
@fbuontempo 1

Crowd Your Way out of a
Paper Bag

It’s not rocket science!

Frances Buontempo

April 2022

@fbuontempo 2

Contents

• Swarms

• Follow the leader

• Multi-lane follow the leader

• Cellular automata

• Agents

• Paper bags

@fbuontempo 3

Can you code your way out of a paper bag?

@fbuontempo 4

Particle Swarm Optimisation

• Particles have memory, and so does the “swarm”

• Each particle has a velocity in 3 parts
• current – initialized randomly

• towards personal best

• towards swarm’s best

• We need to define “best”

• Take a weighted sum of these
• With a bit of randomness thrown in

• We need to choose these weights

@fbuontempo 5

Algorithm

Choose n

Put n particles in random points in the bag

While some particles are still in the bag

Update best global position

Draw particles current positions

Move particles

updating each particle's

current best position

@fbuontempo 6

Swarms

• Continuous movement

• A personal velocity, memory and “hive mind”

• PSO, https://accu.org/index.php/journals/2023

@fbuontempo 7

https://accu.org/index.php/journals/2023

https://pragprog.com/book/fbmach/genetic-
algorithms-and-machine-learning-for-

programmers

@fbuontempo 8

https://pragprog.com/book/fbmach/genetic-algorithms-and-machine-learning-for-programmers

Follow the leader

Imagine a lane of traffic or
people or “particles” or blobs

• in an orderly one lane queue

• and move at a constant speed

@fbuontempo 9

Blobs in (continuous) space

• No memory

• A preferred velocity / distance to the blob in front

• Called 𝜑, phi, for reasons

std::function<float(float)> phi_steady =

[](float dt) {return dt * 100.0f; };

@fbuontempo 10

Blobs in space

struct Blob {

float x;

float y;

std::function<float(float)> phi;

void move(float dt){

y += phi(dt);

}

};

std::vector<agents::Blob> blobs;

@fbuontempo 11

What if the leader stops?

• Leader does what they want

• Others pay attention to the blob in front
• Otherwise they walk through each other

• Just need one small change to 𝜑

@fbuontempo 12

Leader does what they want

std::function<float(float, float, float)> phi_pause =

[](float time, float dt, float w) {

if (time > 3.5f && time < 8.5f)

return 0.f;

else

{

return dt * 100.0f;

}

};

@fbuontempo 13

Followers have to pay attention

• See how close the next one is and adjust accordingly
• For example, keep 2 metres apart

• So we don’t need a collision detection

• According to maths

• Let’s send w (for distance to next blob) to 𝜑

@fbuontempo 14

Social distancing - It’s not rocket science

std::function<float(float, float, float)> phi_steady =

[](float time, float dt, float w) {

if (w > 40.f) {

return dt * 100.f *

(1.0f - std::exp(-(w - 40.f) / 25.f));

}

else

return 0.f;

};

@fbuontempo 15

The Transport Equation/Fluid Dynamics

• Microscopic versus Macroscopic

• Discrete:
𝑑𝑥𝑖

𝑑𝑡
= 𝜑 𝑥𝑖+1 − 𝑥𝑖

• Continuous:
𝜕𝜌

𝜕𝑡
+ 𝛻. 𝑗 = 𝜎

• 𝛻 , nabla is divergence (a gradient/rate of change)

• j is flux (like a flow rate)

• 𝜎 , sigma is for sources and sinks – it’s 0 for us – “incompressible”

@fbuontempo 16

Has Fran done the demos yet?

@fbuontempo 17

Ghost Jam!

• The “traffic” jam moves upstream

• AKA Stop and Go waves or phantom jams

• Also triggered by lane changing, which we’ll see in next

@fbuontempo 18

Multi lane

• Let’s have two “lanes”
• Implemented by two vectors of blobs

• To start thinking about *agency*
• The blobs only had a preferred velocity

• Though did slow down to avoid crashing

• Blue blobs have the same old phi function

• Yellow blobs might change lane (vector)
• For no apparent reason

@fbuontempo 19

“Traffic models based on cellular automata have high computational
efficiency because of their simplicity in describing unrealistic
vehicular behavior and the versatility of cellular automata to be
implemented on parallel processing. On the other hand, the other
microscopic traffic models such as car-following models are
computationally more expensive, but they have more realistic driver
behaviors and detailed vehicle characteristics.”

A multi-lane traffic simulation model via continuous cellular
automata

Emanuele Rodaro, Öznur Yeldan

https://arxiv.org/abs/1302.0488

So, let’s do something completely different

@fbuontempo 20

https://arxiv.org/abs/1302.0488

Trouble

• The paper cited is way more sophisticated than what I did
• They build “a stochastic cellular automata traffic model in which the space

is not coarse-grain but continuous”

• Let’s use two vectors and some blobs will switch between the right
or left hand lane

void move_lane(std::vector<Blob>& left,

std::vector<Blob>& right, RNGBase & r);

@fbuontempo 21

@fbuontempo 22

Multi-lane FtL

• Did Fran do any demos?

• AKA Faster is Slower

• Possible extensions:
• Some tend to move left only (or right only)

• “Politeness”

• Make lane changing velocity based

• Add traffic lights, roundabouts etc

• https://traffic-simulation.de/ is fun

@fbuontempo 23

https://traffic-simulation.de/and

What next?

• std::vector<Blob>

• 2 std::vector<Blob>

• std::vector<std::vector<Blob>>

• Use the whole paper bag!

@fbuontempo 24

Cellular automata

@fbuontempo 25

Neighbours

@fbuontempo 26

Conway’s Game of Life

• A live cell with fewer than two live neighbours dies, as if by
underpopulation.

• A live cell with two or three live neighbours lives.

• A live cell with more than three live neighbours dies, as if by
overpopulation.

• Any dead cell with exactly three live neighbours becomes a live
cell, as if by reproduction.

@fbuontempo 27

Crowd your way out of a paper bag

@fbuontempo 28

Stochastic cellular automata

1. Possible moves – von Neuman
• std::vector<std::pair<int, int>> moves{

{ 0, 0 }, { -1, 0 }, { 1, 0 }, { 0, 1 }, { 0, -1 }

};

• Also, don’t stand on someone else

2. Probabilistic choice
• Blob will weigh up the options

3. Two update schemes
• One at a time

• Or all at once (like the Game of Life)

@fbuontempo 29

Possible moves

class Grid {

public:

Grid(size_t x, size_t y); //...

private:

std::vector<std::vector<Blob>> grid;

};

• Allowed?
• Don’t bust through sides of bag

• Don’t stand on someone/something else

@fbuontempo 30

@fbuontempo 31

Probabilistic choice

• Static floor field – cheat for now
int Blob::weighting(int x_move, int y_move) const {

return (y_move > 0) ? 3 : 1; // 0 if not allowed

}

• Then choose:
std::discrete_distribution<> d(w.begin(), w.end());

auto index = d(g); // std::mt19937

return moves[index];

• Dynamic floor fields are possible

@fbuontempo 32

@fbuontempo 33

Update scheme

• One at a time
• None will try to move to the same spot

• You can do everybody moving at once
• But need a way to detect people going to the same spot

• and decide what to do in this case

• Recall swarms from before
• They updated simultaneously

• (and shared info)

• Note to self - demo

@fbuontempo 34

@fbuontempo 35

Don’t stand in doorways!

@fbuontempo 36

@fbuontempo 37

Don’t block the door

• Don’t forget to do a demo

• Measuring time for everyone out safely

• Using five trials with
• Blocking took 123.2 updates (pstdev 10.07)

• Non blocking took 111.0 updates (pstdev 9.47)

@fbuontempo 38

Obstacles

@fbuontempo 39

One small change

“Just” disallow the grid points with obstacles

@fbuontempo 40

Agents with agendas

Obstacles might stop you getting to the door, but what if they are
tables with food or drinks?

@fbuontempo 41

One more small change(s)

• Disallow standing on tables

• Give each “table” a temptation value
• And finite food

• Create a static floor field using temptation

std::vector<std::vector<int>> field;

• Blob hunger
• food_needed

• When no longer hungry revert to moving towards the door

• Blob weighting:
• field_value * field_value;

@fbuontempo 42

@fbuontempo 43

@fbuontempo 44

@fbuontempo 45

@fbuontempo 46

And some options

• block door?

• tables
• How many? Where? What shape?

• temptation
• Set up front – think signposts for tables

• food needed
• Blue blobs hungry, green blobs full (but still keep eating)

• food per table
• Tables go white when food on them has gone
• But the floor field is static, so they still attract blobs

@fbuontempo 47

@fbuontempo 48

What if we randomly place tables?

@fbuontempo 49

Did Fran do a demo?

• Do the empty tables get in the way?
• And still attracted the hungry blobs

• Cos the floor field was static

• We could remove them and update the floor field
• dynamic floor field

• Do some demos Fran!

@fbuontempo 50

Breakout!

@fbuontempo 51

Possible extensions

• Add some who will
• stop to talk,

• stand in doorways,

• try to follow a friend

• Different food or drink preferences/choices

• People re-stocking food

• For now, where shall we put the tables?

@fbuontempo 52

Prior Art

• Genetic algorithms to design room layout
• https://www.joelsimon.net/evo_floorplans.html
• https://itc.scix.net/pdfs/w78-2020-paper-002.pdf
• We have random table layout

• And a fitness function – no one is hungry and all get home safe

• Left as an exercise for the reader/listener

• Donald Knuth used graph theory to design an efficient kitchen. He
determined what items in the kitchen, toaster, sink, etc. wanted to be
close to other items … he found that everything wanted to be close to
the wastebasket, so his kitchen is designed with a centrally located
wastebasket easily accessible from all locations.
• http://foodnerdkitchen.blogspot.com/2012/06/inspiration-from-donald-knuth.html

@fbuontempo 53

https://www.joelsimon.net/evo_floorplans.html
https://itc.scix.net/pdfs/w78-2020-paper-002.pdf
http://foodnerdkitchen.blogspot.com/2012/06/inspiration-from-donald-knuth.html

What have we learnt?

@fbuontempo 54

@fbuontempo 55

