


Ólafur Waage
Senior Software Developer - TurtleSec AS
@olafurw on Twitter

1

2



3



“
I must go forward where I have never 
been instead of backwards where I 
have.
- Winnie the Pooh

4



“
I must go forward where I have never 
been instead of backwards where I 
have.
- Winnie the Pooh

5



WHAT THIS TALK IS AND ISN’T

6



WHAT THIS TALK IS AND ISN’T

This is not a game development or game 
design talk. A while ago I was making a 
game using WebAssembly and these are 
the walls I encountered along the way

7



WHAT THIS TALK IS AND ISN’T

This is not a game development or game 
design talk. A while ago I was making a 
game using WebAssembly and these are 
the walls I encountered along the way

8

This is not a comprehensive talk about 
WebAssembly. 



WHAT THIS TALK IS AND ISN’T

This is not a game development or game 
design talk. A while ago I was making a 
game using WebAssembly and these are 
the walls I encountered along the way

9

This is not a comprehensive talk about 
WebAssembly. 

The idea here is to be pragmatic and 
learn what this tool has to offer and what 
problems it can solve.



What is WebAssembly?



What is WebAssembly?
How can something be neither Web nor Assembly?



WHAT IS WEBASSEMBLY?

WebAssembly is a binary format* originally 
designed to allow for performant execution of 
code within browsers.

12



WHAT IS WEBASSEMBLY?

WebAssembly is a binary format* originally 
designed to allow for performant execution of 
code within browsers.
◦ Announced 2015

13



WHAT IS WEBASSEMBLY?

WebAssembly is a binary format* originally 
designed to allow for performant execution of 
code within browsers.
◦ Announced 2015
◦ Working Drafts in 2018

14



WHAT IS WEBASSEMBLY?

WebAssembly is a binary format* originally 
designed to allow for performant execution of 
code within browsers.
◦ Announced 2015
◦ Working Drafts in 2018
◦ W3C recommendation in 2019

15



WHAT IS WEBASSEMBLY?

WebAssembly is a binary format* originally 
designed to allow for performant execution of 
code within browsers.
◦ Announced 2015
◦ Working Drafts in 2018
◦ W3C recommendation in 2019

WebAssembly can be thought of as the target 
output of any language and in recent times 
can be executed outside of the web.

16



17



WEBASSEMBLY EXAMPLES?

Many of you might associate WebAssembly 
with games only, and even though this talk is 
also doing that, WebAssembly has so much 
more to offer.

18



WEBASSEMBLY EXAMPLES?

Many of you might associate WebAssembly 
with games only, and even though this talk is 
also doing that, WebAssembly has so much 
more to offer.

Here are some examples of things you might 
not have thought are written with 
WebAssembly.

19



20



21



22



23



24



What is Emscripten?



What is Emscripten?
WebAssembly before WebAssembly



WHAT IS EMSCRIPTEN?

We originally had asm.js from Mozilla which 
had similar goals to WebAssembly, to run 
efficient code on the web.

27



WHAT IS EMSCRIPTEN?

We originally had asm.js from Mozilla which 
had similar goals to WebAssembly, to run 
efficient code on the web.

asm.js is a subset of JavaScript and your lower 
level code would then be transpiled into it.

28



WHAT IS EMSCRIPTEN?

We originally had asm.js from Mozilla which 
had similar goals to WebAssembly, to run 
efficient code on the web.

asm.js is a subset of JavaScript and your lower 
level code would then be transpiled into it.

This is where Emscripten came into play.

29



WHAT IS EMSCRIPTEN?

Emscripten is based on the LLVM/Clang 
toolchains which allows you target 
WebAssembly as the binary output.

30



WHAT IS EMSCRIPTEN?

Emscripten is based on the LLVM/Clang 
toolchains which allows you target 
WebAssembly as the binary output.

This allows you to get many different types of 
outputs, not only WASM files but .js and .html

31



INSTALLING EMSCRIPTEN

Let’s go over the installation process and setup 
a simple development environment.

- Text editor is VSCode
- WSL2 running Ubuntu 20.04
- https://github.com/olafurw/talk-accu-webassembly

32



33



34



35



36



37



38



39



40



41



42



HEY, WORLD, WHAT IS UP?

Now we have the Emscripten compiler installed 
in our system.

43



HEY, WORLD, WHAT IS UP?

Now we have the Emscripten compiler installed 
in our system.

Time for the time honored tradition of the hello 
world example.

44



HEY, WORLD, WHAT IS UP?

Now we have the Emscripten compiler installed 
in our system.

Time for the time honored tradition of the hello 
world example.

But there are a few more steps in this one than 
you’d normally expect.

45



46



47



48



49



50



51



JUST RUN IT ALREADY!

Yes, with nodejs we can run the .js files just fine.

52



JUST RUN IT ALREADY!

Yes, with nodejs we can run the .js files just fine.

But let’s start by opening the HTML file directly. 
Should be no problem, right?

53



WALL NUMBER 1
Of CORS there’s a problem here

1

54



YOUR SAFETY IS PARAMOUNT

Browsers don’t like opening random files from 
whatever location you decide.

55



YOUR SAFETY IS PARAMOUNT

Browsers don’t like opening random files from 
whatever location you decide.

There’s a thing called “Cross-origin resource 
sharing (CORS)”. By default browsers don’t like 
loading external files from disk using file://

56



YOUR SAFETY IS PARAMOUNT

Browsers don’t like opening random files from 
whatever location you decide.

There’s a thing called “Cross-origin resource 
sharing (CORS)”. By default browsers don’t like 
loading external files from disk using file://

The browser will load the html file fine but any 
external dependency will probably be blocked.

57



RUN EM RUN!

Best way to solve this is to run a webserver 
that is going to host the files.

58



RUN EM RUN!

Best way to solve this is to run a webserver 
that is going to host the files.

What I use while developing is emrun, a tool 
that comes with emscripten.

59



RUN EM RUN!

Best way to solve this is to run a webserver 
that is going to host the files.

What I use while developing is emrun, a tool 
that comes with emscripten.

emrun is a simple webserver but for our 
development purposes it is good enough.

60



61



62



VIDEO GAMES!

Now let’s look at the game we will be “making”.

63



VIDEO GAMES!

Now let’s look at the game we will be “making”.

We are going to make a simple sliding puzzle 
game, similar to games like “Threes” and 
“2048”

64



ENOUGH FUN

Now let’s covert this game over to 
WebAssembly.

65



ENOUGH FUN

Now let’s covert this game over to 
WebAssembly.

There are two ways to do this.

66



ENOUGH FUN

Now let’s covert this game over to 
WebAssembly.

There are two ways to do this.
- Keep the drawing in JS and game logic in 

C++

67



ENOUGH FUN

Now let’s covert this game over to 
WebAssembly.

There are two ways to do this.
- Keep the drawing in JS and game logic in 

C++
- Do everything in C++

68



ENOUGH FUN

Now let’s covert this game over to 
WebAssembly.

There are two ways to do this.
- Keep the drawing in JS and game logic in 

C++
- Do everything in C++

We will look at both, and the walls we hit along 
the way.

69



LET’S START CONVERTING

So let’s take some of the functions we have in 
the JS version and convert them over to C++

70



LET’S START CONVERTING

So let’s take some of the functions we have in 
the JS version and convert them over to C++

Some of them don’t even need to know about 
game state, so let’s start with them.

71



72



73



74



75



76

Great, onto the next function.



WALL NUMBER 2
Where we’re going, there is no OS

2

77



SO RANDOM

With this standalone WASM file, there is no 
operating system level functionality.

78



SO RANDOM

With this standalone WASM file, there is no 
operating system level functionality.

You’re all on your own*

79



SO RANDOM

With this standalone WASM file, there is no 
operating system level functionality.

You’re all on your own*

So how do we solve this problem?

80



EMSCRIPTEN SAVIORS

Using random, calling timer functions and 
many other OS level functionality has to come 
from somewhere.

81



EMSCRIPTEN SAVIORS

Using random, calling timer functions and 
many other OS level functionality has to come 
from somewhere.

Thankfully there is a solution to this, where if 
you build a .js file in addition to your .wasm file, 
you will get many of these functionalities from 
the javascript side.

82



EMSCRIPTEN SAVIORS

Using random, calling timer functions and 
many other OS level functionality has to come 
from somewhere.

Thankfully there is a solution to this, where if 
you build a .js file in addition to your .wasm file, 
you will get many of these functionalities from 
the javascript side.
But how does it work? Can we do it ourselves?

83



EMSCRIPTEN RANDOM

84



EMSCRIPTEN RANDOM

Looks great, but how do we use it?

85



86



87



88



89



90



91



92



ONWARDS

Great, so now we can move over the rest of the 
game logic.

93



ONWARDS

Great, so now we can move over the rest of the 
game logic.

The board is an array of arrays of `Box` and 
the rest of the game logic is basically identical.

94



ONWARDS

Great, so now we can move over the rest of the 
game logic.

The board is an array of arrays of `Box` and 
the rest of the game logic is basically identical.

So now the gameplay can be simulated and 
called from JS, now we need to draw that data.

95



WALL NUMBER 3
Where’s the data?

3

96



I REMEMBER

We can communicate between C++ and JS 
using primitive types as you saw before, but as 
soon as things get a bit more complicated, we 
are in trouble.

97



I REMEMBER

We can communicate between C++ and JS 
using primitive types as you saw before, but as 
soon as things get a bit more complicated, we 
are in trouble.

We could view the raw data of a std::vector 
within the memory of WebAssembly, but 
converting between a vector and a javascript 
list is not automatic

98



WE’RE IN A BIND

There is something called Embind that can help 
with passing more complex objects over to JS

99



WE’RE IN A BIND

Embind even has helpers to bind common 
objects, like std::vector

100



I REMEMBER

You can even define a shared block of memory 
that can then be used by either JS or C++

101



I REMEMBER

You can even define a shared block of memory 
that can then be used by either JS or C++

Also there is the option to return a pointer to JS

102



I REMEMBER

You can even define a shared block of memory 
that can then be used by either JS or C++

Also there is the option to return a pointer to JS

But this is in the territory where you need to be 
a bit more careful with how each byte is used 
and represented.

103



WE DON’T NEED IT

Thankfully, I wrote the game logic to only use 
simple primitives, so we can finish converting 
all of the functions over to C++ and expose 
them to JS to use as needed.

104



WE DON’T NEED IT

Thankfully, I wrote the game logic to only use 
simple primitives, so we can finish converting 
all of the functions over to C++ and expose 
them to JS to use as needed.

Let’s look at this version of the implementation.

105



LET’S NOT STOP HERE!

Now we have basically everything except the 
rendering in the C++ version.

106



LET’S NOT STOP HERE!

Now we have basically everything except the 
rendering in the C++ version.

So let’s move that over as well.

107



LET’S NOT STOP HERE!

Now we have basically everything except the 
rendering in the C++ version.

So let’s move that over as well.

Thankfully Emscripten has great support for 
exactly what we need.

108



SDL1 and 2

Emscripten has built in support for SDL which is 
a cross platform library that provides among 
many things graphical rendering support.

109



SDL1 and 2

Emscripten has built in support for SDL which is 
a cross platform library that provides among 
many things graphical rendering support.

There is also support for SDL2 but it needs to 
be downloaded (which happens on first 
compile)

110



SDL1 and 2

Emscripten has built in support for SDL which is 
a cross platform library that provides among 
many things graphical rendering support.

There is also support for SDL2 but it needs to 
be downloaded (which happens on first 
compile)

111



GLUE THAT CODE

Also since we will use SDL2 and other built in 
functionality, we will use the generated JS glue 
code.

112



GLUE THAT CODE

Also since we will use SDL2 and other built in 
functionality, we will use the generated JS glue 
code.

So instead of creating the importObject 
ourselves and implementing the functions that 
are needed, Emscripten has does this for us.

113



114



RENDERING FUN

Now I port over the rendering code, which 
thankfully for this example is just a simple 
colored rectangle. (I wait with displaying the 
text for now)

115



RENDERING FUN

Now I port over the rendering code, which 
thankfully for this example is just a simple 
colored rectangle. (I wait with displaying the 
text for now)

Everything compiles and looks like it should be.

116



RENDERING FUN

Now I port over the rendering code, which 
thankfully for this example is just a simple 
colored rectangle. (I wait with displaying the 
text for now)

Everything compiles and looks like it should be.

I run the code, I see the box and then…

117



118



WALL NUMBER 4
The sandbox isn’t infinite

4

119



MEMORY MANAGEMENT

Up to this point I have been using the default 
memory size and it has just happened to fit.

120



MEMORY MANAGEMENT

Up to this point I have been using the default 
memory size and it has just happened to fit.

But we need more memory now since SDL is 
involved.

121



MEMORY MANAGEMENT

Up to this point I have been using the default 
memory size and it has just happened to fit.

But we need more memory now since SDL is 
involved.

122



TEXT ADVENTURE

Great, this compiles and we see the box drawn 
in the canvas as before.

123



TEXT ADVENTURE

Great, this compiles and we see the box drawn 
in the canvas as before.

So let’s draw the text that should appear within 
the box.

124



WALL NUMBER 5
File not found

5

125



EMPTY SANDBOX

The environment we are in does not have 
much else outside of what we have given it.

126



EMPTY SANDBOX

The environment we are in does not have 
much else outside of what we have given it.

So the font file we want to use does not exist, 
and the idea of a filesystem is different from 
what we expect. We have to provide the files.

127



EMPTY SANDBOX

The environment we are in does not have 
much else outside of what we have given it.

So the font file we want to use does not exist, 
and the idea of a filesystem is different from 
what we expect. We have to provide the files.

128



EMPTY SANDBOX

The environment we are in does not have 
much else outside of what we have given it.

So the font file we want to use does not exist, 
and the idea of a filesystem is different from 
what we expect. We have to provide the files.

129



CMAKE

What Emscripten also provides is helper utilities 
to use common development tools like make 
and cmake. So I also wrote a simple CMake file 
for building the project.

130



CMAKE

What Emscripten also provides is helper utilities 
to use common development tools like make 
and cmake. So I also wrote a simple CMake file 
for building the project.

131



132



IT’S RUNNING!

Great! So now we have everything running.

Let’s look at it in action!

133



SUMMARY

Let’s summarize the walls we encountered.

134



SUMMARY

Let’s summarize the walls we encountered.

- Files need to be served while developing

135



SUMMARY

Let’s summarize the walls we encountered.

- Files need to be served while developing
- All functionality you depend on (ie. OS) needs to be 

implemented or given to you

136



SUMMARY

Let’s summarize the walls we encountered.

- Files need to be served while developing
- All functionality you depend on (ie. OS) needs to be 

implemented or given to you
- Data needs to be primitives or converted in some 

way before sending to JS

137



SUMMARY

Let’s summarize the walls we encountered.

- Files need to be served while developing
- All functionality you depend on (ie. OS) needs to be 

implemented or given to you
- Data needs to be primitives or converted in some 

way before sending to JS
- Memory size and growth needs to be thought about

138



SUMMARY

Let’s summarize the walls we encountered.

- Files need to be served while developing
- All functionality you depend on (ie. OS) needs to be 

implemented or given to you
- Data needs to be primitives or converted in some 

way before sending to JS
- Memory size and growth needs to be thought about
- Required files need to be embedded or preloaded 

with the output

139



140



141

Just one more thing…



Ólafur Waage
Senior Software Developer - TurtleSec AS
@olafurw on Twitter
https://github.com/olafurw/talk-accu-webassembly

1

142


