

Let's Look at Lambdas

Roger Orr

OR/2 Limited

auto λ = [](){};

What is this weird syntax?
Where might we use it?

Why?

 – March 2021 –

What's the problem?
● There are times when it is useful to create a C++ function with

minimal syntax, and lambdas in C++ provide a relatively terse way
to do this

● A typical use case is a short bespoke function being supplied as an
argument to a standard library method

● The concept is present in some other languages too, but there are
some details that are primarily C++ specific

● Lambdas were added in C++11, so let's start by seeing what we
used to do before we had lambdas...

● One of the exciting things when C++98 first came out was the STL,
which provided (and still provides) a very rich paradigm using iterators
and algorithms

● The STL at its best enabled terse, powerful, and efficient code

Example: C++98 use of algorithms

void basic_sort(std::vector<int> &v)
{
 ...
 std::sort(v.begin(), v.end());
 ...
}

● This code instantiates a specialization of the sort algorithm for iterators
for a vector of int (based on the types of the arguments supplied)

● It was typesafe (the right comparison is automatically used)
● Compile time template instantiation meant this was faster than using C's

qsort

Example: C++98 use of algorithms

void basic_sort(std::vector<int> &v)
{
 ...
 std::sort<std::vector<int>::iterator>(v.begin(), v.end());
 ...
}

● Some customisation was easy

● Adding a function object as the comparator in this example reverses the
direction of the sort

● It's pretty clear what the code is doing and it's hard to get wrong

Example: C++98 use of algorithms

void reverse_sort(std::vector<int> &v)
{
 std::sort(v.begin(), v.end(), std::greater<int>());
}

● Some customisation was easy

● Adding a function object as the comparator in this example reverses the
direction of the sort

● It's pretty clear what the code is doing and it's hard to get wrong – or is it?

● Ok, maybe I lied...

Example: C++98 use of algorithms

void reverse_sort(std::vector<int> &v)
{
 std::sort(v.begin(), v.end(), std::greater<int>());
}

 std::sort(v.begin(), v.end(), std::greater); // error
 std::sort(v.begin(), v.end(), std::greater<int>); // error
 std::sort(v.begin(), v.end(), std::greater()); // error (up to C++17)
 std::sort(v.begin(), v.end(), std::greater<bool>()); // whoops

● C++14 did make this specific example a little simpler:

● C++17 made it simpler still, because of Class Template Argument
Deduction (CTAD):

Example: C++98 use of algorithms

void reverse_sort(std::vector<int> &v)
{
 std::sort(v.begin(), v.end(), std::greater<>());
}

void reverse_sort(std::vector<int> &v)
{
 std::sort(v.begin(), v.end(), std::greater());
}

● Some customisation was harder – suppose we want to sort absolute
values?

● We need to supply a function or a function object that compares the
absolute value of two int values

Example: C++98 use of algorithms

void absolute_sort(std::vector<int> &v)
{
 std::sort(v.begin(), v.end(), /* What goes here? */);
}

● Using a function may be simplest:

Example: C++98 use of algorithms

bool abs_less_fn(int a, int b)
{
 return std::abs(a) < std::abs(b);
}

void absolute_sort(std::vector<int> &v)
{
 std::sort(v.begin(), v.end(), abs_less_fn);
}

● We now have a function at module scope and have leaked
implementation details out of the original function's scope.

● Incidentally, we have also lost some of the benefits of the STL/C++ as
● the type of the instantiation has a comparator that's simply pointer-to-

function so the comparison will not be inlined*
● functions are stateless

(* I tried different compilers and various optimization settings without success)

Example: C++98 use of algorithms

● Using a function object is more flexible:

Example: C++98 use of algorithms

struct abs_less
{
 bool operator()(int a, int b)
 {
 return std::abs(a) < std::abs(b);
 }
};

void absolute_sort(std::vector<int> &v)
{
 std::sort(v.begin(), v.end(), abs_less());
}

● We now have created a class at module scope and have still leaked
implementation details out of the original function's scope.

● However, C++98 did not allow you to instantiate templates using a local
class

● Proposal N1353 (Anthony Williams) attempted to resolve this
● It is dated 2001-10-15 – this morphed along the way but since C++11

local classes are valid arguments for template instantiations
● (Amusingly, perhaps, Visual C++ used to allow this prior to their support

for C++98, whereas at least one other vendor had to significantly
change their name-mangling implementation to support this for C++11)

● It is much more likely to be optimised (as there is no type erasure)

Example: C++98 use of algorithms

● In C++98/03 you could resolve the scope issue with a static function
member in a local class

● But that's a lot of 'scaffolding' to support a basically simple piece of code

Example: C++98 use of algorithms

void absolute_sort2(std::vector<int> &v)
{
 struct abs_
 {
 static bool less(int a, int b)
 {
 return std::abs(a) < std::abs(b);
 }
 };

 std::sort(v.begin(), v.end(), abs_::less);
}

● Some library solutions were provided to try and make the process less
painful, with varying degrees of success

● Here is an example using boost bind:

● You may feel this cure is worse than the disease

Boost to the rescue?

void boost_absolute_sort(std::vector<int> &v)
{
 int (*abs)(int) = std::abs; // (Needed as std::abs is an overload set)

 std::sort(v.begin(), v.end(),
 boost::bind(std::less<int>(),
 boost::bind(abs, _1), boost::bind(abs, _2)));
}

● In C++98 we had some ways to provide code to algorithms, but with
explicit scaffolding:

● Free functions
● Member functions
● Static member functions of local classes
● Template solutions, such as boost::bind

● Of course, all these are still available in C++20

Recap ….

● With C++11 we gained support for lambda expressions (which are
syntactic sugar for writing an anonymous local class*)

(*Incidentally, the desire for lambda expressions gave support for
Anthony's local classes proposal, mentioned earlier)

A C++11 Lambda solution

void lambda_absolute_sort(std::vector<int> &v)
{
 std::sort(v.begin(), v.end(), [](int a, int b)
 {
 return std::abs(a) < std::abs(b);
 });
}

● With C++11 we now have support for lambda expressions (which are
syntactic sugar for writing an anonymous local class)

A C++11 Lambda solution

void lambda_absolute_sort(std::vector<int> &v)
{
 std::sort(v.begin(), v.end(), [](int a, int b)
 {
 return std::abs(a) < std::abs(b);
 });
}

Lambda introducer

Lambda declarator

Compound statement

Pseudo-code roughly equivalent to the previous slide

● The lambda declarator defines the arguments to operator(), and the
lambda compound expression provides the body of operator()

A C++11 Lambda solution

void lambda_absolute_sort(std::vector<int> &v)
{
 struct unnamable
 {
 auto operator()(int a, int b)
 {
 return std::abs(a) < std::abs(b);
 }
 };

 std::sort(v.begin(), v.end(), unnamable());
}

Compound statement

Lambda declarator

Pseudo-code more equivalent to the previous slide

● The function call operator in the lambda is implicitly const. (This doesn't
really matter in this example, but stay tuned ...)

A C++11 Lambda solution

void lambda_absolute_sort(std::vector<int> &v)
{
 struct unnamable
 {
 auto operator()(int a, int b) const
 {
 return std::abs(a) < std::abs(b);
 }
 };

 std::sort(v.begin(), v.end(), unnamable());
}

● The type of the lambda is unnamable*, but you can give the expression a
name for clarity, or to allow it to be re-used, by using a variable

*Hence the variable must be declared auto as the type cannot be
named. This was a strong motivation for adding auto to C++11

A C++11 Lambda solution

void lambda_absolute_sort(std::vector<int> &v)
{
 auto abs_less = [](int a, int b)
 {
 return std::abs(a) < std::abs(b);
 };
 std::sort(v.begin(), v.end(), abs_less);
}

● As far as I can tell there is no single winner for how to format a lambda

A C++11 Lambda solution

auto alternative1 = [](int a, int b)
{
 return std::abs(a) < std::abs(b);
};

auto alternative2 = [](int a, int b) {
 return std::abs(a) < std::abs(b);
 };

auto alternative3 = []
 (int a, int b)
 {
 return std::abs(a) < std::abs(b);
 };

...

● For a simple lambda like the one in the previous example C++ provides a
conversion to a function pointer. Hence you can pass a lambda to an
existing function that takes a function pointer

● This is known as lambda decay

Lambda decay

// in some header
using callback = void(int);
void set_callback(callback *cb);

// code that uses this header
void setup()
{
 set_callback([](int val)
 {
 std::cout << "callback with " << val << '\n';
 });
}

● Lambda decay calls a conversion function that returns a pointer to a
function that invokes the lambda (typically optimised away)

● Use of the pointer in a template is likely to prevent optimization

Lambda decay

void lambda_absolute_sort(std::vector<int> &v)
{
 using bin_func = bool(int,int);
 bin_func *abs_less = [](int a, int b)
 {
 return std::abs(a) < std::abs(b);
 };
 std::sort(v.begin(), v.end(), abs_less); // << Don't do this
}

● A lambda can refer to local variables in scope at the point of definition
● The local variables can be named in the lambda introducer

Lambda capture

struct type
{
 bool method(int value)
 {
 auto lambda = [value](int test)
 {
 return test < value;
 };
 return lambda(42);
 }
};

● A lambda can refer to local variables in scope at the point of definition
and can also refer to members of the enclosing class (if any)

● The local variables can be named in the lambda introducer
● Members of the enclosing class can be referred to if this is captured

Lambda capture

struct type
{
 int field;
 bool method(int value)
 {
 auto lambda = [value, this]()
 {
 return field < value;
 };
 return lambda();
 }
};

● Of course, it's never quite that simple.

● There is a choice with capturing variables between copying the object
and forming a reference to the object

● Use an '&' to form a reference

Lambda capture – by value or by reference?

void test(int value, int reference)
{
 auto lambda = [value, &reference]()
 {
 std::cout << value << ", " << reference << '\n';
 };
 ++value; ++reference;
 lambda();
}

test(10, 10) → 10, 11

● Some pseudo-code may help here

Lambda capture – by value or by reference?

void test(int value, int reference)
{
 class __anon
 {
 int __value;
 int& __reference;
 public:
 __anon(int value, int& reference)
 : __value(value), __reference(reference) {}
 void operator()() const
 {
 std::cout << __value << ", " << __reference << '\n';
 }
 };
 auto lambda = __anon(value, reference);
 ...

● When you use reference capture you need to think about the lifetime of
the captured object to avoid dangling references

Lambda capture by reference

auto make_adder(int value)
{
 return [&value](int n){ return n + value; };
}

int main()
{
 auto add_ten = make_adder(10);
 int result = add_ten(9);

 std::cout << "9 + 10 = " << result << '\n';
}
→ 9 + 10 = 18*

(*possibly; or 9, or -13319, or ...)

● A lambda can refer directly to global and block scope static variables and
static members of the containing class – note these are not captures:

What isn't a capture

int global = 1;

struct X {
 static int class_static;
 int method()
 {
 static int block_static = 2;

 auto l = []() {
 return global + block_static + class_static;
 };
 return l();
 }
};

● You can also define a default capture mode for a lambda, and this allows
you to implicitly capture variables.

● The options are “=” (for copy) and “&” (for reference)

● Any captures not using the default can be specified explicitly

● value is captured implicitly by value, and reference explicitly by ref

Default lambda capture

void test(int value, int reference)
{
 auto lambda = [=, &reference]()
 {
 std::cout << value << ", " << reference << '\n';
 };
}

● Use with care! It's can be quite easy to accidentally capture something
and end up with either two separate objects with the same name, or a
'dangling' reference to something that has gone out of scope

● There is also a confusion about member variables if you capture this
implicitly: members of the class are still accessed by reference

● (Capturing this implicitly, as shown here, is deprecated in C++20)

Default lambda capture

bool type::method(int value)
{
 auto lambda = [=]()
 {
 return field < value; // field (by ref), value (copy)
 };
 return lambda();
}

● Pseudo-code to help to show why members of the captured class are
accessed by reference

Default lambda capture

bool type::method(int value)
{
 class __anon {
 type *__this; // copy of the 'this' pointer
 int __value;
 public:
 auto operator()() const
 {
 return __this->field < __value;
 } lambda{this, value};
 ...
}

● Lambda functions are const by default; you can change this by adding
the mutable keyword

Modifying capture variables

int main()
{
 int counter = 0;
 auto lambda = [counter]() mutable
 {
 std::cout << ++counter << '\n';
 };

 Lambda(); // output: 1
 Lambda(); // output: 2
 std::cout << counter << '\n'; // local variable counter is still 0
}

● Warning: const is shallow (just like in regular classes) so variables
captured by reference can be modified even without the mutable
keyword

Modifying capture variables

int main()
{
 int counter = 0;
 auto lambda = [&counter]()
 {
 std::cout << ++counter << '\n';
 };

 Lambda(); // output: 1
 Lambda(); // output: 2
 std::cout << counter << '\n'; // counter is now 2
}

● The type of the lambda is unnamable - but not unusable

● You can't however create a different lambda object as the constructors
you would need are deleted

Can you cheat the anonymity?

int main()
{
 int counter = 0;
 auto lambda = [&counter]() {
 std::cout << ++counter << '\n';
 };

 int size = sizeof(lambda);
 std::cout << typeid(lambda).name() << '\n';
 decltype(lambda) l2 = lambda;
}

● Lambda syntax, which removes some of the scaffolding

● The lambda behaves very like an anonymous local class

● Capturing variables: by value or by reference

● Mutable lambdas

Recap ….

● C++14 added the ability to make the lambda function generic on the type
of the arguments, using auto

● This means we can make code using lambdas more generic (!)

Generic lambdas (since C++14)

template <typename T>
void lambda_absolute_sort(std::vector<T> &v)
{
 std::sort(v.begin(), v.end(), [](auto a, auto b)
 {
 return std::abs(a) < std::abs(b);
 });
}

● We can also, of course, use this to invoke the same lambda with different
argument types (hence the alternative name of polymorphic lambdas)

Generic lambdas (C++14)

void fred(int idx, double* ptr)
{
 auto increment = [](auto& v) { ++v; };
 increment(idx);
 increment(ptr);
}

● Note that, with both C++14 and C++17, this means you could create a
lambda with deduced argument types but you could not do the same for
a regular function

● However, support for using auto like this was added to C++20 as part of
adding concepts to the language

Generic lambdas (C++14) - aside

void increment(auto& v) { ++v; } // error in C++14/17

● The previous example is syntactic sugar for:

● except … you are not allowed template members of inner classes!

● This is one of the few places where a lambda is not just syntactic sugar

Generic lambdas (C++14)

void fred(int idx, double* ptr)
{
 class __anon
 {
 template <typename T>
 void operator()(T& v) const { ++v; };
 };
 auto increment = __anon();
 ...

● The previous example is syntactic sugar for:

● except … you are not allowed template members of inner classes!

● There are two papers, P1988 (“Allow templates in local classes”) and
P2044 (“Member Templates for Local Classes”) trying to fix this. A single
merged proposal (P2044) is going forward

Generic lambdas (C++14)

void fred(int idx, double value)
{
 class __anon
 {
 template <typename T>
 void operator()(T& v) const { ++v; };
 };
 auto increment = __anon();
 ...

● Sometimes it is useful to be able to initialise the capture variable from an
expression.

● The type of the variable is deduced from the type of the expression

Init capture (C++14)

int main()
{
 auto lambda = [counter = 0]() mutable
 {
 std::cout << ++counter << '\n';
 };

 lambda();
 lambda();
}

● Sometimes it is useful to be able to rename the capture variable.

Init capture (C++14)

int main()
{
 int value = ...;

 auto lambda = [counter = value]() mutable
 {
 std::cout << ++counter << '\n';
 };

 lambda();
 lambda();
}

● Init capture also allows you to explicitly capture a single field from the
containing class, rather than via this, and/or to move construct

● Here I've kept the same name for the captured variables – this is fine, at
least syntactically, just as it is in a constructor initializer list

Init capture (C++14)

bool type::method(std::string value)
{
 auto lambda = [field{field}, value{std::move(value)}]()
 {
 return field < value;
 };
 return lambda();
}

● In C++17 capture of *this was added; this captures a copy of the
current object (or a slice if a class hierarchy)

● This is useful when you wish to pass the lambda on and it will outlive the
current object. From the proposal paper, P0018:

*this copy capture (C++17)

// C++14, using init-capture
std::future spawn() {
 return std::async([=, tmp=*this]()->int { return tmp.value; });
}

// Can now be written as

std::future spawn() {
 return std::async([=, *this]()->int { return value; });
}

● Lambdas can be useful for complex variable initialisation to enable, for
instance, a variable to be declared const

● Can delta change later in the function?

● Do I always initialise delta?

Use case: delayed initialising

double delta;
if (high_precision) {
 double h1 = 1e-10;
 h1 = some_complex_calculation(h1, other_args);
 delta = h1;
} else if (something_else) {
 delta = 1e-8;
} else {
 delta = 1e-6;
}

● Lambdas can be useful for complex variable initialisation to enable, for
instance, a variable to be declared const

● delta is const so cannot change later in the function

● delta is always initialised (you get a warning about not returning a value)

Use case: delayed initialising

const double delta = [&]() {
 if (high_precision) {
 double h1 = 1e-10;
 return some_complex_calculation(h1, other_args);
 } else if (something_else) {
 return 1e-8;
 }
 return 1e-6;
} ();

● Lambdas can be useful during refactoring

● You've a large method in which you identify a block of code that performs a
single function

● This is traditionally a candidate for 'extract method'
● A lambda could be used as a more local alternative
● The name and the scope help partition the method

● A very similar sequence of operations may be repeated within a method,
you may be able to turn this into a lambda which is used repeatedly and
reduce the code duplication

● The body of the lambda is the commonality
● The arguments supplied to the lambda differentiate the uses

Use case: as a refactoring tool

● In previous versions of C++ there was an asymmetry between lambdas
and the regular operator() syntax:

● The usage is the same:

C++20: lambda and template arguments

auto lambda = [](auto x) { return x; }; // Ok

struct {
 template<typename T>
 auto operator()(T x) { return x; }
} functor;

double d = lambda(1.0);

int i = functor(1);

● In the current version of C++ you can now use auto in the regular
operator() syntax, so you can now write:

● Conversely, you can now use typename in the lambda syntax:

● There can be advantages in having the name T available

C++20: lambda and template arguments

struct {
 auto operator()(auto x) { return x; }
} functor;

auto lambda = []<typename T>(T x) { return x; };

● The changes also include being able to constrain arguments using
concepts, in the same way that regular functions can be

● As an example, a lambda with a “numeric” constraint:

● The last syntax allows more complex constraints to be expressed, such
as a constraint between two argument types

C++20: lambda and template arguments

auto square1 = [](numeric auto x) { return x * x; };

auto square2 = []<numeric T>(T x) { return x * x; };

auto square3 = []<typename T>(T x) requires numeric<T> {
 return x * x;
}

● Generic lambdas

● Init capture

● *this copy capture

● A couple of use cases

● Harmonisation of lambda and template arguments, and concepts

Recap ….

Performance

● Lambdas are very useful – but what's the cost?

● As the title of Chandler Carruth's 2019 CppCon presentation
provocatively puts it: “There are no Zero-cost Abstractions”

● While lambdas look simple there is a reasonable amount of 'supporting
machinery' being written by the compiler

● Fortunately there is little evidence that this impacts compilation time

● However, might we get “code bloat”?

Performance – code bloat

● Lambdas are classes and so can potentially introduce code bloat when
polymorphic and also when used inside templates

● Each instantation of f() will include a separate instantiation of the lambda, as it
is scoped within f(), even if all the 'T' arguments are the same

● This can be resolved, where it becomes a problem, using the technique
popularised by SCARY iterators (where the type of the iterator only depends on
some of the template arguments types and not all of them - N2911)

template<class T, class U, class V>
void f() {
 ...;
 [](T t) { ... }(t);
 ...;
}

Performance – code bloat

● The lambda in the previous example could be hoisted outside the
function, perhaps like this:

constexpr auto the_lambda = [](auto t) {
 ...
};

template<class T, class U, class V>
void f() {
 ...;
 the_lambda(t);
 ...;
}

Performance

● Lambdas are very useful – but what's the cost?

● As the title of Chandler Carruth's 2019 CppCon presentation
provocatively puts it: “There are no Zero-cost Abstractions”

● The additional cost at compile time appears to be relatively low

● But I'm sure most people are more concerned about runtime cost...

Performance

● Lambdas are very useful – but what's the cost?

● One hint is that you can add constexpr to a lambda*. So the compiler
must be able to deconstruct it at compile time.

● In C++20 you can also mark a lambda as consteval meaning it can only
be evaluated in an immediate context (and back-end likely never sees it)

● *If you don't mark the lambda constexpr the function call operator will be implicitly
constexpr anyway, if it happens to satisfy all the constexpr function requirements.

constexpr lambda

● Here is a simple example of a constexpr lambda.

template <int dims>

void function() {

 ...

 auto square = [](auto v) constexpr {

 return v * v;

 };

 double ret[square(dims)];

 ...

Performance

● In an unoptimised build you would expect to see the call to the lambda
operator() and so you will see a runtime cost. This is not a great
concern to most people.

● Optimisers in many cases will inline the whole lambda class and the calls
to its operator().

int raw_func(int val)
{
 return val * val;
}

int lambda_func(int val)
{
 auto sq = [val]() {
 return val * val;
 };

 int ret = sq();

 return ret;
}

Performance

● In an unoptimised build on x86_64

● raw_func:
● 4 instructions (msvc) or 7 (gcc and clang)

● lambda_func:
● 11 instructions (msvc) or 13 (gcc and clang)
● includes 2 (msvc) or 1 (gcc and clang) methods calls
● the methods total 14 (msvc) or 10 (gcc amd clang) instructions

● In a minimally optimised build (-O1) on x86_64

● raw_func and lambda_func are identical

● Both are 3 instructions in all three compilers

Performance

● In less trivial source code you would need to confirm whether the
compiler does indeed optimise away the lambda

● As you build up more complex code, for example passing lambdas as
arguments to another function templates, you will eventually hit the limit
of the optimiser. However, you may be surprised how far you can get.

Performance

● Where a lambda is not totally erased, one thing to bear in mind is that
the implicit class layout of the lambda class is decided early in
compilation, and can't be reduced later on during optimisation even if the
compiler is able to eliminate some of the captured variables

● It's not clear (to me anyway) how often this is a significant problem

● As always, I suggest getting the code working solidly first and worrying
about this issue later if it is identified by things such as profiling

Down with ()!

● When there are no arguments to the lambda the () can be omitted:

 auto sq = [val] () { return val * val; };
● can also be written as:

 auto sq = [val] { return val * val; };
● Of course, some coding styles prefer retaining the ().

● Unfortunately the () is currently required if you wish to use mutable

 auto seq = [val = 0] () mutable { return ++val; };
● This will be fixed in C++23 (See P1102R2, approved 2021-02-22)

 auto seq = [val = 0] mutable { return ++val; };
● This may not change your world greatly

Possible future shortening?

● Lambdas in C++ require more syntax than in some other languages

● There is disagreement about how much of this is necessary
● C++ has value and reference semantics, and const
● Substitution failure is not an error (SFINAE) imposes some constraints
● C++ syntax makes parsing complicated

● There have been attempts to allow abbreviated syntax. In particular,
some would like to remove the necessity of providing the 'scaffolding' of
a function call (braces and a return statement). For example, P0583R2
(2017) proposed the syntax => expression. While this paper was rejected
by EWG they did not reject the principle of exploring shorter syntax in the
future.

Conclusion

● Lambdas are a very useful feature of C++

● They are primarily “syntactic sugar” to remove supporting code

● Capture by value or by reference as appropriate, and consider lifetime

● Prefer to avoid implicit capture

● Using a named variable for the lambda expression can aid readability

	Slide 1
	Title
	Intro
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66

