

© 2021 Bloomberg Finance L.P. All rights reserved.

Services evolution:

required is forever

ACCU 2021
March 11, 2021

Natalia Pryntsova
Team Leader, Portfolio Enterprise Infrastructure Engineering

© 2021 Bloomberg Finance L.P. All rights reserved.

MIDI

• No significant changes since 1983

Note On 9<ch> <note> <velocity>

92 60 96 Ch.3 Note On C4, forte “ff”

• MIDI 2.0 released Dec 2020

• Backwards compatibility was the main

requirement

© 2021 Bloomberg Finance L.P. All rights reserved.

Backward/forward compatibility

“Backward compatibility is a property of a system, product, or technology that allows
for interoperability with an older legacy system, or with input designed for such a
system, especially in telecommunications and computing.”

Wikipedia

Backward compatibility: new code - old data

• Can be verified

Forward compatibility: old code - new data

• “Best efforts” basis

© 2021 Bloomberg Finance L.P. All rights reserved.

Backward/forward compatibility

Assuming Service POV:

• Backward compatible on request

• Forward compatible on response

Service Client

Request

Response

BC

FC
new code old code

old data

new data

© 2021 Bloomberg Finance L.P. All rights reserved.

Backward compatibility in practice

Compatibility is driven by serialization methods

© 2021 Bloomberg Finance L.P. All rights reserved.

Backward compatibility in practice

In practice, it is still challenging to meaningfully evolve service APIs while

maintaining compatibility:

- Growth via addition of optional fields; some of them are not really optional

- Code branching for different major versions

- Following elaborate compatibility rules

Apache Avro

No tags, no field names or field ids in serialized data, how is this possible?

DataSchema

Serialized data with schema

Serialized data only

Varints encoding

Value First byte Second

byte

Third

byte

Binary

0 00000000 0000

1 00000001 0001

2 00000010 0010

...

127 01111111 01111111

128 10000000 00000001 10000000

129 10000001 00000001 10000001

130 10000010 00000001 10000010

...

16,383 11111111 01111111 00111111 11111111

16,384 10000000 10000000 00000001 01000000 00000000

16,385 10000001 10000000 00000001 01000000 00000001

Idea: small integers should take

little space

High-order bit of each byte reserved

to indicate if there are more bytes to

read

Identify continuation bits:

FE 01 = 11111110 00000001

Least significant group is first, so

swap the order:

0000001 1111110 = 254

Bonus: self-delimiting!

Zig zag encoding

Value Binary

0 0000

-1 0001

1 0010

-2 0011

2 0100

...

-64 0111 1111

64 1000 0000

…

-127 1111 1101

127 1111 1110

Idea: small signed integers should

take little space

(i >> bitlength-1) ^ (i << 1)

Example:

127 becomes 254

© 2021 Bloomberg Finance L.P. All rights reserved.

Protocol Buffers

Uses field numbers and wire types

Code-generated classes using protoc: python_out, cpp_out options

Schema

Data – using generated class

Serialized data

Note 08 and 12 (blue dots) is combo of field

number and wire types

varint ((field_number << 3) | wire_type)

Also int64 is not zig-zagged as there are
separate signed types in proto

© 2021 Bloomberg Finance L.P. All rights reserved.

Schema-less-ness

• Schema actually still exists, but is implied through code

• Need to validate inputs – middleware + collection of validators

• Various JSON parsers deal with numbers differently

Request Handlers

Validation
Middleware

Currency
Validator

Payment date
Validator

Permissions
Validator

JSON Request

© 2021 Bloomberg Finance L.P. All rights reserved.

Useful patterns

• Ignore unknown fields
—Clients must ignore any data they do not understand (do not have in its schema)

—Otherwise, it would not be possible to add even an optional/defaulted field

• Do not discard unknown fields
—Useful when serialized state is persisted and can be read by new/old code interchangeably

TolerantReader pattern by Martin Fowler: “only take the elements you need, ignore anything you don’t”

Must Ignore – Must Forward

1) Writes data:

a = 127, b = “foo” 2) Reads data:

a = 127

Must Ignore b

3) Updates data:

a = 126

Must Forward b

4) Able to read data:

a = 126, b = “foo”

v2 v1

© 2021 Bloomberg Finance L.P. All rights reserved.

“Required” fields

For

• Communicate intention

• Less test cases to cover
— Validation offloaded to the serialization

layer.

Against

• Adding/removal breaks compatibility

• Not restrictive enough
— Is 0 a valid transaction amount?

— Is empty string a valid family name?

Is a removal of an optional field always backward compatible?

© 2021 Bloomberg Finance L.P. All rights reserved.

Summary

• Time for evolution and change comes for all APIs

• Achieving compatibility is still difficult despite a large variety of serialization techniques

• Serializers drive compatibility rules and by extent services evolution

• Consider a “tolerant reader” approach and if “required” fields are actually required

© 2021 Bloomberg Finance L.P. All rights reserved.

Thank you!

Natalia Pryntsova

npryntsova@bloomberg.net

mailto:npryntsova@Bloomberg.net

