
There Is A New
Future

Felix Petriconi

There Is A New Future
Prepared for ACCU 2018

c©2018

Felix Petriconi

2018-04-14

1 / 90

There Is A New
Future

Felix Petriconi

Felix Petriconi

I Started with C++ 1994
I Programmer and development manager since 2003 at MeVis Medical

Solutions AG, Bremen, Germany
I Development of medical devices in the area of mammography and breast

cancer therapy (C++, Ruby)

I Programming activities:
I Blog editor of ISO C++ website
I Active member of C++ User Group Bremen
I Contributor to stlab’s concurrency library
I Member of ACCU conference committee

I Married with Nicole, having three children, living near Bremen, Germany

I Other interests: Classic film scores, composition

2 / 90

There Is A New
Future

Felix Petriconi

The [C++] language is too large for anyone to master
So everyone lives within a subset

Sean Parent, C++Now, 2012

3 / 90

There Is A New
Future

Felix Petriconi

Why I am here?

Why are you here?

Why I am here?

I saw how we used different ways to delegate work to different CPU cores
I saw how easy it is to make mistakes
I saw and still see the difficulties in maintaining the code

I listened 2015 to the CppCast with Sean Parent about Concurrency
I was impressed
I wanted to learn more

I started collaborating in his open source project for a new concurrency library
I’m having fun in learning there a lot
I care about sharing my knowledge

4 / 90

There Is A New
Future

Felix Petriconi

Why I am here?

Why are you here?

Why are you here?

5 / 90

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

Why do we have to talk about concurrency?

6 / 90

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

The free lunch is over!

Herb Sutter, 20051

1The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software
http://www.gotw.ca/publications/concurrency-ddj.htm

7 / 90

http://www.gotw.ca/publications/concurrency-ddj.htm

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

The free lunch is over

8 / 90

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

Amdahl’s Law

9 / 90

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

Amdahl’s Law2

S(N) = 1
(1−P)+ P

N

S : Speed up

P : Synchronization [0− 1]

N : Number of Cores

2Presented 1967 by Gene Myron Amdahl (1922-2015)
10 / 90

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

Amdahl’s Law

0% Synchronization

S(N) = 1
(1−P)+ P

N

P = 0

11 / 90

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

Amdahl’s Law

10% Synchronization

S(N) = 1
(1−P)+ P

N

P = 0.1

12 / 90

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

Amdahl’s Law

20% Synchronization

S(N) = 1
(1−P)+ P

N

P = 0.2

13 / 90

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

Amdahl’s Law

90% Synchronization

S(N) = 1
(1−P)+ P

N

P = 0.9

14 / 90

There Is A New
Future

Felix Petriconi

The Free Lunch

Amdahl’s Law

How to use multiple cores?

I Individual single threaded processes

I Multi threaded process without synchronization
I Multi threaded process with synchronization

I Mutex
I Atomic
I Semaphore
I Memory Fence
I Transactional Memory

 Low level synchronization primitives

I Multi threaded process with higher level abstractions
I Future
I Channel
I Actor
I ...

15 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction

I Futures provide a mechanism to separate a function f (...) from its result r

I After the function is called the result appears ”magically” later in the future

I Futures, resp. promises where invented 1977/1978 by Daniel P. Friedman,
David Wise, Henry Baker and Carl Hewitt

16 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Continuation

17 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Join

18 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Split

19 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Cancellation

I

20 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Cancellation

I Future F3 is not needed any more (e.g. the user has canceled an operation)

21 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Cancellation

I

22 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Cancellation

I There is no need to execute task T3

23 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Cancellation

I

24 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Cancellation

I Then the futures F2a and F4a are not needed any more

25 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future Introduction - Cancellation

I The graph collapses to its minimum

26 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

C++11 Standard - Futures

I boost::futures were added in boost 1.41, 2009

I std::future are mostly based on boost::futures

I Where added with C++11

27 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

C++11 Standard - Futures Overview

28 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

C++ Standard - Futures

1 #include <future >

2 #include <iostream >

3

4 using namespace std;

5

6 int main() {

7 auto answer = [] {

8 return 42;

9 };

10

11 future <int > f = async(launch ::async , answer);

12

13 // Do other stuff , getting the answer may take longer

14 cout << f.get() << ’\n’; // access the value

15 }

Output

42

29 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

C++ Standard - Futures - packaged task

1 #include <future >

2 #include <iostream >

3 #include <string >

4

5 using namespace std;

6

7 int main() {

8 auto answer = [](string) { return 42; };

9 packaged_task <int(string)> task(answer);

10

11 future <int > f = task.get_future ();

12 task("What is the answer ...?");

13

14 // Do other stuff , getting the answer may take longer

15 cout << f.get() << ’\n’; // access the value

16 }

Output

42

30 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

C++ Standard - Futures - Exceptions

1 int main() {

2 auto answer = [] {

3 throw runtime_error("Bad things happened: Vogons appeared!");

4 return 42;

5 };

6

7 future <int > f = async(launch ::async , answer);

8

9 // Do other stuff , getting the answer may take longer

10 try {

11 cout << f.get() << ’\n’; // try accessing the value

12 // re -throws the stored exception

13 }

14 catch (const runtime_error& ex) {

15 cout << ex.what() << ’\n’;

16 }

17 }

Output

Bad things happened: Vogons appeared!

31 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

C++ Standard - Futures - Problem

1 #include <future >

2 #include <iostream >

3

4 using namespace std;

5

6 int main() {

7 auto answer = [] {

8 return 42;

9 };

10

11 future <int > f = async(launch ::async , answer);

12

13 // Do other stuff , getting the answer may take longer

14 cout << f.get() << ’\n’; // access the value

15 }

What is the biggest problem within this code when our goal is best CPU
utilization?
future<T>.get() is a blocking call! There is no direct way of checking if the
future is ready! Only indirect with .wait_for() with zero timeout.

32 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

C++11/14/17 Future Capabilities

I No continuation — future<T>.then() 7

I No join — when_all() and when_any() 7

I No split — continuation in different directions 7

I No cancellation (but can be modelled3) 7

I No automatic reduction (future<future<T>>⇒future<T>) 7

I No progress monitoring (except ready) 7

I No custom executor 7

I Blocks on destruction (may even blocks until termination of used thread) 7
I Usage of future<T>.get() has two problems:

1. One thread resource is consumed which increases contention and possibly
causing a deadlock 7

2. Any subsequent non-dependent calculations on the task are also blocked 7

I Don’t behave as a regular type47
3https://gist.github.com/sean-parent/24df3eefd51068ba34c482f6e71da2c2
4Elements of Programming; Stepanov, McJones; Addison-Wesley 2009

33 / 90

https://gist.github.com/sean-parent/24df3eefd51068ba34c482f6e71da2c2

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

boost Futures Overview

34 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Future - Continuation

I A Continuation on an existing future is realized through
future<T>.then() which returns itself a future

35 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

boost Futures - Continuation

1 #include <iostream >

2 #include <boost/thread/future.hpp >

3

4 using namespace std;

5

6 int main() {

7 auto answer = []{ return 42; };

8 auto report_answer = [](auto a) { cout << a.get() << ’\n’; }

9

10 boost::future <int > get_answer = boost::async(answer);

11

12 boost::future <void > done = get_answer.then(report_answer);

13

14 // do something else

15 done.wait(); // waits until future done is fulfilled

16 }

Output

42

36 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Futures - Join

I when_all() Returns a future that becomes ready when all future
arguments are ready

I when_any() Returns a future that becomes ready when the first future
argument is ready

37 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

boost Futures - Join

1 int main() {

2 auto answer_a = []{ return 40; };

3 auto answer_b = []{ return 2; };

4

5 auto f_a = boost::async(answer_a);

6 auto f_b = boost::async(answer_b);

7

8 auto answer = boost :: when_all(std::move(f_a), std::move(f_b))

9 .then ([](auto f) {

10 auto t = f.get();

11 return get <0>(t).get() + get <1>(t).get();

12 });

13

14 // do something else

15 cout << answer.get() << ’\n’;

16 }

Output

42

38 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

boost Futures - Join

1 int main() {

2 auto answer_a = []{ return 40; };

3 auto answer_b = []{ return 2; };

4

5 auto f_a = boost::async(answer_a);

6 auto f_b = boost::async(answer_b);

7

8 auto answer = boost :: when_all(std::move(f_a), std::move(f_b))

9 .then ([](auto f) {

10 auto t = f.get();

11 return get <0>(t).get() + get <1>(t).get();

12 });

13

14 // do something else

15 cout << answer.get() << ’\n’;

16 }

What is the type of f?
f is a future tuple of futures: future<tuple<future<int>, future<int>>>

39 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

C++17 TS / boost - Futures Capabilities

I Continuation — future<T>.then() 3
I Join — when_all() and when_any() 3
I No real split — continuations into different directions 7
I No cancellation (but can be modelled) 7
I No automatic reduction (future<future<T>> ⇒ future<T>) 7
I No progress monitoring (except ready) 7
I Custom executor 3
I Blocks on destruction (may even blocks until termination of used thread) 7
I Using future<T>.get() has two problems:

1. One thread resource is consumed which increases contention and possibly
causing a deadlock 7

2. Any subsequent non-dependent calculations on the task are also blocked 7

I Don’t behave as a regular type 7
I (C++17 TS is in namespace experimental and there is no interoperation

between between std::experimental::future and std::future)

40 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

There Is A New Future

41 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures

stlab::future
Source: https://github.com/stlab/libraries

Documentation: http://www.stlab.cc/libraries

42 / 90

https://github.com/stlab/libraries
http://www.stlab.cc/libraries

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab - Futures Capabilities

I Continuation — future<T>.then() 3

I Join — when_all() and when_any() 3

I Split — continuation in different directions 3

I Cancellation 3

I Automatic reduction (future<future<T>> ⇒ future<T>) 3

I No progress monitoring (except ready), more planned 7

I Custom executor 3

I Do not block on destruction 3

I Behave as a regular type 3

I Additional dependencies:
I C++14: boost.optional
I C++17: none

43 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures

1 #include <iostream >

2 #include <stlab/concurrency/default_executor.hpp >

3 #include <stlab/concurrency/future.hpp >

4 #include <stlab/concurrency/utility.hpp >

5

6 using namespace std;

7

8 int main() {

9 auto answer = [] { return 42; };

10

11 stlab::future <int > f =

12 stlab:: async(

13 stlab:: default_executor ,// uses platform thread pool on Win/OSX

14 // uses stlab task stealing

15 // thread pool on other OS, e.g. Linux

16 answer

17);

44 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures

1 int main() {

2 auto answer = [] { return 42; };

3

4 stlab::future <int > f =

5 stlab:: async(

6 stlab:: default_executor ,// uses platform thread pool on Win/OSX

7 // uses stlab task stealing

8 // thread pool on other OS, e.g. Linux

9 answer

10);

11

12 while (!f.get_try ()) {} // do something meaningfull while waiting

13 // Don’t do busy waiting!

14 std::cout << f.get_try ().value() << ’\n’;

15 }

Output

42

45 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - blocking get()

1 int main() {

2 auto answer = [] { return 42; };

3

4 stlab::future <int > f =

5 stlab:: async(

6 stlab:: default_executor ,// uses platform thread pool on Win/OSX

7 // uses stlab task stealing

8 // thread pool on other OS, e.g. Linux

9 answer

10);

11

12 // access the value in a blocking way

13 // try to avoid this whenever it is possible!

14 cout << stlab:: blocking_get(std::move(f)) << ’\n’;

15 }

46 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Exceptions

1 int main() {

2 auto answer = [] {

3 throw std:: runtime_error("Bad thing happened: Vogons appeared!");

4 return 42;

5 };

6 auto f = stlab ::async(stlab :: default_executor , answer);

7

8 try {

9 std::cout << stlab :: blocking_get(std::move(f)) << ’\n’;

10 }

11 catch (std:: runtime_error const& ex) {

12 std::cout << ex.what() << ’\n’;

13 }

14 }

Output

Bad things happened: Vogons appeared!

47 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Continuation

1 using namespace stlab;

2

3 int main() {

4 auto answer = []{ return 42; };

5

6 auto report_answer = [](int a) { std::cout << a << ’\n’; };

7

8 future <void > done = async(default_executor , answer)

9 .then(report_answer); // Call by value and not by future

10

11 int quit; std::cin >> quit;

12 }

Output

42

48 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Reduction

1 int main() {

2 future <int > result =

3 async(default_executor , [] { return 42; })

4 .then(

5 [](int x) {

6 return async(default_executor ,

7 [](int y) { return y + 42; },

8 x);

9 }

10);

11

12 future <void > done = result.then(

13 [](int v) { std::cout << v << ’\n’; }

14);

15

16 int quit; std::cin >> quit;

Output

84

49 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Error Recovery

1 int main() {

2 auto answer = [] {

3 throw std:: runtime_error("Vogons appeared!");

4 return 42;

5 };

6

7 auto handleTheAnswer = [](int v) {

8 if (v == 0) std::cout << "Oh! We have a problem !\n";

9 else std::cout << "The answer is " << v << ’\n’;

10 };

50 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Error Recovery

1 auto handleTheAnswer = [](int v) {

2 if (v == 0) std::cout << "Oh! We have a problem !\n";

3 else std::cout << "The answer is " << v << ’\n’;

4 };

5

6 auto f = stlab ::async(stlab :: default_executor , answer)

7 .recover ([](stlab::future <int > result) {

8 if (result.error ()) {

9 std::cout << "Listen to Vogon poetry !\n";

10 return 0;

11 }

12 return result.get_try ().value();

13 }).then(handleTheAnswer);

14

15 int quit; std::cin >> quit;

16 }

Output

Listen to Vogon poetry!

We have a problem!

51 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Join

1 int main() {

2 auto a = async(default_executor ,[]{ return 40; });

3 auto b = async(default_executor ,[]{ return 2; });

4

5 auto answer = when_all(

6 default_executor ,

7 [](int x, int y) { return x + y; },

8 a, b); // arguments as lvalues

9

10 std::cout << stlab :: blocking_get(std::move(answer)) << ’\n’;

11 }

Output

42

52 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Split

I A split is realized by creating multiple continuations on the same future

53 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Split

1 int main() {

2 auto answer = async(default_executor ,[]{ return 42; });

3 auto report_to_arthur = [](int a) {

4 printf("Tell the answer %d Arthur Dent\n", a);

5 };

6 auto report_to_marvin = [](int a) {

7 printf("May the answer %d shear up Marvin\n", a);

8 };

9

10 auto dent = answer.then(report_to_arthur);

11 auto marvin = answer.then(report_to_marvin);

12

13 blocking_get(dent);

14 blocking_get(marvin);

15 }

Output

Tell the answer 42 Arthur Dent

May the answer 42 shear up Marvin

54 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Split + Join

1 int main() {

2 auto answer = async(default_executor ,[]{ return 42; });

3

4 auto report_to_arthur = [](int a) {

5 printf("Tell the answer %d Arthur Dent\n", a);

6 };

7 auto report_to_marvin = [](int a) {

8 printf("May the answer %d shear up Marvin\n", a);

9 };

10

11 auto dent = answer.then(report_to_arthur);

12 auto marvin = answer.then(report_to_marvin);

13

14 auto done = when_all(default_executor , [] {

15 std::cout << "All know the answer !\n";

16 }, marvin , dent);

17

18 stlab:: blocking_get(done);

19 }

55 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

Executors

I Executors are needed to customize where the task shall be executed
I Executors can be

I thread pools
I serial queues
I main queues
I dedicated task groups
I etc.

56 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Custom Executor

I std executors are probably/hopefully coming with C++20

I In boost, executors derive from a common base class

I In stlab the executors must only implement the call operator
template <typename F> void operator()(F f)

I stlab currently has
I default_executor (thread pool)
I immediate_executor
I main_executor
I system_timer

I See bonus slides for implementation of an executor for the Qt main-loop

57 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Continuation with Custom Executor

1 #include <iostream >

2 #include <QLineEdit >

3 #include <stlab/concurrency/default_executor.hpp >

4 #include <stlab/concurrency/future.hpp >

5 #include "QtExecutor.h"

6

7 int main() { // Just illustrational example!

8 QLineEdit theAnswerLineEdit;

9

10 auto answer =

11 stlab:: async(stlab:: default_executor , []{ return 42; });

12

13 stlab::future <void > done = answer.then(

14 QtExecutor {}, // different scheduler

15 [&](int a) {

16 theAnswerLineEdit.setValue(a); // update in Qt main thread

17 });

18

19 int quit; std::cin >> quit;

20 }

58 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Upcomming enhancements

I Coroutine support

I Performance optimization

I Progress monitoring

I Task promotion

59 / 90

There Is A New
Future

Felix Petriconi

Futures

Introduction

Continuation

Join

Split

Cancellation

C++ Standard -
Futures

Futures

packaged task

Exceptions

Capabilities

boost - Futures

Continuations

Join

Capabilities

stlab - Futures

Capabilities

Futures

Exceptions

Continuation

Reduction

Error Recovery

Join

Split

Executors

Conclusion

stlab Futures - Conclusion

Futures are a great tool to structure code in a well readable manner so that it
runs in parallel with minimal contention.

But the graph can be used for a single execution only.

Channels are one concept that supports multiple invocations.

60 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel Introduction

I Channels allow the creation of persistent execution graphs

I First published by Tony Hoare 1978

61 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel Introduction

62 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Stateless Process

1 #include <iostream >

2 #include <stlab/concurrency/channel.hpp >

3 #include <stlab/concurrency/default_executor.hpp >

4

5 int main() {

6 stlab::sender <int > send; // sending part of the channel

7 stlab::receiver <int > receiver; // receiving part of the channel

8 std::tie(send , receiver) = // combining both to a channel

9 stlab::channel <int >(stlab :: default_executor);

10

11 auto printer =

12 [](int x){ std::cout << x << ’\n’; }; // stateless process

13

14 auto printer_process =

15 receiver | printer; // attaching process to the receiving

16 // part

17 receiver.set_ready (); // no more processes will be attached

18 // process starts to work

19 send (1); send (2); send (3); // start sending into the channel

20

21 int end; std::cin >> end; // simply wait to end application

22 }
63 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Stateless Process cont.

1 int main() {

2 auto printer =

3 [](int x){ std::cout << x << ’\n’; }; // stateless process

4

5 auto printer_process =

6 receiver | printer; // attaching process to the receiving

7 // part

8 receiver.set_ready (); // no more processes will be attached

9 // process starts to work

10 send (1); send (2); send (3); // start sending into the channel

11

12 int end; std::cin >> end; // simply wait to end application

13 }

Output

1

2

3

64 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Split

New edges are concatenated with the operator|() on the same receiver

65 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Split Process

1 int main() {

2 auto [send , receiver] = channel <int >(default_executor); // C++17

3

4 auto printerA = [](int x){ printf("Process A %d\n", x); };

5 auto printerB = [](int x){ printf("Process B %d\n", x); };

6

7 auto printer_processA = receiver | printerA;

8 auto printer_processB = receiver | printerB;

9

10 receiver.set_ready (); // no more processes will be attached

11 // process may start to work

12 send (1); send (2); send (3);

13 int end; std::cin >> end;

14 }

Output

Process A 1

Process B 1

Process A 2

Process B 2

Process B 3

Process A 3
66 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Join

I join() The downstream process is invoked when all arguments are ready.
I zip() The downstream process is invoked in round robin manner with the

incoming values.
I merge() The downstream process is invoked with the next value that is

ready
67 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Additional channel options

I With buffer size{n} within the concatenation it is possible to limit the
incoming queue to size n

I With executor{T} within the concatenation it is possible to specify a
dedicated executor T.

68 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Stateful Process - Motivation

I Some problems need a processor with state

I Some problems have an n : m relationship from input to output
I The picture becomes more complicated with states:

I When to proceed?
I How to handle situations when less than expected values come from

upstream?

69 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Stateful Process Signature

1 #include <stlab/concurrency/channel.hpp >

2

3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: steady_clock ::time_point >;

5

6 struct process_signature

7 {

8 void await(T... val);

9

10 U yield();

11

12 process_state_scheduled state () const;

13

14 void close(); // optional

15

16 void set_error(std:: exception_ptr); // optional

17 };

70 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Stateful Process Signature - await

1 #include <stlab/concurrency/channel.hpp >

2

3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: steady_clock ::time_point >;

5

6 struct process_signature

7 {

8 void await(T... val);

9

10 U yield();

11

12 process_state_scheduled state () const;

13

14 void close(); // optional

15

16 void set_error(std:: exception_ptr); // optional

17 };

71 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Stateful Process Signature - yield

1 #include <stlab/concurrency/channel.hpp >

2

3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: steady_clock ::time_point >;

5

6 struct process_signature

7 {

8 void await(T... val);

9

10 U yield();

11

12 process_state_scheduled state () const;

13

14 void close(); // optional

15

16 void set_error(std:: exception_ptr); // optional

17 };

72 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Stateful Process Signature - state

1 #include <stlab/concurrency/channel.hpp >

2

3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: steady_clock ::time_point >;

5

6 struct process_signature

7 {

8 void await(T... val);

9

10 U yield();

11

12 process_state_scheduled state () const;

13

14 void close(); // optional

15

16 void set_error(std:: exception_ptr); // optional

17 };

73 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Stateful Process Signature - close

1 #include <stlab/concurrency/channel.hpp >

2

3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: steady_clock ::time_point >;

5

6 struct process_signature

7 {

8 void await(T... val);

9

10 U yield();

11

12 process_state_scheduled state () const;

13

14 void close(); // optional

15

16 void set_error(std:: exception_ptr); // optional

17 };

74 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Stateful Process Signature - set error

1 #include <stlab/concurrency/channel.hpp >

2

3 using process_state_scheduled =

4 std::pair <process_state , std:: chrono :: steady_clock ::time_point >;

5

6 struct process_signature

7 {

8 void await(T... val);

9

10 U yield();

11

12 process_state_scheduled state () const;

13

14 void close(); // optional

15

16 void set_error(std:: exception_ptr); // optional

17 };

75 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Stateful Process Example

1 struct adder

2 {

3 };

4

5 int main() {

6 auto [send , receiver] = channel <int >(default_executor);

7

8 auto calculator = receiver | adder {} |

9 [](int x) { std::cout << x << ’\n’; };

10

11 receiver.set_ready ();

12

13 while (true) {

14 int x;

15 std::cin >> x;

16 send(x);

17 }

18 }

76 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Stateful Process Example cont.

1 struct adder

2 {

3 int _sum = 0;

4 process_state_scheduled _state = await_forever;

5

6 void await(int x) {

7 _sum += x;

8 if (x == 0) {

9 _state = yield_immediate;

10 }

11 }

12

13 int yield() {

14 int result = _sum;

15 _sum = 0;

16 _state = await_forever;

17 return result;

18 }

19

20 auto state() const { return _state; }

21 };

77 / 90

There Is A New
Future

Felix Petriconi

Motivation

Channel - Stateless
Process

Channel - Split

Channel - Join

Channel - Stateful
Process

Conclusion

Channel - Conclusion

Channels close the gap of multiple invocations where futures allow just one.

With splits and the different kind of joins it is possible to build graphs of
execution.

78 / 90

There Is A New
Future

Felix Petriconi

Take Away

Acknowledgement

Reference

Reference

Further listening and
viewing

Contact

Take Away

Use high level abstractions like futures, channels or others (actors, etc.) to
distribute work on available CPU cores.

Use thread pools from your operating system! Use highly optimized task stealing
custom thread pools in case that the operating system does not provide one!

Design your application with the mindset that it can run dead-lock free on an
1-n core hardware!

Don’t let your application code be soaked with threads, mutex’ and atomics.

79 / 90

There Is A New
Future

Felix Petriconi

Take Away

Acknowledgement

Reference

Reference

Further listening and
viewing

Contact

Acknowledgement

I My family, who supports me in my work on the concurrency library and this
conference.

I Sean Parent, who taught me over time lots about concurrency and
abstraction. He gave me the permission to use whatever I needed from his
presentations for my own.

I My company MeVis Medical Solutions AG, that released me from work
during this conference.

I All contributors to the stlab library.

80 / 90

There Is A New
Future

Felix Petriconi

Take Away

Acknowledgement

Reference

Reference

Further listening and
viewing

Contact

Reference

I Concurrency library https://github.com/stlab/libraries

I Documentation http://stlab.cc/libraries

I Communicating Sequential Processes by C. A. R. Hoare
http://usingcsp.com/cspbook.pdf

I The Theory and Practice of Concurrency by A.W. Roscoe http:

//www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf

I Towards a Good Future, C++ Standard Proposal by Felix Petriconi, David
Sankel and Sean Parent http:
//open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0676r0.pdf

I Back to std2::future, C++ Standard Proposal by Bryce Adelstein Lelbach
http:

//open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0701r0.html

81 / 90

https://github.com/stlab/libraries
http://stlab.cc/libraries
http://usingcsp.com/cspbook.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://www.cs.ox.ac.uk/people/bill.roscoe/publications/68b.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0676r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0676r0.pdf
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0701r0.html
http://open-std.org/JTC1/SC22/WG21/docs/papers/2017/p0701r0.html

There Is A New
Future

Felix Petriconi

Take Away

Acknowledgement

Reference

Reference

Further listening and
viewing

Contact

Further reading I

Software Principles and Algorithms

I Elements of Programming by Alexander Stepanov, Paul McJones, Addison
Wesley

I From Mathematics to Generic Programming by Alexander Stepanov, Daniel
Rose, Addison Wesley

82 / 90

There Is A New
Future

Felix Petriconi

Take Away

Acknowledgement

Reference

Reference

Further listening and
viewing

Contact

Further reading II

Concurrency and Parallelism

I HPX http://stellar-group.org/libraries/hpx/

I C++CSP https://www.cs.kent.ac.uk/projects/ofa/c++csp

I CAF C++ Actor Framework http://actor-framework.org/

I C++ Concurrency In Action by Anthony Williams, Manning

83 / 90

http://stellar-group.org/libraries/hpx/
https://www.cs.kent.ac.uk/projects/ofa/c++csp
http://actor-framework.org/

There Is A New
Future

Felix Petriconi

Take Away

Acknowledgement

Reference

Reference

Further listening and
viewing

Contact

Further listening and viewing

I Goals for better code by Sean Parent:
http://sean-parent.stlab.cc/papers-and-presentations

I Goals for better code by Sean Parent: Concurrency:
https://youtu.be/au0xX4h8SCI?t=16354

I Future Ruminations by Sean Parent http:
//sean-parent.stlab.cc/2017/07/10/future-ruminations.html

I CppCast with Sean Parent http://cppcast.com/2015/06/sean-parent/

I Thinking Outside the Synchronization Quadrant by Kevlin Henney:
https://vimeo.com/205806162

84 / 90

http://sean-parent.stlab.cc/papers-and-presentations
https://youtu.be/au0xX4h8SCI?t=16354
http://sean-parent.stlab.cc/2017/07/10/future-ruminations.html
http://sean-parent.stlab.cc/2017/07/10/future-ruminations.html
http://cppcast.com/2015/06/sean-parent/
https://vimeo.com/205806162

There Is A New
Future

Felix Petriconi

Take Away

Acknowledgement

Reference

Reference

Further listening and
viewing

Contact

stlab Futures

stlab::future
Source: https://github.com/stlab/libraries

Documentation: http://www.stlab.cc/libraries

85 / 90

https://github.com/stlab/libraries
http://www.stlab.cc/libraries

There Is A New
Future

Felix Petriconi

Take Away

Acknowledgement

Reference

Reference

Further listening and
viewing

Contact

Thank’s for your attention!

I Mail: felix@petriconi.net

I GitHub: https://github.com/FelixPetriconi

I Web: https://petriconi.net

I Twitter: @FelixPetriconi

86 / 90

https://github.com/FelixPetriconi
https://petriconi.net

There Is A New
Future

Felix Petriconi

Take Away

Acknowledgement

Reference

Reference

Further listening and
viewing

Contact

Q & A

I Mail: felix@petriconi.net

I GitHub: https://github.com/FelixPetriconi

I Web: https://petriconi.net

I Twitter: @FelixPetriconi

Feedback is always welcome!

87 / 90

https://github.com/FelixPetriconi
https://petriconi.net

There Is A New
Future

Felix Petriconi

Qt Executor

Custom Executor - Qt

1 #include <QApplication >

2 #include <Event >

3 #include <stlab/concurrency/task.hpp >

4

5 class QtExecutor

6 {

7 using result_type = void;

8

9 class ExecutorEvent : public QEvent

10

11 class EventReceiver : public QObject

12 public:

13 template <typename F>

14 void operator ()(F f) {

15 auto event = std:: make_unique <ExecutorEvent >();

16 event ->set_task(std::move(f))

17 QApplication :: postEvent(event ->receiver (), event.release ());

18 }

19 };

88 / 90

There Is A New
Future

Felix Petriconi

Qt Executor

stlab::future - Custom Executor - Qt cont. I

1 class ExecutorEvent : public QEvent

2 {

3 stlab::task <void()> _f;

4 std::unique_ptr <EventReceiver > _receiver;

5

6 public:

7 ExecutorEvent ()

8 : QEvent(QEvent ::User)

9 , _receiver(new EventReceiver ()) {

10 _receiver ()->moveToThread(QApplication :: instance ()->thread ());

11 }

12

13 template <typename F>

14 void set_task(F&& f) {

15 _f = std::forward <F>(f);

16 }

17

18 void execute () { _f(); }

19

20 QObject *receiver () const { return _receiver.get(); }

21 };

89 / 90

There Is A New
Future

Felix Petriconi

Qt Executor

stlab::future - Custom Executor - Qt cont. II

1 class EventReceiver : public QObject

2 {

3 public:

4 bool event(QEvent *event) override {

5 auto myEvent = dynamic_cast <ExecutorEvent *>(event);

6 if (myEvent) {

7 myEvent ->execute ();

8 return true;

9 }

10 return false;

11 }

12 };

90 / 90

	Quote
	Motivation
	Why I am here?
	Why are you here?

	Concurrency
	The Free Lunch
	Amdahl's Law

	Futures
	Futures
	Introduction
	Continuation
	Join
	Split
	Cancellation

	C++ Standard - Futures
	Futures
	packaged_task
	Exceptions
	Capabilities

	boost - Futures
	Continuations
	Join
	Capabilities

	stlab - Futures
	Capabilities
	Futures
	Exceptions
	Continuation
	Reduction
	Error Recovery
	Join
	Split
	Executors
	Conclusion

	Channels
	Motivation
	Channel - Stateless Process
	Channel - Split
	Channel - Join

	Channel - Stateful Process
	Conclusion

	Summary
	Take Away
	Acknowledgement
	Reference
	Reference
	Further listening and viewing

	Contact

	Bonus Material
	Qt Executor

