APPLIED C++20 COROUTINES

JIM PASCOE : o

APPLIED C-+-+20 COROUTINES

Jim (James) Pascoe
http://www.james-pascoe.com
james@james-pascoe.com

http://jamespascoe.github.io/accu2023
https://github.com/jamespascoe/accu2023-example-code.git

ACCU Bristol and Bath Meetup Coordinator

http://www.james-pascoe.com/
mailto:james@james-pascoe.com
http://jamespascoe.github.io/accu2023
https://github.com/jamespascoe/accu2023-example-code.git

COROUTINES ... WHAT NEXT?

1. Fit within the wider concurrency framework
2. More examples (real-world and learning)

3. Empirical measurements

4. Library support and the future

OUTLINE

e Concurrency in Modern C++
= How C++20 Coroutines fit (and work)

e Mobile Wireless Networking with Coroutines

e C++20 Example: Web Serving with Boost.Beast
= Asynchronous, Boost.Coroutine, Awaitables
= Empirical analysis with Apache bench (ab)

e std::generator, std::execution and libunifex

https://www.bluwireless.com/products/5g-tactical/
https://www.boost.org/doc/libs/1_81_0/libs/beast/doc/html/index.html
https://www.boost.org/doc/libs/1_81_0/libs/coroutine2/doc/html/coroutine2/overview.html
https://www.boost.org/doc/libs/1_81_0/libs/beast/example/http/server/awaitable/http_server_awaitable.cpp
https://httpd.apache.org/docs/2.4/programs/ab.html
http://wg21.link/p2502
http://wg21.link/p2300
https://github.com/facebookexperimental/libunifex

EXAMPLE CODE: TOOLS & BUILD

e C++examples all compile with GCC 12.2:
= Boost 1.81.0
= SWIG4.0.2
= CMake 3.25.2
e Luaexamples runwith Lua 5.4.4
e Tested on Linux Mint 19 and Mac OS X (Ventura)

https://github.com/jamespascoe/accu2023-example-code.git
https://gcc.gnu.org/gcc-12/changes.html
https://www.boost.org/doc/libs/1_81_0/libs/beast/doc/html/index.html
https://www.swig.org/
https://www.cmake.org/
https://www.lua.org/download.html

CONCURRENCY
BACGK-T0-BASICS

CONCURRENCY VS. PARALLELISM

e Concurrency exists when:
= multiple items of work are 'in progress’
m e.g. processes, threads or coroutines
= harnessing windows of latency

e Parallelism exists when:
= multiple items of work execute simultaneously
= e.g. threads running on separate CPU cores
m execution occurs at the same instant in time

https://www.gnu.org/software/pth/pth-manual.html#threading_background%22

—Running

= Executer

——Running

—Running

= Executer

= Executer

CONCURRENCY GRANULARITY

1. Mu
2. Mu
3. Mu

ti
ti
ti

D
D

D

e processes run on a single computer
e threads run within a single process
e coroutines run within a single thread

Concurrency allows us to harness latency

https://www.boost.org/doc/libs/1_81_0/libs/fiber/doc/html/fiber/overview.html

PROCESSES

e OS'multitasks' by forking processes
e Context switch occurs when:
= 3 process is blocked (e.g. semaphore)
m Or a pre-emptive time slice expires
e Overhead is high:
= VM tables, program code, heap, stack, fds, signals
= Sharing data, synchronisation and scaling are hard

https://www.gnu.org/software/pth/pth-manual.html#threading_background

THREADS

Light-weight threads in a heavy-weight process
Lower overhead (faster context switch):

= ... stack, program counter, signal table

C++03: OS, C++11: std::thread, C++20: std::jthread
Reentrancy: multiple invocations run concurrently
Thread safety: the avoidance of race conditions
Green Threads: scheduled by a runtime library / VM

https://www.gnu.org/software/pth/pth-manual.html#threading_background
https://en.wikipedia.org/wiki/Reentrancy_(computing)
https://en.wikipedia.org/wiki/Green_thread
https://en.wikipedia.org/wiki/Green_thread

COROUTINES (AS FIBERS)

e Multiple coroutines in a single thread

e Scheduled by a 'dispatcher' (same thread)

e No races, synchronisation or data sharing issues
e Allows work when part of the thread is blocked
e See Boost.Fiber for details

https://en.cppreference.com/w/cpp/language/coroutines
http://wg21.link/n4024
https://www.boost.org/doc/libs/1_81_0/libs/fiber/doc/html/fiber/overview.html

COROUTINES IN THE
FIELD

BLU WIRELESS: MOBILE MESH

e |P networking over 5G mmWave (60 GHz) modems
= 802.11ad MAC + PHY (Hydra) + software

e High-bandwidth, low latency mobile Internet
= Up to 3 Gbps wireless links (up to 4 km)

e Embedded quad-core ARMv8 NPUs

http://bluwireless.com/applications/defence-and-perimeter-security/
https://www.bluwireless.com/applications/defence-and-perimeter-security/

MOBILE CONNECTION MANAGEMENT

e |1 management implemented using coroutines
= Combination of Modern C++ (17/20) and Lua
e | ots of asynchronous operations
= Scan, Connect, Disconnect
= Around 40 primitives (called 'Actions’)
e Groups of coroutines operate in threads
= No race conditions or data sharing limitations
= Concurrency combined with Parallelism

https://www.bluwireless.com/products/mobile-connection-manager/

[MOB?IQ Mesh Lua Behaviour J

SWIG Binding
C++ to Lua

C++ Action L.ibmry)
" scon) \comest } | stata | [Messnge! { oy
\ can (onnec ‘ | a'ls f l eSSOsge} | 03

|
P _—— — e b S ~— — - Oy — S _’)
1 Il][. 1"~/

C ﬁnnect;on ;\&-amo«:.,e_r AP;\/L j ﬁsio [spdllog }
(

Linux Driver) Stock Lo::, 'Pile_s

i Console_

v

Hordware

EXAMPLE: LUA NETWORKING FIBERS

e | ua behaviour: two nodes sending messages
e [ncludes three actions: 'Connector’, 'Timer' and 'Log'
e Also provides: SWIG, CMake, Lua 'main' code
e Other bindings exist: e.g. the PhD's Sol3

http://localhost:8000/?print-pdf
http://swig.org/
https://github.com/ThePhD/sol2

Lua Fiber Behaviour }

SWIG B?nding _______
C++ to Lua ~
C++ Action L.iLromy
(— - —=—— = === -~ =S e o =
| Conne_c‘tor}{ ,(\ _’l"}mer ; ‘ Los }'
T - . e

\
Asio j [spdlog J

!

Network Journal

Stock Log files
Console,

LUA BEHAVIOR

1
2
3
4
5
6
7
8

function ping fiber (connector, remote port)

Actions.Log.info(
"ping fiber: connecting to port:

)

remote port

local timer = Actions.Timer ()

while true do

connector:Send("localhost", remote port, "PING")

https://github.com/jamespascoe/accu2023-example-code/blob/master/lua_fiber/behaviours/lua_fiber.lua

CONNECTOR ACTION

class Connector {
public:
9 enum class ErrorType { SUCCESS, RESOLVE FAILED, CONNECT FAILED };

0O o Ul WDN -

11 inline static int const default port = 7777;

12

13 Connector (unsigned short port = default port);

14

15 ~Connector();

16

17

18 Connector (Connector const& rhs) = delete;

19 Connector (Connector&& rhs) = delete;

20 Connector& operator=(Connector const& rhs) = delete;

21 Connector& operator=(Connector&& rhs) = delete;

https://github.com/jamespascoe/accu2023-example-code/blob/master/lua_fiber/src/actions/lua_fiber_action_connector.hpp

CONNECTOR ACTION

1

2

3

4

5

6

7

8

9 Connector::Connector (unsigned short port)
10 m acceptor(m io context, tcp::endpoint(tcp::v4(), port)) {
11 start accept();
12

13 m thread = std::thread([this]() { m io context.run(); });
14

15 log trace("Connector action starting");

16 }

17

18 Connector::~Connector() {

19 log trace("Cleaning up in Connector action");
20

21 m io context.stop();

https://github.com/jamespascoe/accu2023-example-code/blob/master/lua_fiber/src/actions/lua_fiber_action_connector.cpp

C+-+20 COROUTINES

COROUTINES

Coroutines are subroutines with enhanced semantics

e Invoked by a caller (and return to a caller) ...
e Can suspend execution
e Canresume execution (at a later time)

BENEFITS

Write asynchronous code....
with the readability of synchronous code

e Useful for networking

e Lots of blocking operations (connect, send, receive)
e Multi-threading (send and receive threads)

e Asynchronous operations mean callbacks

e Control flow fragments

COROUTINE SUPPORT IN C++20

e Three new keywords: co await, co vield, co return
e New types:

" coroutine handle<P>

" coroutine traits<Ts...>
e Trivial awaitables:

" std::suspend always

" std: :suspend never

https://en.cppreference.com/w/cpp/language/coroutines
https://en.cppreference.com/w/cpp/language/coroutines#co_await
https://en.cppreference.com/w/cpp/language/coroutines#co_yield
https://en.cppreference.com/w/cpp/language/coroutines#co_return
https://en.cppreference.com/w/cpp/coroutine/coroutine_handle
https://en.cppreference.com/w/cpp/coroutine/coroutine_traits
https://en.cppreference.com/w/cpp/coroutine/suspend_always
https://en.cppreference.com/w/cpp/coroutine/suspend_never

KEY TALKS AND REFERENGES

e |ots of good talks at CppCon 2022

m Understanding C++ Coroutines by Example: Generators - Pavel Novikov

m Deciphering C++ Coroutines - A Diagrammatic Cheat Sheet - Andreas Weis
m C++ Coroutines, from Scratch - Phil Nash

m C++20's Coroutines for Beginners - Andreas Fertig

e |Lewis Baker's blog posts:

m Coroutine Theory

» Understanding operator co_await

» Understanding the promise type

m Understanding Symmetric Transfer

https://www.youtube.com/watch?v=lm10Cj-HNKQ
https://www.youtube.com/watch?v=lm10Cj-HNKQ
https://www.youtube.com/watch?v=EGqz7vmoKco
https://www.youtube.com/watch?v=8sEe-4tig_A
https://lewissbaker.github.io/
https://lewissbaker.github.io/2017/09/25/coroutine-theory
https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await
https://lewissbaker.github.io/2018/09/05/understanding-the-promise-type
https://lewissbaker.github.io/2020/05/11/understanding_symmetric_transfer

AWAITABLE TYPE

e Supportsthe co await operator
e Controls the semantics of an await-expression
e |[nforms the compiler how to obtain the awaiter

https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/n4775.pdf
https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await

AWAITER TYPE

Defines suspend and resume behaviour
await ready:issuspend required?
await suspend: schedule resume
await resume:co await returnresult
Can be the same as the awaitable type

https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await
https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await
https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await
https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await
https://lewissbaker.github.io/2017/11/17/understanding-operator-co-await

COROUTINE RETURN TYPE

Declares the promise type to the compiler

» Usingcoroutine traits

E.g. task<T>'or 'generator<T>'

CppCoro defines several return types
Referred to as a 'future' in some WG2 1 papers
Not to be confused with std: : future

https://github.com/lewissbaker/cppcoro
http://wg21.link/

PROMISE TYPE

e Controls the coroutine's behaviour
= _..example coming up

 [mplements methods that are called at specific
points during the execution of the coroutine

e Conveys coroutine result (or exception)

e Again - not to be confused with std: : promise

https://lewissbaker.github.io/2018/09/05/understanding-the-promise-type

COROUTINE HANDLES

Handle to a coroutine frame on the heap

Means through which coroutines are resumed
Also provide access to the promise type
Non-owning - have to be destroyed explicitly

= Often through RAIl in the coroutine return type

https://en.cppreference.com/w/cpp/coroutine/coroutine_handle

GENERATOR EXAMPLE

1
2
3
4
5
6
7
8

template <typename T> struct generator {
struct promise_ type;
using coroutine handle = std::coroutine handle<promise type>

struct promise type {
T current value;

auto get return object() {
return generator{coroutine handle::from promise(*this)};

https://github.com/jamespascoe/accu2022-example-code/tree/master/generator

COROUTINES APPLIED

OBSERVATIONS

e C++20 coroutines are powerful ... but complex
e At the application level, how do we:

= Compare different forms of asynchrony

= Evaluate/benchmark performance

= Understand what's going on at the hardware level
e What is a practical methodology for doing this?

BOOST.BEAST

e HTTP and WebSocket built on Boost.Asio
e Excellent web server examples:
= Asynchronous (callback based)
= Stackful coroutines (Boost.Coroutine)
= C++20 coroutines (awaitables)
e Recode for simplicity and test with Apache Bench

https://www.boost.org/doc/libs/1_81_0/libs/beast/doc/html/index.html
https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_81_0/libs/beast/example/http/server/async/http_server_async.cpp
https://www.boost.org/doc/libs/1_81_0/libs/beast/example/http/server/coro/http_server_coro.cpp
http://localhost:8000/?print-pdf
https://www.boost.org/doc/libs/1_81_0/libs/beast/example/http/server/coro/http_server_coro.cpp
https://httpd.apache.org/docs/2.4/programs/ab.html

APACHE BENCH

'ab' is a tool for benchmarking HT TP servers

Mature implementation with extensive set of options
Number of concurrent requests is configurable
Measures 'requests per second' that can be serviced

https://httpd.apache.org/docs/2.4/programs/ab.html

HTTP SERVER: ASYNCHRONOUS

0O J o Ul WDN B

O

namespace beast = boost::beast;
namespace http = beast::http;

[
o

11 namespace asio = boost::asio;

12 using tcp = boost::asio::ip::tcp;

13

14 void error(beast::error code ec, char const* what)

15 {

16 std::cerr << std::format("Error: {} : {}\n", what, ec.message());
17 return;

18 };

19

20

21 class session : public std::enable shared from this<session>

http://localhost:8000/?print-pdf

HTTP SERVER: STACKFUL COROUTINES

1

2

3

4

5

6

7

8

9

10 namespace beast = boost::beast;
11 namespace http = beast::http;

12 namespace asio = boost::asio;

13 using tcp = boost::asio::ip::tcp;
14

15

16 void error(beast::error code ec, char const* msqg)
17 {
18 std::cerr << std::format("Error: {} - {}\n", msg, ec.message());
19 }
20
21 void do _session(

http://localhost:8000/?print-pdf

0O J o Ul WDN B

el e el
N oUW N R O

18
19

HTTP SERVER: C-+-+20 COROUTINES

namespace beast = boost::beast;
namespace http = beast::http;
namespace asio = boost::asio;
using tcp = boost::asio::ip::tcp;

using tcp stream = typename beast::tcp stream::rebind executor<
asio::use_awaitable t<>::
executor with default<asio::any io executor>>::other;

http://localhost:8000/?print-pdf

Requests Per Second

WEB SERVER PERFORMANCE COMPARISON: X86-64

14000

12000

10000

8000

6000

4000

1 10 100 250 500 1000

Number of Simultaneous Connections (100000 requests)

[Asynchronous [Boost.Coroutine C++20 Coroutines

Mean Time Per Request (ms)

TIME PER REQUEST (MS): X86-64

100 250 500 1000

Number of Simultaneous Connections (100000 requests)

[Asynchronous [Boost.Coroutine C++20 Coroutines

CONCLUSIONS

DEBUGGING TIPS

e Design concurrency before implementing
= Eliminate bugs by design e.g. race conditions
e Be careful with object lifetimes
= Common idiom: RAII class that inherits from
std::enable_shared from_this
= Check for resource exhaustion e.g. Isof -p

(+-+23 STACKTRACE

e C++23 stacktrace can be very helpful:
= Good supportin GCC 12.2
= Configure with: --enable-libstdcxx-backtrace=yes
= Compile with: -std=c++23 -Istdc++_libbacktrace

https://en.cppreference.com/w/cpp/header/stacktrace

(-+-+23/26 COROUTINE UPDATE

e P2502: standardised generator std: : generator
= Models std: :ranges: :input range
= Approved for C++23 (June 2022)
= Not yet implemented in standard libraries
= Reference implementation: godbolt.org
e P2300:std: :execution
= Standardised asynchronous execution
= ... 0Nhgeneric execution contexts
» Targeting C++26 (see also: libunifex)

http://wg21.link/p2502
https://godbolt.org/z/5hcaPcfvP
http://wg21.link/p2300
https://github.com/facebookexperimental/libunifex

CONCLUSION

e Coroutines allow asynchronous code to be written
= With the readability of synchronous code
= Fibers: a light-weight alternative to threading
= Empirical insights are compelling
e Using coroutines in user-code:
= Boost.Asio and Boost.Beast are great for this
= Persevere with key references

https://www.boost.org/doc/libs/1_81_0/doc/html/boost_asio.html
https://www.boost.org/doc/libs/1_81_0/libs/beast/doc/html/index.html

QUESTIONS?

http://www.james-pascoe.com
james@james-pascoe.com

http://jamespascoe.github.io/accu2023
https://github.com/jamespascoe/accu2023-example-code.git

ACCU Bristol and Bath Meetup Coordinator

http://www.james-pascoe.com/
mailto:james@james-pascoe.com
http://jamespascoe.github.io/accu2023
https://github.com/jamespascoe/accu2023-example-code.git

