
© 2016 VMware Inc. All rights reserved. © 2016 VMware Inc. All rights reserved.

Introducing CHAP
A program to clarify dynamic memory usage in un-instrumented
cores.

Tim Boddy

April 29, 2017

Background

• Was created by me in 2010 as a tool called ah64

• Was motivated by need to debug growth issues on un-instrumented cores

• Started supporting leak detection in early 2011

• Has been heavily used in our development and test life cycle for several years

• Became available as CHAP as open source under GPL-2.0 license on April 19, 2017

• http://github.com/vmware/chap

2

CHAP – Core Heap Analysis Program

• CHAP stands for Core Heap Analysis Program

• Reads a process image as input

– Currently supports 32 or 64 bit ELF cores as process image

– Does not require any advance instrumentation

• Provides information about dynamically allocated memory

– Currently recognizes memory allocated by glibc

3

Some Use Cases

• Allows automated leak detection, even for performance tests at scale on release builds …

• Can be used interactively to do leak analysis

• Can be used interactively to do memory growth analysis

• Can automatically detect some forms of heap corruption

• Supplements debuggers such as gdb by providing status of various memory addresses

4

The Simplest Use Case

5

The Simplest Use Case

6

The Simplest Use Case

7

The Simplest Use Case

8

The Simplest Use Case

9

The Simplest Use Case

10

Why Create Yet Another Memory
Analysis Tool?

Some Characteristics of Instrumentation Approaches

• Increase process size

• Have some performance penalty

• Distort timing

• Some alter allocation algorithms

12

Environments that Normally Run Without Instrumentation

• Customer production environments

• Performance tests

• Sizing tests

• Tests at scale

• Uptime tests

13

CHAP Finds Allocations

Terminology: Allocations and Overhead

• A dynamic memory allocation function (e.g., malloc) provides a pointer to a sufficiently large
allocation

• The allocation is considered used until it is returned to the allocator, when it becomes free

• Any writable memory used by the allocator beyond what is needed to hold every used
allocation is considered overhead.

• Any writable memory other than overhead and used allocations is considered to be outside
of dynamic memory

15

Terminology: Allocations and Overhead

• A dynamic memory allocation function (e.g., malloc) provides a pointer to a sufficiently large
allocation

• The allocation is considered used until it is returned to the allocator, when it becomes free

• Any memory used by the allocator beyond what is needed to hold every used allocation is
considered overhead.

• Any writable memory other than overhead and used allocations is considered to be outside
of dynamic memory

• Allocations will be represented in this presentation by circles

16

Some assumptions about allocators

• Satisfy requests for small allocations by partitioning larger ranges of memory

• Provide allocations that are “suitably aligned for any kind of variable”

17

Some assumptions about allocators

• Satisfy requests for small allocations by partitioning larger ranges of memory

• Provide allocations that are “suitably aligned for any kind of variable”

• Allow used allocations to be freed

18

Some assumptions about allocators

• Satisfy requests for small allocations by partitioning larger ranges of memory

• Provide allocations that are “suitably aligned for any kind of variable”

• Allow used allocations to be freed

• Can free memory ranges that do not contain used allocations

19

Some assumptions about allocators

• Satisfy requests for small allocations by partitioning larger ranges of memory

• Provide allocations that are “suitably aligned for any kind of variable”

• Allow used allocations to be freed

• Can free memory ranges that do not contain used allocations

20

Some assumptions about allocators

• Satisfy requests for small allocations by partitioning larger ranges of memory

• Provide allocations that are “suitably aligned for any kind of variable”

• Allow used allocations to be freed

• Can free memory ranges that do not contain used allocations

21

Some assumptions about allocators

• Satisfy requests for small allocations by partitioning larger ranges of memory

• Provide allocations that are “suitably aligned for any kind of variable”

• Allow used allocations to be freed

• Can free memory ranges that do not contain used allocations

• Often keep one or more free allocation, which can be used to satisfy some subsequent
allocation request

22

A Program To Illustrate Allocations

23

A Program To Illustrate Allocations

24

A Program To Illustrate Allocations

25

A Program To Illustrate Allocations

26

A Program To Illustrate Allocations

27

Listing Allocations

28

Listing Allocations

29

Listing Allocations

30

Listing Allocations

31

Listing Allocations

32

Listing Allocations

33

Listing Allocations

34

Listing Allocations

35

Listing Allocations

36

Showing Used Allocations

37

Showing Used Allocations

38

Showing Used Allocations

39

Showing Used Allocations

40

Showing Used Allocations

41

Chap Finds References to
Allocations

Terminology: Reference

• A reference to an allocation is a value somewhere (possibly in a register or in memory) paired
with some interpretation of that value as providing a live pointer to some part of the allocation

• A real reference to an allocation is a reference tor which the interpretation is correct

• A false reference to an allocation is a reference tor which the interpretation is incorrect

• A missed reference to an allocation is a reference that is not detected

•

43

Examples of References

• A register associated with some thread contains a live pointer p to some part of an allocation

• A pointer-sized range of memory contains a live pointer p to some part of an allocation

• A register or memory contains f(p), e.g. myEncryptionFunction(p)

• Somewhere entirely outside the process holds p or f(p)

•

44

References and Allocations Form a Directed Graph

45

Outside of

dynamic

memory

Terminology: Anchored and Leaked Allocations

• A used allocation is considered an anchor point if it is directly referenced from outside of
dynamic memory

46

Outside of

dynamic

memory

Terminology: Anchored and Leaked Allocations

• A used allocation is considered an anchor point if it is directly referenced from outside of
dynamic memory

• A used allocation is considered to be anchored if it is an anchor point or is referenced by an
anchored allocation

47

Outside of

dynamic

memory

Terminology: Anchored and Leaked Allocations

• A used allocation is considered an anchor point if it is directly referenced from outside of
dynamic memory

• A used allocation is considered to be anchored if it is an anchor point or is referenced by an
anchored allocation

48

Outside of

dynamic

memory

Terminology: Anchored and Leaked Allocations

• A used allocation is considered an anchor point if it is directly referenced from outside of
dynamic memory

• A used allocation is considered to be anchored if it is an anchor point or is referenced by an
anchored allocation

• A used allocation that is not anchored is considered to be leaked

49

Outside of

dynamic

memory

Terminology: Anchored and Leaked Allocations

• A used allocation is considered an anchor point if it is directly referenced from outside of
dynamic memory

• A used allocation is considered to be anchored if it is an anchor point or is referenced by an
anchored allocation

• A used allocation that is not anchored is considered to be leaked

• A leaked allocation that is not referenced by another allocation is considered to be
unreferenced

50

Outside of

dynamic

memory

What Happens if a False Reference is Added From B to D?

51

Outside of

dynamic

memory

B D

What Happens if a False Reference is Added From B to D?

52

Outside of

dynamic

memory

B D

What Happens if the Reference from B to C is Missed?

53

Outside of

dynamic

memory

B D

C

What Happens if the Reference from B to C is Missed?

54

Outside of

dynamic

memory

B D

C

What CHAP Considers to be References

• A register associated with some thread contains a (not necessarily live) pointer p to some part
of an allocation

• A pointer-sized range of memory (but constrained to be on a pointer sized boundary) contains a
(not necessarily) live pointer p to some part of an allocation

•

55

Some Reasons for False References Under CHAP

• Misinterpretation of liveness

– Type not known

– Failure to understand structure information for known type

– Failure to understand liveness for known fields of a given class

– Failure to understand liveness as a function of thread state

• Coincidence

– Adjacent short integers

– C-string

•

56

Some Reasons for Missed References Under CHAP

• Reference is from outside process

– Fixable in future by allowing some way to recognize such allocations

• Reference is in the form f(p)

– Fixable in future by modifying CHAP to be aware of f

• Reference is not aligned on a pointer-sized boundary

– Fixable by relaxing alignment constraint, possibly configurably

•

57

A Sample Program to Illustrate References

58

A Sample Program to Illustrate References

59

A Sample Program to Illustrate References

60

A Sample Program to Illustrate References

61

A Sample Program to Illustrate References

62

A Sample Program to Illustrate References

63

A Sample Program to Illustrate References

64

A Sample Program to Illustrate References

65

A Sample Program to Illustrate References

66

A Sample Program to Illustrate References

67

A Sample Program to Illustrate References

68

Showing (some of the) Leaked Allocations

69

Showing (some of the) Leaked Allocations

70

Showing (too many) Anchored Allocations

71

Showing (too many) Anchored Allocations

72

Showing (too many) Anchored Allocations

73

Showing (too many) Anchored Allocations

74

Using CHAP to Analyze Leaks

Checking for Leaks

76

Checking for Leaks

77

Summarizing Unreferenced Allocations

78

Summarizing Unreferenced Allocations

79

Summarizing Unreferenced Allocations

80

Looking at Similar Leaks

81

Looking at Similar Leaks

82

Looking at Similar Leaks

83

Looking at Similar Leaks

84

Looking at Similar Leaks

85

Looking at Similar Leaks

86

Following Outgoing Edges

87

Following Outgoing Edges

88

Following Outgoing Edges

89

Following Outgoing Edges

90

Following Outgoing Edges

91

Following Outgoing Edges

92

Detect and Analyze Memory Leaks – Looking at a String

93

Using CHAP to Analyze Memory
Growth

Analyzing Memory Growth

95

Analyzing Memory Growth

96

Getting an Overview

97

Getting an Overview

98

Getting an Overview

99

Getting an Overview

100

Getting an Overview

101

Getting an Overview

102

Results of “summarize used”

103

Showing Many Allocations to a File

104

Showing Many Allocations to a File

105

Looking at the Allocations

106

Following Incoming Edges

107

Following Incoming Edges

108

Following Incoming Edges

109

Following Incoming Edges

110

Following Incoming Edges

111

Speeding the Traversal

112

Speeding the Traversal

113

Speeding the Traversal

114

Speeding the Traversal

115

Speeding the Traversal

116

Speeding the Traversal

117

The Start of the Chain

118

Before the Start of the Chain

119

Before the Start of the Chain

120

Before the Start of the Chain

121

Before the Start of the Chain

122

Before the Start of the Chain

123

Before the Start of the Chain

124

Finding the Anchor

125

Finding the Anchor

126

Finding the Anchor

127

Finding the Anchor

128

Finding the Anchor

129

Using CHAP to Help With Crash
Analysis

Analyze Corruption Issues – a Simulation

131

Analyze Corruption Issues – a Simulation

132

Analyze Corruption Issues – a Simulation

133

Analyze Corruption Issues – a Simulation

134

Analyze Corruption Issues – a Simulation

135

Analyze Corruption Issues – Looking at the Core With gdb

136

Analyze Corruption Issues – Looking at the Core With gdb

137

Analyze Corruption Issues – Looking at the Core With gdb

138

Analyze Corruption Issues – Looking at the Core With gdb

139

Analyze Corruption Issues – Looking at the Core With gdb

140

Analyze Corruption Issues – Looking at the Core With gdb

141

Analyze Corruption Issues – Looking at the Core With gdb

142

Analyze Corruption Issues – Looking at the Core With gdb

143

Analyze Corruption Issues – Looking at the Core With gdb

144

Analyze Corruption Issues – Looking at the Core With CHAP

145

Analyze Corruption Issues – Looking at the Core With CHAP

146

Analyze Corruption Issues – Looking at the Core With CHAP

147

Using CHAP to Examine
Overhead

Understanding Overhead: A Simulation Utility Class

149

Understanding Overhead: A Simulation Utility Class

150

Understanding Overhead: A Simulation Utility Class

151

Understanding Overhead: A Simulation Utility Class

152

Understanding Overhead: A Simulation Utility Class

153

Understanding Overhead: A Simulation Class

154

Understanding Overhead: A Simulation Class

155

Understanding Overhead: Looking at the Core

156

Understanding Overhead: Looking at the Core

157

Understanding Overhead: Looking at the Core

158

Understanding Overhead: A Similar Simulation

159

Understanding Overhead: A Similar Simulation

160

Understanding Overhead: Looking at the Core

161

Understanding Overhead: Looking at the Core

162

Understanding Overhead: Looking at the Core

163

Understanding Overhead: Another Similar Simulation

164

Understanding Overhead: Another Similar Simulation

165

Understanding Overhead: Looking at the Core

166

Understanding Overhead: Looking at the Core

167

Future Directions, Q&A

• Add DWARF awareness to improve type identification and reduce false edges

• Support other allocators

– Allocators used in production

– Allocators used for debugging

– Custom allocators

• Add more corruption analysis and make it more accurate

• Improve recovery in case of corruption or incomplete process images

• Add new verbs (e.g. annotate)

• Add new objects (e.g. fast bin list, allocator-specific objects)

• Add more code to identify common types and data structures

168

Thank You
tim@vmware.com

