LIGHTNING TALKS
ACCU2018

Friday 13th April

lightning is really just

disorganized nonsense
— George Carlin

®

THE RULES

subjects are open!
five minutes (max)
have fun

Kevlin Henney - ;

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management
Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Odin Holmes - Lightning Talk

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

’.'”’h.'r-',
March
April

May

""’Hh'mhn‘y

Greep
R

Yellow

ADA LOVELACE

Re

LOGIC
PROGRAMMING

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management
Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Odin Holmes - Lightning Talk

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

BILL GATES

Re

GOAT-GUIDED
DEVELOPMENT

Kevlin Henney - ;

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management

Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Odin Holmes - Lightning Talk

The Impact of Meltdown and Spectre upon an HFT,
Low-Latency Benchmark, from an O/S Perspective.

J.M.M<Guiness!

1Count-Zero Limited

ACCU Conference, Bristol, 2018

J.M.M€Guiness The Spectre of Meltdown...

Outline

@ An Overview of Meltdown & Spectre.

© Methodology.
@ OS Choice.

© The Results.
@ CentOS.
@ Xubuntu.

@ Discussion

J.M.M€Guiness The Spectre of Meltdown...

An Overview of Meltdown & Spectre.

Meltdown and Spectre.

e Meltdown [1]:

o Extremely briefly: “Meltdown exploits side effects of
out-of-order execution on modern processors to read arbitrary
kernel-memory locations ... Out-of-order execution is an
indispensable performance feature...”

@ Spectre [2]:

o Extremely briefly: “Spectre attacks involve inducing a victim to
speculatively perform operations that would not occur during
correct program execution and which leak the victim'’s
confidential information via a side channel to the adversary.”

@ Billions of devices affected, incl. Intel & AMD architectures.

@ Mitigation via kernel patches is critical to avoid attack
(verified using [3]).

J.M.M€Guiness The Spectre of Meltdown...

Methodology. 0OS Choice.

OS & Hardware Choices.

@ Two of the most commonly-used OSes were examined:
@ CentOS:

o Used a lot in finance, e.g. merchant banks & hedge funds.
o A proxy for RedHat, Scientific Linux, etc.

@ Ubuntu:
@ Much used on client desktops, etc.
@ Used overclocked Haswell: old, still in production for many.
o Newer Skylake are not so heavily tuned to HFT.
@ No Solarflare card, nor OpenOnload used.
e This would increase kernel context-switches, which are
important to avoid.
e This should be seriously considered as a way to reduce
potential impact of mitigations.

e Many do not use OpenOnload to simplify deployment or it is
not available for OS.

J.M.M€Guiness The Spectre of Meltdown...

Methodology. 0OS Choice.

The Benchmark: a Simple FIX-to-MIT/BIT Translator [4].

o Repeated 1000s of times to achieve low deviation:
o A FIX “New Order” message is sent to a socket,

o translated to MIT/BIT native binary format,
@ sent over a socket to a basic simulator,

o which responds with a fill,

o translated back to a FIX “Fill" message.

e Sent back to the client.
o Compiled with g++ v7.3.0 (does not produce particularly
efficient binaries):

e on an AMD 4180 computer (potentially sub-optimal),
e all DSOs, inc. libc & Id-linux.so copied.
o all for exact consistency (& easel!).

@ This HFT /low-latency benchmark may not be applicable for
your systems.

J.M.M€Guiness The Spectre of Meltdown...

CentOS.
The Results. Xubuntu

Comparison of MIT-based link (v2274) performance directly in various OSes.
Affected by Spectre Meltdown: Intel Core i7-4790
Error-bars: % average deviation.

140 r r
Simulator (BIT) i
Link (BIT) b—t—i

rip_(microsec).

Mean_round

o I 1
1 2 3 4
CentOS v6.9 SQ{OS v6.9 CentOS v7.4.1708 CentOS v7.4.1804
v2.6.32-696.el6 v2.6.32-696.23.1.el6 v3.10.0-693.5.2.el7 v3.10.0-693.11.6.el7
Pre-mitigations Post-mitigations Pre-mitigations Post-mitigations

ess The Spectre of Meltdow

CentOS
The Results. Xubuntu.

Xubuntu.

3
H
§
g
2
E
d
3
£
2
<
§
8
2

Comparison of MIT based in (12274)peformance et i varous 0Ses.
Aected by Specte elidour:IntlCore 74790
it ars: % average deviton.

"

T
‘Simuiator(BIT) F——1
Link (BIT) =¥~

0 1 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 6 9 " 1t
XeboviAO XowntoviAOd Xobuntovi4O4 XobuntuviGO43 XebuntoviGOS4 XoburviBOA3 XobuntviBOA NobunkiviZAOD MubutviTADS XubuouvIZADS XubuntuviZA04
VA13024generc V31302onalenov3130-14+-owlency V8 10028genec v 13,036 genelES\4 10028 oty e 13036 onercy v413021eerc v41303Bgenerc v.13021ontency v 13021 onlaency
Pemigaions Peniigaons Postmitgaiions Premiigations Postmigatons Premiigatons Postmibgaons Premifgaons Poskmtgaions PreitgaonsPostitgatons

he Spectre of Meltdow

Discussion

Major Impact on Haswell for this Benchmark...

e Mitigations for Haswell had high impact:
o CentOS: over 12%, Xubuntu: over 5% performance loss.
o Application of such mitigations has highly variable impact:
@ How can we trust the mitigations are effective?

@ Outlook:

o Extremely important to verify performance impact for
latency-sensitive applications.
o In this case the solution is firewall, etc & avoid mitigations.
o FIX looks safe but use of ASCII buffers: ripe for overruns...
o Note: in this case Xubuntu is 8% faster than CentOS!
o How to demonstrate to regulator this is acceptable?
o Multiple clients connect to client-broker software? Regulations
may require software audit to demonstrate that clients cannot
access each other’s data.

J.M.M€Guiness The Spectre of Meltdown...

For Further Reading

For Further Reading |

¥ Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher,
Werner Haas, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval
Yarom, Mike Hamburg
Meltdown.
https://arxiv.org/abs/1801.01207

¥ Paul Kocher, Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael
Schwarz, Yuval Yarom

Spectre Attacks: Exploiting Speculative Execution.
https://arxiv.org/abs/1801.01203

¥ Spectre & Meltdown vulnerability/mitigation checker for Linux.
https://github.com/speed47/spectre-meltdown-checker

¥ http://libjmmcg.sf.net/

J.M.M€Guiness The Spectre of Meltdown...

https://arxiv.org/abs/1801.01207
https://arxiv.org/abs/1801.01203
https://github.com/speed47/spectre-meltdown-checker
http://libjmmcg.sf.net/

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

LINUS
TORVALDS

Re

LEGISLATION
LED
PROGRAMMING

Kevlin Henney - ;
Jason McGuiness - Meltdown/Spectre

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management

Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Odin Holmes - Lightning Talk

function_ref
(a non-owning reference to a Callable)

Vittorio Romeo ACCU 2018

h.ttps.://vittorioromeo.info April 2018
vittorio.romeo@outlook.com

Bloomberg

https://vittorioromeo.info/
mailto:vittorio.romeo@outlook.com

C++ is getting more functional

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234

e C++11 — lambda expressions and std:: function

e C++14 — generic lambdas

o C++17 — constexpr lambdas

Lambda expressions are syntactic sugar for the definition of anonymous
closure types

auto 1 = []{ std::cout << "hi!\n"; };

!

struct

{

auto operator()() const

{

}
P

std::cout << "hi!\n";

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234

Even though they're just syntactic sugar, lambdas changed the way we
think about code

const auto benchmark = [](auto f)

{

const auto time = clock::now();

f();

return clock::now() - time;

s
const auto t = benchmark([]
{
some_algorithm(/# ... */);
});

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234

synchronized<widget> sw;
sw.access([](widget& w)

{
w.foo();

w.bar();
});

e [ambda expressions make higher-order functions viable in C++
o E.g. accepting a function as a parameter

o E.g. returning a function from a function

What options do we have to implement higher-order functions?

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234

10

Pointers to functions

int operation(int(=f)(int, int))

{
}

return f(1, 2);

Works with non-member functions and stateless closures
Doesn't work with stateful Callable objects
Small run-time overhead (easily inlined in the same TU)

Constrained, with obvious signature

11

Template parameters

template <typename T>

auto operation(Fsg& f) — decltype(std:: forward<F>(f)(1, 2))
{

}

return std:: forward<F>(f)(1, 2);

e Works with any FunctionObject or Callable with std::invoke
e /ero-cost abstraction
e Hard to constrain

e Might degrade compilation time

12

std:: function

int operation(const std:: function<int(int, int)>& f)

{
}

return f(1, 2);

e Works with any FunctionObject or Callable
e Significant run-time overhead (hard to inline/optimize)
e Constrained, with obvious signature

e Unclear semantics: can be both owning or non-owning

13

function_ref

int operation(function_ref<int(int, int)> f)

i
}

return f(1, 2);

e Works with any FunctionObject or Callable

Small run-time overhead (easily inlined in the same TU)
Constrained, with obvious signature
Clear non-owning semantics

Lightweight - think of " string_view for Callable objects"

14

| proposed function_ref to LEWG (P0792)

e https://wg21.link/p0792

It was sent to LWG without opposition in Jacksonville

e Yay

15

https://wg21.link/p0792
https://wg21.link/p0792

How does it work?

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234

16

"Match" a signature though template specialization:

template <typename Signature>
class function_ref;

class function_ref<Return(Args...)>

i
}

//

template <typename Return, typename ...

Args>

vittorioromeo.info | vittorio.romeo@outlook.com | viomeo5@bloomberg.net | @supahvee1234

17

Store pointer to Callable object and pointer to erased function:

template <typename Return, typename ... Args>
class function_ref<Return(Args ...)>

{
private:
void* ptr;
Return (*_erased_fn)(void*, Args...);
public:
e

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234

18

On construction, set the pointers:

template <typename F>
function ref(F& f) noexcept : ptr{&f}

{
_erased_fn = [](void* ptr, Args... Xs) — Return
{
return (*reinterpret_cast<F*>(ptr))(
std:: forward<Args>(xs) ...);
b
}

vittorioromeo.info | vittorio.romeo@outlook.com | vromeo5@bloomberg.net | @supahvee1234

19

On invocation, go through _erased_fn :

Return operator()(Args ... xs) const

{
}

return _erased fn(_ptr, std:: forward<Args>(xs) ...);

20

template <typename Return, typename ... Args>
class function_ref<Return(Args...)>

{
void* ptr;
Return (*_erased fn)(voidx, Args...);
public:
template <typename F, /* ... some constraints ... #*/>
function_ref(F& x) noexcept : _ptr{&f}
{
_erased_fn = [](void* ptr, Args... xs) — Return {

return (*reinterpret_cast<Fx>(ptr))(
std:: forward<Args>(xs) ...);

b
}
Return operator()(Args... xs) const noexcept(/* ... #*/)
{

return _erased _fn(_ptr, std::forward<Args>(xs) ...);
¥

s

In the proposal (https://wg21.link/p0792):

e |In-depth analysis of the covered techniques' pros/cons
e Synopsis and specification of function_ref
e Existing practice (e.g. LLVM, Folly, gdb, ..)

e Possible issues and open questions

Article on my blog (https://vittorioromeo.info):

e "Passing functions to functions”

https://wg21.link/p0792
https://vittorioromeo.info/
https://vittorioromeo.info/index/blog/passing_functions_to_functions.html

Thanks!

https:.//wg21.link/p0792
https://vittorioromeo.info

vittorio.romeo@outlook.com
vromeo5@bloomberg.net

https://github.com/SuperV1234/accu2018

https://wg21.link/p0792
https://vittorioromeo.info/
mailto:vittorio.romeo@outlook.com
mailto:vromeo5@bloomberg.net
https://github.com/SuperV1234/accu2018

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

STEVE WOZNIAK

V/
@

WEB
DEVELOPMENT

(BECAUSE RUSSEL CAN'T)

Kevlin Henney - ;
Jason McGuiness - Meltdown/Spectre
Vittorio Romeo - function_ref

Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management

Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Odin Holmes - Lightning Talk

DANIELE PROCIDA

oo ————

T

e,
= ——

e Ty

mopeagoospooTrete—ea

= e ———

e

il
i

I
|

| fﬂ'lll J"ﬁ"ﬁ"llﬁﬁl A f

l

Il

il
i

]

il

MEg

‘»Phl i
{iF

e e e

ing for Python

0 cloud host

1V

e D

Jango

e D

e Docker

e

teasATh

¢ Debuggmg

.COMm

10

1V

10N

e Documentat
e daniele.procida@o

itHub, Twitter)

G

I/

e EviDMP (IRC

HACK THE DOCS

Developer Handbook DiIvIO

Q Docs » Divio Cloud developer handbook

3 Tiflotia Divio Cloud developer handbook

> How-to guides
2 Technical reference

> Background information

Documentation v: latest v

READ THE DOCS

readthedocs.org

A Axelrod

it Docs » Tutorials » Further capabilities in the library » Accessing strategies O Edit on GitHub
able

Accessing strategies

& Tutorials

All of the strategies are accessible from the main name space of the library. For example:

>>> import axelrod as axl

B Further capabilities in the library >>> axl.TitForTat()

Accessing strategies >>> axl ; C;bperator()

The main strategies which obey the rules of Axelrod’s original tournament can be found in a list:
axelrod.strategies:

>>> axl.strategies

This makes creating a full tournament very straightforward:

>>> players = [s() for s in axl.strategies]
>>> tournament = axl.Tournament(players)

There are a list of various other strategies in the library to make it easier to create a variety of
Reference tournaments:

Community

>>> axl.demo_strategies

Citing the library

>>> axl.basic_strategies

>>> axl.long_run_time_strategies
&) Read the Docs v: stable [

http://readthedocs.org

Developer Handbook

Search docs

> Tutorial
> How-to guides
> Technical reference

2 Background information

Contents

Tutorial How-to guides Reference Background

Get started with a Step-by-step guides for Technical reference - Explanation and
hands-on introduction to the developer covering tools, components and discussion of key topics
the Divio Cloud for key operations and commands

developers. procedures

About the Divio Cloud

The Divio Cloud is a platform for Python/Django web projects. The Divio Cloud aims to offer developers:

More reliable deployment - it’s built in Python and Django, and uses Docker to give application developers
a local development environment that is consistent between the Cloud live and test servers - in other
words, a system where if it works on your machine, you can expect it to work in production.

Easier deployment and maintenance - the Dockerised Cloud platform makes it possible for developers to
get their projects online, and to take charge of deployment, maintenance and scaling, without needing the

DIiVIO

Developer

Search docs

2 Tutorial

andbook

> How-to guides

? Technical reference

2 Background information

DIiVIO

Contents

Tutorial

Get started with a hands-on introduction to the Divio Cloud for developers.

How-to guides

Step-by-step guides for the developer covering key operations and procedures

Reference

Technical reference - tools, components and commands

Background

Explanation and discussion of key topics

About the Divio Cloud

The Divio Cloud is a platform for Python/Django web projects. The Divio Cloud aims
to offer developers:

Test Server

Git Log

10 commits not deployed yet

Metrics ° " @

Storage 170.87 MiB
I

Last deployment status

4. Last deployment failed

Deployment needed

€ There are unapplied changes.

B > @ £

Show

Max. 25 GiB

Check Log | Troubleshoot

A Deploy v

Live Server

Git Log

10 commits not deployed yet

Metrics - @

Storage 170.99 MiB

i

Bandwidth 711 MiB current month
f

RAM 204 MiB @ trailing 30d
4

Last deployment status

+ Successful

Deployment needed

@ There are unapplied changes.

Show

Max. 25 GiB

Max. 100 GiB

Max. 512 MiB

® Thu, Feb 15, 2018 10:40 PM

~ Deploy v

CHOOSE YOUR OWN ADVENTURE

AN INTERACTIVE DEBUGGING
CHECKLIST

Debugging checklist

Deployment on the Cloud has not worked as expected

Does the Control Panel show a “Last deployment failed” message?
e [he Control Panel shows a Last deployment failed message

e [he Control Panel does not show a Last deployment failed message &

Debugging checklist

The Control Panel shows a Last deployment failed message

Open the log. The relevant section will be towards the end, so work backwards from the end. Any

error will be clearly stated.

What does the deployment log contain?
e [he log appears to be empty

e The log appears to contain no errors

- e

e [he log refers to an error

Restart the checklist &

Debugging checklist

The deployment log contains an error

The end of the log will contain the key error.

What does the error most closely resemble?
e Could not find a version that matches [...]

npm ERR! [...] ERR! /npm-debug.log

mportError

Read limeoutkrror

The error does not seem to be any of the above

Restart the checklist &>

Debugging checklist

Probable fault: dependency conflict

An error that starts:

Could not find a version that matches [...]

Indicates that two or more of the components in your system have specified incompatible Python
dependencies.

See How to identify and resolve a dependency conflict.

Restart the checklist &

HACK THE DOCS

Read the Docs Divio’s developer documentation
readthedocs.org docs.divio.com

Write the Docs Readme with links
writethedocs.org github.com/divio/divio-cloud-docs
conferences and meetups Documentation structure

divio.com/blog/documentation

http://readthedocs.org
http://docs.divio.com
http://github.com/divio/divio-cloud-docs

RELATIONSHIPS

1nere are

7 000 000 000

other people Ir
fhe worna

Are you sure you
nave cnosen the rignt
one’

Simple arthmetic
means amaost any
cnoice You Il make 1S

the wrong one

aNnd that any attempt
[0 make a difierent,

Hetter choice will
also fail

-0 stop
wWorrying coout
making the rngnt
choice

nstead, commit 10 wnat
VOU Nave already cnoser

aNc develop I INto the
nest possiole relationsn
or vou

ANC the same goes Tor
your relationship

with the software
VOU WOIK With!

Stop
worrying
A0OUL MaKiNo
the rignt cnoice:

Commit 10 the
Droject VYou nave
already cnosen

—elp U It INto the

pest possible one
Tor Vou

o

PYCON UK 2018

CARDIFF CITY HALL
15TH TO 19TH SEPTEMBER

R

PYCONUK.ORG

) :
R

iv’-' -l X L .
1 i g)Q ‘\\ . ..n-\\ e\
f t w“ \‘t\l\%& \\ .\.

4 7,
ir
‘.J.?! “.Al‘."ﬁ
MBI
'n‘ I ;{f."“‘
F . ‘l ‘,‘.
o e d Ty i1 :, ‘ .
-~ iy
L fi

4
y
’

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

GRACE HOPPER

V/
£

HAT-HELPED
HACKING

(-]

Kevlin Henney - ;

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management

Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Odin Holmes - Lightning Talk

1,024,122,880 bytes

Andy Balaam ACCU 2018 Lightning talk Destroy Dependencies

20,000
ZX Spectrums

S cabal install hindent

S cabal install hindent
...49 packages to install...

S cabal install hindent
...49 packages to install...
...wait 3-4 hours...

S cabal install hindent
...49 packages to install...

...wait 3-4 hours...
Killed

Dependencies

A dependency
is a smell

Dependency
Injection
IS an air
freshener

"Find the
dependencies —

and eliminate
them”

(UnofFicial Excel team motto, 1990s)

do something

Y

/ N
‘) ¥
¥ N

BeSomething BeSomething

BImpl

Cimpl

}IC

DIimpl

Eimpl

! Aaaargh!

IE

~e’

Does your class need
a clock?

Or does it need to
know the time?

Should you inject a
MetricsUpdater?

Or return a number?

DESTROY
DEPENDENCIES

Dependency
Injection frameworks

DESTROY
DEPENDENCIES

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

DONALD KNUTH

V/
£

DACHSHUND
DRIVEN DESIGN

(-]

Kevlin Henney - ;

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management

Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Odin Holmes - Lightning Talk

Where to begin...?

- —

new Developer();

auto&& dev = std::make_unique<Developer, deleter>();

C
L&
[=>
)

@ ® < EL] \"9 http://cpplondon.o g

Create a Meetup Login Signup

C++ London

London, United Kingdom

900

-
","'.0 Phil N. and 1 other

Join us o

Qur group Meetups Members Photos Discussions More

Next Meetup See all

Monday, April 23, 2018, 7:00 PM

23
** Tuppence more on standard algorithms M

U LMo

CH- oo (W] gl

08 < >

cpplondonuni.com

©O 0 m’l‘j

4]

Start Here

C
9

ourse
Speakers

Vleetup Location
Terms & Conditions
RSVP

Blog

L

SPEAKERS

Tom Breza
Project Ieade!'and Organizer

|

& Phil Nash

Organizer
£
o Tristan]ﬁlﬂé
| Tutor gl ‘
Oliver
7 Tutor

¥y ©

Create Your WiX Site

« o~
{6

-~

< o] youtube.com

3 YouTube ™ C++ london university C

C++ London
University Session 24

Tristan Brindle

P Pl o) 0:00/2:28:22

Top chat replay =

u Live chat replay is an. Messages that appeared when the stream was live will show up here.

skillsimatter.com/skillscasts

@skillsmaller

£0.00

Q {4’. E r——j -
DB St : C O § O B
= Potters .

Create Your WiX Site J

e
® .
£ _ | _ | Fields Park Map data ©2018 Google | 200 m

Next Meetup Dew
Course ‘
Speakers‘

Meetup Location
Terms & Conditions
RSVP

Blog

(L] cpplondenuni.com

RSVP

UPCOMING EVENTS

Apr 1/, 2018 at 6:00pm - 9:00pm
CodeNode, 10 South Pl, London EC2M 7EB, UK

Beginner Intermediate

londonuni.com

Expert Remote

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

JOHN CARMACK

(-]

V/
£

CHOCOLATE-
CENTRIC CODING

Kevlin Henney - ;

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK

Andy Balaam - Destroy Dependencies
Phil Nash - Where to start...?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management

Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Odin Holmes - Lightning Talk

| can has grammar?

Timur Doumler

ACCU Conference
Lightning talk
13 April 2018

block-declaration: decl-specifier:

simple-declaration storage-class-specifier
asm-definition defining-type-specifier
namespace-alias-definition function-specifier
using-declaration friend

using-directive typedef
static_assert-declaration constexpr
alias-declaration inline

opaque-enum-declaration
decl-specifier-seq:
nodeclspec-function-declaration: decl-specifier attribute-specifier-seqop: decl-specifier decl-specifier-seq
attribute-specifier-seq.p: declarator ;
storage-class-specifier:

alias-declaration: static
using identifier attribute-specifier-seqop: = defining-type-id ; thread_local
extern
simple-declaration: mutable
decl-specifier-seq init-declarator-list,p: ;
attribute-specifier-seq decl-specifier-seq init-declarator-list ; function-specifier:
attribute-specifier-seqop: decl-specifier-seq ref-qualifier,p: [identifier-list | initializer , virtual
explicit
static_assert-declaration.:
static_assert (constant-expression) typedef-name:
static_assert (constant-expression , string-literal) ; identifier
empty-declaration: type-specifier:
; simple-type-specifier
elaborated-type-specifier
attribute-declaration: typename-specifier

attribute-specifier-seq ; cv-qualifier

pseudo-destructor-name
elaborated-type-specifier

nodeclspec-function-declaration

This summary of C++ grammar is intended to be an aid to comprehension. It is not an exact statement
of the language. In particular, the grammar described herc accepts a superset of valid C++ constructs.
Disambiguation rules (9.8, 10.1, 13.2) must be applied to distinguish expressions from declarations. Further,
access control, ambiguity, and type rules must be used to weed out syntactically valid but meaningless
constructs.

extern "C" {
int x;
¥

declaration.:
linkage-specification
linkage-specification:

extern string-literal { declaration-seqop: ¥

extern string-literal declaration

extern "C" {
extern "C" {
extern "C++" {
int x;
s

extern "C++" extern "C" extern "C++" 1int x;

extern extern "C++" extern "C" extern "C++" 1int Xx;

extern "C++" extern "C" extern "C++" extern int x:

1f (auto ret = map.insert(x); !ret.second)
/X ... X/

selection-statement:

if constexproy (init-statement,,: condition) statement

init-statement.:
simple-declaration

expression-statement

if (class foo: !ret.second)
/X ... X/

1f (false: true)
/X ... X/

if (: true)
1 ’

- X/

int a = 0;
int b = {0};
int c{0}:

int d(0);

int d(0):

int (xfp)();

auto (xfp)() —> 1int;

auto (xfp)() —> int(&f);

int x:

int(x):

int((x));

struct foo:
void bar(foo):

struct foo:
void bar(foo foo);

struct foo:
void bar(foo(foo));

struct foo:
void bar(foo((foo))):

elaborated-type-specifier

class bar {}:
int bar;

bar b:

NAAAAAAAANS

class bar {}:
int bar;

class bar b:

class bar {}:

class bar b:

type-specifier:
simple-type-specifier
elaborated-type-specifier

std::vector<bar> bars:

class std::vector<class bar> bars;

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

MARK
ZUCKERBERG

Re

MERCILESS
MISCHIEF
MANAGEMENT

Kevlin Henney - ;

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Mathieu Ropert - Package Management

Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Odin Holmes - Lightning Talk

Fixing Two-Phase Initialization

Andreas Weis

BMW AG

ACCU 2018

—-fno-exceptions

The Problem

class Foo {
private:
std::unique_ptr<InternalState> m_state;
public:
Foo(Arg n_arg)
:m_state(std: :make_unique<InternalState>(n_arg))
{3
s

The Problem

class Foo {
private:
std::unique_ptr<InternalState> m_state;
public:
Foo(Arg n_arg)
:m_state(std: :make_unique<InternalState>(n_arg))
{3
s

Two-Phase Initialisation

class Foo {
private:
std::unique_ptr<InternalState> m_state;
public:
Foo() noexcept
:m_state()
{1}
s

Two-Phase Initialisation

class Foo {
private:

std::unique_ptr<InternalState> m_state;
public:

Foo() noexcept

:m_state()

{1}

Two-Phase Initialisation

class Foo {
private:

std::unique_ptr<InternalState> m_state;
public:

Foo() noexcept

:m_state()

{1}

std::error_code init(Arg n_arg) noexcept {
m_state = make_unique_nothrow(n_arg);

Two-Phase Initialisation

class Foo {
private:

std::unique_ptr<InternalState> m_state;
public:

Foo() noexcept

:m_state()

{1}

std::error_code init(Arg n_arg) noexcept {
m_state = make_unique_nothrow(n_arg);
if ('m_state) { return { my_errc::error, my_category() }; }
return std::error_code();

}
};

m Objects in partial constructed state

A first attempt to fix this. ..

class Foo {
private:

std::unique_ptr<InternalState> m_state;
public:

Foo() noexcept

:m_state()

{1}

std::error_code init(Arg n_arg) noexcept {
m_state = make_unique_nothrow(n_arg);
if ('m_state) { return { my_errc::error, my_category() }; }
return std::error_code();

}
};

A first attempt to fix this. ..

class Foo {
private:
std::unique_ptr<InternalState> m_state;

Foo() noexcept
:m_state()
{3
public:
std::error_code init(Arg n_arg) noexcept {
m_state = make_unique_nothrow(n_arg);
if ('m_state) { return { my_errc::error, my_category() }; }
return std::error_code();
}
s

A first attempt to fix this. ..

class Foo {
private:
std::unique_ptr<InternalState> m_state;
Foo() noexcept
:m_state()
{3}
public:
static expected<Foo> create(Arg n_arg) noexcept {

A first attempt to fix this. ..

class Foo {
private:
std::unique_ptr<InternalState> m_state;
Foo() noexcept
:m_state()
{1}
public:
static expected<Foo> create(Arg n_arg) noexcept {
Foo ret{};
ret.m_state = make_unique_nothrow(n_arg);
if('ret.m_state) { return unexpected(my_errc::error); }
return ret;
}
s

m Objectsin—partial-constructed-state v

m Objectsin—partial-constructed-state v

m Non-idiomatic construction

Inverse Two-Phase Initialisation

static expected<Foo>
create(Arg n_arg) noexcept
{
Foo ret;
ret.m_state = make_unique_nothrow(n_arg);
if(!'ret.m_state) { return unexpected(my_errc
return ret;

::error); }

Inverse Two-Phase Initialisation

static expected<construction_token>
preconstruct (Arg n_arg) noexcept
{
construction_token t;
t.state = make_unique_nothrow(n_arg);
if(!'t.state) { return unexpected(my_errc::error); }

return t;

Inverse Two-Phase Initialisation

static expected<construction_token>
preconstruct (Arg n_arg) noexcept
{
construction_token t;
t.state = make_unique_nothrow(n_arg);
if(!'t.state) { return unexpected(my_errc::error); }
return t;

Foo(construction_token&& t) noexcept
:m_state(std: :move(t.state))
{7}

= Ob: . o v
u Non-idi . on v

Inverse Two-Phase Initialisation

static expected<construction_token>
preconstruct (Arg n_arg) noexcept
{
construction_token t;
t.state = make_unique_nothrow(n_arg);
if(!'t.state) { return unexpected(my_errc::error); }
return t;

Foo(construction_token&& t) noexcept
:m_state(std: :move(t.state))
{7}

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

BJARNE
STROUSTRUP
Re

SITAR-

SUSPICION
SYSTEMS

Kevlin Henney - ;

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization

Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency
Odin Holmes - Lightning Talk

The obigatory talk about
package management

@

8

Mathieu Ropert - ACCU 2018
@MatRopert

X Previously on C++ talks...

X Previously on C++ talks...

“| wrote this cool new library...”

X Previously on C++ talks...

“| wrote this cool new library...”

“It's doing this and that...”

X Previously on C++ talks...

“| wrote this cool new library...”
“It's doing this and that...”

“It's header-only”

X Previously on C++ talks...

‘| wrote this cool new library...
“It's doing this and that...”
“It's header-only”

“It has no dependencies”

GREGORY BERNARD PRESENTS

A FILM BY QUENTIN DUPIEUX

JACK PlOTNICK ERIC JUDOR ALEX!S DZIENA STEVE LITTLE mnWll.llAM FICHYNER
s WEONG o RANCE E STAEA

l..\n. “...;cm-u-c-'
SNOWA DONIOUD GEORGE GOLDMAN

w ﬂ'—‘%‘",,,: arte IONOCIAST CANAL+

X Translation(s)

X Translation(s)

“It's header-only”

X Translation(s)

“It's header-only”
| don’t want to deal with build files

X Translation(s)

“It's header-only”
| don't want to deal with build files
I'm afraid nobody’s gonna use it if they have to

X Translation(s)

“It's header-only”
| don't want to deal with build files
I'm afraid nobody’s gonna use it if they have to

“It has no dependencies”

X Translation(s)

“It's header-only”
| don't want to deal with build files
I'm afraid nobody’s gonna use it if they have to

“It has no dependencies”
| like to rewrite the same thing over and over again

X Translation(s)

“It's header-only”
| don't want to deal with build files
I'm afraid nobody’s gonna use it if they have to

“It has no dependencies”
| like to rewrite the same thing over and over again
| think the cost of reuse is larger than the cost of
rewrite

I don’t want to deal with
package management!!!

“We need a better package /build
system’”

Bjarne Stroustrup
CppCon 2017

66

5> What we have

Dozens of build systems
Several package managers
Some do both

Some do one, and a bit of the other

“Let’s make a new build system that also
integrates a full package manager”

HOW STANDARDS PROLFERATE:
(65 A/C CHARGERS, CHARACTER ENCODINGS, INSTANT MESSAGING, ETC)

SITUATION:

THERE ARE
|4 COMPETING
STANDPRDS.

W7 RiDICULoLS!

WE NEED To DEVELOP
ONE UNIVERSAL STANDARD
THAT COVERS EVERYONE'S

\ O J

)

[Scon]

SITUATION:
THERE. ARE
|5 COMPETING
STANDPRDS.

“Let’s make a new build system that also
integrates a full package manager”

% Backward compatibility

C++ is not a new language

A lot of value is inside the thousands of
existing projects out there

Migrating to a new build system is both costly
and risky

5% Standardize the right thing

Don’t make a new build system that acts as a
gateway to get into package management

Instead, find a way to integrate what we
currently have

Offer a simpler/cleaner alternative for new
projects

X Slow progress?

Packaging most project means custom scripts

For example conan on has
91 packages on conan-center
268 packages on bincrafters staging repo
138 of them being Boost modules

Most maintainers don't contribute, packaging
is done by a 3rd party

5% Standardize the right thing

Define interactions between package
managers and build systems

Conformance is done in an opt-in and non
breaking fashion(*)

Fix projects’ portability issues instead of
scripting around

5> How would it work?

Package manager queries the project build to
see what's needed

Package manager installs dependencies

5> How would it work?

Package manager invokes build with path to
dependencies

Build systems provides a manifest along with
the binaries that can then be used to consume
It

5% What can you do?

If you maintain a build system, consider this
proposition

If you maintain a package manager, also
consider this proposition

In any case, feedback is welcomed!

Thanks!

https://qgoo.gl /9p9Inzv

X mro@puchiko.net

¥ @MatRopert

@ https://mropert.github.io

& https://bincrafters.github.io/

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

ReEeractorin
IMPROVING TIE DESIGN
OF EXISTING CODE

MARTIN FO
raewara ty Erich Gamma
C001 TochANOgy INtermancnal, inc,

PO WERE T

ANT IIMTIN

RICHARD
STALLMAN

Re

REFORMATION
REFACTORING

Kevlin Henney - ;

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management

Jonathan Miiller - A Fool's Consistency
Odin Holmes - Lightning Talk

Reducing memory
allocations

Arnaud Desitter
ACCU conference - 13 April 2018

Custom allocators are a much discussed topic in the C++ industry.

Local (“Arena”)
Memory Allocators

John Lakos
Thursday, April 27, 2017

This version is for ACCU’17

> >) o15/14122

Local (arena) Memory Allocators - John Lakos [ACCU 2017]
Extensive benchmarking: P01213R0, POO89R1

Custom allocators are a much discussed topic in the C++ industry.

How do | quantify the memory
allocatlons of my appllcatlon ?

f r ACCU'17

Local (arena) Memory Allocators - John Lakos [ACCU 2017]

Extensive benchmarking: P01213R0, POO89R1

cppcon ®

HEAPTRACK

~
=%

A HEAP MEMORY PROFILER FOR LINUX |y

Heaptrack:
A Heap Memory
Profiler for Linux

Milian Wolff / www.kdab.com

'}7 > -19 0:06 / 10:37 B orPo?

CppCon 2015: Milian Wolff "Heaptrack: A Heap Memory Profiler for Linux”

heaptrack

Summary | Bottom-Up Caller/ Callee Top-Down Flame Graph Ct porary i Sizes
debuggee: calls to allocation functions: peak heap memory consumption:
heaptrack gui heaptrack.kdevelop.17117 2905522 (337890/s) 267.3 MiB after 6.182s
total runtime: temporary allocations: peak RSS (including heaptrack overhead):
8.599s 47978 (1.65%, 5579/s) 97.3 MiB
total system memory: bytes allocated in total (ignoring deallocations): total memory leaked:
114Gi8 341.46 MiB (39.7 MiB/s) 373.1kKi8
Highest Memory Peaks Largest Memory Leaks Most Memory A { Most P y All i Most Memory Allocated
Peak Location Leaked Location Allocations Location Temporary Location Allocated Location 2
71.0KiB _GLOBAL_su... 21840 264.7 MIB QArrayData::...
.0 MiB void std::vect... 69.2 KiB 0x7fbdd0adf... 21754 run in lambd... 7714 10.5 MiB void std::vect...
6.0 MiB void std::vect... 31.9KiB 0x7fbdc2884... 19350 QHashData::... 3990 7.0 MiB void std::vect...
5.0 MiB std::_detail::... 27.3KiB _dl_new_obje... 11225 QListData::de... 2774 6.7 MiB QRasterPaint...
4.5 MiB handleAlloca... 17.0KiB g_mallocin?... § 7797 QImageData:... 1990 QRasterPaint... 6.0 MiB handleAlloca...
3.0 MiB void std::vect... 16.0 KiB 0x7fbdd072f... 7241 QRasterPaint... 1975 _GI__strdup... 5.0 MiB std::_detail::...
1.4 MiB QIimageData:... 15.2KiB g_mallocO in ... 6209 QBrush::init(... 920 QObject::QO... 4.0 MiB void std::vect...
1.0 MiB 0x7fbdacc0d... 13.7 KiB 0x7fbdc289c... 6086 _Gl__strdup... 905 RulerAttribut... 3.9Mi8 0x7fbdd0250...
1,020.1 KiB run in lambd... 13.1KiB _GI__strdup... 5816 QRegion::cop... 784 QListData::d... 3.9MiB 0x7fbdd0250...
768.0KiB Accumulated... 7.0KiB 0x7fbdc289c... 5641 QByteArray::r... 610 QBrush::init(... 2.7 MiB QTextEngine:...
768.0 KiB void std::vect... 6.7 KiB 0x7fbdc289c... 5167 QMapDataBa... 482 Ox7fbdcccTe... 1.7 MiB QimageData:...
768.0KiB void std::vect... 6.5 KiB _nl_intern_lo... 4806 void std::__cx... 473 QListData::re... 1.2 MiB hb_buffer_cr...
6452 KiB QHashData: 5.6 KiB XlcCreateDe... 4060 0x7fbdd0250... 400 QRawFont:: 1.0MiB 0x7fbdacc0d...

File
Summary \ Bottom-Up | Caller / Callee = Top-Down \ Flame Graph = Consumed ‘ Allocations = Temporary Allocations ~ Allocated Sizes Stacks

filter by function filter by file Selected Stack: | 1/13698 ¢

Allocations ~ Temporary Peak Leaked Allocated Location ' Backtrace

void std::__cxx11::basic_strin...

> 177162 8828 12.7 MB 89.7 kB 33.7 MB boost::date_time::date_facet<...
>149876 0 71.3kB 0B 4.2MB __gnu_cxx::new_allocator<ix::BlockDoubleProperty*>::allocate(unsigned long, void cons... boost::date_time:time_facet...
> 149876 0 142.7 kB 0B 8.4MB ::nvcc_prop_dep_data>::allocate(unsigned long, void const¥)... ix:world::BTimeUtils:to_strin...
2138894 0 8.2kB 0B 484.4kB __gnu_cxx::new_allocator<char>:allocate(unsigned long, void const*) in new_allocator.h... ix:Date::date_as_string(std::_...
> 133974 0 0B 0B 7.1 MB __gnu_cxx::new_allocator<ix::Point2D>::allocate(unsigned long, void const*) in new_allo... ixe::FmReservoirRoot::get_cu...
>131820 0 197.9kB 0B 127 MB __gnu_cxx::new_allocator<std::vector<ix::BlockDoubleProperty*, std::allocator<ix::Block... ixezIFieldImpl::before_gettin...
> 109372 0 77.2kB 0B 926.7 kB std::vector<bool, std::allocator<bool> >::_M_fill_insert(std::_Bit_iterator, unsigned long, ... ixe::BaseFieldImpl<std::__cxx...
>-89841 12970 185.9 kB 0B 38.0 MB std::__cxx11:basic_string<char, std::char_traits<char>, std::allocator<char> >::reserve(u... ixe::FieldAccessor:execute._i...

> 88064 16623 244.2kB 244.2kB 148.1 MB xercesc_3_1:MemoryManager] it igned long) in ?? (libix_fmsim.so) ixezInProcessCallSystem::exe...
>71063 1 161.8 kB 0B 23MB __gnu_cxx:new_allocator<std::__detail::_Hash_node<std::pair<ix:1d64 const, int>, true> ... ixe::RootCallSystem::execute._...

eaptrack

[e mencssnamiSila_emao - -o]
Wiy N B OO A | D] e oo [GRS AR Tupity el L ctod | 50002 Summary - Bem i ot Caen.Top O Fame Gragh Cormamed, Lo Tomporry Abocaom. Abocamd | Sies.

Aocations | Bttom-Down View Coet Theeshoid: 0.10%

Hemory Aocations

B e e R L = e

Cumulated allocations
[e -~ O [—— . L —————————————————)

) ™
Sy | W | O | e Grigh | Cormanat | 4 E it | M| 1o Somrary Baomily Caber/Colwe Top Do | Flana Graph Cornomet Abecations Temparary Ascationt | Mdccotmd | S

. "o oot ue NEEAE 01N 1A TWOII0 SIS mere Sun

Requested Allocation Size

Bapned Tere

Sizes Consumed

A case study

700000000

0s 3.33min 6.67min 10min 13.3min 16.7min 20min

Elapsed Time

j 600000000
: 500000000
400000000
300000000
200000000

- 100000000

<— ~630eb

A case study

Number of allocations
reduced by x250

Before After

A case study

Most allocations are for 8 bytes or less.

450e6

=

0Bto 8B 9Bto 168

178t0 328

3380648

658101288

1298 to 2568

Requested Allocation Size

Before

257Bt0 5128

512Bt0 KB

more than 1KB

- 500000000

400000000

300000000

200000000

100000000

0

=

0B to 8B

9Bto 168

178 t0 328

33Bt0 648 658 to 1288 1298 to 2568

Requested Allocation Size

After

257Bt0 5128

512Bto 1KB

more than 1KB

I 900000
: 800000
: 700000
600000
: 500000
400000
: 300000
: 200000

- 100000

=

Number of Allocations

0.8e6

Solutions

* Do not copy if you can.
* Avoid unused objects.
* Use references.
* Useviews (gsl::span,std::string view).
* Use moves.

Solutions

* Do not copy if you can.
* Avoid unused objects.
e Use references.

* Useviews (gsl::span,std::string view).
* Use moves.
e Avoid allocation.

 Use std: :array, boost::container::small vector
e Avoid pimpl when necessary. Use std: :optional.

Solutions

* Do not copy if you can.
* Avoid unused objects.
* Use references.
* Useviews (gsl::span,std::string view).
* Use moves.

* Avoid allocation.
 Use std: :array, boost::container::small vector
e Avoid pimpl when necessary. Use std: :optional.

* Re-use allocated memory.
* Use std::vector::reserve().
* Make use of std: :vector capacity.

Solutions

* Do not copy if you can.
* Avoid unused objects.
* Use references.
* Useviews (gsl::span,std::string view).
* Use moves.

Avoid allocation.
 Use std: :array, boost::container::small vector
e Avoid pimpl when necessary. Use std: :optional.

Re-use allocated memory.
* Use std::vector::reserve().
* Make use of std: :vector capacity.

* Use contiguous containers.
* Avoid when possible std: :map, std: :set and std: :1ist in critical code.
e Use local memory allocator for node-based containers when appropriate

Lessons learned

Go to conferences !
or watch them on YouTube.

Do not be afraid to ask questions.
at conferences or on the web.

Try new tools.
... and make improvements thanks to them.

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

GUIDO VAN
ROSSUM

Re

GROWING
OBJECT-ORIENTED
SOFTWARE: GUIDED BY

ROBOTS

Kevlin Henney - ;

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management

Arnaud Desitter - Reducing Memory Allocations

Odin Holmes - Lightning Talk

A Fool's Consistency

Jonathan Muller

@foonathan

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

https://twitter.com/foonathan

Jon Kalb
u Jonathan,
This is very well thought out.

And wrong.

You are looking at this entirely from the point of view of the implementation, not
from the p oint of view of the user. As should be expected, this results in errors.

Looked at from the users' perspective, a moved from object must be treated as

what Alex Stepanov and Sean Parent call a "partially formed type." This is what
"' is in this statement:

inti;
Itis an object that can be destroyed or assigned to, but any other operation is
unde fined behavior.

As a library implementer, you are free to implement that partially formed state in
any way that you'd like, but you do your users no favor by documenting it in

any way except to say that all operators other than assignment and destruction
are undefined behavior.

There is no valid use case for using a moved from object in any other way. (If
you think you have found one, what you have really found is a class that needs
to support resource transfer with a mechanism other that "move."

| know that the committee has specified the behavior of standard objects when
moved-from. This was a mistake. Anything that encourages users to write code
which relies on the behavior of partially formed objects is simply creating

© Jonathan Mduller - @foonathan - ACCU - 2018-04-13

It's not "west const".

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

It's not "west const"”.

It's "const west".

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

Using east const leads to more consistentency.

(Paraphrasing)

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

| The Consistency Fallacy

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

Meeting C++ : 5
@ @meetingcpp
So, which const is it? #Thurdsdaysurvey

#cpp
#cplusplus

17% T const

342 votes « Final results

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

const modifies what is on its left. Unless there is nothing on its left, in which
case it modifies what's on its right.

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

const Mmodifies what is on its left. Period.

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

Il The const Pointer to const Fallacy

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

char const* const

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

const std::string view

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

T const* const

© Jonathan Mduller - @foonathan - ACCU - 2018-04-13

T const* const foo = &obj;

© Jonathan Mduller - @foonathan - ACCU - 2018-04-13

const auto foo = &obj;

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

const auto foo = static cast<const T*>(&obj);

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

const auto foo = &std::as const(obj);

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

const modifies what is on its right. Period.

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

| want to read "constant integer".
You do, you just have to read declarations from right to left.

(Paraphrasing)

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

Il The Read-Right-To-Left-Fallacy

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

while (1 < 42)

While i is less than 42.

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

while (1 < 42)

NOT: 42 less than i while

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

const

Constant

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

const int

Constant integer

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

const int* foo;

Constant integer pointer

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

int

Integer

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

int foo[3];

Integer array of size 3

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

int foo

Integer

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

int foo(const int&)

Integer-returning function taking constant integer reference

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

int foo(const int&) const;

Integer-returning function taking constant integer reference that is const -
qualified

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

void (*signal(int, void (*fp)(int)))(int);

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

Clockwise/Spiral Rule

R -
| +---+
| +---+ | +-+
R A N R |
void (*signal(int, void (*fp)(int))) (int);
| +------ + | +--+
| S +
R e -

http://c-fag.com/decl/spiral.anderson.html]

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

http://c-faq.com/decl/spiral.anderson.html

using handler = void(*) (int);
handler signal(int, handler);

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

using handler = void(*)(int);
handler signal(int, handler);

(I think)

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

Compromise

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

Const West East Const

const int const the answer = 42;

const const int const* const the indirect answer = &the answer;

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

Const West East Const

const int const the answer = 42;

const const int const* const the indirect answer = &the answer;

:) ¢ clangt++ file.cpp
file.cpp:5:15: warning: duplicate 'const' declaration specifier [-Wduplicate-decl-specifier]
const int const the_answer = 42;

file.cpp:6:11: warning: duplicate 'const' declaration specifier [-Wduplicate-decl-specifier]
const const int constx const the_indirect_answer = &the_answer;

file.cpp:6:21: warning: duplicate 'const' declaration specifier [-Wduplicate-decl-specifier]
const const int constx const the_indirect_answer = &the_answer;

Ao e

3 warnings generated.
foonathan:/tmp

:) ¢ |}

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

Thank you!

Jonathan Muller
@foonathan

https://patreon.com/foonathan

© Jonathan Muller - @foonathan - ACCU - 2018-04-13

https://twitter.com/foonathan
https://patreon.com/foonathan

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

= Ra 1
\..’-.":.‘Qf’

MARGARET
HAMILTON

Re

HANGER DRIVEN
DEVELOPMENT

Kevlin Henney - ;

Jason McGuiness - Meltdown/Spectre

Vittorio Romeo - function_ref

Daniele Procida - Hacking, committing and PyCon UK
Andy Balaam - Destroy Dependencies

Phil Nash - Where to start...?

Timur - | can has grammar?

Andreas Weis - Fixing Two-Phase Initialization
Mathieu Ropert - Package Management
Arnaud Desitter - Reducing Memory Allocations
Jonathan Miiller - A Fool's Consistency

Lightning Talk
@odinthenerd

PROMINENT
PROGRAMMERS
PREFERRED

oy (PROBABLE)
PROGRAMMING
PARADIGM

LARRY WALL

V/
£

(-]

@

THANKS!

