SULYANTS YO FINANCIAL SERVICES

o ([_I Bloomberg j—
=021

VIR TUAL EVENT

Modern C and What We Can
Learn From It

Luca S e \ -

Modern C?

Modern C?

- what if there is more to C than meets the eye?

Modern C?

- what if there is more to C than meets the eye?

Modern C?

- what if there is more to C than meets the eye?

- present a modern way in which C can be used and address misconceptions

Modern C?

- what if there is more to C than meets the eye?

- present a modern way in which C can be used and address misconceptions

- explore how ideas inspired from C can improve our C++ code

Modern C?

- what if there is more to C than meets the eye?
- present a modern way in which C can be used and address misconceptions
- explore how ideas inspired from C can improve our C++ code

- showcase how these ideas manifest in other languages, old and new

About me

Core Systems Engineer @ Creative Assembly
Game Development
Low Level Systems

Programming Language

a BananyaDev#9587

y @Sasluca

@ sas.luca.alex@gmail.com

A refreshon C

A refreshon C

- Developed in 1972 (49 years ago)

SECOND EDITION

LANGUAGE

BRIAN W KERNIGHAN
DENNIS M.RITCHIE

NTICE HALL SOFTWARE SERES

O 00 N OY U1 B W IN B

=
®

square (x, n)
int X, n:

{

int 1.0 pi;

p=1;
for (i =1; 1 <=n; i) p =p * X;

return (p);

A refreshon C

- Developed in 1972 (49 years ago)

- Standardized by ANSI and later by ISO (ANSI C, C89, C99, C11, ..)

A refreshon C

- Developed in 1972 (49 years ago)
- Standardized by ANSI and later by ISO (ANSI C, C89, C99, C11, ..)

- C does still have an active ISO committee (WG14)

A refreshon C

180 1EC WG 14 Document Log
Ny ——

Last Update: 2021/03/10

N2683 2021/03/10 Svoboda, Towards Integer Safety (updates N 2681)
N2682 2021/03/10 Ojeda, secure_clear (updates N 2631)
N2681 2021/03/10 Svoboda, Towards Integer Safety (updates N 2669)
680 2021/03/09 Seacord, Specific-width length modifier (updates N 2623)
2021/03/04 Keaton, Version 3 Agenda for March, 2021
2021/02/28 Keaton, Revised Agenda for March, 2021
675 2021/03/07 Gustedt, simple lambdas v2
4 2021/03/07 Gustedt, type inference for variable definitions and function returns v2
N2673 2021/03/07 Ballman, __ has_include for C
N2672 2021/02/27 Thomas, C23 proposal - 5.2.4.2.2 cleanup
D 1 2021/02/27 Thomas, C23 proposal - negative values
0 2021/02/27 Thomas, C23 proposal - zeros compare equal
N2669 2021/02/27 Svoboda, Towards Integer Safety
N2668 2021/02/28 Uecker, Indeterminate Values and Trap Representations
7 2021/02/27 Gustedt, Introduce the nullptr constant v.2
666 2021/02/20 Keaton, Agenda for March, 2021
N2665 2021/02/21 Seacord, Zero-size reallocations no longer obsolescent feature
N2664 2021/02/21 Ballman, Feb 2021 C/C++ compat teleconference minutes
663 2021/02/13 Uecker, life time, blocks, and labels
N2662 2021/02/13 Uecker, maybe unused attribute for labels
N2661 2021/02/13 Uecker, nested functions
660 2021/02/13 Uecker, improved bounds checking for array types

9 2021/02/13 Ojeda, Safety attributes for C
N2657 2021/02/13 Mugica, Outer
2021/02/03 Ballman, C and C++ Compatibility Study Group Omnibus of WG21 Papers (Feb 2021)
2 2021/01/30 Gustedt, Make false and true first-class language features v4

2654 2021/01/30 Gustedt, Revise spelling of keywords v5
2 2021/01/30 Thomas, TS 18661-5 revision
1 2021/01/30 Thomas, C2X proposal - fabs and copysign cleanup
02021/01/30 Thomas, C2X proposal - signbit cleanup
9 2021/01/30 Thomas, February 2021 CFP teleconference agenda
3 2021/01/30 Thomas, January 2020 CFP teleconference minutes
2021/01/30 Gustedt, Add new optional time bases v4
62021/01/30 Ball: Adding a Fund: 1 Type for N-bit integers (updates N2590)
645 2021/01/30 Blower, Add support for preprocessing directives elifdef and elifndef

644 2021/01/30 Gustedt, a common C/C++ core specification v. 3

3 2021/01/30 Tydeman, Negative
2 2021/01/30 Tydeman, Quantum exponent of NaN
1 2021/01/30 Tydeman, Missing +(x) in table
N2640 2021/01/3() Tydeman, M.lssmg DEC | EVAL . METHOD

N2

N
N2

G\

A refreshon C

- Developed in 1972 (49 years ago)

- Standardized by ANSI and later by ISO (ANSI C, C89, C99, C11, ..)
- C does still have an active ISO committee (WG14)

- What have we missed in the past 50 years and how is C different from C++?

Comments
il it
Original C comments

i

// Added

Variables and structs
1 struct cat { ... };

2

3 void best cats(void)

4 {

5 struct cat marshmallow, milo, bishop;
6 int i;

7 for (1 = @: 1 < 89: itt) ...

8 }

Variables and structs

1 typedef struct cat { ... } cat;
2
3 void best cats(void)

4 {

5 for (int 1 = @; i < 99; i++)
6 cat marshmallow = {0};

7 cat milo = {0};

8 cat bishop = {0};

N

Primitive types

1 unsigned char int short long float double

Primitive types

unsigned char int short long float double

uint8 t uintl6e t uint32 t uint64_t

1

2

3 #include <stdint.h>

il

5o int8lt intie t int32°t int64 1

Primitive types

1
2
=
4
5
6
i
8
9

10
11
12
13

unsigned char int short long float double

#include <stdint.h>
uint8 t uintl6 t uint32 t uint64 t
int8 t intl6 t 1nt32 t int64 t

// minimum width int types
int least8 t
uint least8 t

// fastest minimum-width int types
int fast8 t
uint_fast8 t

Functions
main(argc, args)
int arge;

const char** args;

{

int main(int argc, const char** args)

{

O 00 N O V1 p W N B

T
= ®
—

Functions

1 void foo();
2
3 void foo(void);

C++isnotC

- C++ is not fully compatible with C

C++isnotC

- C++ is not fully compatible with C
- They are compatible enough that C headers will mostly work in C++

C++isnotC

- C++ is not fully compatible with C
- They are compatible enough that C headers will mostly work in C++

- C++ did inherit a lot of baggage from this attempted compatibility with C

What else is different
between C and C++?

Struct initialization

Struct initialization

- Unlike C++, structs in C are just plain old bags of data (PODs)

Struct initialization
- Unlike C++, structs in C are just plain old bags of data (PODs)

- C99 introduces a new and powerful form of struct initialization

Struct initialization

1 typedef struct v2i{ float x, y; } v2;
2

3RV2 VE=NIRTTef N1t afe .

4

Struct initialization

1 typedef struct v2 { float x, y; } v2;
2
3RWV2 V= ROX =R N A T VE=R] Taf L

Struct initialization

1 typedef struct v2 { float x, y; } v2;
P

3 v2 v =419 .x=1.06f }: /f y is implicitly set to @

Struct initialization

1
2
3
4
5

typedef struct v2 { float x, y; } v2;

V2 V

\'

{

{ x=1.0f }; // y 1s implicitly set to ©

.y = 1.0f } // ERROR!!!

Struct initialization

1 typedef struct v2 { float x, y; } v2;

2

3 v2v={ .x=1.0f }; // y is implicitly set to ©
4

5 v = (v2){ .y = 1.0f } // Good!

Struct initialization
1 typedef struct v2 { float x, y; } v2;

2
3 // wont work in C++
4 #define some constant (v2) { 1, 2 }

Struct initialization

O 00 N O U1 H W N B

[
®

typedef struct v2 { float x, y; } v2;

#ifdef cplusplus
#define literal(T) T
#else

#define literal(T) (T)
#endif

// Will work in C++
#define some_constant literal(v2) { 1, 2 }

Struct initialization

typedef struct bar { foo f; } bar;

1

2

3 bar b = {
4 .f.some_member of foo = ...
>

Struct initialization
typedef struct bar { foo f; } bar;

bar b = {

N O v W
_h
|
=

Struct initialization
typedef struct bar { foo f[COUNT]; } bar;

bar b = {
.f[0].some_member = ...

F[1] = {

O N O U1 & W N B

Struct initialization
typedef struct bar { foo f[COUNT]; } bar;

bar b = {
i =
[0].some_member = ...

[1] ="{
}

O 00 N O U1 B W N =

=
®
—

Struct initialization
- Unlike C++, structs in C are just plain old bags of data (PODs)
- C99 introduces a new and powerful form of struct initialization

- We can easily initialize complex data structures with nested initializers

Struct initialization

- Unlike C++, structs in C are just plain old bags of data (PODs)

- C99 introduces a new and powerful form of struct initialization

- We can easily initialize complex data structures with nested initializers

- Everything we don't explicitly initialize gets set to 0 (ZII)

Struct initialization

- Unlike C++, structs in C are just plain old bags of data (PODs)

- C99 introduces a new and powerful form of struct initialization

- We can easily initialize complex data structures with nested initializers
- Everything we don't explicitly initialize gets set to 0 (ZII)

- This is one of the features that lead to Modern C

Struct initialization: sokol gfx

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

sg pipeline desc pip_desc =

};

.layout = {
.buffers[0@].stride =
-attrs =4

[ATTR _vs position].format
[ATTR vs_color@].format

}s

.shader = shd,

{

28,

SG_VERTEXFORMAT_FLOAT3,
SG_VERTEXFORMAT_FLOAT4

.index_type = SG_INDEXTYPE_UINT16,

.depth_stencil = {

.depth_compare_func = SG_COMPAREFUNC_LESS EQUAL,
.depth_write_enabled = true,

}s

.rasterizer.cull_mode =
.rasterizer.sample_count
.label = "cube-pipeline"

SG_

CULLMODE_BACK,
SAMPLE_COUNT,

Modern C

- Challenging the way APIs have historically been structured in C

- Using newer features of C in order to improve the ease of use and safety of the
API

- Decoupling the data manipulations from hosted services (allocators, io)

- Centralizing resource management (custom allocators, system-wide resource
managers)

- Let's explore some other features and then more examples

C11 Additions

- The latest major version

C11 Additions

- The latest major version

- As of recent it is now supported by all major compilers including MSVC

C11 Additions: static assert

#include <assert.h>
int main(void)
{
// Test if math works.
static_assert(2 + 2 == 4, "Whoa dude!"); // or _Static_assert(...

// This will produce an error at compile time.
_Static_assert(sizeof(int) < sizeof(char),
"this program requires that int is less than char");

O 00 NN Oy T A W N B

Y
(V)
—

C11 Additions: _Generic and overloading

float minf(float, float);
int mini(int, int);

B W N R

#define min(a, b) _Generic((a), float: minf(a, b), int: mini(a, b))

C11 Additions

- The latest major version

- As of recent it is now supported by all major compilers including MSVC
- static_assert

- overloading

- atomics (available in older versions with libraries like c89atomics)

- thread_local (available via compiler extensions in C99)

Awesome Macros

Awesome Macros

- Macros CAN be evil!

Awesome Macros
- Macros CAN be evil!

- There are some cases in which they can make our life much nicer.

Awesome Macros: defer

4 begin();

end();

Awesome Macros: defer

1 #define macro_var(name) concat(name, _ LINE)
2 #define defer(start, end) for (\

3 int macro_var(_i_) = (start, 0); \

4 Imacro_var(_i); \

5 (macro_var(_i_) += 1), end) \

6

7 defer(begin(), end())

g8 {

9
10 }

Awesome Macros: defer

#define profile defer(profile_begin(), profile_end())
profile

{

vt B W N

}

Awesome Macros: defer

#define profile defer(profile begin(), profile_end())
profile

{

Vi B W N =

}

#define gui defer(gui_begin(), gui_end())
gui

{

= W N -

(9

}

Awesome Macros: defer

1
P
3
4
5

uvi H W N

O 1 B W N

#define profile defer(profile begin(), profile_end())
profile

{
}

#define gui defer(gui_begin(), gui end())
gui

{
}

file handle t file = file open(filename, file mode_read);
scope(file_close(file))
{

}

Awesome Macros: defer

2 file handle t file = file open(filename, file mode read);
3 scope(file_close(file))

4 A

5

6 }

GO IZI

API Design

API Design: Math

1 struct vec2 { float x, y; };

p

3 void vec2_add(const struct vec2* a, const struct vec2* b, struct vec2* out)
4 {

5 out->x = a->x + b->x;

6 out->y = a->y + b->y;

.

API Design: Math

1 struct vec2 { float x, y; };

p

3 void vec2_add(const struct vec2* a, const struct vec2* b, struct vec2* out)
4 A

5 out->x = a->x + b->x;

6 out->y = a->y + b->y;

7

- Out params are harder to spot at the call site

API Design: Math

1 struct vec2 { float x, y; };

p

3 void vec2_add(const struct vec2* a, const struct vec2* b, struct vec2* out)
4 A

5 out->x = a->x + b->x;

6 out->y = a->y + b->y;

7

- Out params are harder to spot at the call site
- There are indirection and aliasing issues caused by the pointers which can harm performance

API Design: Math in Modern C

1 typedef struct vec2 { float x, y; } vec2;

P

3 vec2 vec2 add(vec2 a, vec2 b)

3 I

5 vec2 result = { a.x + b.x, a.y + b.y };
6 return result;

70}

8

9 vec2 v = vec2 add(a, (vec2){ ... })

- value oriented design

API Design: Math in Modern C

1 typedef struct vec2 { float x, y; } vec2;

2

3 vec2 vec2 add(vec2 a, vec2 b)

4 {

5 vec2 result = { a.x + b.x, a.y + b.y };
6 return result;

70}

3

2,

vec2 v = vec2 add(a, (vec2){ ... })

- value oriented design
- we can use literals in the function call and readability is improved

API Design: Math in Modern C

1 typedef struct vec2 { float x, y; } vec2;

2

3 vec2 vec2 add(vec2 a, vec2 b)

T

5 vec2 result = { a.x + b.x, a.y + b.y };
6 return result;

70}

8

9 vec2 v = vec2 add(a, (vec2){ ... })

- value oriented design
- we can use literals in the function call and readability is improved
- performance is actually better

API Design: Math in Modern C

1 typedef union hmm vec2

2 o

3 struct { float X, Y; };

4 struct { float U, V; };

5 struct { float Left, Right; };

6 struct { float Width, Height; };
7 float Elements[2];

8 } hmm_vec2;

API Design: Error handling

API Design: Error handling

1 error_code t do_something(some arg t args, out t* out);

API Design: Error handling

void do_stuff()

4

5 error_code err;

6

7 err = do_taskl(...)
8 if (err)

9 | A

10

11 }

3 err = do_task2(...)
14 if (err)
15 {
16

7 }
18
19 err = do_task3(...)
20 if (err)
21 {
23 }

)
-

API Design: Error handling

3 void do_stuff()

48 {

5 error_code_t err;

6

7 err = do_taski(...)
8 if (err) goto error;
9

10 err = do_task2(...)
11 if (err) goto error;
12
13 err = do_task3(...)
14 if (err) goto error;
15
16 return;
157
18 error:
19

20 }

API Design: Error handling in Modern C

1 typedef struct file contents t
2 A

3 char* data;

4 isize t size;

5 valid t valid;

6 } file contents t;

.

8

file contents_t read file contents(const char*);

Error handling in Modern C

file contents t fc = read file contents("milo.cat");
if (fc.valid)
{

vi B W N -

}

Error handling in Modern C

file contents t fc = read file contents("milo.cat");
image t img = load image from file contents(fc);
texture t texture = load texture from_image(img);

if (texture.valid)
{

}

O 00 NOYUVT B W N

Error handling in Modern C

typedef struct file contents t
{

char* data;

isize t size;

valid t valid;
} file contents_t;

0O N O UV B W N B

file contents_t read file contents(const char*);

8 std::optional<file contents> fc;

Error handling in C++ with optional

std: :optional<image> get cute cat (const image& img) {
return crop_to_cat(img)
.and_then(add_bow_tie)
.and_then(make_eyes_sparkle)
.map(make_smaller)
.map(add_rainbow);

Error handling in Modern C

8 1image t get cute_cat(image_t img)

{
10 img = crop_to _cat(img);
11 img = add_bow_tie(img);
12 img = make_eyes sparkle(img);
13 img = make_smaller(img);
14 img = add_rainbow(img);
15 return img;
16 }

17

18 1image t img = get cute cat(some cat image);
19 if (img.valid)

20 {

21

22 }

Error handling in Modern C

1 typedef struct file contents_t
2 A

3 char* data;

4 isize t size;

5 error_code_t error_code;

6 } file contents_t;

Error handling in Modern C

1 typedef struct file contents_t
2 A

3 char* data;

4 isize t size;

5 error_code_t error_code;

6 } file contents_t;

Error handling: std::.expected

8 std::expected<file contents_t, error_code> read file contents(const char¥*);

Error handling in Rust

e
wn

std

c
n
m M

e E
0
1]

fn read
let

let

}s
let

mat

e
e

std:

std:

:fs::File;
S
:i0::Read;

_username_from_file() —-> Result<String,
f = File::open("hello.txt");

mut ¥ = match f {
Ok(file) => file,
Err(e) => return Err(e),

mut s = String::new():
ch f.read_to_string(&mut s) {

ok(_) => Ok(s),
Err(e) => Err(e),

jo: tError>

I

L

Error handling in Zig

1 fn doAThing(str: []Ju8) !void {

p) const number = parseU64(str, 10) catch |err| {
3 [

4 }s

5

6 LF s

7 '}

8

9 fn doAThing(str: []Ju8) !void {

10 const number = try parseuUé64(str, 10);

11 I e
120}

Error handling in C++

KEYNOTE: De-fragmenting C++: Making exceptions more affordable and usable -
Herb Sutter [ACCU 2019]

14K views * 1 year ago
. ACCU Conference

CPP #ACCUConf #exceptions Error handling has fractured the C++ community into incompatible dialects, because of ...

Generic APIsinC

- C lacks generic programming (eg: templates)

Generic APIsinC

- C lacks generic programming (eg: templates).

- C can also force us to think outside the box and not rely excessively on
templates.

Generic APIsinC

- C lacks generic programming (eg: templates).

- C can also force us to think outside the box and not rely excessively on
templates.

- There do exist some solutions for some very common use cases.

Generic APIs in C: Dynamic Arrays

1 // C++ dynamic array
2 std::vector<int> v;
v.push_back(1);

w

Generic APIs in C: Dynamic Arrays

1 // C++ dynamic array
2 std::vector<int> v;

3 v.push back(1l);
2 // Modern C dynamic array
3 #define dynarray(T) T*

Generic APIs in C: Dynamic Arrays

1 // C++ dynamic array
2 std::vector<int> v;
3 v.push back(1l);

2 // Modern C dynamic array
3 #define dynarray(T) T*

typedef struct dynarray_info
{
isize t size;
isize t capacity;
isize t element_size;
10 } dynarray_info;

O 00 N O U

Generic APIs in C: Dynamic Arrays

p

—
2

O 00 N O U

10

12

14

// Modern C dynamic array
#define dynarray(T) T*

typedef struct dynarray info
{
isize t size;
isize_t capacity;
isize t element_size;
} dynarray_info;

#define dynarray add(arr, ...) dynarray_ensure capacity(arr); (*arr)[dynarray_size(*arr)]

dynarray(int) arr = dynarray_init(int, 10);
dynarray add(&arr, 99);

__VA ARGS

Generic APIs in C: Map

2 typedef struct kv

{
const char* key;
5 value t value;
6 } kv;

o

#define hash map(KV) Kv*

https://github.com/nothings/stb/blob/master/stb_ds.h

Libraries in C

- Historically messy due to the multitude of build systems and no standard.

Libraries in C
- Historically messy due to the multitude of build systems and no standard.

- Single header libraries arise as a convenient way to solve this problem.

Libraries in C
- Historically messy due to the multitude of build systems and no standard.

- Single header libraries arise as a convenient way to solve this problem.

1 #define LIB_IMPLEMENTATION
2 #include "1lib.h"

Libraries in C

- Historically messy due to the multitude of build systems and no standard.

- Single header libraries arise as a convenient way to solve this problem.

1 #define LIB_IMPLEMENTATION
2 #include "1lib.h"

- Sane CMake is another good option. Single headers can optionally be
auto-generated.

Great talk on Cmake

cppcon | 2017

THE C++ CONFERENCE » BELLEVUE, WASHINGTON

52 About this talk

Modular design

Build systems (CMake in particular)

.. and how to combine that to improve your
codeline

Modern CMake
for modular design

= - CppCon.org
> Ml o 224/5740 e @& o & 511
CppCon 2017: Mathieu Ropert “Using Modern CMake Patterns to Enforce a Good Modular Design” » Fromyoursearch ~ C++ Angular Rel >

53,495 views - Oct 13,2017 I =
g9 §125 P SHARE = SAVE = CppCon 2019: Chandler Carruth

)
- | 2e “Thara Ara N Zarn_rnot

Libraries in newer languages
- Newer langs improve significantly on the library situation.

- Rust has a very well received easy to use build system and centralized database
for libraries.

- Zig takes a unique approach by having the build system be part of the language.

When writing libraries

e Avoid allocations if possible, request allocators or buffers from
the user.

When writing libraries

e Avoid allocations if possible, request allocators or buffers from
the user.

e Try and make your library freehosted.

When writing libraries

e Avoid allocations if possible, request allocators or buffers from
the user.

e Try and make your library freehosted.

typedef struct allocator_t
{

void* user_data;

void* (*proc)(allocator_t* this_allocator, isize_t amount_to_alloc, void* ptr_to_free);
} allocator_t;

O UVl A WN

Memory management

e Consider centralizing allocations.

Differentiate between temporary and long lived allocations.
e Use buffers with maximum sizes where possible.

e Consider handles instead of pointers (eg: ECS)

Temporary allocators

1

2 allocator_t temp_allocator = make_allocator(arena);
3

4 while (game_is_running)

5 {

6

v

8 dynarr(string) strings = get_strings(temp_allocator);
9

10 e

11 free_temp_allocator(temp_allocator);

=
N
—

API Design: Modern C

- More declarative and functional, less stateful

- More value oriented and less pointers

- Zero initialization is used heavily (ZII)

- Uses C99 and C11 features and macros to modernize the code
- Centralized resource management

- Allocator aware

String handling in C

- Strings in C have been a historical disaster

String handling in C
- Strings in C have been a historical disaster

- Terrible standard API (strstr, strtok, strpbrk)

Public service announcement: avoid libc
- Very old

- Slow

- Terrible API design

- Very few parts are actually useful (stdint.h, memmove/memcpy/memset, math.h)

Replacing libc functionality: printf

typedef struct cat { ... } cat;
void print_cat(cat*);

w N

logger register printer(“cat”, print_cat);

cat € = =23
log("Cat: {cat}", c);

SN Oy o B

String handling in C
- Strings in C have been a historical disaster
- Terrible standard API (strstr, strtok, strpbrk)

- Null terminated strings are very slow

dl'S TECHNICA

Hacker reduces GTA Online load times by roughly 70
percent

Homebrewed DLL solves inefficient parsing of in-game shop files.

KYLE ORLAND - 3/1/2021, 6:32 PM

GTA Online

Just For You: Get 80% Bonus Cash on Whale and
Megalodon Shark Cards

For a limited time, supercharge your fleet of vehicles with 80% Bonus Cash on Whale

e menacing P-45 Nokota - complete with built-ir

r and the ability to add homing Missiles for

cash will be deposited to your Maze Bank account

Enlarge / You could spend less time looking at loading screens like this with a new DLL fix.

A hacker going by the handle TOst says he has figured out a core issue that caused longer-than-necessary load times in Grand

Saving time with disassembly

To get to the bottom of the problem, TOst writes that they started by profiling their own CPU to try to figure out why the game
was maxing out a single CPU thread for over four minutes during loading. After using a tool to dump the process stack and
disassembling the GTA code as it was running in memory, TOst noticed a set of (somewhat obfuscated) functions that seemed
to be parsing a 10MB JSON file with over 63,000 total entries.

The JSON file in question appeared to be the "net shop catalog" that describes every single item GTA Online players can
purchase with in-game currency. Parsing a 10MB file shouldn't be too much of a problem for a modern computer, but a few
obscure problems in the specific implementation seem to lead to massive slowdowns.

For one, the specific function used to parse the JSON string (seemingly sscanf, in this case) was apparently running a time-
intensive strlen checking function repeatedly after the read for every single piece of data. Simply caching that string length value
o speed up those checks resulted in an over 50 percent reduction in load times on its own, TOst writes.

After parsing all this JSON data, GTA Online seems to load it into an array in an extremely inefficient way, checking the entire
array for duplicates from scratch as it grows. Replacing that process with a hash table that can quickly check for duplicates led
to a roughly 25 percent load time reduction on its own, TOst writes.

It's not just null terminated strings

Case study: std::string

void read_string(const std::string&)

Intent: reading an array of bytes representing text

Case study: std::string

read string("Test");

Case study: std::string

read string("Test");

This causes a memory allocation.

What's the problem with a few couple of temporary
strings here and there?

Real life examples:
Chrome

Half of all allocations are std::string.

15% 77%

Name Status CPU Memory

v € GoogleChrome(33)@ 24% 1,171.8MB
€ Google Chrome 0.2%

147.3 MB
¢ Google Chrome 0% 62.5 MB
€ Google Chrome 0% 44.8 MB

15% 77%

Real life examples:
. v ¢ GoogleChmme(as)¢ 24% 1,171.8MB
€ Google Chrome 0.2%

147.3 MB
C h ro I I l e ¢ Google Chrome 0% 62.5 MB

= Google Chrome 0% 44.8 MB
g

e Half of all allocations are std::string.

e Typing one character in the Omnibox used to
result in over 25000 allocations.

https://docs.google.com/file/d/1IEHbbYOl0Ix_-Z1VriYx1Mrzadzkez70/preview

15% 77%

Name Status CPU Memory

CERT les:

ea | e exam p eS . v @ Google Chiome (33)@ 24% 1,171.8MB
€ Google Chrome 02% 147.3MB

C h ro m e ¢ Google Chrome 0% 62.5 MB

€ Google Chrome 0% 44.8 MB

e Half of all allocations are std::string.

e Typing one character in the Omnibox used to
result in over 25000 allocations.

e Performance issues resulted from lot’s of
copies and temporary objects.

String handling in Modern C

e No implicit conversions and constructors.

String handling in Modern C

e No implicit conversions and constructors.

e Stronger distinction between owning and non-owning strings.

String handling in Modern C

typedef struct str
{

1

p

3 char* data;
4 isize t size;
5} str;
6

7

8

S

typedef struct str buf

{
char* data;
10 isize t size;
11 isize t capacity;
12 allocator _cb allocator;

13 } str_buf;

String handling in Modern C

15
16
17
18
19

str_buf str buf make(isize t size, allocator cb allocator);
void str_buf_ append(str_buf*, str);

void str_buf _insert(str_buf*, str, isize t);

void str_buf remove(str buf*, isize t, isize t);

str str_buf str(str_buf);

String handling in Modern C

15 str_buf str buf make(isize t size, allocator cb allocator);
16 void str_buf append(str_ buf*, str);

17 void str_buf_insert(str_buf*, str, isize t);

18 void str_buf _remove(str_buf*, isize t, isize t);

19 str str_buf_str(str_buf);

21 bool str valid(str);

22 bool str match(str a, str b);

23 bool str _contains(str haystack, str needle);

24 str str_sub(str src, isize t begin, isize t end);
25 str str_find first(str haystack, str needle);

26 str str_find last(str haystack, str needle);

27 str str_remove prefix(str src, str prefix);

28 str str_remove suffix(str src, str suffix);

String handling in Modern C

30 str str_pop first_split(str* src, str split _by);

String handling in Modern C

30 str str_pop first split(str* src, str split by);

32 str date = cstr("2021/03/12");

33 str year = str pop first split(&date, cstr("/"));
34 str month = str_pop first split(&date, cstr("/"));
35 str day = str _pop first split(&date, cstr("/"));

String handling in Old C

char* date = "1981/04/01";
char* year, month, day;

year = strtok(date, "/");
month = strtok(NULL, "/");
day = strtok(NULL, "/");

oY UT B W N

String handling in Old C

char date[] = "1981/04/01";
char* year, month, day;

P W N R

year = strtok(date, "/");
month = strtok(NULL, "/");
day = strtok(NULL, "/");

N Oy

String handling in Modern C

30 str str_pop first split(str* src, str split by);

32 str date = cstr("2021/03/12");

33 str year = str pop first split(&date, cstr("/"));
34 str month = str_pop first split(&date, cstr("/"));
35 str day = str _pop first split(&date, cstr("/"));

String handling in Modern C: overloading

37
38
35
40
41
42

str str_pop first _split _impl(str* src, str split_by);

#define str_pop first split(src, split_by) \
Generic(split by, \
const char*: str_pop_first_split_impl(src, cstr(split _by)), \
default: str_pop_first_split_impl(src, split _by))

String handling in Modern C: overloading

37
38
39
40
41
42

32
33
34
35

str

str_pop_first _split _impl(str* src, str split _by);

#define str_pop first split(src, split_by) \

str
str
str
str

Generic(split by, \
const char*: str_pop_first_split_impl(src, cstr(split _by)), \
default: str_pop_first_split_impl(src, split _by))

date = cstr("2021/03/12");

year = str_pop_ first_split(&date, "/");
month = str_pop_ first_split(&date, "/");
day = str_pop_first_split(&date, "/");

String handling in Modern C: another awesome macro

44 #define for_str_split(iter, src, split_by) \
45 for (\
46 str macro_var(src_) = src, \
47 iter = str_pop_first_split(¯o_var(src_), split_by), \
48 macro_var(split_by) = split_by; \
49 \
50 str_valid(macro_var(src_)); \
51 \
52 iter = str_pop_first_split(¯o_var(src_), macro_var(split_by)) \
53)

1 str date = cstr("2021/03/12");

2 for_str_split(it, date, "/")

3 1

4 prant(”{str}”; at);

5 }

First optimization at CA

e First ever optimization | did at Creative Assembly was related to string operations.

First optimization at CA

e First ever optimization | did at Creative Assembly was related to string operations.

e A seemingly cheap function was splitting some string.

First optimization at CA

e First ever optimization | did at Creative Assembly was related to string operations.
e A seemingly cheap function was splitting some string.

e The function didn’t seem to take much time unless you analyzed its cost cumulatively.

First optimization at CA

e First ever optimization | did at Creative Assembly was related to string operations.
e A seemingly cheap function was splitting some string.
e The function didn’t seem to take much time unless you analyzed its cost cumulatively.

e The solution was to move to a non-allocating, lazily evaluated string splitter using
std::string_view.

String handling in other languages

Rust has a built-in str type which is different from the owning String class.

Zig and Odin have built-in array-view types and string-view manipulation functions.
Java and C# also follow a similar model.

Consider starting to use std::string_view instead of const std::string& in C++.
C++17 added std::string_view.

C++20 ranges will make lazy non-allocating algorithms more easy to use.

v4

DDIN

In conclusion

e | hope that you gained a better appreciation for what can be done in a limited language like C.

In conclusion

e | hope that you gained a better appreciation for what can be done in a limited language like C.

e Checkout the latest developments in C++ and other systems languages.

In conclusion

e | hope that you gained a better appreciation for what can be done in a limited language like C.
e Checkout the latest developments in C, C++ and also other systems languages.

e Re-examine some of the patterns and preconceptions that you may hold.

In conclusion

e | hope that you gained a better appreciation for what can be done in a limited language like C.
e Checkout the latest developments in C, C++ and also other systems languages.
e Re-examine some of the patterns and preconceptions that you may hold.

e By challenging our current understanding and not taking things for granted we can discover
new and better ways of doing things.

Shoutouts

Modern C for C++ Peeps: https://floooh.qithub.io/2019/09/27/modern-c-for-cpp-peeps.html

Odin: https://odin-lang.org/

Zig: https://ziglang.org/

Handmade Hero: https://handmadehero.org/

Handmade Network: https://handmade.network/

https://floooh.github.io/2019/09/27/modern-c-for-cpp-peeps.html
https://odin-lang.org/
https://ziglang.org/
https://handmadehero.org/
https://handmade.network/

