BUILDING INTERFACES THAT ARE
HARD TO USE INCORRECTLY

ANDREAS WEIS

Building Interfaces That Are Hard to Use Incorrectly

Andreas Weis

Woven by Toyota
ACCU 2023

aCCuU
=023

About me - Andreas Weis (he/him)

= O B ComicSansMS
m @ Co-organizer of the Munich C++ User Group

woven
m Currently working as a Runtime Engineer for Woven by Toyota by TOYOTA

https://stackoverflow.com/users/577603/comicsansms
https://github.com/ComicSansMS
https://www.meetup.com/MUCplusplus/

Motivation

+7]
EiERReROAREAL Sl
YERkfRALCRARBA
BELLAEEEMARRASE
eREHIIEREIOBN <
oIS AREEOAERE
RAOF 2SS

Collective Wisdom
from the Experts

Programmer

O'REILLY* Edited by Kevlin Henney

Motivation

Item #55 by Scott Meyers:
Make Interfaces Easy to Use Correctly and Hard to Use Incorrectly

Motivation

Good interfaces are:

m Easy to use correctly. People using a well-designed interface almost always use
the interface correctly, because that's the path of least resistance. In a GUI, they
almost always click on the right icon, button, or menu entry, because it's the
obvious and easy thing to do. In an API, they almost always pass the correct
parameters with the correct values, because that's what's most natural. With
interfaces that are easy to use correctly, things just work.

Motivation

conFerence.accu.org

accu
201
The pit of success A 11-13

* We can control a lot of the defaults we leave for the next developer
* Opportunities to be inconsistent are rotten things to leave behind

« Two versions of a function? They will have to remember to change both

* One version? No chance to be inconsistent

« Initialization to defaults with nonstatic member init — ctors can’t get inconsistent
« All cleanup in the destructor?

* They don’t have to remember to clean up

* No need for changes when exceptions are added
* Const correct?

* They don’t need to play chase-the-const later

* Might also make concurrency less terrifying later
* Good names for everything? Short functions?

« They will keep the pattern going

Kate Gregory - Simplicity: Not Just for Beginners

https://youtu.be/O50qTuM5OT0?t=3460

Motivation

Good interfaces are:

m Easy to use correctly. People using a well-designed interface almost always use
the interface correctly, because that's the path of least resistance. In a GUI, they
almost always click on the right icon, button, or menu entry, because it's the
obvious and easy thing to do. In an API, they almost always pass the correct
parameters with the correct values, because that's what's most natural. With
interfaces that are easy to use correctly, things just work.

m Hard to use incorrectly. Good interfaces anticipate mistakes people might make
and make them difficult — ideally impossible — to commit. A GUI might disable
or remove commands that make no sense in the current context, for example, or
an API might eliminate argument-ordering problems by allowing parameters to be
passed in any order.

Overview

Categorization of precondition violations
Leveraging the type system to prevent precondition violations
Techniques for restricting access to data

Techniques for restricting control flow

What is an incorrect use?

std::vector<int> v;
v.resize (10);

int i = v[99];

Function Preconditions

m The contract provided of a function can be expressed through preconditions and
postconditions.

m When calling the functions within the defined preconditions, the contract
guarantees that the function will establish the postcondtions.

m When calling the function outside the preconditions, anything can happen.

= Violation of preconditions is always an “incorrect use”.

What is an incorrect use?

std::vector<int> v;
v.resize (10);

int i = v.at (99);

m Is this incorrect use?

What is an incorrect use?

float f = std::sqrtf(-1.f);

m Is this incorrect use?

Wide Contracts - Defensive Programming

Widening a contract reduces the number of preconditions

Thus a function with a wide contract has seemingly fewer opportunities for
incorrect use

m However, the postconditions under the widened contract are usually significantly
more complex

Which again reintroduces new opportunities for incorrect use in other places

Many preconditions are not detectable

= Widening contracts does not prevent “incorrect use”.

What is an incorrect use?

void compute (std::span<std::byte> buffer) {
// zero out buffer
std::memset (buffer.data(), buffer.size(), 0);

Precondition Violations

m Invalid argument

What is an incorrect use?

std::fstream fin;
char buffer [256] = {};
fin.read (buffer, 256);

What is an incorrect use?

std::mutex mtx;
mtx.lock ();
mtx.lock () ;

What is an incorrect use?

std::vector<int> v = getNumbers();
auto it_begin = std::ranges::begin(v);
v.push_back (42);

int first_element = *xit_begin();

What is an incorrect use?

void consumeObject (MyClass&& object);

MyClass my_object = createObject ();
my_object.doStuff () ;

consumeObject (std::move(my_object));
my_object.doMoreStuff () ;

Precondition Violations

m Invalid argument

m Invalid context

How can we prevent those violations?

Type System to the rescue!

m Type system allows us to restrict the set of values assigned to an object

m Type system allows us to restrict the set of operations that can be applied to an
object

Opaque Types

void glTexImage2D (
GLenum target,
GLint 1level,
GLint internalformat,
GLsizei width,
GLsizei height,
GLint border,
GLenum format,
GLenum type,
const void * data);

glTexImage2D(1, 2, 3, 4, 5, 6, 7, 8, &data);

Enumerations

m GLenum is just a typedef for an unsigned int.
m Enumerator values are defined as preprocessor constants.

m Some values even overlap, defining two unrelated enumerators to the same integer
value.

m Compiler will never catch an invalid enumerator argument. This is a runtime error
at best.

Scoped Enumerators

enum class Shape {
Circle = 1, Square = 2, Triangle = 3
3
enum class Color {
Red = 1, Green = 2, Blue = 4
s
void setShapeColor (Shape, Color);

setShapeColor (Color::Red,

Shape::Circle); // does mnot compile!
Shape s1 = Color::Blue // does mot compile!
Shape s2 static_cast<Shape>(3); // requires cast

Scoped Enumerators as Opaque Typedefs

enum class Handle : std::uint32_t { Invalid = 0 };
Handle createResource();

Handle hl = createResource ();

Handle h2 = Handle::Invalid;

Handle h3{ 42 };

Handle h4 = 42; // does mot compile

enum class OtherHandle : std::uint32_t {};
OtherHandle h5 = hi; // does mot compile

Opaque Typedefs

template<typename Tag_T>
struct OpaqueHandle { std::uint32_t i; 1};

struct FileHandleTag {};

using FileHandle = OpaqueHandle<FileHandleTag>;
struct ProcessHandleTag {7};

using ProcessHandle = OpaqueHandle<ProcessHandleTag>;

FileHandle openFile(std::filesystem::path);

FileHandle hl = openFile("important.dat");
ProcessHandle h2 = hi; // does mnot compile

Opaque Typedefs

Types defined this way don’t support common operations out-of-the-box:
m Compare for equality (operator==)
m Store in a map (operator<)
m Store in an unordered map (std: :hash)
m Printed to the console (operator<<(std::ostream), std::formatter)
m Arithmetic

Libraries like Bjorn Fahller's strong_type provide customizable opaque types.
Arithmetic is supported by units libraries like Mateusz Pusz's mp-units.

https://github.com/rollbear/strong_type
https://github.com/mpusz/units

Structuring arguments

void* memset (void* buffer, int fill_char,
size_t buffer_size);

memset (buffer, 10, 20);

Compare with:

void* my_memset (std::span<std::byte> span, int fill_char);

my_memset (std::span(buffer, 20), 10);

Structuring arguments

struct MemsetArgs A
void* buffer;
size_t size;
int fill_char;

};

void* my_memset (MemsetArgs const& args);

my_memset ({ .buffer = b, .size = 20, .fill_char = 10 });

Structuring arguments

Rectangle r1{10, 20, 30, 40};

Rectangle r2{Point{ .x = 10, .y = 20 },
Point{ .x = 30, .y = 40 }};
Rectangle r3{Point{ .x = 10, .y = 20 },

Extents{ .width = 30, .height = 40 }};

Structured Data Access

using Shape = std::variant<Rectangle, Circle, Triangle>;

Shape s = getShape();
if (std::holds_alternative<Circle>(s)) {
float r = std::get<Circle>(s).getRadius();

Structured Data Access

float
float
float

Shape
float

[l Cauto const& s) { return getArea(s);

getArea(Rectangle const& r);
getArea(Circle const& c);
getArea(Triangle const& t);

my_shape = getShape ();
const area = std::visit(

my_shape);

} b

Structured Data Access

template<class... Ts>
struct overloaded : Ts... { using Ts::operator()...; };

Shape my_shape = getShape ();
std::visit (overloaded{

[] (Rectangle const& r) { /> ... */ }
[1(Circle const& c) { /* ... */ }
[](Triangle const& t) { /* ... */ }

});

Data Types with special properties

Consider these alternatives:

// \pre Widget must not be nullptr
void processWidget (Widget* w);

void processWidget(Widget& w);

void processWidget(gsl::not_null<Widget*> w);

Data Types with special properties

Consider these alternatives:

// \pre str must be a null-terminated string
void processString(char const* str);

void processString(std::string_view str);

void processString(gsl::czstring str);

Limited Friendship

class Database {
Internals m_privateState;
public:
Data retrieveData (Handle h);
private:
Data retrievePrivilegedData (Handle h);

};

class Client;
class PrivilegedClient;

Limited Friendship

struct AccessToken {

private:
AccessToken () = default;
friend class PrivilegedClient;

};

class Database {
Internals m_privateState;
public:
Data retrieveData (Handle h);
Data retrievePrivilegedData(Handle h, AccesToken t);

};

Declarative Interface

in vec3 Position;
in vec3 Normal;
in vec2 TexCoord;

PX|py|pz(nx|ny|nz|tu|tv|px|py|(pz|nx

e

glBufferData (GL_ARRAY_BUFFER, size, ptr, ...);
glVertexAttribPointer (index_pos, 3, GL_FLOAT,

stride, offset_pos);
//

Declarative Interface

struct Vertex {

Vec3 position;

Vec3 normal;

Vec2 textureCoordinate;
};

std::vector<Vertex> vertex_buffer;
m Geometry data starts its life as structured data in C+—+.

m Data gets memcopied into a single buffer that is transferred to the GPU.

m Location of the individual vertex components inside this buffer are configured
through a series of glVertexAttribPointer calls.

Declarative Interface

using MyFormat = VertexFormat<
Component::Position3f,
Component ::Normal3f,
Component::TexCoord2f

shader .bind<MyFormat , Component::Position3f>("Position");
shader .bind<MyFormat, Component::Normal3f>("Normal");
shader .bind<MyFormat, Component::TexCoord2f >("TexCoord");

Declarative Interface

m Specify the what instead of the how

m Restrict the parameter space to a set of predefined sensible values

m Leave just enough room for customization for what is sensible for the domain
m Deduce the tricky configuration parameters from the declarative description

Higher-level interface is potentially more restrictive than the lower-level one. Consider
leaving an escape hatch for exotic use cases.

Modeling State Through Types

class Widget {
public:

// Constructs an uninitialized widget.
Widget () ;

//! Initializes the widget.

//! \pre Widget must not have been initialized.
void init ();

//! \pre Widget must have been initialized.
void doStuff ();

Two-Phase Initialization

class Widget {
private:

Widget () ;

void init ();
public:

void doStuff ();
3

Widget createWidget () {
Widget w;
w.init ();
return w;

}

Two-Phase Initialization

class UninitializedWidget {
public:
UninitializedWidget ();
s
class Widget {
private:
Widget O ;
public:
void doStuff ();
s

Widget initializeWidget (UninitializedWidget&& w);

Error Handling Paradigms

Consider these alternatives:
// Returns 0 on success, error code on failure.

Result_T retrieveFrob(Frob* out_frob);

// Sets errno in case of failure
Frob retrieveFrob ();

// Throws in case of fatlure
Frob retrieveFrob ();

C++23 std: :expected

std::expected<Frob, Error_T> retrieveFrob() {
if (!frobState.isGood ()) A
return std::unexpected(Error_T::BadFrob);
}

return frobState;

}

std::expected<Frob, Error_T> f = retrieveFrob();
if (1f) {
// handle error
} else {
f->doStuff ();
}

C++23 std: :expected

std::expected<Frob, Error_T> retrieveFrob() {
if (!frobState.isGood ()) {
return std::unexpected(Error_T::BadFrob);

}

return frobState;

3

f.value_or (defaultFrob).doStuff ();

Execution Tokens

m Restrict the circumstances under which a function may be executed.

m Only allow the execution of a function in specific contexts, e.g. within a
transaction, when a lock is held, when a resource is available, etc.

m Scope in which the relevant context is active is reflected by the program structure.

Execution Tokens

class ExecutionToken {
private:
ExecutionToken () ;
};
class Provider {
public:
ExecutionToken establishContext ();

};

class Widget A{
public:
void process(ExecutionToken&& token);

};

Execution Tokens

m Models one-off events: Establishing the context allows us to execute one operation

m C++ move semantics allow us to retain a consumed execution token (e.g. in a
member variable). Again, external tools can help prevent this.

Scoped Execution Contexts

vkBeginCommandBuffer (cmd_buffer, &args);

vkCmdCopyImage (cmd_buffer, ...);

vkCmdBeginRenderPass (cmd_buffer, ...);
vkCmdBindVertexBuffers (cmd_buffer, ...);
vkCmdDraw (cmd_buffer, ...);

vkCmdEndRenderPass (cmd_buffer, ...);

vkEndCommandBuffer (cmd_buffer);

Scoped Execution Contexts

class CommandRecorder {
void cmdCopyImage (...);

RenderPassRecorder beginRenderPass (...);
};
class RenderPassRecorder A{

void cmdBindVertexBuffers(...);

void cmdDraw(...);

};

class CommandBuffer {
CommandRecorder begin();

};

Scoped Execution Contexts

CommandRecorder beginCommandBuffer (CommandBuffer&&);
CommandBuffer endCommandBuffer (CommandRecorder&&) ;
RenderPassRecorder beginRenderPass (CommandRecorder&&) ;
CommandRecorder endRenderPass (RenderPassRecorder&&) ;

CommandBuffer cmd_buffer = ...;

auto cmd_recorder = beginCommandBuffer (std::move(cmd_buffer),
cmd_recorder.cmdCopyImage (...);

cmd_buffer = endCommandBuffer (std::move(cmd_recorder));

Complex State Machines

Complex State Machines

namespace State {
class S;
class A;
/7

}

namespace Events {
class E1;

//

Complex State Machines

State::S initial_state;
State::A state_a =
transition(std::move(initial_state), Events::E1{});
State::B state_c =
transition(std::move(state_a), Events::E3{});

Complex State Machines

m Gives full control over the possible state transitions and available interfaces for
each state.

m Leaves behind a dead state object with each transition.

m No uniform storage for states - type erased storage again loses all of the
compile-time control.

The GoF State Pattern

struct State {
virtual “State() = default;
virtual void doStuff() = 0;

}s
struct StateA : public State { /* ... */ };
struct StateB : public State { /* ... */ };

class Context {
std::unique_ptr<State> m_state;
public:
void doStuff() { m_state->doStuff(); }
void setState(StateDesc new_state);

};

Conclusion

m Harden interfaces by making it impossible to violate preconditions without
widening the contract.

m Two fundamental classes of preconditions: Restrictions on arguments and
restrictions on context.

m A variety of techniques exist to move precondition checks to compile-time.

m Difficult trade-offs between correctness and implementation effort and usability.

Thanks for your attention.

© M ComicSansMS

https://stackoverflow.com/users/577603/comicsansms
https://github.com/ComicSansMS

