

HOW TO BUILD
DIGITAL SIGNATURES
FROM
HASH FUNCTIONS

AHTO TRUU
SOFTWARE ARCHITECT, GUARDTIME

ACCU CONFERENCE, 12-MAR-2021

+121412527

+3BF25278

+7181412527

-A81412DE7

+

ABOUT GUARDTIME

+ Systems engineering company

focusing on data security solutions

+ Founded in 2007 in Tallinn, Estonia

+ Global HQ in Lausanne, Switzerland

+ Offices in US, EU and China

+ 150 employees

+ 80% engineers and researchers

+ https://guardtime.com/

https://guardtime.com/

AGENDA

+ Introduction

+ Digital signatures

+ Hash functions

+ Hash signatures

+ Time-stamping

+ BLT signatures

++ + +

+

++ + +

++ + +

++ + +

++ + ++

+

1/
INTRODUCTION

SYMMETRIC ENCRYPTION

Encryption Decryption

Secret key Secret key

ASYMMETRIC ENCRYPTION

Encryption Decryption

Public key Private key

DIGITAL SIGNATURES

Signing Verification

Private key Public key

++ + +

+

++ + +

++ + +

++ + +

++ + ++

+

2/
DIGITAL SIGNATURES

+

DIGITAL SIGNATURES: WHAT ARE THEY

Aim to be the electronic equivalent of hand-written signatures

• Intent

• Integrity: authenticity of content

• Identity: authenticity of origin

• Time: authenticity of signing time

• Non-repudiation

+

DIGITAL SIGNATURES: USE-CASES

Relying party (recipient of a signed document) can:
• Verify the authenticity of the document for themselves
• Prove the authenticity of the document to third parties

Main use case types:
• Document signing
• Access control

DIGITAL SIGNATURES: MATHEMATICAL MODEL

+ Each signer has two related keys:

• Private key for creating signatures

• Public key for verifying signatures

+ A signature scheme consists of three algorithms:

• Key generation: creates a pair of related keys

• Signing: gets a document and a private key and creates a signature

• Verifying: gets a document, a signature, and a public key; checks whether the

signature was created with the private key corresponding to the public key

DIGITAL SIGNATURES: SECURITY MODEL

+ For a signature scheme to be secure, it must be infeasible for an attacker to:

• Change the document without making the verification fail

• Derive the private signing key from the public verification key

• Create a signature without access to the private key

+

• Best practice to generate the key pair in a secure hardware module

• Only the public key is exported, the private key never leaves the module

• For signing, data is sent to the module and signature exported

DIGITAL SIGNATURES: SIGNER IDENTITY

+ A public key is just a piece of data: large random-looking number

+ To authenticate the origin, public keys must be bound to the identities of their

holders:

• The key holder hands the public key directly to the relying party:

Mostly used in access control systems

• Identity of key holder witnessed by someone the relying party knows:

Used in the PGP web of trust system, for example

• Identity of key holder witnessed by a designated authority:

Used in the PKI model, where certificates are statements binding public keys to

the identities of their holders, signed by dedicated certificate authorities

DIGITAL SIGNATURES: SIGNING TIME

+ Often, digital signature systems must also prove signing time:

• For legal reasons:

• In most cases a signature is only valid if created in a specific time frame

•

• For technical reasons:

• When an unauthorized party gets the private key, the key must be revoked

• But this should not be a way for the key holder to disown all previous signatures

• Need to be able to distinguish between signatures created before and after the key

was revoked

• Usually done with the help of time-stamping services

++ + +

+

++ + +

++ + +

++ + +

++ + ++

+

3/
HASH FUNCTIONS

DIGITAL SIGNATURES IN PRACTICE

HASH FUNCTIONS

PROPERTIES OF HASH FUNCTIONS

+ Efficiently computable

- Given x, easy to compute y = f(x)

+ Pre-image resistant

- Given y, infeasible to find x such that f(x) = y

+ Second pre-image resistant

-

+ Collision resistant

- Infeasible to find x1 2 such that f(x1) = f(x2)

+

SECOND PRE-IMAGE RESISTANCE

Bob

• Creates the contract X

• Signs it via h(X)

• Gives it to Alice

Alice

•

•

Forgery after signing

+

COLLISION RESISTANCE

Alice

• Creates X1 and X2

with h(X1) = h(X2)

Bob

• Signs X1 via h(X1)

Alice

• Claims Bob signed X2

Forgery before signing

X1 X2

h(X1) = h(X2)

++ + +

+

++ + +

++ + +

++ + +

++ + ++

+

4/
HASH SIGNATURES

MESSAGE AUTHENTICATION CODES

LAMPORT SIGNATURES

+ 1-bit case

- Private key (X0, X1)

- Public key (Y0, Y1)

- Signature on 0: X0

(destroy X1)

- Signature on 1: X1

(destroy X0)

+ Longer inputs

- Sign each bit
separately

X0 X1

Y0 = h(X0) Y1 = h(X1)

Public key

Private key

WINTERNITZ SIGNATURES

+ W-bit groups

- 2W-step hash chains

Xi = h(Xi-1)

- Signature on value k: Xk

+ Checksum

- Sign the total number

of steps to public key

components

Public key

Private key

MERKLE TREES

+ A hash tree, or a Merkle

tree, aggregates many

inputs into a single hash

value

+ Afterwards, a compact

proof of participation can

be extracted for each input
X1 X2 X3 X4 X5 X6 X7 X8

X12 = h(X1|X2)

X14 = h(X12|X34)

Xroot = h(X14|X58)

X78 = h(X7|X8)

X58 = h(X56|X78)

X34 = h(X3|X4)

++ + +

+

++ + +

++ + +

++ + +

++ + ++

+

5/
TIME-STAMPING

HASH-THEN-PUBLISH TIME-STAMPING

+ To prove the existence of some information: publish it

+ If the information is confidential: publish a hash instead

- Can later reveal the information and show it matches the hash

+ Galileo, Hooke

PUBLISHING TO HASH-LINKED LEDGER

HASH-TREE AGGREGATION OF INPUTS

HASH-TREE AGGREGATION OF LEDGER

++ + +

+

++ + +

++ + +

++ + +

++ + ++

+

6/
BLT SIGNATURES

BLT-TB: TIME-BOUND KEYS

+ One-time keys for

message authentication

+ Message authentication is

symmetric and lacks non-

repudiation

+ Use time to break the

symmetry
Current time

Past keys for verification Future keys for signing

One-time keys

Public key

+

BLT-TB: SIGNING

To sign a document at a given time:

• Authenticate the document with the

corresponding one-time key

• Time-stamp the authenticator to

prove the signing time

• Include proof of the key-time binding

in the signature

+

BLT-TB PROPERTIES

• Keys pre-generated for each possible signing time

• Suitable for full-size computers that have

• Reasonable computing power

• Reliable clocks

• Direct network access

• Suitable for applications that need to sign often

• Ideal for server applications used by many clients

+

NEW CONCEPT: FORWARD-RESISTANT TAGS

• Pre-binding keys to time slots is

wasteful

• Time-stamp already prevents moving

the signing event to past

• So, the key binding only needs to

prevent moving to future

• So, we can relax the requirement on

the key binding

Signing time

Pull to past Pull to future

+

BLT-OT: ONE-TIME KEYS

Inspired by signatures

• Generate a multi-component private key

• Bind it to time after time-stamping

• The time value is shorter than a hash

value, so less components are needed

• Extra optimization: generate all the key

components from a single seed

• Can pre-generate several such keys and

use them in sequence

000000

111111

time=21=0101012

REFERENCES

+ BLT-TB scheme in more detail

https://eprint.iacr.org/2019/671

+ BLT-OT scheme in more detail

https://eprint.iacr.org/2019/673

https://eprint.iacr.org/2019/671
https://eprint.iacr.org/2019/673

++ + +

+

++ + +

++ + +

++ + +

++ + ++

+

THANK YOU

QUESTIONS?
AHTO.TRUU@GUARDTIME.COM
@AHTOTRUU

