
1

Abstract: The C++ language has a reputation of being a very powerful, fast,
and expressive, but hard to learn language for beginners. My opinion though,
is that we can always be improving our learning materials for
beginners--that's why I teach the C++ programming language one pixel at a
time. What does a pixel have to do with the language? It's not so much the
graphics (though that is a motivating domain to use the C++ language), but
in the ability for beginning programmers to visualize and see what they are
programming. In this talk I reflect on how to not just teach C++, but how to
motivate, inspire, and get beginners to build cool graphical projects while
learning the Modern C++ language.

2

Abstract: The C++ language has a reputation of being a very powerful, fast,
and expressive, but hard to learn language for beginners. My opinion though,
is that we can always be improving our learning materials for
beginners--that's why I teach the C++ programming language one pixel at a
time. What does a pixel have to do with the language? It's not so much the
graphics (though that is a motivating domain to use the C++ language), but
in the ability for beginning programmers to visualize and see what they are
programming. In this talk I reflect on how to not just teach C++, but how to
motivate, inspire, and get beginners to build cool graphical projects while
learning the Modern C++ language.

3

If I’m successful, both you and I will have a system for
course construction that’s effective for our students.

(At the very least, you’ll have some neat assignment
ideas to build off of)

Abstract: The C++ language has a reputation of being a very powerful, fast,
and expressive, but hard to learn language for beginners. My opinion though,
is that we can always be improving our learning materials for
beginners--that's why I teach the C++ programming language one pixel at a
time. What does a pixel have to do with the language? It's not so much the
graphics (though that is a motivating domain to use the C++ language), but
in the ability for beginning programmers to visualize and see what they are
programming. In this talk I reflect on how to not just teach C++, but how to
motivate, inspire, and get beginners to build cool graphical projects while
learning the Modern C++ language.

4

For folks attending online, please feel free to use the
Q&A, I’ll answer questions at the end.

For folks in the room, ask questions at any time, and
I’ll repeat the question.

Who Am I?
by Mike Shah

● Assistant Teaching Professor at Northeastern University in Boston,
Massachusetts.

○ I teach courses in computer systems, computer graphics, and
game engine development.

○ My research in program analysis is related to performance
building static/dynamic analysis and software visualization
tools.

● I do consulting and technical training on modern C++,
Concurrency, OpenGL, and Vulkan projects

○ (Usually graphics or games related)
● I like teaching, guitar, running, weight training, and anything in

computer science under the domain of computer graphics,
visualization, concurrency, and parallelism.

● Contact information and more on: www.mshah.io

5

http://www.mshah.io

6

April 7, 2022 | 14:00 - 15:30
Mike Shah, Ph.D. | @MichaelShah

www.youtube.com/c/MikeShah
www.mshah.io

https://twitter.com/MichaelShah
http://www.youtube.com/c/MikeShah
http://www.mshah.io

HOW I TEACH MODERN C++
ONE PIXEL AT A TIME

7

This talk is about
teaching C++ in a
semester long
University Course

April 7, 2022 | 14:00 - 15:30
Mike Shah, Ph.D. | @MichaelShah

www.youtube.com/c/MikeShah
www.mshah.io

https://twitter.com/MichaelShah
http://www.youtube.com/c/MikeShah
http://www.mshah.io

Before we begin...a video

8

"Turbo Encabulator" the Original (1/3)

9

https://www.youtube.com/watch?v=Ac7G7xOG2Ag

"Turbo Encabulator" the Original (2/3)

This should not be your style of teaching...almost anything*

10
*This video is of course a comedy

https://www.youtube.com/watch?v=Ac7G7xOG2Ag

"Turbo Encabulator" the Original (3/3)

This should not be your style of teaching...almost anything*

11
*This video is of course a comedy

So, let’s set the stage
here for teaching

https://www.youtube.com/watch?v=Ac7G7xOG2Ag

Some Context - Who is being taught?

My Pre-Course Survey to understand my students
(Pro Tip: Always survey your students)

12

My Programming in C++ Course

● This is a course that I teach to students
usually in their 2nd year at university

○ It is a semester long course
○ Caveat: This particular iteration is crammed

into a 7 week summer session moving twice
as fast

● Most students have taken at least 2
semesters of programming prior to
taking this course

○ Usually with experience in Python, Java or a
functional language like Scheme

○ Most students have not seen manual
memory management (malloc/free or
new/delete)

○ A good subset of students are part of data
science or game programming based
degrees

13

My Course - Pre-Course Survey Data (1/6)

14

My Course - Pre-Course Survey Data (2/6)

15

My Course - Pre-Course Survey Data (3/6)

16Not very comfortable Very comfortable!Average

My Course - Pre-Course Survey Data (4/6)

17Not very comfortable Very comfortable!Average

My Course - Pre-Course Survey Data (5/6)

18https://www.slideshare.net/olvemaudal/deep-c/255

I’d say everyone is being brutally honest!

https://www.slideshare.net/olvemaudal/deep-c/255

My Course - Pre-Course Survey Data (6/6)

19Not very comfortable Very comfortable!Average

So here’s my audience. Folks
who know some programming,
but haven’t been exposed to
C++

Not very comfortable

20

April 7, 2022 | 14:00 - 15:30
Mike Shah, Ph.D. | @MichaelShah

www.youtube.com/c/MikeShah
www.mshah.io

Now, I know how I
teach. So I hope that
will be interesting, but...

HOW I TEACH MODERN C++
ONE PIXEL AT A TIME

https://twitter.com/MichaelShah
http://www.youtube.com/c/MikeShah
http://www.mshah.io

21

April 7, 2022 | 14:00 - 15:30
Mike Shah, Ph.D. | @MichaelShah

www.youtube.com/c/MikeShah
www.mshah.io

Now, I know how I
teach. So I hope that
will be interesting, but...
I want you to think
about how you teach

HOW I TEACH MODERN C++
ONE PIXEL AT A TIME

https://twitter.com/MichaelShah
http://www.youtube.com/c/MikeShah
http://www.mshah.io

HOW [YOU MIGHT] TEACH MODERN
C++ [NEXT] TIME

22

April 7, 2022 | 14:00 - 15:30
Mike Shah, Ph.D. | @MichaelShah

www.youtube.com/c/MikeShah
www.mshah.io

Now, I know how I
teach. So I hope that
will be interesting, but...
I want you to think
about how you teach

https://twitter.com/MichaelShah
http://www.youtube.com/c/MikeShah
http://www.mshah.io

HOW [YOU MIGHT] TEACH MODERN
C++ [NEXT] TIME

23

April 7, 2022 | 14:00 - 15:30
Mike Shah, Ph.D. | @MichaelShah

www.youtube.com/c/MikeShah
www.mshah.io

The talk will be more
applicable if you reflect on
your teaching--whether a
teacher, professor, C++
trainer, manager, youtuber,
etc.

https://twitter.com/MichaelShah
http://www.youtube.com/c/MikeShah
http://www.mshah.io

Some Homework for the Audience

(Whether present, virtual, or in the future!)

24

(Take a screenshot or take a few notes -- we’ll revisit this list today)

❏ Will you (or are you currently) teaching with a common theme?
❏ Are you willing to sacrifice 20% of your course so students have a

chance to understand 99.9% of the remaining 80% of your course?
❏ Do you discuss debugging early in the course?
❏ Will you teach C++ without telling them the language is scary, and

they must also know the ‘C’ language?
❏ Your other notes:

__

Homework (Yes...I am a professor)

25

Homework (Yes...I am a professor)

(Take a screenshot or take a few notes -- we’ll revisit this list today)

❏ Will you (or are you currently) teaching with a common theme?
❏ Are you willing to sacrifice 20% of your course so students have a

chance to understand 99.9% of the remaining 80% of your course?
❏ Do you discuss debugging early in the course?
❏ Will you teach C++ without telling them the language is scary, and

they must also know the ‘C’ language?
❏ Your other notes:

__

26

Let’s begin!

Why do we need to think about how we teach
C++?

27

(In my opinion) C++ Greatest Strength for a learner (1/2)

28

● The #1 strength of C++ is that as a
language it scales with you as you learn
more computer science.

○ You can use it as a simple procedural
language to start

○ You can use it as you learn different
paradigms (i.e. functional, object-oriented,
etc.) or different design patterns

○ You can leverage the language to work with
the system as you learn about computer
architecture

○ You can use C++ with large and small
software

○ You learn over time the pros/cons of C++’s
design which helps you understand other
language design decisions

○ ...and many more skills you can scale into
(parallel programming, networking, etc.)

(In my opinion) C++ Greatest Strength for a learner (2/2)

29

● The #1 strength of C++ is that as a
language it scales with you as you learn
more computer science.

○ You can use it as a simple procedural
language to start

○ You can use it as you learn different
paradigms (i.e. functional, object-oriented,
etc.) or different design patterns

○ You can leverage the language to work with
the system as you learn about computer
architecture

○ You can use C++ with large and small
software

○ You learn over time the pros/cons of C++’s
design which helps you understand other
language design decisions

○ ...and many more skills you can scale into
(parallel programming, networking, etc.)

Look at all of this cool stuff
to learn!

(In my opinion) C++ Greatest Weakness for a learner

30

● “Hmm, the language is so
big--I’m overwhelmed! Where
do I begin?”

(In my opinion) C++ Greatest Weakness for a learner

31

● “Hmm, I’m overwhelmed.
Where do I begin?”

(In my opinion) C++ Greatest Weakness for a learner

32

● “Hmm, I’m overwhelmed.
Where do I begin?”

(Bringing back the original question (1/2))

33

● Why do we need to think
about how we teach C++?

^ This is our job as educators
(whether a professor, teacher,
trainer, colleague giving a tech
talk, etc.) to guide our learners
on a journey for learning how
to use a programming
language to solve problems.

(Bringing back the original question (2/2))

34

● Why do we need to think
about how we teach C++?

^ This is our job as educators
(whether a professor, teacher,
trainer, colleague giving a tech
talk, etc.) to guide our learners
on a journey for learning how
to use a programming
language to solve problems.

https://www.fluentcpp.com/getthemap/
(Just for fun, a map of C++ STL Algorithms)

A good course, seminar,
tech talk, etc. should
guide the learner.

Our job, is to provide a
‘map’ that can be easily
read and followed.

https://www.fluentcpp.com/getthemap/

[Course Construction]

Where do we start?
What will students build?
What skills will students learn?

35

Here’s where I start (1/3)

36

● First, I need a strong course mantra or theme
○ This gives you something to center a whole course around

■ Whenever I have a decision to make, I ask myself if it fits the course theme.
■ This constraint--helps me, and it helps keep students in the same domain

○ (Some folks will start with a series of learning objectives, but I think the theme
comes first, then the learning objectives)

● So as you know, my theme is....

Here’s where I start (2/3)

37

● First, I need a strong course mantra or theme
○ This gives you something to center a whole course around

■ Whenever I have a decision to make, I ask myself if it fits the course theme.
■ This constraint--helps me, and it helps keep students in the same domain

○ (Some folks will start with a series of learning objectives, but I think the theme
comes first, then the learning objectives)

● So as you know, my theme is....

Here’s where I start (3/3)

38

● First, I need a strong course mantra or theme
○ This gives you something to center a whole course around

■ Whenever I have a decision to make, I ask myself if it fits the course theme.
■ This constraint--helps me, and it helps keep students in the same domain

○ (Some folks will start with a series of learning objectives, but I think the theme
comes first, then the learning objectives)

● So as you know, my theme is....

Backstory

39

● Now, I had this idea to do a course
with this theme for some time.

○ 1.) Could possibly be cool to students
■ (I’ll get to why ‘cool’ and ‘inspiration’

are important to students)
○ 2.) Could help students better be able to

think and *see* a real world problem
they are solving

■ (The assignments could involve an
algorithmic part, and have them
solve real problems)

● A single article inspired this idea of
focusing on ‘pixel effects’

Here’s the article! (1/2)

40

● The original
inspiration for an
early assignment
and the theme of
this course

● Recreating the
DOOM fire effect
from the opening
scene.

● And I kept seeing
this effect
implemented
over and over
again on twitter!

https://fabiensanglard.net/doom_fire_psx/

https://fabiensanglard.net/doom_fire_psx/

Here’s the article! (2/2)

41

● The original
inspiration for an
early assignment
and the theme of
this course

● Recreating the
DOOM fire effect
from the opening
scene.

● And I kept seeing
this effect
implemented
over and over
again on twitter!

○ (And added
my own)

https://fabiensanglard.net/doom_fire_psx/

https://fabiensanglard.net/doom_fire_psx/

Let there be fire!

42

● Now from looking at the actual
effect, it is really only a few lines of
code.

○ A small enough problem for students to
see the core idea in JavaScript

○ But I could see how to implement this,
students would have to understand:

■ 1D-arrays and/or 2D-arrays
■ iteration
■ function calls
■ and a color palette (A 1D-array, but

storing color data in a lookup table)

https://fabiensanglard.net/doom_fire_psx/

https://fabiensanglard.net/doom_fire_psx/

● So I have a theme for my course-- graphical programs manipulating
pixels

○ Students will write graphical programs to help them ‘see’ as they learn
○ Algorithmically interesting problems could be solved.
○ Theme feels inclusive (interesting to a wide variety of students)

43

● So I have a theme for my course-- graphical programs manipulating
pixels

○ Students will write graphical programs to help them ‘see’ as they learn
○ Algorithmically interesting problems could be solved.
○ Theme feels inclusive (potentially interesting to a wide variety of students)

44

Let’s do a quick check on the
‘homework’ I gave everyone (myself
included)

45

● So I have a theme for my course-- graphical programs manipulating
pixels

○ Students will write graphical programs to help them ‘see’ as they learn
○ Algorithmically interesting problems could be solved.
○ Theme feels inclusive (potentially interesting to a wide variety of students)

● So I have a theme for my course-- graphical programs manipulating
pixels

○ Students will write graphical programs to help them ‘see’ as they learn
○ Algorithmically interesting problems could be solved.
○ Theme feels inclusive (potentially interesting to a wide variety of students)

46

● So I have a theme for my course-- graphical programs manipulating
pixels

○ Students will write graphical programs to help them ‘see’ as they learn
○ Algorithmically interesting problems could be solved.
○ Theme feels inclusive (potentially interesting to a wide variety of students)

● Okay...what is the rest of the course going to look like?
47

[Course Construction]

Where do we start?
What will students build?
What skills will students learn?

48

What will students build? (1/2)

49

● So I have at least one ‘neat’ pixel effect, but what about the rest of
the course?

○ Maybe I could search some of the contents of C++ books table of contents?
■ Maybe I could retrofit some of the exercises to involve graphics.
■ But that doesn’t seem quite right--so I’m focusing on what students will

build--cool 2D pixel graphics effects.
● Again, guided my my ‘mantra’ or ‘theme’

What will students build? (2/2)

50

● So I have at least one ‘neat’ pixel effect, but what about the rest of
the course?

○ Maybe I could search some of the contents of C++ books table of contents?
■ Maybe I could retrofit some of the exercises to involve graphics.
■ But that doesn’t seem quite right--so I’m focusing on what students will

build--cool 2D pixel graphics effects.
● Again, guided my my ‘mantra’ or ‘theme’

So now, began my search for cool 2D effects (beyond
the DOOM Fire) that would inspire and engage students
while learning C++. Some inspired from my real world

experience, others examples that look neat.

Edge detection and other Image Processing Techniques

● So it started simple--image
processing

○ Convert images to grayscale
○ Create filters
○ Edge detection
○ Blurring of images
○ (And eventually do these

with std::thread)
● And I liked that students

could verify the
output--keep their
confidence up knowing
when they’ve reached a
solution!

51
https://miro.medium.com/max/1149/1*I_GeYmEhSEBWTbf_kgzrgQ.png

https://miro.medium.com/max/1149/1*I_GeYmEhSEBWTbf_kgzrgQ.png

Procedural Textures and Noise

● If students are going to do image
processing, then they should learn
about ‘noise’ functions

○ Force students to further think
algorithmically

○ Procedural textures are also very
creative and may appeal to students
with combined degrees in art taking the
class.

52
https://www.researchgate.net/profile/Jp-Lewis-2/publication/216813586/figure/fig2/AS:305785180573702@1449916276630/Procedural-texture-creation-The-marble-vase-left-is-obtained-from-two-components-A_Q320.jpg

https://www.researchgate.net/profile/Jp-Lewis-2/publication/216813586/figure/fig2/AS:305785180573702@1449916276630/Procedural-texture-creation-The-marble-vase-left-is-obtained-from-two-components-A_Q320.jpg

8 Bit & '8 Bitish' Graphics-Outside the Box

53

● Mark Ferrari’s Game
Developer Conference
2016 Talk [link]

○ Various 8 bit graphics tricks
○ Palette Shifting shown on

the right
■ (That’s one image--no

frames of animation,
just pixels in the
palette rotating))

● Again--another inspiring,
and self-contained
example of doing a cool
2D trick.

○ Something students could
show off to students
outside of the class!

https://www.youtube.com/watch?v=aMcJ1Jvtef0&

Parallax Scrolling

● Create the illusion of
depth in a 2D scene

○ Another assignment
students could be creative
with, importing their own
images (or using a default)

○ Lots of students
interested in games!

54https://gamedevelopment.tutsplus.com/tutorials/parallax-scrolling-a-simple-effective-way-to-add-depth-to-a-2d-game--cms-21510

https://gamedevelopment.tutsplus.com/tutorials/parallax-scrolling-a-simple-effective-way-to-add-depth-to-a-2d-game--cms-21510

Falling Sands Game

● More gaming examples come
to mind

○ I started thinking more about
interacting with pixels

● A falling sands game may be
particularly interesting to
students,

○ Eventually forces students to
build a bigger project and think
about software architecture

○ (A falling sands game has
different materials follow
different rules)

55https://boredhumans.com/falling_sand.php

https://boredhumans.com/falling_sand.php

2D Lighting (Raycasting)

● Now I’m thinking more about
interaction

● It’s fun to play with your program
once you write something

● Here’s a cool lighting techniques
○ Maybe this would be a fun way of

creating the classic ‘implement a
vector2 class so I can force operator
overloading on you’

56Daniel Shiffman The Coding Train -
https://www.youtube.com/watch?v=TOEi6T2mtHo

https://www.youtube.com/watch?v=TOEi6T2mtHo

2D Splines

● Implementing Splines may be
another cool custom data type.

○ May be interesting to incorporate
STL data structures like std::list or
std::vector to store each of the
control points

○ Great, students can see how the STL
can save them time

57
https://www.engineersrule.com/wp-content/uploads/2020/04/image004.gif

https://www.engineersrule.com/wp-content/uploads/2020/04/image004.gif

Quad Trees

● What happens when a data
structure does not exist in the STL?

○ C++ programmers have to build their
own data structures, here come the
Quad trees!

● A data structure for optimizing the
interaction of lots of objects

○ Felt like something that could be built
on after having students implement a
binary tree.

58
https://stackoverflow.com/questions/41946007/efficient-and-well-explained-implementation-of-a-quadtree-for-2d-collision-det

https://stackoverflow.com/questions/41946007/efficient-and-well-explained-implementation-of-a-quadtree-for-2d-collision-det

2D Game with lighting effects

● Maybe I can have
students start
putting all of
these effects
together

○ This time creating
a larger ‘game like’
environment with
some cool effects.

59
http://fluxscopic.com/wp-content/uploads/2016/05/GardenLightningEffect.gif

http://fluxscopic.com/wp-content/uploads/2016/05/GardenLightningEffect.gif

Enough Ideas--Time to think about the execution

60

[Course Construction]

Where do we start?
What will students build?
What skills will students learn?

61

Wait...not so fast on that checkmark

[Course Construction]

Where do we start?
What will students build?
What skills will students learn?

62

Question to Audience (1/2):

63

● Have you ever been part of a class where the instructor says:
○ “I’ll just quickly go through these last slides as time is running out”
○ “I’ll let you read the rest of the material after class”
○ “I won’t cover this in class, but here are some resources...”

Question to Audience (2/2):

64

● Have you ever been part of a class where the instructor says:
○ “I’ll just quickly go through these last slides as time is running out”
○ “I’ll let you read the rest of the material after class”
○ “I won’t cover this in class, but here are some resources...”

^ Yeah, all of the above break my second item here.

Each idea here could be split to multiple assignments...

65

And I want the students to own each project (i.e. not give them starter code)

66

About half of these are going to go (they’ll be future assignments for a game programming class or rotated into this class in the future)

67

Now our course is more appropriately scoped

68

Now our course is more appropriately scoped

69

[Course Construction]

Where do we start?
What will students build?
What skills will students learn?

70

Okay, now I get my checkmark--now
let’s think about the skills students are
going to learn building everything

What skills will students learn? (1/2)

71

● Now that we’ve got the assignments, I need to think really carefully
about what skills students will learn in each assignment.

○ I need to figure out some specific skills
■ “Hmm, what have I actually used in the real world”

○ I need to figure out which assignments exercise those skills in a reasonable way
○ I need to figure out a reasonable progression

■ (both in terms of difficulty, and revisiting the same skills in different contexts)

What skills will students learn? (2/2)

72

● Now that we’ve got the assignments, I need to think really carefully
about what skills students will learn in each assignment.

○ I need to figure out some specific skills
■ “Hmm, what have I actually used in the real world”

○ I need to figure out which assignments exercise those skills in a reasonable way
○ I need to figure out a reasonable progression

■ (both in terms of difficulty, and revisiting the same skills in different contexts)

So I spent some time thinking, and
inspiration would arrive...from
Twitter!

73

https://robert.ocallahan.org/2021/04/print-debugging-should-go-away.html

https://robert.ocallahan.org/2021/04/print-debugging-should-go-away.html

74

75

● This idea I recalled
from Kate Gregory’s
2015 CppCon talk

● And to be honest...I
don’t recall a single
lecture in my
undergrad dedicated to
debugging
○ (I dedicate a

lecture in my
software
engineering
course--why not
offer more
immersion here!)

Kate Gregory’s talk in 2015 -- inspires me to teach debugging (1/3)

● I thought about this for a few
minutes

○ What do I do in the real world? I’m
debugging half the time.

■ Debugging is how I get
myself out of trouble.

■ If I don’t teach my students
how to get out of trouble

● They don’t learn a very
critical real world skill

● They come to office
hours and I teach them
one at a time--and that’s
not efficient at scale.

76

Kate Gregory’s talk in 2015 -- inspires me to teach debugging (2/3)

77

● (Spoiler Alert) So here’s the findings--
○ (next slide)

Kate Gregory’s talk in 2015 -- inspires me to teach debugging (3/3)

78

● (Spoiler Alert) So here’s the findings--
○ I did teach at least 1 debugging skill at the end of every lecture (often relevant to

the topic)
■ Most students figure out std::cout on week 1 and use that anyway

○ Were my efforts a waste of time?
■ (next slide)

Kate Gregory’s talk in 2015 -- inspires me to teach debugging (3/3)

79

● (Spoiler Alert) So here’s the findings--
○ I did teach at least 1 debugging skill at the end of every lecture (often relevant to the

topic)
■ Most students figure out std::cout on week 1 and use that anyway

○ Were my efforts a waste of time?
■ No -- students did use GDB or LLDB
■ No -- I was able to help them in office hours without ‘GDB’ being a mysterious or

magical tool (They’d often ask -- ‘how did you do that again’ and try themselves).
■ No -- several students email me 6-8 months later while at their first C++ internship

thanking me for teaching them GDB.

So...what skills will students learn (1/5)

● Debugging (in theory)
○ Every lecture they’re exposed.

■ Some fully embrace it, some don’t, and that’s fine.
■ When the projects get larger, they’ll embrace debugging more.

80

So...what skills will students learn (2/5)

● Debugging (in theory)
○ Every lecture they’re exposed.

■ Some fully embrace it, some don’t, and that’s fine.
■ When the projects get larger, they’ll embrace debugging more.

81

So...what skills will students learn (3/5)

● Debugging (in theory)
○ Every lecture they’re exposed.

■ Some fully embrace it, some don’t, and that’s fine.
■ When the projects get larger, they’ll embrace debugging more.

82
And not just ‘discuss’, but actually practice!

So...what skills will students learn (4/5)

● Debugging (in theory)
○ Every lecture they’re exposed.

■ Some fully embrace it, some don’t, and that’s fine.
■ When the projects get larger, they’ll embrace debugging more.

● (next skill)

83

So...what skills will students learn (5/5)

● Debugging (in theory)
○ Every lecture they’re exposed.

■ Some fully embrace it, some don’t, and that’s fine.
■ When the projects get larger, they’ll embrace debugging more.

● The Standard Template Library
○ (why? Next slide)

84

Embracing the STL - Containers

● I tell students C++ is a ‘batteries
included’ language.

○ I tell students we have data structures
available in a library--similar to the way
Python has a built-in List and Dictionary
data structures.

● No need to implement these from
scratch

○ That may be an interesting exercise, but
for now I want students building
software.

○ Again, in the real world (and from my
experience), students will use libraries
like the STL

85https://en.cppreference.com/w/

https://en.cppreference.com/w/

Embracing the STL - Algorithms

● Embracing the STL also gives me
an advantage as a teacher!

● I can also show students quick
examples like this

○ “Here’s a collection of data, and we can
sort it”

○ This makes C++ *so beautiful* as a
language and not something so scary.

● So students are exposed to both
STL containers and STL Algorithms
libraries

86https://en.cppreference.com/w/cpp/algorithm

https://en.cppreference.com/w/cpp/algorithm

pssst -- and sometimes I show them in Godbolt!

● I want them to learn how to ‘play’ and try out new things.
● That it’s okay to prototype small snippets of code to learn

○ Pro tip: It’s also nice to save the compiler explorer snippets for students to quickly run

87https://en.cppreference.com/w/cpp/algorithm

https://en.cppreference.com/w/cpp/algorithm

So...what skills will students learn (1/2)

● Debugging (in theory)
○ Every lecture they’re exposed.

■ Some fully embrace it, some don’t, and that’s fine.
■ When the projects get larger, they’ll embrace debugging more.

● Embrace the STL
○ C++ is a ‘batteries included’ language.

● Play and Prototype with Code
○ Godbolt is an example tool that you can quickly prototype in

88

So...what skills will students learn (2/2)

● Debugging (in theory)
○ Every lecture they’re exposed.

■ Some fully embrace it, some don’t, and that’s fine.
■ When the projects get larger, they’ll embrace debugging more.

● Embrace the STL
○ C++ is a ‘batteries included’ language.

● Play and Prototype with Code
○ Godbolt is an example tool that you can quickly prototype in

● (Next Skill -- compiling and linking)

89

SFML Library - Compiling and Linking

● A subtle bonus of doing a
graphics themed course
means we depend on an
external graphics library

○ Students thus early on get
experience with compiling and
linking

■ Always starting on the
command line

■ Then eventually they get
a build script (and
eventually make)

90

So...what skills will students learn (1/2)

● Debugging (in theory)
○ Every lecture they’re exposed.

■ Some fully embrace it, some don’t, and that’s fine.
■ When the projects get larger, they’ll embrace debugging more.

● Embrace the STL
○ C++ is a ‘batteries included’ language.

● Play and Prototype with Code
○ Godbolt is an example tool that you can quickly prototype in

● Compiling and Linking
○ Learn how to work in C++

91

So...what skills will students learn (2/2)

● Debugging (in theory)
○ Every lecture they’re exposed.

■ Some fully embrace it, some don’t, and that’s fine.
■ When the projects get larger, they’ll embrace debugging more.

● Embrace the STL
○ C++ is a ‘batteries included’ language.

● Play and Prototype with Code
○ Godbolt is an example tool that you can quickly prototype in

● Compiling and Linking
○ Learn how to work in C++

● (next skill -- Modern constructs versus old constructs)

92

Modern C++ versus old constructs

● So throughout this process, where do I stand on teaching C++11 and
beyond (i.e. C++23) versus C++98

○ I still see universities teaching old school C++ courses.

● The modern stuff is what makes the language more approachable
in my opinion

○ Teach them C++20 <algorithm> using ranges
■ Show them lambda functions (explain the captures as needed)

○ Teach them new containers (e.g. string_view)
○ Show them how nice it is to use std::function
○ Show them smart pointers

● BUT...

93

I do choose a few ‘old’ constructs first

1. raw pointers before smart pointers
○ Students first need to understand that a pointer holds an address

■ Students need to experience the pitfalls of pointers first
■ Then, I can shift students mental model of a pointer, to think more about

‘ownership’ of memory.
○ (Further justification: Students can’t avoid learning raw pointers forever, as they’ll

eventually need to interface with C libraries)
2. raw arrays before std::array

○ Same reason as above--a little too much abstraction.
■ Students are okay understanding raw 1D and 2D arrays
■ Much less abstraction in the debugger as well

● (Initially easier to examine a 1D array)
■ Note: Students see std::vector well before they see a raw array however!

94

Summary - So...what skills will students learn

1. Debugging (in theory)
a. Every lecture they’re exposed.

i. Some fully embrace it, some don’t, and that’s fine.
ii. When the projects get larger, they’ll embrace debugging more.

2. Embrace the STL
a. C++ is a ‘batteries included’ language.

3. Play and Prototype with Code
a. Godbolt is an example tool that you can quickly prototype in

4. Compiling and Linking
a. Learn how to work in C++

5. Modern C++
a. Teach the ‘new’ stuff--mostly

95

[Course Constructed]

Where do we start?
What will students build?
What skills will students learn?

96

So we know where to start, what to
build, and the skills students should
acquire. Let’s see the course

Course
Modules

97

What is being taught
(The curriculum and assignments)

98

99https://www.youtube.com/watch?v=YnWhqhNdYyk&t=19s

● A quick tour of the C++ language showing some features of the
language

● Goal is to get students to be excited!

https://www.youtube.com/watch?v=YnWhqhNdYyk&t=19s

100

The first lecture is 100%
inspired by CppCon
2015: Kate Gregory
“Stop Teaching C" [in a
C++ class]

https://www.youtube.com/watch?v=YnWhqhNdYyk&t=19s

https://www.youtube.com/watch?v=YnWhqhNdYyk&t=19s

101

● Again, stolen from Kate Gregory -- I lean on the C++ STL.
○ I make the C++ language feel like a language ‘with batteries

included’
○ Students coming from a Python/Java background are used to this.
○ Just give your students std::vector on day 2--explain arrays later.

102

● Now we get into functions
○ Still no real graphical ‘output’ yet (coming soon!)

● Students have to use ‘GDB’ if they want to inspect any values
○ I have them implement some math functions to do this
○ It’s neat to show students pass-by-value and copies being made with

GDB. Also neat to simply show breakpoints on functions

103

● Finally we can output and read in text
○ Students can also start working with files, to read/write data.

● Just enough for them to do some their first real graphical exercise.

104

● First real graphical assignment
○ An image to ascii image convertor.

105

● Now we start learning a bit more about memory
○ Again, I’m teaching raw arrays and pointers here first.

● Notice the GDB exercise on debugging.
○ Usually I’m targeting GDB exercises for where I think students will

run into trouble.

106

● I continue with more on memory allocation and memory layout
○ Starting to prepare students for 2D image processing tasks.

● (Explicit GDB exercise not listed on outline anymore, it’s assumed)
○ GDB exercise examining arrays, and addresses of heap vs stack

memory

107

● Foundational ideas about creating new data types
● Teach RAII emphasizing it’s “nice to clean up your memory/resources

after you are finished with them”
● Using GDB to observe callstack with constructors/destructors

108

● More topics on building custom data types
● At this point we’re diving a little more into the SFML library

○ Can actually show students some code in a library
○ Goal is to make reading others code and documentation less scary early on

● GDB exercise finding copies of objects passed into functions

109

● Students start doing some image processing examples

110

● Students start focusing more on
object oriented programming

● Along the way implementing Fire

● And the Falling Sands game for
OOP experience

111

● Students begin working
on splines and
eventually quad trees

112

● Color Cycling and working
with pallets

● Assignment descriptions
start allowing more more
freedom in how task is
achieved.

113

● Revisiting old
assignments using
concurrency and
asynchronous I/O

● More tools on iterators
and algorithms

114

● Course starts to wrap up
● Auxiliary topics that are of

interest to students, what I
think is important, and what
will get students for next
courses that use C++ (e.g.
computer graphics)
○ This is where future

assignments may get
incorporated

So here’s a subset of what students end up with!

115

Summary so far

116

So far in this talk... (1/2)

117

● I’ve tried to capture to you my process to course creation
○ How I try to provide a solid foundation for building a class

■ (From idea to implementation)

● Some concrete examples of what skills my learners will develop
○ A subset of the assignments students learn from

■ (Several smaller assignments/in-class exercises not shown)

But there’s something missing, something very important, a key
ingredient I believe to teaching...

So far in this talk... (2/2)

118

● I’ve tried to capture to you my process to course creation
○ How I try to provide a solid foundation for building a class

■ (From idea to implementation)

● Some concrete examples of what skills my learners will develop
○ A subset of the assignments students learn from

■ (Several smaller assignments/in-class exercises not shown)

But there’s something missing, something very important, a key
ingredient I believe to teaching...

Maintaining the excitement and enthusiasm of your students!

Excitement!

119

Here’s was Last Pre-Course Survey Question I asked (1/2)

120

Here’s was Last Pre-Course Survey Question I asked (2/2)

121

Teaching Wisdom #1

● I think this wisdom from some other
great teachers is useful!

○ See the late Richard Feynman to the right
---------->

122

https://en.wikipedia.org/wiki/Richard_Feynman

Teaching Wisdom #2

● (Or if you’d prefer the words of a computer scientist)

123

Teaching Wisdom #3

● You can’t fake passion and enthusiasm when
teaching

○ That’s why I picked examples I was excited about (and
you’ll have to replicate this for your own use case)

○ My honest enthusiasm helps keep my students excited
when for 28 modules of C++ they see how excited I am
getting.

■ My job is to teach C++ in a fun and encouraging way
so students will pursue further self-study and
courses in C++

124

A Few Teaching Notes as we Wrap Up

125

A Few Strategies for Teaching (1/2)

1. First identify your audience
○ Is this for an undergraduate, a professor, a professional, or someone who has

never programmed?

2. Speak in plain terms
○ Explain as if a ten year old could understand.

■ I put Resource Acquisition is Initialization (RAII) every single time to avoid the
additional cognitive load it takes for students to avoid jargon.

○ Then, progressive discuss a topic deeper eventually hitting your target audiences
skill level

○ Note; If you use metaphors or analogies to the real world, think globally (e.g. ask
yourself if everyone will understand an American Football references?)

126

A Few Strategies for Teaching (2/2)

1. Tell a Story
○ This is the part that will make folks care
○ Why are they learning this subject matter?

Why does it matter? Can you motivate
with history? Can you motivate to
students in another way?

2. Identify your own knowledge gaps,
and keep refining

○ Sometimes your own knowledge gaps will
be points you’ll want to take note
of--probably a good idea to break down
those gaps into smaller pieces (for yourself
and your student)

127

http://alvyray.com/Memos/CG/Microsoft/6_pixel.pdf

http://alvyray.com/Memos/CG/Microsoft/6_pixel.pdf

A Few Strategies for Teaching (3/3)

● Anyone hate how many words
I put on my slides? :)

● I stand by breaking that
powerpoint rule

○ Students want to review
the slides later on and
not guess what I was
trying to say.

○ (Note: You do need to
have thoughtful
transitions to guide a
student in your slides
however!)

128
https://medium.com/taking-note/learning-from-the-feynman-technique-5373014ad230 More ideas on teaching and ‘the Feynman Technique’

https://medium.com/taking-note/learning-from-the-feynman-technique-5373014ad230

Live Coding

● Delivery -- I do live coding about 40% of the time in my class
○ In my personal University experience as a student this was very rare.
○ At my current University many instructors spend a portion of class doing this or

sharing recordings.
■ I think this is a good thing
■ I keep my mistakes in my lectures or lecture videos for others to learn from
■ It also gives students a chance to ask ‘what if we change this’

129

Couple more ground rules when you’re teaching students

● Students want to know you’re competent (i.e. the expert)
● Students do want you to be organized
● Students do want to feel supported.
● Students are not impressed by technical jargon
● Students should not be given ‘the language standard’

○ It’s find to point them to the core guidelines later on--some students just like to
know a more definitive answer.

○ But I would not teach directly ‘from the guidelines text’, teach instead from the
inspiring projets you want them to learn from.

130

What is Next?
(Next iteration of the course)

131

What’s next

● Next iteration of course will be supported by lots of supplemental
youtube videos

○ *Key word* ‘supplemental.
■ Not required for students to watch, not even encouraged, but there as a

definitive resource so students don’t have to hunt.
■ Overloading students on resources (especially video) can be detrimental --

especially during pandemic.
● 1 or 2 new assignments

○ Rotating in new assignments that did not make the cut.
○ A 14 week semester versus Summer half semesters allow students to soak in

material at a more reasonable pace.
■ (Remember, don’t keep adding content if students can’t absorb the current

contents!)

132

Things I want more of in the next iteration

● Reading more good (by my standard) C++ code
○ From my own samples, or C++ open source projects)
○ I will have to think carefully about this though--honestly this may belong in a

follow up course (e.g. I teach a software engineering course in C++)

133

For Non-Academics | How would I compress this into a one or two day workshop?

● Pick one or two of these topics
○ image processing is likely one that scales well from beginner to advanced.
○ A small game may also be more appropriate to show higher level thinking when

writing code and selecting C++ features.

● I’m actively thinking about this for a next workshop as we speak!

134

Final Check

135

Final Check on our Homework

● Did I tell my students C++ was scary or hard anywhere?
○ (A quick search with ctrl+F tells me I did not)

136

Final Check on our Homework

● Did I tell my students C++ was scary or hard anywhere?
○ (A quick search with ctrl+F tells me I did not)

137

Post Class Survey

138

Post Class Survey

139

140

Thank you for listening to my talk!

April 7, 2022 | 14:00 - 15:30
Mike Shah, Ph.D. | @MichaelShah

www.youtube.com/c/MikeShah
www.mshah.io

https://twitter.com/MichaelShah
http://www.youtube.com/c/MikeShah
http://www.mshah.io

141

