A PRACTICAL APPROACHTO
ERROR HANDLING

ARNO SCHODL

think-cel| "

A Practical Approach to Error Handling

Introduction think-cel| "

e Errors can happen anywhere

e Want reliable program

e No time to write error handling

What do we do?

2/63

Options for Error Handling think-cell*

file f("file.txt");

3/63

Options for Error Handling think-cell*

file f("file.txt");

What happens if the file does not exist?

4/63

Options for Error Handling think-cell*

file f("file.txt");

What happens if the file does not exist?

e return value

file f;
bool bOk=f.open("file.txt");
if(!'bok) {...}

o not for ctor

5/63

Options for Error Handling think-cell*

file f("file.txt");

What happens if the file does not exist?

e return value

file f;
bool bOk=f.open("file.txt");
if(!'bok) {...}

o not for ctor

e out parameter

bool bOk;
file f("text.txt",b0Ok);
if('bOk) {...}

e clutter code with checks

o can forget check - [[nodiscard]] for return values

6/63

Options for Error Handling (2) think-cell*

e status: bad flag on first failure

o single control path

o good if checking at the very end is good enough

o writing a file - ok

o reading a file - maybe not

o default for C++ iostreams

7/63

Options for Error Handling (2) think-cell*

e status: bad flag on first failure

o single control path
o good if checking at the very end is good enough
o writing a file - ok

o reading a file - maybe not
o default for C++ iostreams

e monad
o goal: same code path for success and error case
o like std::variant<result, error> + utilities
o PO323R1 std: :expected

8/63

Options for Error Handling: Exception think-cell ™

e exception

9/63

Options for Error Handling: Exception think-cell ™

e exception
o Catch exception objects always by reference
o Slicing

o Copying of exception may throw -> std::terminate

struct A {...};
struct B : A {...};

try {

throw B();
} catch(A a) { // B gets sliced and copied into a

throw; // throws original B

};

10/ 63

Options for Error Handling: Exception think-cell ™

e exception
o Catch exception objects always by reference
o Slicing

o Copying of exception may throw -> std::terminate

struct A {...};
struct B : A {...};

try {

throw B();
} catch(A const& a) { // no slicing or copying

throw; // throws original B

};

11/63

Options for Error Handling: Exception (2) think-cell ™

e work like multi-level return/goto

e add invisible code paths
o one reason some code bases do not allow exceptions

auto inc(int i)—>int { // throw(char constx)
1f(3==1i) throw "Hello";
return 1i+1;

}

auto main()—>int {
try {
int n=3;
n=inc(n); // throw(char constx)
} catch(char constx psz) {
std: :cout << psz;
}

return 0;

12/63

Options for Error Handling: Exception (2) think-cell ™

e work like multi-level return/goto

e add invisible code paths
o one reason some code bases do not allow exceptions

auto inc(int i)—>int { // throw(char constx)
1f(3==1i) throw "Hello";
return 1i+1;

}

auto main()—>int {
try {
int n=3;
n=inc(n); // throw(char constx)
} catch(char constx psz) {
std: :cout << psz;
}

return 0;

13/63

Options for Error Handling: Exception (3) think-cell ™

auto inc(int i, char constx & pszException)—>int {

{
if(3==1i) {
pszException="Hello";
goto exception;
}
return i+1;
}
exception:
return 0;

¥

14 /63

Options for Error Handling: Exception (4) think-cell ™

auto main()->int {
char constx pszException=nullptr;

{
int n=3;
n=inc(n,pszException);
if(pszException) goto exception;
return 0,

+

exception:

{
std::cout << pszException;
return 0;

s

15/63

Options for Error Handling: Exception (4) think-cell ™

auto main()->int {
char constx pszException=nullptr;

{

int n=3;
n=inc(n,pszException);
if(pszException) goto exception;

return 0,
+
exception:
{
std::cout << pszException;
return 0,
s

¥

Stop whining! Of course must write exception-safe code!

16 /63

Exception Safety Guarantees think-cell ™

(not really exception-specific)

Part of function specification

e Never Fails

17 /63

Exception Safety Guarantees think-cell ™

(not really exception-specific)

Part of function specification
e Never Fails

e Strong Exception Guarantee:

o may fail (throw), but will restore program state to what it was before: transactional
o possible and desirable in library functions

o very hard in application code
o usually too many state changes

18/ 63

Exception Safety Guarantees think-cell ™

(not really exception-specific)

Part of function specification
e Never Fails

e Strong Exception Guarantee:

o may fail (throw), but will restore program state to what it was before: transactional
o possible and desirable in library functions

o very hard in application code
o usually too many state changes

e Basic Exception Guarantee:

o may fail (throw), but will restore program to some valid state

19/63

Basic Exception Safety Guarantee think-cell ™

Customer: "Hello, is this Microsoft Word support? | was writing a book. Suddenly, Word deleted everything.”

Microsoft: "Oh, that's ok. Word only provides a basic exception guarantee.”

Customer: "Oh, alright then, thank you very much and have a good day!"

20/ 63

The Challenge think-cell*

e Error handling is a lot of effort
o in development
o must be paranoid

o create a lot of extra code

o in testing
o many codepaths to test

o if you don't test them, they won't work

21/63

The Challenge think-cell*

e Error handling is a lot of effort
o in development
o must be paranoid

o create a lot of extra code

o in testing
o many codepaths to test

o if you don't test them, they won't work

e Little customer gain

22 /63

The Challenge think-cell*

e Error handling is a lot of effort
o in development
o must be paranoid

o create a lot of extra code

o in testing
o many codepaths to test

o if you don't test them, they won't work

e Little customer gain

e So what do we do?

23/63

So what do we do? think-cell "

e Check everything
o check every API call
o one wrapper per error reporting method
o Windows: GetLastError(), HRESULT

o Unix: errno

o assert aggressively
o asserts stay in Release

o noexcept if caller does not handle exception
o std::terminate, but unexpected exceptions will terminate anyway

o install handler with std::set_terminate for checking

24 /63

So what do we do? think-cell "

e Check everything
o check every API call
o one wrapper per error reporting method
o Windows: GetLastError(), HRESULT

o Unix: errno

o assert aggressively
o asserts stay in Release

o noexcept if caller does not handle exception
o std::terminate, but unexpected exceptions will terminate anyway

o install handler with std::set_terminate for checking

e Assume everything works

25/ 63

So what do we do? think-cell "

e Check everything
o check every API call
o one wrapper per error reporting method
o Windows: GetLastError(), HRESULT

o Unix: errno

o assert aggressively
o asserts stay in Release

o noexcept if caller does not handle exception
o std::terminate, but unexpected exceptions will terminate anyway

o install handler with std::set_terminate for checking

e Assume everything works

e Goal:
o Kkeep set of code paths small

o keep set of program states small

26 /63

think-cel| "

e prio 1: collect as much information as possible
o client: send report with memory dump home

o server: halt thread and notify operator

27/ 63

think-cel| "

e prio 1: collect as much information as possible
o client: send report with memory dump home

o server: halt thread and notify operator

® prio 2: carry on somehow
o if check was critical, program behavior now undefined: no further reports

o do not terminate when assertion fails
o assertscanbe wrong, too

o if you need safety (nuclear powerplant, etc.), add at higher level
o example: server stops processing request categories with too many pending requests

28 /63

Next: Homework think-cell "

e Reproduce the error at home

29/63

Next: Homework think-cell "

e Reproduce the error at home

e Add handling code only for errors that are reproducible
o QOtherwise you write
o error handlers that are never used

o error handlers that are never tested, do the wrong thing

30/63

Next: Homework think-cell "

e Reproduce the error at home

e Add handling code only for errors that are reproducible

o QOtherwise you write
o error handlers that are never used

o error handlers that are never tested, do the wrong thing

e 5% of handlers handle 95% of errors
o Write high quality error handlers
o Bad: show message box

o Good: fix the problem

31/63

Categories of Errors: Critical think-cell ™

e nullptr access

e API calls not expected to fail
o not with this error code

e assertions

32/63

Categories of Errors: Critical think-cell ™

nullptr access

API calls not expected to fail
o not with this error code

assertions

"never happens”
o no handler

o |ike C++ undefined behavior: program is invalid

33/63

Categories of Errors: Critical think-cell ™

e nullptr access

e API calls not expected to fail
o not with this error code

e assertions

e "never happens”
o no handler

o |ike C++ undefined behavior: program is invalid

e Client: send report, disable future reports

o Server: notify operator, enter infinite loop (wait for debugger)
o Notify user only if false alarm unlikely

o asserts may be wrong

34/63

Categories of Errors: Untested think-cell ™

auto RegisterFooHook(Foo foo) {
errcode_t err=RegisterFoo(foo);
if(err==SUCCESS) KeepTrackOfFoo(foo);
return err;

}

e |If err indicates error, does nothing, no error handling needed

35/63

Categories of Errors: Untested think-cell ™

auto RegisterFooHook(Foo foo) {
errcode_t err=RegisterFoo(foo);
if(err==SUCCESS) KeepTrackOfFoo(foo);
return err;

}

e |If err indicates error, does nothing, no error handling needed
e But no reproduction for RegisterFoo failing

o Effect on rest of the program?

36 /63

Categories of Errors: Untested think-cell ™

auto RegisterFooHook(Foo foo) {
errcode_t err=RegisterFoo(foo);
if(err==SUCCESS) KeepTrackOfFoo(foo);
return err;

If err indicates error, does nothing, no error handling needed

But no reproduction for RegisterFoo failing

Effect on rest of the program?

Client: send report, throttle future reports

o in Debug: notify developer

Server: send report

37/63

Categories of Errors: Bad User Experience think-cell ™

e 3rd party bug
o sometimes PowerPoint makes shape disappear

e Reproducible, supported and tested

38/63

Categories of Errors: Bad User Experience think-cell ™

e 3rd party bug

o sometimes PowerPoint makes shape disappear
e Reproducible, supported and tested

e Not nice, users may complain

39/63

Categories of Errors: Bad User Experience think-cell ™

3rd party bug
o sometimes PowerPoint makes shape disappear

Reproducible, supported and tested

Not nice, users may complain

Client/Server: only log, no report
o to explain behavior if user calls

40/ 63

Categories of Errors: Indication of broken think-cell ™

environment

e Other add-in hooked same function as us

e OS reports space as default decimal separator
o both fully supported by us

41/ 63

Categories of Errors: Indication of broken think-cell ™

environment

e Other add-in hooked same function as us

e OS reports space as default decimal separator
o both fully supported by us

e Could still be cause of a problem

42 /63

Categories of Errors: Indication of broken think-cell ™

environment

Other add-in hooked same function as us

OS reports space as default decimal separator
o both fully supported by us

Could still be cause of a problem

Client during remote support: notify support engineer
o maybe reason for support call

43/63

Error Analysis think-cell*

e Reports with memory dumps sent to server
o automatically

o if user opted out, user can send prepared email

44 /63

Error Analysis think-cell*

e Reports with memory dumps sent to server
o automatically

o if user opted out, user can send prepared email

e Error database
o memory dumps opened in debugger
o errors automatically categorized by file/line

o details and memory dump accessible to devs

45/ 63

Error Analysis think-cell*

e Reports with memory dumps sent to server
o automatically

o if user opted out, user can send prepared email
e Error database

o memory dumps opened in debugger

o errors automatically categorized by file/line

o details and memory dump accessible to devs

e Devs can mark errors as fixed
o trigger automatic update

o or send automatic email - magic!

46 /63

Cause Analysis think-cell ™

e Problem often related to customer environment

e Otherwise in-house testing would have found it

47 / 63

Cause Analysis think-cell ™

Problem often related to customer environment

Otherwise in-house testing would have found it

Memory dumps have list of loaded modules (DLLs, dylibs)

Can we identify module causing error?
o or versions of module?

48 /63

Cause Analysis think-cell ™

Problem often related to customer environment

Otherwise in-house testing would have found it

Memory dumps have list of loaded modules (DLLs, dylibs)

Can we identify module causing error?
o or versions of module?

Report database with all reports

e 1 means has particular problem

e 0 means has different problem

11001010110 (6occurrencesamong 12 reports)

49 /63

Cause Analysis think-cell ™

Problem often related to customer environment

Otherwise in-house testing would have found it

Memory dumps have list of loaded modules (DLLs, dylibs)

Can we identify module causing error?
o or versions of module?

Report database with all reports

e 1 means has particular problem

e 0 means has different problem
11001010110 (6occurrencesamong 12 reports)
X — X — — X X — X — x — Module A (with: 3/6, without: 3/6)

-~ X X — X X — X X — — — Module B (with: 4/6, without: 2/6)

50/ 63

Cause Analysis think-cell ™

Problem often related to customer environment

Otherwise in-house testing would have found it

Memory dumps have list of loaded modules (DLLs, dylibs)

Can we identify module causing error?
o or versions of module?

Report database with all reports

e 1 means has particular problem

e 0 means has different problem

11001010110 (6occurrencesamong 12 reports)
X — X — - X X - X — X — Module A (with: 3/6, without: 3/6)
- X X — X X — X X — — — Module B (with: 4/6, without: 2/6)

e Module B responsible? Or chance?

51/63

Minimum Description Length think-cell "

e Compressing

211001010110 (6/12
e Knowing if reports contain module B helps compressing?

-~ X X — X X — X X — — — Module B (with: 4/6, without: 2/6)

52/63

Minimum Description Length think-cell "

e Compressing

211001010110 (6/12
e Knowing if reports contain module B helps compressing?
-~ X X — X X — X X — — — Module B (with: 4/6, without: 2/6)

e perfect arithmetic compression (Laplacian estimator)
o estimates probability p that report has particular problem

e all pin [0,1] equally likely
e no. bits to compress N bits with K ones:
log [(N+1) * (N over K)]

* no. bits becomes smaller if p is closer to O or 1:
o 12 bits with 6 ones: 13.55 bits

o 12 bits with no ones: 3.70 bits

53/63

Compressing Reports think-cell ™

201001010110 6/12
X — X — =X X — X — x — Module A (with: 3/6, without: 3/6)
- X X — X X — X X — — — Module B (with: 4/6, without: 2/6)

54 /63

Compressing Reports think-cell ™

201001010110 6/12
X — X — =X X — X — x — Module A (with: 3/6, without: 3/6)
- X X — X X — X X — — — Module B (with: 4/6, without: 2/6)

e Compressing all reports together (6/12): 13.55 bits

55/63

Compressing Reports think-cell*

201001010110 (6/12

X — X — =X X — X — x — Module A (with: 3/6, without: 3/6)
- X X — X X — X X — — — Module B (with: 4/6, without: 2/6)

e Compressing all reports together (6/12): 13.55 bits

e Make use of module A
o choose module A over B: 1 bit

o compressing all reports with A (3/6): 713 bits
o compressing all reports without A (3/6): 713 bits
o total: 15.26 bits - module A has nothing to do with problem

56 /63

Compressing Reports think-cell*

201001010110 (6/12

X — X — =X X — X — x — Module A (with: 3/6, without: 3/6)
- X X — X X — X X — — — Module B (with: 4/6, without: 2/6)

e Compressing all reports together (6/12): 13.55 bits

e Make use of module B
o choose module B over A: 1 bit

o compressing all reports with B (4/6): 6.71 bits
o compressing all reports without B (2/6): 6.71 bits

o total: 14.43 bits - still not relevant enough

57 /63

Compressing Reports think-cell*

201001010110 (6/12

X — X — =X X — X — x — Module A (with: 3/6, without: 3/6)
- X X — X X — X X — — — Module B (with: 4/6, without: 2/6)
-~ X X — X X — X — x — — Module C (with: 5/6, without: 1/6)

e Compressing all reports together (6/12): 13.55 bits

e Make use of module C
o choose module C over A and B: log2(3) = 1.58 bits

o compressing all reports with C (5/6): 5.39 bits
o compressing all reports without C (1/6): 5.39 bits

o total: 12.37 bits - relevant!

58 /63

Compressing Reports think-cell*

201001010110 (6/12

X — X — =X X — X — x — Module A (with: 3/6, without: 3/6)
- X X — X X — X X — — — Module B (with: 4/6, without: 2/6)
-~ X X — X X — X — x — — Module C (with: 5/6, without: 1/6)

e Compressing all reports together (6/12): 13.55 bits

Make use of module C
o choose module C over A and B: log2(3) = 1.58 bits

o compressing all reports with C (5/6): 5.39 bits
o compressing all reports without C (1/6): 5.39 bits

o total: 12.37 bits - relevant!

More hypotheses make chance more likely

Also works if certain module fixes problem

Extend to module versions

59/63

C++20 Contracts think-cell "

e new language feature

e assert on steroids

e declarative function pre- and postconditions

void push(int x, queue& q)
[[expects: 'qg.full()]]
[[ensures: !'q.empty()]]

{

tiéssert: q.is_valid()1]

i..

60/ 63

C++20 Contracts (2) think-cell "

e \When check contract?

o debug
o release

o never
e What to do if contract violated?

o terminate
o carry on

o report (what to whom?)

61/ 63

C++20 Contracts (2) think-cell "

When check contract?

o debug
o release

© never

What to do if contract violated?

o terminate
o carry on

o report (what to whom?)

removed from C++20 at last moment

discussion will continue for C++23

62 /63

THANK YOU! think-cell "

for attending.

And yes, we are recruiting:

hr@think-cell. com

