E C C l_l Bloomberg O | mosaic
I S—

VIR TUAL EVENT

This Videogame Developer Used the STL and
You'll Never Guess What Happened Next

At 5 1))
LA

& &
L W 4 &
o v“(.“>‘$$:“¢

o

This Videogame Programmer
Used the STL

(and You Will Never Guess What Happened Next)

@

8

Mathieu Ropert
@MatRopert

Talk title idea: "This videogame programmer used the STL
and you will never guess what happened next"

Traduire le Tweet
12:35 PM - 18 avr. 2019 - Twitter Web Client

ill Voir I'activité sur Twitter

2 Retweets 60 J'aime

STL and videogames

v

CppCon 2019

The STL is sometimes seen as a strange and dangerous beast, especially in the game development
industry.

There is talk about performance concerns, strange behaviours, interminable compilations and weird
decisions by a mysterious "committee”

Is there any truth to it? Is it all a misconception?

| have been using the STL in a production videogame that is mostly CPU bound and in this talk we will unveil
the truth behind the rumours.

We will start by a discussion about the most common criticism against the STL and its idioms made by the
gamedev community

Then we will see a few practical examples through STL containers, explaining where they can do the job,
where they might be lacking and what alternatives can be used

Finally we will conclude with some ideas on how we can improve both the STL for game developers and also
how to foster better discussion on the topic in the future

At the end of this talk, attendees should have a solid understanding of why the STL is sometimes frowned
upon, when it makes sense to look for alternatives to the standard and most importantly when it does not.

Speakers

Mathieu Ropert
Experienced Programmer, Paradox Development Studio

French C++ expert working on (somewhat) historical video games. Decided to upgrade
his compiler once and has been blogging about build systems ever since. Past speaker at
CppCon, Meeting C++ and ACCU. Used to run the Paris C++ User Group. Currently lives
in Sweden.

@ - Design/Best Practices
@ - Education/Coaching
- Free Standing/Web/Runtimes
® - Future of C++
» GPU/Graphics
- Interface Design
@ - Metaprogramming/Reflection
- Modules/Builds/Packaging

@ - Optimization/Undefined
Behavior

- Parsing/Text and I/O

- Security/Safety
Critical/Automotive

@ - Software Evolution/Testing
« Type Design
Back to Basics

® Business

® Class

@ 150 Meeting
Open Content
Social

% Popular

Recently Active Attendees

STL in videogames considered
harmful

v

Picture unrelated

This Videogame Programmer
Used the STL

(and You Will Never Guess What Happened Next)

@

8

THE C++

STANDARD

TEMPLATE
LIBRARY

P.J. PLAUGER
ALEXANDER A. STEPANOV
MENG LEE
DAVID R. MUSSER

10

5% Standard Template Library

Proposed in 1993 by Alex Stepanov

Adopted in 1994

Offers a set of generic containers and
algorithms for C++

11

=[Clock == [S]
Settings

Program Manager -~
File Options_Window _ Help

= Main b [
e]
= =
File Manager Control Panel Print Mana; MS-DO!
Prompt
£7F) >
21 N
PIF Editor Read Me
=[File Manager - [CAWINDOWSY*[= [~ =] =

=| File Disk Tree View

Game Help
Options Tools Window Help

=i [3] [s2[54

=ls [Ele L
£33 do #lle. - = 5
: from
7S] R | o iy e oo s
D
.
C 477M free, 498MB total Total

[

-

Lillehammer’94

IIIH'

12

Come abond e o

Capr Mt thunnw

GroniougCaunty ov

)!Loos oN S¥rs

TInInRues oF

AW Memor x|
e s

Tus wowr 1o

C++ STL
ArGor 1HMg

| Fluent {C++}

fluentepp.com

[hu:.".

“We don’t use the STL here”

Anonymous videogame programmer, 2019

66

14

Hello!

I am Mathieu Ropert

I'm a Tech Lead at Paradox Development Studio
where | make Hearts of Iron IV, Stellaris and more.

You can reach me at:
X mro@puchiko.net
¥ @MatRopert
@ https://mropert.github.io

15

5> About this talk

The case against STL
STL containers in practice
Frequently sought-after alternatives

Performance & maintenance

16

5 About not this talk

Allocators
Exceptions

Build times

17

1

Is the STL so bad?

Or where the criticism is coming from

18

%> Common complaints

“STL is unfamiliar”
“STL is not supported on platform X”

“STL is bloated”

“STL performance isn't that great”

19

5> STL familiarity

STL been around for 25 years

Popular C++ libraries adopted the same idioms
(Boost, Abseil, Intel TBB...)

Resources teaching Containers, Iterators and
Algorithms are plenty

20

5> STL familiarity

Stepanov’s approach on
decoupling containers
and algorithms is based
on sound research

We might need to study
and teach the principles
better in schools

FROM

MATH EMATICS\\\

TO
GENERIC X
PROGRAMMING

21

5 STL availability

Major vendors should provide a reasonably
good implementation of the STL

As any software, they may have bugs or
caveats

Keep up with updates, report issues

22

5 STL availability

Vendors that won't care about STL probably
won't care about C++ in general

Chances are they will have broken standard
support or subpar optimizations

Consider using open source alternatives

23

52 STL bloat

Standard additions may feel unnecessary or
unwanted

Vendor implementations may look
over-complicated for what they are trying to
achieve

24

52 STL bloat?

STL, like C++, is designed for general purpose
usage

C++ design principles dictate that unused
features should not be added to the cost

Not always possible in practice, as the cost of
multiple policies grows quite fast

25

52 STL bloat?

Vendor implementations may include additional
debug features to help developers

There is a build flag somewhere to turn them off

Debug checks are not incompatible with
optimizations

26

%> The quest for performance

Games need to run within a timebox

Worst case scenarios and unpredictable
latency matter a lot

Common wisdom recommends low level
languages for better control over performance

27

%> The quest for performance

STL comes with some degree of abstraction
Templates
lterators
Debug / checked iterators
Proxy iterators

Requires a good optimizer to yield
performance

28

%> STL performance

static void RawAccumlate(benchmark::State& state) {
const auto v = generate_values<int>(10000);
for (auto _ : state) {

v.data();

v.size();

const int* p

const int sz
int sum = 0;
for (int 1 = 0; i < sz; ++i)

sum += p[i];

benchmark: :DoNotOptimize(sum);

}
BENCHMARK (RawAccumlate) ;

29

%> STL performance

static void STLAccumlate(benchmark::State& state) {
const auto v = generate values<int>(10000);
for (auto _ : state) {
auto sum = std::accumulate(begin(v), end(v), 9);

benchmark: :DoNotOptimize(sum);

}
BENCHMARK (STLAccumlate);

30

30000

RawAccumlate

ratio (CPU time / Noop time)
Lower is faster

STLAccumiate
[28561.723574942363

4.7 times slower than RawAccumiate

STLAccumlate

clang / libc++

31

25000

20000 |

15000 |

10000 |

5000 |

RawAccumlate

STLAccumiate

ratio (CPU time / Noop time)
Lower is faster

STLAccumiate

clang / libstdc++

32

“That’s why I use C.

C++ has bad performance
without optimization!”

Anonymous videogame programmer, 2019

66

33

Released in 1994 too!

34

% Performance today

The 80486 was the last x86 to run instructions
sequentially

Modern CPUs execute instructions out of order

How does “low level” imperative C fare
without optimization today?

35

Performance in 2019

90000

80000

70000

60000

50000

40000

30000

20000

10000

RawAccumulateOg

STLAccumlateOg

RawAccumulateQ0 RawAccumulateO1

ratio (CPU time / Noop time)
Lower is faster

RawAccumulateO2

RawAccumulateO3

36

Wc o

20000
15000
10000
5000

0

N N} N (\) N IN) N IN) N N \) N N \) N (N N O N
C & @ & & & €& S ES S S S &S

\}«/ S\/ ‘x‘«b/ $§/ “5/ \i\\/ \§§/ \i\‘b/ é\/ \"‘\/ &b/ «b/ \i“/ \“\\/ ‘§b/ “,‘\b/ \é/ ‘g\/ $b/ éKb/ \{‘\/ \§/ «é/ é\éz

o/ o/ N/ N/ % a7 ’ o/ ’ N/ a7 a7/

O O /s O/ P © N7 N © ' Q7 2 O © 4 3 P © N/ N7 P P 2 Q7
o"? o"’o c/& o c>"9 o"’o /c /0 o°9 o°9 §° tvv o"'(”D o"'9 ¢f°°° '»9@ o’L9 07 "wo ¢9° 0'1'9 c>""’D fwv '190

& S P &’ & J o & d & o

Accumulate on MSVC, C vs C++

37

B stock [mro

80,000,000.00

60,000,000.00

40,000,000.00

20,000,000.00

Pathfinder benchmark on MSVC

38

52 Performance and debug

C++ abstractions will be slower than raw C
with all optimizations turned off

Both C and C++ are an order of magnitude
slower when you disable optimizations

Enabling even minimal optimizations yields
enormous gains

39

52 Performance and debug

Some vendors offer good or decent support
for optimized debug builds (CCC, MSVC)

There's probably room for improvements

Know your build flags!

40

2

STL containers

All you need is std::vector

41

52 Containers overview

Most commonly used containers
Arrays and dynamic arrays
Ordered associative containers

Hash tables

42

pNg

std::vector

Heap-allocated array that can be resized
Go-to container in the STL
Cheap to move and random access

As fast as it gets to iterate over

43

Not all CPU operations are created equal

Operation Costin CPU Cycles 10° 10° 102 10° 10¢ 10° 10¢

“Simple” register-register op (ADD,OR,etc.)
Memory write
Bypass delay: switch between
integer and floating-point units
“Right” branch of “if”
Floating-point/vector addition
Multiplication (integer/float/vector)
Return error and check
L1 read
TLB miss
L2 read 10-12]
“Wrong” branch of “if" (branch misprediction) 10-20 |
Floating-point division 1040 |
128-bit vector division 10-70

N
~ i~

1
Atomics/CAS [15-30 |
C function direct call [15-30 |
Integer division
C function indirect call 2050 |
C++ virtual function call | 30-60 |
L3 read
Main RAM read

http: //ithare.com/infoqraphics-operation-costs-in-cpu-clock-cycles/

Not all CPU operations are created equal

ith,;,;_ Operation Costin CPU Cycles 10° 10° 102 10° 10¢ 10°

108

“Simple” register-register op (ADD,OR,etc.)

Memory write

Bypass delay: switch between
integer and floating-point units
“Right” branch of “if”
Floating-point/vector addition
Multiplication (integer/float/vector) 1-7
Return error and check

-
3

L1 read

TLB miss 1

L2 read

[10-12]
“Wrong” branch of “if” (branch misprediction) [10-20 |
Floating-point division 1040 |
128-bit vector division
Atomics/CAS [15-30 |
C function direct call [15-30 |
Integer division [15-40 |
C function indirect call 2050 |
C++ virtual function call EXs

L3 read

Main RAM read

http: //ithare.com/infoqraphics-operation-costs-in-cpu-clock-cycles/

45

5 std:vector

Modern CPU caching can have a 1-100 impact
on performance

O(n) operations on std::vector can outperform
O(log n) on other containers

Rule of thumb: for small sets, bruteforce
search through vector is faster than std:map
46

pNg

std::vector

For read-intensive associative sets, consider a
sorted vector

Prefer indexes to pointers or iterators for
storing long term references

47

pNg

std::vector limitations?

None!

std::vector is awesome!

48

pNg

std::vector limitations

Growth factor is neither specified nor
configurable (most commonly 1.5 or 2)

Standard specification prohibits small buffer
optimization

std::vector<bool> is a mess

49

pNg

std::array

Stack-allocated array with fixed size
C++11 addition
O(1) random access and cache friendly layout

O(n) to move, potentially as expensive as copy

50

pNg

std::vector alternatives

std::vector with small buffer optimization
Boost’s boost::small_vector
Facebook’s folly::small_vector
Google’s absl::InlinedVector

Avoid heap allocation for small sizes

May be O(n) on move (and invalidate iterators)

51

pNg

std::array limitations

Fixed size, not capacity

Not suitable for dynamic insertion

52

pNg

std::array alternatives

Fixed capacity vector
Boost’s boost::static_vector
EA’s eastl::fixed_vector
Facebook’s folly::small_vector

Proposed addition to the standard as PO843

WIP name is std::static_vector

53

pNg

std::map and std::set

Classic sorted associative containers
O(log n) access, insertion and erase
lterators remain valid upon insert and erase

O(1) move construction

54

std::map and std::set
implementation

Almost always implemented as a R/B tree
Data is not stored in a cache-friendly manner

Lookup time is logarithmic, not constant

55

“STL map and set have
terrible performance, don't
use them!”

Anonymous videogame programmer, 2019

66

56

std::map and std::set
implementation

Can we do better?
Not really...

.. unless we drop some constraints from the
standard

57

pNg

std::map and std::set variants

Drop the sorted requirement

We get C++11's std::unordered_set and
std::unordered_map

Average constant time on insert, erase and

lookup

58

“STL unordered map and
set are not using open
addressing, don't use them”

Anonymous videogame programmer, 2019

66

59

pNg

std::map and std::set variants

Open addressing hash tables offer better cache
performance

Incompatible with standard requirements
Too high space/time tradeoff
Invalidate references even when no rehashing
occurs

60

pNg

std::map and std::set variants

Caching is not the main reason why STL hash
tables are slow

You can get good performance *and* follow
the standard...

As long as implementation doesn’t use modulo

61

X std::map and std::set variants

2018

C++ now MAY 7 - 11

cpp Org

IS
(]
E
o
o
o
5 (
S 250 ,&
7= —std::unordered_map<int, int> _,-. 11 | ‘ ‘“I“\T
o 200 ——ska::unordered_map<int, int> (! ' /D | | ‘ i
© — dinkumware BRRRRREY "}_ \
8 150 —libc++ (Ilvm) | — .
g 100 Malte Skarupke
<
= 50 7 2
You Can Do Better Than
0 std::Unordered_Map New
4 40 400 4000 40000 400000 4000000 40000000 and Recent Imporvements

Number of elements in the container = to Hash Tables

62

3

The STL and you

How to make things better

63

SomeGameDev (s
& @HateCPP Y

C++ sucks, why is the committee so
incompetent?!

12:00 PM - 1 Oct 2018
63 Retweets 255 Likes

O 15 11 63 Q 255 ™M

\
\

|

J

>

A4

64

%> The problem

The Committee make specifications, not
implementation

C++ is a general purpose language, its defaults
have to be sane for the 99%

Social media rants are not a good way to get a
point across

65

> Burden of proof

Common STL implementations are widely
used and tested

Have feature and performance tests to justity
an alternative

Revisit the comparison from time to time

66

pNg

“Good enough”

Standard specifications cannot make unsafe

assumptions
Reference stability
Memory overhead

Target the most common use case

Specific cases can benefit from specific
implementations

67

pNg

“Good enough”

Corollary: fit-to-purpose alternatives make
poor defaults

Remember the word of Donald Knuth

68

“The real problem is that
programmers have spent far too
much time worrying about
efficiency in the wrong places and
at the wrong times”

66

69

52 Sorted maintenance cost

No code
Code that comes with your compiler
3rd party library

In-house library

70

5 Maintenance cost

Writing generic containers is hard
Might look easy at first

Then one gets into corner cases such as
forwarding, constexpr and trivial types

And then the standard adds another feature...

71

5 Tactical choices

Consider how many people one can spare on
STL replacements maintenance

Pick your battles
Better hash map, yes!
Rewrite variant or optional, hell no!

72

% Engaging with your peers

Ranting on Twitter will not make C++ better
Neither will a talk given only at GDC

Make your voice heard where the rest of the
C++ community is

Meetups, conferences, ISO study groups

73

% Engaging with your peers

Progress goes much faster when people
collaborate

The bigger the sample, the better the results

Don't be afraid of talking to C++ developers
outside of your field

74

% Engaging with your peers

Challenge your vendor quality of
implementation if needed

Publish your findings
Provide reusable benchmarks

Need help packaging? Ask me!

75

pNg

In conclusion

STL aims to be a good enough default, as long
as some optimizations are enabled

Specific cases may benefit from STL
alternatives

Feedback is needed to improve the experience
of all C++ developers

76

Furthermore, I think your build
should be destroyed

66

77

75 Thanks!

Any questions ?

You can reach me at
(R mro@puchiko.net
¥ @MatRopert

() @mropert
@ https://mropert.github.io

78

52 References

C Is Not a Low-level Language - David
Chisnall, ACM Vol. 16 No. 2 - March-April 2018

You Can Do Better than std::unordered_map -
Malte Skarupke, C++Now 2018

Fifty shades of debug - Mathieu Ropert,
August 3rd, 2019

79

52 References

Accumulate Benchmark:
http://quick-bench.com/Z-PZk-rBkKjhf50mlcoiwB2ljdg

MSVC optimization flags benchmark:
https://qgithub.com/mropert/debug_bench

80

