


Modern C?



Modern C?
- what if there is more to C than meets the eye?





Modern C?
- what if there is more to C than meets the eye?



Modern C?
- what if there is more to C than meets the eye?

- present a modern way in which C can be used and address misconceptions



Modern C?
- what if there is more to C than meets the eye?

- present a modern way in which C can be used and address misconceptions

- explore how ideas inspired from C can improve our C++ code



Modern C?
- what if there is more to C than meets the eye?

- present a modern way in which C can be used and address misconceptions

- explore how ideas inspired from C can improve our C++ code

- showcase how these ideas manifest in other languages, old and new



About me

Core Systems Engineer @ Creative Assembly

Game Development

Low Level Systems 

Programming Language

BananyaDev#9587

@SasLuca

sas.luca.alex@gmail.com@



A refresh on C



A refresh on C
- Developed in 1972 (49 years ago)







A refresh on C
- Developed in 1972 (49 years ago)

- Standardized by ANSI and later by ISO (ANSI C, C89, C99, C11, …)



A refresh on C
- Developed in 1972 (49 years ago)

- Standardized by ANSI and later by ISO (ANSI C, C89, C99, C11, …)

- C does still have an active ISO committee (WG14)



A refresh on C



A refresh on C
- Developed in 1972 (49 years ago)

- Standardized by ANSI and later by ISO (ANSI C, C89, C99, C11, …)

- C does still have an active ISO committee (WG14)

- What have we missed in the past 50 years and how is C different from C++?



Comments



Variables and structs



Variables and structs



Primitive types



Primitive types



Primitive types



Functions



Functions



C++ is not C
- C++ is not fully compatible with C



C++ is not C
- C++ is not fully compatible with C
- They are compatible enough that C headers will mostly work in C++



C++ is not C
- C++ is not fully compatible with C

- They are compatible enough that C headers will mostly work in C++

- C++ did inherit a lot of baggage from this attempted compatibility with C



What else is different 
between C and C++?



Struct initialization



Struct initialization
- Unlike C++, structs in C are just plain old bags of data (PODs)



Struct initialization
- Unlike C++, structs in C are just plain old bags of data (PODs)

- C99 introduces a new and powerful form of struct initialization



Struct initialization



Struct initialization



Struct initialization



Struct initialization



Struct initialization



Struct initialization



Struct initialization



Struct initialization



Struct initialization



Struct initialization



Struct initialization



Struct initialization
- Unlike C++, structs in C are just plain old bags of data (PODs)

- C99 introduces a new and powerful form of struct initialization

- We can easily initialize complex data structures with nested initializers



Struct initialization
- Unlike C++, structs in C are just plain old bags of data (PODs)

- C99 introduces a new and powerful form of struct initialization

- We can easily initialize complex data structures with nested initializers

- Everything we don’t explicitly initialize gets set to 0 (ZII)



Struct initialization
- Unlike C++, structs in C are just plain old bags of data (PODs)

- C99 introduces a new and powerful form of struct initialization

- We can easily initialize complex data structures with nested initializers

- Everything we don’t explicitly initialize gets set to 0 (ZII)

- This is one of the features that lead to Modern C



Struct initialization: sokol gfx



Modern C
- Challenging the way APIs have historically been structured in C

- Using newer features of C in order to improve the ease of use and safety of the 
API

- Decoupling the data manipulations from hosted services (allocators, io)

- Centralizing resource management (custom allocators, system-wide resource 
managers)

- Let’s explore some other features and then more examples



C11 Additions
- The latest major version



C11 Additions
- The latest major version

- As of recent it is now supported by all major compilers including MSVC



C11 Additions: static assert



C11 Additions: _Generic and overloading



C11 Additions
- The latest major version

- As of recent it is now supported by all major compilers including MSVC

- static_assert

- overloading

- atomics (available in older versions with libraries like c89atomics)

- thread_local (available via compiler extensions in C99)



Awesome Macros



Awesome Macros
- Macros CAN be evil!



Awesome Macros
- Macros CAN be evil!

- There are some cases in which they can make our life much nicer.



Awesome Macros: defer



Awesome Macros: defer



Awesome Macros: defer



Awesome Macros: defer



Awesome Macros: defer



Awesome Macros: defer



API Design



API Design: Math



API Design: Math

- Out params are harder to spot at the call site



API Design: Math

- Out params are harder to spot at the call site
- There are indirection and aliasing issues caused by the pointers which can harm performance



API Design: Math in Modern C

- value oriented design



API Design: Math in Modern C

- value oriented design
- we can use literals in the function call and readability is improved



API Design: Math in Modern C

- value oriented design
- we can use literals in the function call and readability is improved
- performance is actually better



API Design: Math in Modern C



API Design: Error handling



API Design: Error handling



API Design: Error handling



API Design: Error handling



API Design: Error handling in Modern C



Error handling in Modern C



Error handling in Modern C



Error handling in Modern C



Error handling in C++ with optional



Error handling in Modern C



Error handling in Modern C



Error handling in Modern C



Error handling: std::expected



Error handling in Rust



Error handling in Zig



Error handling in C++



Generic APIs in C
- C lacks generic programming (eg: templates)



Generic APIs in C
- C lacks generic programming (eg: templates).

- C can also force us to think outside the box and not rely excessively on 
templates.



Generic APIs in C
- C lacks generic programming (eg: templates).

- C can also force us to think outside the box and not rely excessively on 
templates.

- There do exist some solutions for some very common use cases.



Generic APIs in C: Dynamic Arrays



Generic APIs in C: Dynamic Arrays



Generic APIs in C: Dynamic Arrays



Generic APIs in C: Dynamic Arrays



Generic APIs in C: Map

https://github.com/nothings/stb/blob/master/stb_ds.h



Libraries in C
- Historically messy due to the multitude of build systems and no standard.



Libraries in C
- Historically messy due to the multitude of build systems and no standard.

- Single header libraries arise as a convenient way to solve this problem.



Libraries in C
- Historically messy due to the multitude of build systems and no standard.

- Single header libraries arise as a convenient way to solve this problem.



Libraries in C
- Historically messy due to the multitude of build systems and no standard.

- Single header libraries arise as a convenient way to solve this problem.

- Sane CMake is another good option. Single headers can optionally be 
auto-generated.



Great talk on Cmake



Libraries in newer languages
- Newer langs improve significantly on the library situation.

- Rust has a very well received easy to use build system and centralized database 
for libraries.

- Zig takes a unique approach by having the build system be part of the language.



When writing libraries
● Avoid allocations if possible, request allocators or buffers from 

the user.



When writing libraries
● Avoid allocations if possible, request allocators or buffers from 

the user.

● Try and make your library freehosted.



When writing libraries
● Avoid allocations if possible, request allocators or buffers from 

the user.

● Try and make your library freehosted.



Memory management
● Consider centralizing allocations.

● Differentiate between temporary and long lived allocations.

● Use buffers with maximum sizes where possible.

● Consider handles instead of pointers (eg: ECS)



Temporary allocators



API Design: Modern C
- More declarative and functional, less stateful

- More value oriented and less pointers

- Zero initialization is used heavily (ZII)

- Uses C99 and C11 features and macros to modernize the code

- Centralized resource management

- Allocator aware



String handling in C
- Strings in C have been a historical disaster



String handling in C
- Strings in C have been a historical disaster

- Terrible standard API (strstr, strtok, strpbrk)



Public service announcement: avoid libc
- Very old

- Slow

- Terrible API design

- Very few parts are actually useful (stdint.h, memmove/memcpy/memset, math.h)



Replacing libc functionality: printf



String handling in C
- Strings in C have been a historical disaster

- Terrible standard API (strstr, strtok, strpbrk)

- Null terminated strings are very slow







It’s not just null terminated strings



Case study: std::string

Intent: reading an array of bytes representing text



Case study: std::string



Case study: std::string

This causes a memory allocation.



What’s the problem with a few couple of temporary 
strings here and there? 



Real life examples:
Chrome

● Half of all allocations are std::string.



Real life examples:
Chrome

● Half of all allocations are std::string.

● Typing one character in the Omnibox used to 
result in over 25000 allocations.



https://docs.google.com/file/d/1IEHbbYOl0Ix_-Z1VriYx1Mrzadzkez70/preview


Real life examples:
Chrome

● Half of all allocations are std::string.

● Typing one character in the Omnibox used to 
result in over 25000 allocations.

● Performance issues resulted from lot’s of 
copies and temporary objects.



String handling in Modern C

● No implicit conversions and constructors.



String handling in Modern C

● No implicit conversions and constructors.

● Stronger distinction between owning and non-owning strings.



String handling in Modern C



String handling in Modern C



String handling in Modern C



String handling in Modern C



String handling in Modern C



String handling in Old C



String handling in Old C



String handling in Modern C



String handling in Modern C: overloading



String handling in Modern C: overloading



String handling in Modern C: another awesome macro



● First ever optimization I did at Creative Assembly was related to string operations.

First optimization at CA



● First ever optimization I did at Creative Assembly was related to string operations.

● A seemingly cheap function was splitting some string.

First optimization at CA



● First ever optimization I did at Creative Assembly was related to string operations.

● A seemingly cheap function was splitting some string.

● The function didn’t seem to take much time unless you analyzed its cost cumulatively.

First optimization at CA



● First ever optimization I did at Creative Assembly was related to string operations.

● A seemingly cheap function was splitting some string.

● The function didn’t seem to take much time unless you analyzed its cost cumulatively.

● The solution was to move to a non-allocating, lazily evaluated string splitter using 
std::string_view.

First optimization at CA



String handling in other languages

● Rust has a built-in str type which is different from the owning String class.

● Zig and Odin have built-in array-view types and string-view manipulation functions.

● Java and C# also follow a similar model.

● Consider starting to use std::string_view instead of const std::string& in C++.

● C++17 added std::string_view.

● C++20 ranges will make lazy non-allocating algorithms more easy to use.



In conclusion

● I hope that you gained a better appreciation for what can be done in a limited language like C.



In conclusion

● I hope that you gained a better appreciation for what can be done in a limited language like C.

● Checkout the latest developments in C++ and other systems languages.



In conclusion

● I hope that you gained a better appreciation for what can be done in a limited language like C.

● Checkout the latest developments in C, C++ and also other systems languages.

● Re-examine some of the patterns and preconceptions that you may hold.



In conclusion

● I hope that you gained a better appreciation for what can be done in a limited language like C.

● Checkout the latest developments in C, C++ and also other systems languages.

● Re-examine some of the patterns and preconceptions that you may hold.

● By challenging our current understanding and not taking things for granted we can discover 
new and better ways of doing things.



Shoutouts

Modern C for C++ Peeps: https://floooh.github.io/2019/09/27/modern-c-for-cpp-peeps.html

Odin: https://odin-lang.org/

Zig: https://ziglang.org/

Handmade Hero: https://handmadehero.org/

Handmade Network: https://handmade.network/

 

https://floooh.github.io/2019/09/27/modern-c-for-cpp-peeps.html
https://odin-lang.org/
https://ziglang.org/
https://handmadehero.org/
https://handmade.network/

