

This Videogame Programmer
Used the STL
(and You Will Never Guess What Happened Next)

3

STL and videogames

4

5

6

STL in videogames considered
harmful

7

Picture unrelated

8

This Videogame Programmer
Used the STL
(and You Will Never Guess What Happened Next)

9

10

Standard Template Library

◉ Proposed in 1993 by Alex Stepanov

◉ Adopted in 1994

◉ Offers a set of generic containers and
algorithms for C++

11

1994

12

13

“

“We don’t use the STL here”

Anonymous videogame programmer, 2019

14

I am Mathieu Ropert
I’m a Tech Lead at Paradox Development Studio
where I make Hearts of Iron IV, Stellaris and more.

You can reach me at:

mro@puchiko.net

@MatRopert

https://mropert.github.io

Hello!

15

About this talk

◉ The case against STL

◉ STL containers in practice

◉ Frequently sought-after alternatives

◉ Performance & maintenance

16

About not this talk

◉ Allocators

◉ Exceptions

◉ Build times

17

Or where the criticism is coming from

Is the STL so bad?1

18

Common complaints

◉ “STL is unfamiliar”

◉ “STL is not supported on platform X”

◉ “STL is bloated”

◉ “STL performance isn’t that great”

19

STL familiarity

◉ STL been around for 25 years

◉ Popular C++ libraries adopted the same idioms
(Boost, Abseil, Intel TBB…)

◉ Resources teaching Containers, Iterators and
Algorithms are plenty

20

STL familiarity

◉ Stepanov’s approach on
decoupling containers
and algorithms is based
on sound research

◉ We might need to study
and teach the principles
better in schools

21

STL availability

◉ Major vendors should provide a reasonably
good implementation of the STL

◉ As any software, they may have bugs or
caveats

◉ Keep up with updates, report issues

22

STL availability

◉ Vendors that won’t care about STL probably
won’t care about C++ in general

◉ Chances are they will have broken standard
support or subpar optimizations

◉ Consider using open source alternatives

23

STL bloat

◉ Standard additions may feel unnecessary or
unwanted

◉ Vendor implementations may look
over-complicated for what they are trying to
achieve

24

STL bloat?

◉ STL, like C++, is designed for general purpose
usage

◉ C++ design principles dictate that unused
features should not be added to the cost

◉ Not always possible in practice, as the cost of
multiple policies grows quite fast

25

STL bloat?

◉ Vendor implementations may include additional
debug features to help developers

◉ There is a build flag somewhere to turn them off

◉ Debug checks are not incompatible with
optimizations

26

The quest for performance

◉ Games need to run within a timebox

◉ Worst case scenarios and unpredictable
latency matter a lot

◉ Common wisdom recommends low level
languages for better control over performance

27

The quest for performance

◉ STL comes with some degree of abstraction
○ Templates
○ Iterators
○ Debug / checked iterators
○ Proxy iterators

◉ Requires a good optimizer to yield
performance

28

STL performance

static void RawAccumlate(benchmark::State& state) {

 const auto v = generate_values<int>(10000);

 for (auto _ : state) {

 const int* p = v.data();

 const int sz = v.size();

 int sum = 0;

 for (int i = 0; i < sz; ++i)

 sum += p[i];

 benchmark::DoNotOptimize(sum);

 }

}

BENCHMARK(RawAccumlate);
29

STL performance

static void STLAccumlate(benchmark::State& state) {

 const auto v = generate_values<int>(10000);

 for (auto _ : state) {

 auto sum = std::accumulate(begin(v), end(v), 0);

 benchmark::DoNotOptimize(sum);

 }

}

BENCHMARK(STLAccumlate);

30

STL performance

clang / libc++

31

STL performance

clang / libstdc++

32

“

“That’s why I use C.
C++ has bad performance

without optimization!”

Anonymous videogame programmer, 2019

33

Released in 1994 too!

34

Performance today

◉ The 80486 was the last x86 to run instructions
sequentially

◉ Modern CPUs execute instructions out of order

◉ How does “low level” imperative C fare
without optimization today?

35

Performance in 2019

36

Accumulate on MSVC, C vs C++

37

Pathfinder benchmark on MSVC

38

Performance and debug

◉ C++ abstractions will be slower than raw C
with all optimizations turned off

◉ Both C and C++ are an order of magnitude
slower when you disable optimizations

◉ Enabling even minimal optimizations yields
enormous gains

39

Performance and debug

◉ Some vendors offer good or decent support
for optimized debug builds (GCC, MSVC)

◉ There’s probably room for improvements

◉ Know your build flags!

40

All you need is std::vector

STL containers2

41

Containers overview

◉ Most commonly used containers

◉ Arrays and dynamic arrays

◉ Ordered associative containers

◉ Hash tables

42

std::vector

◉ Heap-allocated array that can be resized

◉ Go-to container in the STL

◉ Cheap to move and random access

◉ As fast as it gets to iterate over

43

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

44

http://ithare.com/infographics-operation-costs-in-cpu-clock-cycles/

45

std::vector

◉ Modern CPU caching can have a 1-100 impact
on performance

◉ O(n) operations on std::vector can outperform
O(log n) on other containers

◉ Rule of thumb: for small sets, bruteforce
search through vector is faster than std::map

46

std::vector

◉ For read-intensive associative sets, consider a
sorted vector

◉ Prefer indexes to pointers or iterators for
storing long term references

47

std::vector limitations?

◉ None!

◉ std::vector is awesome!

◉ 😍👍

48

std::vector limitations

◉ Growth factor is neither specified nor
configurable (most commonly 1.5 or 2)

◉ Standard specification prohibits small buffer
optimization

◉ std::vector<bool> is a mess

49

std::array

◉ Stack-allocated array with fixed size

◉ C++11 addition

◉ O(1) random access and cache friendly layout

◉ O(n) to move, potentially as expensive as copy

50

std::vector alternatives

◉ std::vector with small buffer optimization
○ Boost’s boost::small_vector
○ Facebook’s folly::small_vector
○ Google’s absl::InlinedVector

◉ Avoid heap allocation for small sizes

◉ May be O(n) on move (and invalidate iterators)

51

std::array limitations

◉ Fixed size, not capacity

◉ Not suitable for dynamic insertion

52

std::array alternatives

◉ Fixed capacity vector
○ Boost’s boost::static_vector
○ EA’s eastl::fixed_vector
○ Facebook’s folly::small_vector

◉ Proposed addition to the standard as P0843
○ WIP name is std::static_vector

53

std::map and std::set

◉ Classic sorted associative containers

◉ O(log n) access, insertion and erase

◉ Iterators remain valid upon insert and erase

◉ O(1) move construction

54

std::map and std::set
implementation

◉ Almost always implemented as a R/B tree

◉ Data is not stored in a cache-friendly manner

◉ Lookup time is logarithmic, not constant

55

“

“STL map and set have
terrible performance, don’t

use them!”

Anonymous videogame programmer, 2019

56

std::map and std::set
implementation

◉ Can we do better?

◉ Not really…

◉ … unless we drop some constraints from the
standard

57

std::map and std::set variants

◉ Drop the sorted requirement

◉ We get C++11’s std::unordered_set and
std::unordered_map

◉ Average constant time on insert, erase and
lookup

58

“

“STL unordered map and
set are not using open

addressing, don’t use them”

Anonymous videogame programmer, 2019

59

std::map and std::set variants

◉ Open addressing hash tables offer better cache
performance

◉ Incompatible with standard requirements
○ Too high space/time tradeoff
○ Invalidate references even when no rehashing

occurs

60

std::map and std::set variants

◉ Caching is not the main reason why STL hash
tables are slow

◉ You can get good performance *and* follow
the standard…

◉ As long as implementation doesn’t use modulo

61

std::map and std::set variants

62

How to make things better

The STL and you3

63

64

The problem

◉ The Committee make specifications, not
implementation

◉ C++ is a general purpose language, its defaults
have to be sane for the 99%

◉ Social media rants are not a good way to get a
point across

65

Burden of proof

◉ Common STL implementations are widely
used and tested

◉ Have feature and performance tests to justify
an alternative

◉ Revisit the comparison from time to time

66

“Good enough”

◉ Standard specifications cannot make unsafe
assumptions
○ Reference stability
○ Memory overhead

◉ Target the most common use case

◉ Specific cases can benefit from specific
implementations

67

“Good enough”

◉ Corollary: fit-to-purpose alternatives make
poor defaults

◉ Remember the word of Donald Knuth

68

“

“The real problem is that
programmers have spent far too

much time worrying about
efficiency in the wrong places and

at the wrong times”

69

Sorted maintenance cost

◉ No code

◉ Code that comes with your compiler

◉ 3rd party library

◉ In-house library

70

Maintenance cost

◉ Writing generic containers is hard

◉ Might look easy at first

◉ Then one gets into corner cases such as
forwarding, constexpr and trivial types

◉ And then the standard adds another feature...
71

Tactical choices

◉ Consider how many people one can spare on
STL replacements maintenance

◉ Pick your battles
○ Better hash map, yes!
○ Rewrite variant or optional, hell no!

72

Engaging with your peers

◉ Ranting on Twitter will not make C++ better

◉ Neither will a talk given only at GDC

◉ Make your voice heard where the rest of the
C++ community is

◉ Meetups, conferences, ISO study groups
73

Engaging with your peers

◉ Progress goes much faster when people
collaborate

◉ The bigger the sample, the better the results

◉ Don’t be afraid of talking to C++ developers
outside of your field

74

Engaging with your peers

◉ Challenge your vendor quality of
implementation if needed

◉ Publish your findings

◉ Provide reusable benchmarks

◉ Need help packaging? Ask me!
75

In conclusion

◉ STL aims to be a good enough default, as long
as some optimizations are enabled

◉ Specific cases may benefit from STL
alternatives

◉ Feedback is needed to improve the experience
of all C++ developers

76

“

Furthermore, I think your build
should be destroyed

77

Any questions ?
You can reach me at

mro@puchiko.net

@MatRopert

@mropert

https://mropert.github.io

Thanks!

78

References

◉ C Is Not a Low-level Language - David
Chisnall, ACM Vol. 16 No. 2 – March-April 2018

◉ You Can Do Better than std::unordered_map -
Malte Skarupke, C++Now 2018

◉ Fifty shades of debug - Mathieu Ropert,
August 3rd, 2019

79

References

◉ Accumulate Benchmark:
http://quick-bench.com/Z-PZk-rBkKjhf50mIcoiwB2Ijdg

◉ MSVC optimization flags benchmark:
https://github.com/mropert/debug_bench

80

