E C : l_l B|mberg mosaic

VIR TUAL EVENT

CONBULYANYS YO FINANCIAL SERVICES

Services Evolution:
Required Is Forever

sova .-

(e

‘Natalia P(ynt

ol ) )

s aasd)
d’(%"///(’”""" ,

5
$3
i

|



=

Services evolution
required Is forever

biaqwoo|g

-
(@)
[
>
(D
(D
H
-
-
(@)

*x':'.*'ifiMarch 11, 2021

" Natalia Pryntsova
Team Leader Portfollo Enterprlse Infrastructure Englneerlng

. . 5 e <
L L LA TS R s ANy, '-Nq\'f SO N L AT A 2 :v“ \‘f ()
-. -\ AR 24 .’)-4 S . .,.'_‘:_ x )-‘ AN AN 5 - :,1- An " £ fg ¥ m 5-,,
"e? A P ‘\," & » eV 227
P Lw V% o T e 4 r
o e Sy ., ~1-?’ -«vr,\
.Y N e ? « VS 0A
, .l., N o - MU AN SR 2. . ol
. A o® P T A\ \'\__ | I
- . . s N
. S - ¥ . ~e
FRY *
Ne
.

' ."'-'Te:cl"nAtBIoomberg.com

© 2021 Bloomberg Finance L.P. All rights reserved.



MIDI

® No significant changes since 1983

9<ch> <note> <velocity>

Note On

Ch.3 Note On C4, forte “ff”

92 60 96

* MIDI 2.0 released Dec 2020

k

H/. . e

25

* Backwards compatibility was the main
requirement

p meno mosso

rit.

- .

29

© 2021 Bloomberg Finance L.P. All rights reserved.

TechAtBloomberg.com



Backward/forward compatibility

“Backward compatibility is a property of a system, product, or technology that allows
for interoperability with"an older legacy system, or with input designed for such a
system, especially in telecommunications and computing.”

Wikipedia
Backward compatibility: new code - old data
* Can be verified
Forward compatibility: old code - new data
* “Best efforts” basis
TechAtBloomberg.com e BIoomberg
© 2021 Bloomberg Finance L.P. All rights reserved. _ : ) o, . . " . LAY, Engineering

. i L et . o SRR ey et
e, RS LALTR T wd P 3 e e et 2T Trleal el i aae w
y it el e A T L e R I I R L i
e ,.1..;5{_ e g I = .
% . ¥ b L]




Backward/forward compatibility

Request

A

BC
old data
Service
Response

v

Assuming Service POV.:
* Backward compatible on request
* Forward compatible on response

TechAtBloomberg.com

© 2021 Bloomberg Finance L.P. All rights reserved.

I T e S T L
LT i 4 A

T e At s

. P . . . o LT .

FC

Client

Bloomberg

Engineering




Backward compatibility in practice

Compatibility is driven by serialization methods

Schema Resolution

A reader of Avro data, whether from an RPC or a file, can always parse that data because the original schema must be provided along with the data. However, the reader may be
programmed to read data into a different schema. For example, if the data was written with a different version of the software than it is read, then fields may have been added or
removed from records. This section specifies how such schema differences should be resolved.

We refer to the schema used to write the data as the writer’'s schema, and the schema that the application expects the reader’s schema. Differences between these should be
resolved as follows:

= [Itis an error if the two schemas do not match.
To match, one of the following must hold:

© both schemas are arrays whose item types match
both schemas are maps whose value types match
both schemas are enums whose (unqualified) names match
both schemas are fixed whose sizes and (unqualified) names match
both schemas are records with the same {unqualified) name
either schema is a union
both schemas have same primitive type
the writer's schema may be promoted to the reader's as follows:

© 0600000

= int is promotable to long, float, or double
= long is prometable to float or double
= float is promotable to double
= string is promotable to bytes
= bytes is promotable to string
« if both are records:

the ordering of fields may be different: fields are matched by name.

schemas for fields with the same name in both records are resolved recursively.

if the writer's record contains a field with a name not present in the reader's record, the writer's value for that field is ignored.

if the reader's record schema has a field that contains a default value, and writer's schema does not have a field with the same name, then the reader should use
the default value from its field.

o if the reader's record schema has a field with no default value, and writer's schema does not have a field with the same name, an error is signalled.

ERY

if both are enums:
if the writer's symbol is not present in the reader's enum and the reader has a d=fault value, then that value is used, otherwise an error is signalled.

if both are arrays:
This resolution algorithm is applied recursively to the reader's and writer's array item schemas.

if both are maps:
This resolution algorithm is applied recursively to the reader's and writer's value schemas.

if both are unions:

The first schema in the reader's union that matches the selected writer's union schema is recursively resclved against it. if none match, an error is signalled.
= if reader's is a union, but writer's is not

The first schema in the reader's union that matches the writer's schema is recursively resolved against it. If none match, an error is signalled.

if writer's is a union, but reader's is not
If the reader's schema matches the selected writer's schema, it is recursively resolved against it. If they do not match, an error is signalled.

A schema's "doc” fields are ignored for the purposes of schema resolution. Hence, the "doc' portion of a schema may be dropped at serialization.

TechAtBloomberg.com N

© 2021 Bloomberg Finance L.P. All rights reserved.

Protocol Buffers

Qverview

Developer Guide
Language Guide (proto2)
Language Guide (proto3)
Style Guide

Encoding

Technigues

Add-ons

Tutorials

Tutorials Overview
Basics: C++
Basics: C#
Basics: Dart
Basics: Go
Basics: Java

Basics: Python

Related Guides
grRPC &

Q, Search

Updating A Message Type

If an existing message type no longer meets all your needs — for example, you'd like the message format to have an
extra field — but you'd still like to use code created with the old format, don't worry! It's very simple to update
message types without breaking any of your existing code. Just remember the following rules:

Don't change the field numbers for any existing fields

If you add new fields, any messages serialized by code using your "old” message format can still be parsed by
your new generated code. You should keep in mind the default values for these elements so that new code can
properly interact with messages generated by old code. Similarly, messages created by your new code can be
parsed by your old code: old binaries simply ignare the new field when parsing. See the Unknown Fields section
for details.

Fields can be removed, as long as the field number is not used again in your updated message type. You may
want to rename the field instead, perhaps adding the prefix "OBSOLETE_", or make the field number reserved,
so that future users of your .proto can't accidentally reuse the number.

int32, uint32, int64, uint64,and bool are all compatible - this means you can change a field from one
of these types to another without breaking forwards- or backwards-compatibility. If a number is parsed from
the wire which doesn't fit in the corresponding type, you will get the same effect as if you had cast the number
to that type in C++ (e.g. if a 64-bit number is read as an int32, it will be truncated to 32 bits)

sint32 and sint64 are compatible with each other but are not compatible with the other integer types.
string and bytes are compatible as long as the bytes are valid UTF-8.

Embedded messages are compatible with bytes if the bytes contain an encoded version of the message.
fixed32 is compatible with sfixed32 ,and fixed64 with sfixed64 .

For string, bytes, and message fields, optienal is compatible with repeated . Given serialized data of a
repeated field as input, clients that expect this field to be optional will take the lastinput valueifit's a
primitive type field or merge all input elements if it's a message type field. Note that this is not generally safe
for numeric types, including bools and enums. Repeated fields of numeric types can be serialized in the packed
format, which will not be parsed correctly when an optional field is expected.

enum is compatible with int32, uint32, inté4,and uinté4 in terms of wire format (note that values will
be truncated if they don't fit). However be aware that client code may treat them differently when the message
is deserialized: for example, unrecognized proto3 enum types will be preserved in the message, but how this is
represented when the message is deserialized is language-dependent. Int fields always just preserve their
value,

Changing a single value into a member of a new oneof is safe and binary compatible. Moving multiple fields
into a new eneof may be safe if you are sure that no code sets more than one at a time. Moving any fields into
an existing oneof is not safe.




Backward compatibility in practice

In practice, it is still challenging to meaningfully evolve service APIs while
maintaining compatibility:

- Growth via addition of optional fields; some of them are not really optional
- Code branching for different major versions
- Following elaborate compatibility rules

ss GetUserRequest: def entrypoint_vi()

pass

user_name: str

first_name: str def entrypoint_v2():

last_name: str pass

description: str = None

some_other_flag: bool = None
TechAtBloomberg.com e Bloomberg
© 2021 Bloomberg Finance L.P. All rights reserved. . - Y \‘ _.-.'. .- L " .u' :* '_'«' ‘ " . o Engineering




Apache Avro

No tags, no field names or field ids in serialized data, how is this possible?

Schema Data
{ 'I'Iall: 12?, 'I'Ib'l'l: "-FDD“ }

{} avro_example.avsc > ...

1

Serialized data with schema
00000000
90000010
0000020
00000030
00000046
00000050

“type": "record",

"name"”: "te
"fields": [
{

t",

"name":
'Iltypell :

00000060
20000070
200000860
00000090
00000020
@eeeeebe

Serialized data only

0oooeeee fe B1 ©6 66 6T 6T | ...fool




Varints encoding

00000001

Value | First byte| Second Third Binary
byte byte

0 00000000 0000
1 00000001 0001

00000010 0010
127 01111111 01111111
128 10000000 |00000001 10000000
129 10000001 |0000000 0000001
130 10000010 |00000001 10000010
16,383 |11111111 |01111111 00111111 11111111
16,384 |10000000 {10000000 (00000001 (01000000 00000000
16,385 |10000001 (10000000

01000000 00000001

PRI UL S N "
T e LR e wy t e,
b TRl AL L L
L .“f'f"-,l‘..ul- 3¢ Y
. . : et "t tAED

s N

Idea: small integers should take
little space

High-order bit of each byte reserved
to indicate if there are more bytes to
read

|dentify continuation bits:
FEO1=1 00000001

Least significant group is first, so
swap the order:
0000001 =254

Bonus: self-delimiting!




Zig zag encoding

Value Binary

0 0000

-1 0001

1 0010

-2 0011

2 0100

-64 0111 1111
64 1000 0000
-127 1111 1101
127 1111 1110

3r AR G e N
P e, R TR e wl t
e, 05t el L X
- Pt . .“f'f"-,l‘..u‘\l
. . 2 0. LR ]
* .

ldea: small signed integers should
take little space

(I >> bitlength-1) ~ (i << 1)

Example:
127 becomes




Protocol Buffers

Uses field numbers and wire types
Code-generated classes using protoc: python_out, cpp_out options

Schema Serialized data
= pb_example.proto 20000000 ﬁ 7f E @3 66 6f 6F | - - .'FDO'
syntax = "proto3";
message test { Note 08 and 12 (blue dots) is combo of field
e E = number and wire types
varint ((field_number << 3) | wire_type)
Data — using generated class _ _ _
my test = myschema.test() Also int64 is not zig-zagged as there are
my test.a = 127 separate signed types in proto
my_test.b = “foo"
Bloomberg

TechAtBloomberg.com

© 2021 Bloomberg Finance L.P. All rights reserved. - .
Engineering

g "0 S . - L
N, B LR e wl e,
e, viE 0 gl e at i,

AT e gt
F et g At YR
. . 20X R H
. .




Schema-less-ness

®* Schema actually still exists, but is implied through code JSON Request
* Need to validate inputs — middleware + collection of validators l

® Various JSON parsers deal with numbers differently Validation
Middleware
Permissions
(19765432100123456789) .toString() Validator
"10765432100123458000" Payment date
Validator
>>> import json Currenc
>>> j = '{"id": 10765432100123456789 }' . Y
>>> parsed_j = json.loads(j) Validator
>>> print(parsed_j)
{"id": 10765432100123456789} Request Handlers

TechAtBloomberg.com e Bloomberg

© 2021 Bloomberg Finance L.P. All rights reserved. - .
Engineering

3r AR G e - .
P TR S TR IET S T B
ha, vi5 o sl T ST

L .\,rlf"-_-‘....‘\ &,
. . : et "t tAED
s N




Useful patterns

* Ignore unknown fields
—Clients must ignore any data they do not understand (do not have in its schema)
—Otherwise, it would not be possible to add even an optional/defaulted field

* Do not discard unknown fields
—Useful when serialized state is persisted and can be read by new/old code interchangeably

TolerantReader pattern by Martin Fowler: “only take the elements you need, ignore anything you don’t”

TechAtBloomberg.com e BIoomberg

© 2021 Bloomberg Finance L.P. All rights reserved. _ , . : . . Tt g s e o e se . .
T R B A L Engineering

PR R S . P U P e, b v .

T St L TR T PR S M AL L TR A
A A T T Rt T L e A R L
N N & AL PSP O d APl ' o Yy

% . ¥ L]




Must Ignore — Must Forward

V2

= pb_example.proto = pb_example v.proto

syntax = "proto3”;
message test {

syntax = "proto3";
message test {

1) Writes data:
a=127, b = “foo”

@8 7f 12 @3 66 6f 6f

2) Reads data:
a=127
Must Ignore b

3) Updates data:
a=126
Must Forward b

4) Able to read data:

a =126, b = “foo”




“Required” fields

00000000 ©8 7f 12 @3 66 6F 6F |....fool
For Against
« Communicate intention « Adding/removal breaks compatibility
» Less test cases to cover * Not restrictive enough
— Validation offloaded to the serialization — Is 0 a valid transaction amount?
layer. — |s empty string a valid family name?

Is a removal of an optional field always backward compatible?

TechAtBloomberg.com e Bloomberg

© 2021 Bloomberg Finance L.P. All rights reserved. - .
Engineering

PR LD e W - L
N, B LR e wl e,
e, a5 2 L P I LT T

Pt T i VAl T T
. . 20X R H
% .




Summary

Time for evolution and change comes for all APIs

Achieving compatibility is still difficult despite a large variety of serialization techniques

Serializers drive compatibility rules and by extent services evolution

Consider a “tolerant reader” approach and if “required” fields are actually required

TechAtBloomberg.com e BIoomberg

© 2021 Bloomberg Finance L.P. All rights reserved. - .
Engineering

TR S T T L T
P e 3.,_ '.,rl,f_" A
. .




=

Thank you!

Natalia Pryntsova
npryntsova@bloomberg.net

-
(@]
(-
-
(D
(D
|—‘
(-
-
(@]

’;Y:"s'r“‘
1 tb PO
ﬁa&f:..

Ry

.

" ‘TechAtBloomberg.com

© 2021 Bloomberg Finance L.P. All rights reserved.


mailto:npryntsova@Bloomberg.net

