang/Lex

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

How it was done

● Followed by Top down approach
– for implementations

Llvm ADT/Support

Llvm Option Clang/Basic

Clang/Lex

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

C++ in Java Technical Challenges

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Temporary objects lifecycle
– Diagnostics are not printed

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● Java code performance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

All of them are solvable

● Names collisions
– Non-virtual methods in base and derived classes

● In Java all methods are virtual

– 'unsigned int' vs 'int' overloaded methods and constructors

● Temporary objects lifecycle
– Diagnostics are not printed

● Multiple inheritance
● Compile time preprocessor-conditional code in FileSystem

– Changed #ifdef/#else/#endif to runtime

● Split by TUs vs Monolithic Java classes
● this+1 and TrailingObjects
● Custom new operators
● Java code performance

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Class Base

...

Class B

Constructor B(char Param)

Operation OpB

Property PropB

Class C

Constructor C(Params...)

Operation OpC

Property PropC

Multiple inheritance: class C : Base, A, B {...}

Class A

Constructor A(int Param)

Operation OpA

Property PropA

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Class A

Constructor A(int Param)

Operation OpA

Property PropA

Interface A

A$Fields $A(int Param);

A$Fields AFields();

Operation OpA

Class A$Fields

Constructor A$Fields(int Param);

Property PropA

Constructor of class A became method $A All accesses to fields
in class A are prepended
with a call to AFields()

Initializations of fields
from “Constructor A” are
here

Java: class A → interface A

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Java: class B → interface B

Class B

Constructor B(char Param)

Operation OpB

Property PropB

Interface B

B$Fields $B(char Param);

B$Fields BFields();

Operation OpB

Class A$Fields

Constructor B$Fields(char Param);

Property PropB

Constructor of class B became method $B All accesses to fields
in class B are prepended
with a call to BFields()

Initializations of fields
from “Constructor B” are
here

Exactly the same way as it is done with class A

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Java: class C
Class C extends Base

A$Fields F_A;

A$Fields AFields();

B$Fields F_B;

B$Fields BFields();

Constructor C(Params...)

Operation OpC

Property PropC

Interface A

A$Fields $A(int Param);

A$Fields AFields();

Operation OpA

Interface B

B$Fields $B(char Param);

B$Fields BFields();

Operation OpB

Constructor C(Params...) {
 super(...); // Base ctor
 this.F_A = $A(Param1);
 this.F_B = $B(Param2);
 … // rest of initialization
}

$BFields BFields() {
 return F_B;
}

$AFields AFields() {
 return F_A;
}

implements

implements

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Method in a class turned into interface

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Temporary object lifecycle

C++ AST

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Temporary object lifecycle

AST

Java

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: Upgrade to Clang 3.9

● Tooling
– Analyze diffs

– Analyze dependencies

– Detect Changed Entities

– Prepare TODO actions

– Process Moved and Renamed actions first

– Drive upgrade

– Mark progress

– Track progress

● 1 person – 4 weeks for 1.1MLoc
● Improve Upgrade Tools based on feedback

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: Upgrade to Clang 3.9

● Update view

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Clank: Upgrade to Clang 3.9

● Tooling
– Analyze diffs

– Analyze dependencies

– Detect Changed Entities

– Prepare TODO actions

– Process Moved and Renamed actions first

– Drive upgrade

– Mark progress

– Track progress

● 1 person – 4 weeks for 1.1MLoc
● Improve Upgrade Tools based on feedback

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Results

● C/C++ Frontend in Java

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Results

● C/C++ Frontend in Java
– Provides AST

Clang Clank

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Results

● C/C++ Frontend in Java
– Provides AST

– Provides CFG

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Results

● C/C++ Frontend in Java
– Provides AST

– Provides CFG

– Provides diagnostics

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Results

● C/C++ Frontend in Java
– Provides AST

– Provides CFG

– Provides diagnostics

– Provides different tools
● Static Analyzer
● clang-tidy
● clang-format

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Conclusion

● C/C++ conversion to Java is possible
– Clank

● ~1.6M lines of code
● Up to 10x slower than native after conversion

– On par after optimizations
● Preprocessor is already included in NetBeans IDE

Copyright © 2017, Oracle and/or its affiliates. All rights reserved.

Thank you!
Clank Clang

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

