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Background 

• Was created by me in 2010 as a tool called ah64 

• Was motivated by need to debug growth issues on un-instrumented cores 

• Started supporting leak detection in early 2011 

• Has been  heavily used in our development and test life cycle for several years 

• Became available as CHAP as open source under GPL-2.0 license on April 19, 2017 

• http://github.com/vmware/chap 
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CHAP – Core Heap Analysis Program 

• CHAP stands for Core Heap Analysis Program 

• Reads a process image as input 

– Currently supports 32 or 64 bit ELF cores as process image 

– Does not require any advance instrumentation 

• Provides information about dynamically allocated memory  

– Currently recognizes memory allocated by glibc 
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Some Use Cases 

• Allows automated leak detection, even for performance tests at scale on release builds … 

• Can be used interactively to do leak analysis 

• Can be used interactively to do memory growth analysis 

• Can automatically detect some forms of heap corruption 

• Supplements debuggers such as gdb by providing  status of various memory addresses 
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The Simplest  Use Case 
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Why Create Yet Another Memory 
Analysis Tool? 



Some Characteristics of Instrumentation Approaches 

• Increase process size 

• Have some performance penalty 

• Distort timing 

• Some alter allocation algorithms 
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Environments that Normally Run Without Instrumentation 

• Customer production environments 

• Performance tests 

• Sizing tests 

• Tests at scale 

• Uptime tests 
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CHAP Finds Allocations 



Terminology: Allocations and Overhead 

• A dynamic memory allocation function (e.g., malloc) provides a pointer to a sufficiently large 
allocation 

• The allocation is considered used until it is returned to the allocator, when it becomes free 

• Any writable memory used by the allocator beyond what is needed to hold every used 
allocation is considered overhead. 

• Any writable memory other than overhead and used allocations is considered to be outside 
of dynamic memory 
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Terminology: Allocations and Overhead 

• A dynamic memory allocation function (e.g., malloc) provides a pointer to a sufficiently large 
allocation 

• The allocation is considered used until it is returned to the allocator, when it becomes free 

• Any memory used by the allocator beyond what is needed to hold every used allocation is 
considered overhead. 

• Any writable memory other than overhead and used allocations is considered to be outside 
of dynamic memory  

• Allocations will be represented in this presentation by circles   
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Some assumptions about allocators 

• Satisfy requests for small allocations by partitioning larger ranges of memory 

• Provide allocations that are “suitably  aligned for any kind of variable” 
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Some assumptions about allocators 

• Satisfy requests for small allocations by partitioning larger ranges of memory 

• Provide allocations that are “suitably  aligned for any kind of variable” 

• Allow used allocations to be freed 

• Can free memory ranges that do not contain used allocations 

• Often keep one or more free allocation, which can be used to satisfy some subsequent 
allocation request  
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Chap Finds References to 
Allocations 



Terminology: Reference 

• A reference to an  allocation is a value somewhere (possibly in a register or in memory) paired 
with some interpretation of that value as providing a live pointer to some part of the allocation 

• A real reference to an  allocation is a  reference tor which the interpretation is correct   

• A false reference to an  allocation is a  reference tor which the interpretation is incorrect   

• A missed reference to an  allocation is a  reference that is not detected   
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Examples of References 

• A register associated with some thread contains a live pointer p to some part of an allocation 

• A pointer-sized range of memory contains a live pointer p to some part of an allocation  

• A register or memory contains f(p), e.g. myEncryptionFunction(p) 

• Somewhere entirely outside the process holds p or f(p) 
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References and Allocations Form a Directed Graph 
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Outside of 

dynamic 

memory 



Terminology: Anchored and Leaked Allocations 

• A used allocation is considered an anchor point if it is directly referenced from outside of 
dynamic memory  
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Terminology: Anchored and Leaked Allocations 

• A used allocation is considered an anchor point if it is directly referenced from outside of 
dynamic memory  

• A used allocation is considered to be  anchored if it is an anchor point or is referenced by an 
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Terminology: Anchored and Leaked Allocations 

• A used allocation is considered an anchor point if it is directly referenced from outside of 
dynamic memory  

• A used allocation is considered to be  anchored if it is an anchor point or is referenced by an 
anchored allocation  

• A used allocation that is  not anchored is considered to be leaked 

• A leaked allocation that is not referenced by another allocation is considered to be 
unreferenced 
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Outside of 

dynamic 

memory 



What Happens if a False Reference is Added From B to D? 
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What Happens if the Reference from B to C is Missed? 
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What CHAP Considers to be  References 

• A register associated with some thread contains a (not necessarily live) pointer p to some part 
of an allocation 

• A pointer-sized range of memory (but constrained to be on a pointer sized boundary) contains a 
(not necessarily) live pointer p to some part of an allocation 
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Some Reasons for False References Under CHAP 

• Misinterpretation of liveness 

– Type not known 

– Failure to understand structure information for known type 

– Failure to understand liveness for known fields of a given class 

– Failure to understand liveness as a function of thread state 

• Coincidence 

– Adjacent short integers 

– C-string 
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Some Reasons for Missed References Under CHAP 

• Reference is from outside process 

– Fixable in future by allowing some way to recognize such allocations 

• Reference is in the form f(p) 

– Fixable in future by modifying CHAP to be aware of f 

• Reference is not aligned on a pointer-sized boundary 

– Fixable by relaxing alignment constraint, possibly configurably 
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Showing (some of the) Leaked Allocations 

69 



Showing (some of the) Leaked Allocations 

70 



Showing (too many) Anchored Allocations 

71 



Showing (too many) Anchored Allocations 

72 



Showing (too many) Anchored Allocations 

73 
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Using CHAP to Analyze Leaks 



Checking for Leaks 
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Detect and Analyze Memory Leaks – Looking at a String 
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Using CHAP to Analyze Memory 
Growth 



Analyzing Memory Growth 
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Results of “summarize used” 
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Looking at the Allocations 
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Using CHAP to Help With Crash 
Analysis 



Analyze Corruption Issues – a Simulation 
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Using CHAP to Examine 
Overhead 
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Future Directions, Q&A 

• Add DWARF awareness to improve type identification and reduce false edges  

• Support other allocators 

– Allocators used in production 

– Allocators used for debugging 

– Custom allocators 

• Add more corruption analysis and make it more accurate 

• Improve recovery in case of corruption or incomplete process images 

• Add new verbs (e.g. annotate) 

• Add new objects (e.g. fast bin list, allocator-specific objects) 

• Add more code to identify common types and data structures 
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Thank You 
tim@vmware.com 


