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Modern C?
- what if there is more to C than meets the eye?

- present a modern way in which C can be used and address misconceptions

- explore how ideas inspired from C can improve our C++ code

- showcase how these ideas manifest in other languages, old and new
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A refresh on C
- Developed in 1972 (49 years ago)

- Standardized by ANSI and later by ISO (ANSI C, C89, C99, C11, …)

- C does still have an active ISO committee (WG14)

- What have we missed in the past 50 years and how is C different from C++?
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C++ is not C
- C++ is not fully compatible with C

- They are compatible enough that C headers will mostly work in C++

- C++ did inherit a lot of baggage from this attempted compatibility with C



What else is different 
between C and C++?
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Struct initialization
- Unlike C++, structs in C are just plain old bags of data (PODs)

- C99 introduces a new and powerful form of struct initialization

- We can easily initialize complex data structures with nested initializers

- Everything we don’t explicitly initialize gets set to 0 (ZII)

- This is one of the features that lead to Modern C



Struct initialization: sokol gfx



Modern C
- Challenging the way APIs have historically been structured in C

- Using newer features of C in order to improve the ease of use and safety of the 
API

- Decoupling the data manipulations from hosted services (allocators, io)

- Centralizing resource management (custom allocators, system-wide resource 
managers)

- Let’s explore some other features and then more examples
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C11 Additions
- The latest major version

- As of recent it is now supported by all major compilers including MSVC

- static_assert

- overloading

- atomics (available in older versions with libraries like c89atomics)

- thread_local (available via compiler extensions in C99)
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Awesome Macros
- Macros CAN be evil!

- There are some cases in which they can make our life much nicer.
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API Design: Math

- Out params are harder to spot at the call site
- There are indirection and aliasing issues caused by the pointers which can harm performance
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API Design: Math in Modern C

- value oriented design
- we can use literals in the function call and readability is improved
- performance is actually better
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Error handling in C++ with optional
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Error handling: std::expected
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Generic APIs in C
- C lacks generic programming (eg: templates)



Generic APIs in C
- C lacks generic programming (eg: templates).

- C can also force us to think outside the box and not rely excessively on 
templates.



Generic APIs in C
- C lacks generic programming (eg: templates).

- C can also force us to think outside the box and not rely excessively on 
templates.

- There do exist some solutions for some very common use cases.
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Generic APIs in C: Map

https://github.com/nothings/stb/blob/master/stb_ds.h
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Libraries in C
- Historically messy due to the multitude of build systems and no standard.

- Single header libraries arise as a convenient way to solve this problem.

- Sane CMake is another good option. Single headers can optionally be 
auto-generated.



Great talk on Cmake



Libraries in newer languages
- Newer langs improve significantly on the library situation.

- Rust has a very well received easy to use build system and centralized database 
for libraries.

- Zig takes a unique approach by having the build system be part of the language.
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When writing libraries
● Avoid allocations if possible, request allocators or buffers from 

the user.

● Try and make your library freehosted.



Memory management
● Consider centralizing allocations.

● Differentiate between temporary and long lived allocations.

● Use buffers with maximum sizes where possible.

● Consider handles instead of pointers (eg: ECS)



Temporary allocators



API Design: Modern C
- More declarative and functional, less stateful

- More value oriented and less pointers

- Zero initialization is used heavily (ZII)

- Uses C99 and C11 features and macros to modernize the code

- Centralized resource management

- Allocator aware
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Public service announcement: avoid libc
- Very old

- Slow

- Terrible API design

- Very few parts are actually useful (stdint.h, memmove/memcpy/memset, math.h)



Replacing libc functionality: printf



String handling in C
- Strings in C have been a historical disaster

- Terrible standard API (strstr, strtok, strpbrk)

- Null terminated strings are very slow







It’s not just null terminated strings



Case study: std::string

Intent: reading an array of bytes representing text
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Case study: std::string

This causes a memory allocation.



What’s the problem with a few couple of temporary 
strings here and there? 
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Chrome

● Half of all allocations are std::string.

● Typing one character in the Omnibox used to 
result in over 25000 allocations.



https://docs.google.com/file/d/1IEHbbYOl0Ix_-Z1VriYx1Mrzadzkez70/preview


Real life examples:
Chrome

● Half of all allocations are std::string.

● Typing one character in the Omnibox used to 
result in over 25000 allocations.

● Performance issues resulted from lot’s of 
copies and temporary objects.
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String handling in Modern C

● No implicit conversions and constructors.

● Stronger distinction between owning and non-owning strings.
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String handling in Modern C
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String handling in Modern C: another awesome macro
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● First ever optimization I did at Creative Assembly was related to string operations.

● A seemingly cheap function was splitting some string.

● The function didn’t seem to take much time unless you analyzed its cost cumulatively.

● The solution was to move to a non-allocating, lazily evaluated string splitter using 
std::string_view.

First optimization at CA



String handling in other languages

● Rust has a built-in str type which is different from the owning String class.

● Zig and Odin have built-in array-view types and string-view manipulation functions.

● Java and C# also follow a similar model.

● Consider starting to use std::string_view instead of const std::string& in C++.

● C++17 added std::string_view.

● C++20 ranges will make lazy non-allocating algorithms more easy to use.
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In conclusion

● I hope that you gained a better appreciation for what can be done in a limited language like C.

● Checkout the latest developments in C, C++ and also other systems languages.

● Re-examine some of the patterns and preconceptions that you may hold.

● By challenging our current understanding and not taking things for granted we can discover 
new and better ways of doing things.



Shoutouts

Modern C for C++ Peeps: https://floooh.github.io/2019/09/27/modern-c-for-cpp-peeps.html

Odin: https://odin-lang.org/

Zig: https://ziglang.org/

Handmade Hero: https://handmadehero.org/

Handmade Network: https://handmade.network/
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