

AGENDA

What is a function contract?

Why a narrow contract (one with preconditions) might be a good choice?
How to design a good function contract?

How to check that contracts are not violated?

How to communicate a contract to our clients?

What is required of a contract-checking facility at scale?

WHAT IS A FUNCTION CONTRACT?

WHAT IS A FUNGHEN CONTRACT?

A contract is an agreement between two parties that creates an obligation to perform (or
not perform) a particular duty.
https://www.utsa.edu/bco/resources/contract-law-101.html

A contract is an agreement, either written or spoken, between two or more parties that
creates a legal obligation.
https://ironcladapp.com/journal/contracts/what-is-a-contract/

A contract is an agreement between parties, creating mutual obligations that are
enforceable by law.

https://www.law.cornell.edu/wex/contract

https://www.utsa.edu/bco/resources/contract-law-101.html
https://ironcladapp.com/journal/contracts/what-is-a-contract/
https://www.law.cornell.edu/wex/contract

EXAMPLE CONTRACT

The contractor will provide manpower
(labor), rough materials, small tools,
equipment and schedule subcontractors 1.
for the work as outlined in this contract.
The work will be performed following
standard building practices. The
contractor will supply enough

manpower to have this job substantially
completed in 8 weeks. This proposed
schedule does not account for time in

hold for inspections or other unexpected
circumstances (i.e.: weather storms, etc.) 2.

Owner's responsibilities and Progress
Requisition:

Payment: The failure of the Owner to make
proper payments to Contractor when due
shall, in addition to all other rights, constitute
a material of breach of contract and shall
entitle Contractor, at its discretion, to suspend
all work. Owner agrees to pay interest at a
rate of 1.5 percent per month retroactive to
the completion date on any amount not paid
when due.

Bi-weekly requisition payments will be paid
assuming reasonable bi-weekly progress.
Requisition payments can be delayed or
accelerated as needed upon agreement by the
parties.

WHAT DO CONTRACTS HAVE T0 DO WITH SOFTWARE?

e The two parties

= The function author

= Theclient code
e The obligations

= (Author) Function promises to perform a task

= (Client) Caller promises to respect constraints on inputs (if any)
e Enforceable by law?

= Not really...

= ... but we'll talk about enforcement

DISCLAIMER

o All examples will use C++

e Most (if not all) ideas regarding contracts are applicable to any programming
language

e Codeisinspired by
» decades of using contracts at Bloomberg
s "C++20" contracts that never happened
= current work towards C++26 contracts (SG21)

ELEMENTS OF A FUNCTION CONTRACT

e Preconditions - constraints that the client must satisfy
= With respect to input arguments and object or program state
= .. otherwise, the behavior is undefined
e Essential behavior - what a function promises to do given valid input
= Postconditions
o Return value(s)
o Changes in the object or program state
= Behavioral guarantees
o Algorithmic complexity
o Thread safety

O eee

WHY HAVE PRECONDITIONS AT ALL?

e Some functions don't have preconditions

= Naturally wide contracts
o std::vector: :push back()
o std::vector::size()

m Other functions are not quite that easy
o std::vector::front()
o std::vector: :operator[](index)
o std::ranges::sort(range, comparator)

REASONS TO HAVE PRECONDITIONS

e Defining behavior for all inputs might be inefficient or even infeasible

e Having appropriately selected preconditions improves
= Reliability
= Maintainability
= Extensibility

FEASIBILITY

e Defining behavior for all inputs might be impossible no matter how hard we try
= basic string view::basic string view(
const CharT* s, size type count);

o Precondition: [s, s+count) isavalid range
m std::ranges::sort(rng, comp)

o Precondition: comp must impose a strict weak order
m std::mutex: :lock()

o Precondition: lock must not be owned by the thread that calls 1ock ()

EFFICIENCY

e Defining behavior for all inputs might be too expensive
= std::ranges::merge(rngl, rng2, result) < O[N]
o Precondition: rngl and rng2 must be sorted with respect to operator< «
O[N]
m std::ranges::lower_bound(rng, value) «—O[log(N)]
o Precondition: rng must be partitioned with respect to operator< <« O[N]
e Performance penalty is present on every call

RELIABILITY

e "Handling" nonsense inputs masks defects
= Some hypothetical BAD examples
o std::vector::pop back() does nothing when vector is empty
o std::string view::operator[](index) returnsthe last character if
index is bigger than length
o std::optional::operator*() returns areference to a static default-
constructed value when empty
» |f there's a defect in the caller such behavior might...
o ..."work" in some situations giving false sense of security
o ...manifest as an error/crash/etc. at code location far away, complicating
debugging

MAINTAINABILITY

"Handling" nonsense input complicates implementation
e More error paths complicate client code

min_double(*begin,

*cur = begin;
*min = begin;
(++cur < end) {
min = *min < *cur ? min : cur;

*min;

1
2
3
4
5
6
7
8
9

MAINTAINABILITY

e "Handling" nonsense input complicates implementation
e More error paths complicates client code

(== begin) ::invalid_argument{"null begin"};
(== end) ::invalid_argument{"null end"};
(std::less<>{}(end, begin)) ::invalid_argument{"bad range"};
(begin == end) ::invalid_argument{“"empty range"};

MAINTAINABILITY

e "Handling" nonsense input complicates implementation
e More error paths complicates client code

(std::isnan(*cur)) std::domain_error{"unexpected NaN"};

MAINTAINABILITY

e "Handling" nonsense input complicates implementation
e More error paths complicates client code

(min < begin || end <= min) std::logic_error{"algorithm failed"};
(cur != end) std::logic_error{"algorithm failed"};

EXTENSIBILITY

e We can't easily change defined behavior
» Breaks clients relying on that behavior
= We can define the behavior that was previously undefined
= Any correct client won't feel the difference*

= Example: If we were to makemy_vector: :operator[] abort on out-of-range,
no existing correct program would break

const_reference [] (size_type position)

{
d dataBegin p[position];

}

*Hyrum's Law: With a sufficient number of users of an API, it does not matter what
you promise in the contract: all observable behaviours of your system will be
depended on by somebody

EXTENSIBILITY

e We can't easily change defined behavior
» Breaks clients relying on that behavior
= We can define the behavior that was previously undefined
= Any correct client won't feel the difference*

= Example: If we were to makemy_vector: :operator[] abort on out-of-range,
no existing correct program would break

const_reference [] (size_type position)

{

(position »>= size()) { std::abort(); }

d dataBegin p[position];

GOOD CONTRACT DESIGN

ORDER OF OPERATIONS

¢ Inwhat order do we do things?

ORDER OF OPERATIONS

¢ Inwhat order do we do things?

ORDER OF OPERATIONS

¢ Inwhat order do we do things?

ORDER OF OPERATIONS

¢ Inwhat order do we do things?

ORDER OF OPERATIONS

¢ Inwhat order do we do things?

ORDER OF OPERATIONS

¢ Inwhat order do we do things?

ORDER OF OPERATIONS

¢ Inwhat order do we do things?

ASPECTS OF A GOOD CONTRACT

¢ Minimal but complete
» Does the job that it needs todo
= Does not do what it doesn't need to do

e Suitable for a wide variety of clients
= Does not impose an unnecessary penalty

NATURALLY WIDE CONTRACTS

e std::vector: :push_back()
e std::vector::size()
e std::recursive mutex::lock()
» What if the number of levels of ownerships is exceeded?
= Would such lack of system resources necessarily indicate misuse?
= Similar to a failure to allocate memory
o Don't be hostile to your clients; keep the contract wide!
o Standard chose to throw std: : system_error insuchascenario

NARROW BUT NOT T00 NARROW

std::string view::remove prefix(size_type count);

Should this function handle count == 0?7 Yes!

Should this function handle count == size()? Yes!

Same implementation allows us to naturally handle these cases
What should happenif count > size()?

s Undefined behavior!

WIDE CONTRACT FACILITIES

void HttpHeader::addField(name, value);
HTTP/2 places complex constraints on name and value
Should it return a status or indicate problems in name and value? No!
= Would have to check in all build modes
m Potential errors would need to be handled by the clients
Instead, provide validation functions and wide-contract facilities:
= static bool HttpHeader::isValidNameValue(name, value);
= int HttpHeader::addFieldIfValid(name, value);

addField(name, value);

CONTRACT CHECKING

BUGS HAPPEN

e What to do when a contract is violated?
e Per our contract, behavior is undefined
= We can do whatever we want!
= Call law enforcement?
= Sue for damages?
= Do something to help our caller understand and fix the bug!

WHAT ARE OUR OPTIONS?

HttpHeader: :addField(std::string view& name,

std::string view& value);

e Do nothing?
e Check whether precondition was violated and...
m ...try to fix the incorrect characters?
= ...throw an exception?
= ...print a useful message?
= ..abort the program?
m ...print a useful message and abort?

IS CHECKING MANDATORY?

Should we always check?

Do we have to check everything?
No!

Undefined behavior is just that, undefined!

EXAMPLE:C assert

assert(isValidNameValue(name, value));

WHAT DOES AN as sert GET US?

e In achecked build (NDEBUG is not defined)
= A bug (contract violation) is detected
= Early
= (Often) close to the source

output.s: /app/example.cpp:12:
void addField(const std::string view &, const std::string view &):

Assertion “isValidNameValue(name, value)' failed.

e |n an unchecked build (NDEBUG is defined)
= Run time efficiency - the check is elided

AREN'T WE IN UB LAND?

e When a contract is violated, we've often not yet entered the Language UB land
= |nstead, we have Library UB

(str[count])

CONTRACT CHECKING

e Contract checks are redundant code aiming to detect misuse by the function caller
e Removing some or all checks from a correct program should not affect its essential
behavior

SIDE EFFECTS IN PREDICATES

e The behavior is undefined if inserting value into setOfIntegers fails
e |sthis a good way to check it?

assert(setOfIntegers.insert(value).second);

BAD IDEA!

SIDE EFFECTS IN PREDICATES

e The behavior is undefined if inserting value into setOfIntegers fails
e |sthis a good way to check it?

[, inserted] = setOfIntegers.insert(value);

assert(inserted);

OK!

SIDE EFFECTS IN PREDICATES

assert(!isCorrupted(d_map[index]));

BAD IDEA!

BENIGN SIDE EFFECTS IN CONTRACT CHECKS

assert(!contains(name));

Some side effects might be OK, depending on your application.

CHECKS SHOULD NOT AFFECT CONTROL FLOW

std: :nullopt;

BAD IDEA!

CONTRACT CHECKS ARE NOT FOR INPUT VALIDATION

e Inputis data coming from untrusted sources
= User input via Ul or command line
= Datareadfrom afile
m Datareceived over the wire

e Using contract checks for input validation is a BAD idea!
= assert(argc == 2); // BAD IDEA!

e For more, see Avoid Misuse of Contracts, CppCon 2019

https://www.youtube.com/watch?v=KFJ5p-T-S7Q

CONTRACT CHECKS DO NOT REPLACE UNIT TESTING

e Contract checks complement unit testing
= Contract checks help find defects while unit testing
o Unit tests verify postconditions
e Assertinginvariants in destructors help unit tests to verify them
= A good unit test would put an object in every possible state before destruction

SUMMARY: FUNCTION CONTRACT BASICS

When creating a function, start with defining its contract
The contract should be minimal but complete
= |eave behavior undefined for bad inputs (preconditions)
= Having preconditions allows for faster, simpler, more robust, and more flexible
code
Use contract checking to defend against caller misuse
= Help your clients catch defects early and precisely
Do not misuse contract checks
= Do not put essential side effects in contract checks
= Do not use contract checks as a control flow mechanism
= Do not use contract checks for input validation
Contract checks complement unit testing

CONTRACT RENDERING (FOR HUMANS)

WHY IS CONTRACT DOCUMENTATION IMPORTANT?

Why not just "self-documenting code"?

Quaternion(
s d_w(w)
» d_x(x)

» d_y(y)
, d_z(z)

1}

Documenting your contract first encourages thinking through the problem
Any behavior becomes essential behavior
Not all preconditions can be checked

BASIC CONTRACT DOCUMENTATION GUIDELINES

e All aspects of the contract must be documented
¢ Specific style doesn't matter much
e Consistency is key!

ANOTHER DISCLAIMER

e | will employ the style used by my team (BDE)
e |'ll make a direct comparison with a different style toward the end of the section

ASPECTS OF A FUNCTION CONTRACT

What the function does
What it returns
Essential behavior
Preconditions
Additional notes

WHAT THE FUNCTION DOES

e Asingle imperative sentence describing the primary action(s) the function performs
» Difficulty fitting the purpose in a single sentence indicates a design issue
e Call out all (non-optional) arguments by their name, explaining how they are
used/modified by the function
= Sentence flow breakage indicates a naming or design issue

WHAT THE FUNCTION DOES: EXAMPLE

1 iterator basic_string::erase(const_iterator first, const_iterator last);
2

3

WHAT THE FUNCTION RETURNS

e Single imperative sentence describing the return value of the function

WHAT THE FUNCTION RETURNS (CONT'D.)

e Unnecessary if the return type is void (obviously)
e Sometimes combined with "what the function does"

string view::starts_with(string view subview)

ESSENTIAL BEHAVIOR

e Collateral effects and other consequences essential to the functionality

e Couldinclude
» Thread safety
= Complexity guarantees
= |terator stability guarantees
m Etc, etc, etc....

PRECONDITIONS

e The behavior is undefined unless...
= Except when it would lead to a double-negative
e The unless form to use the same expression in the documentation and a contract-
checking statement

BENEFITS OF UNLESS

e The unless form to use the same expression in the documentation and a contract-
checking statement

sqrt(value)

assert(@ <= value);

MORE BENEFITS OF UNLESS

o Multiple preconditions are additive
e Multiple assertions
e No need to apply DeMorgan's Laws

assert(@ <= width);
assert(@ <= height);

PRECONDITION ORDER

e |ltisimportant to have a consistent order of preconditions
m void Object::func(T a, U b, V c);
= P1() - preconditions on global or object state
= P2(a),P3(b),P4(c) - preconditions on individual arguments, in order
= P5(a, b),P6(a, c),P7(b, c),P8(a, b, c) -preconditionson relationships
between arguments, in order

ADDITIONAL NOTES

e Supplementary information potentially useful to the caller
Aspects of behavior derivable from the contract, but not necessarily obvious

1 CHAR_TYPE *basic_string::data()
2
3

basic_string:: basic_string view<CHAR_TYPE, CHAR_TRAITS>()

WHY WE CHOSE THIS STYLE?

Conciseness
Rigid structure allows spotting issues
Human-oriented, not tool-oriented

But there is a wide variety of documentation styles and frameworks
= Doxygen
= QDoc

Let's compare!

EXAGGERATED EXAMPLE

1
2
3
4
5
6
7
8
9

REAL EXAMPLE

e JUCE framework
= Excellently engineered
= Excellently documented
m Sk starsand 1.4k forks
e Goal of the examples that follow
= Not to throw shade on JUCE in any way!
= To provide a fair comparison
o | randomly chose one component (ZipFile) with large doc blocks

O 00 N O U1 B W IN B

ol el L
W N RO

14
15
16
17

REAL EXAMPLE (DOXYGEN)

addEntry (InputStream* streamToRead,
compressionlLevel,

String& storedPathName,
fileModificationTime);

Time

REAL EXAMPLE (BDE)

addEntry (InputStream* stream,
compressionLevel,
String& partialPathName,
Time fileModificationTime);

1
2
3
4
5
6
7
8
9

SUMMARY: CONTRACT DOCUMENTATION

e Document your contracts
e Specific style is not important, but...
m Choose a style!
o Adjust it based on your requirements and stylistic preferences
= Make sure your style includes all aspects of contracts
e Be consistent!

assert ISNOT ENOUGH

Contract checking at scale

assert IS NOT ENOUGH

Behavior on failure is not configurable

All checks are treated the same irrespective of their complexity
Adding checks to old code or modifying checks is difficult
Testing contract checks is difficult

PROBLEM 1: a s se rt BEHAVIOR IS NOT CONFIGURABLE

e Cassert outputs implementation-specific diagnostic to stderr and calls
std: :abort
e Application owner might want different behavior
m | ogtoadifferent destination with a different format
= Throw an exception?
= Spin, waiting to attach a debugger?
= Etc.
e We caninstall SIGABRT signal handler, but
= Very limited in what it cando
= Can't discriminate between assert violation and other sources of abort
= No information about the violation

SOLUTION 1: CONFIGURABLE VIOLATION HANDLER

ViolationHandler = (*)(ContractViolation&);

ViolationHandler setViolationHandler(ViolationHandler handler);

ContractViolation {

std::source location location()
std::string view comment()

)

OFF-THE-SHELF HANDLERS

e failByAbort (default) - log a helpful message and unconditionally abort (similar
behavior to C assert)
e failBySleep - log a helpful message and spin in an infinite loop (to wait for
attaching a debugger)
e failByThrow - throw an AssertTestException (used for negative testing)
» We'll talk about this shortly

CONTINUING VIOLATION HANDLERS?

e Should we allow the handler to return normally?
= |n many application contexts, it's ill advised
= The program is broken
= We would likely go into Language UB territory
e But we need continuation in some circumstances
m We'll discuss it a bit later
e For now, let's prevent continuation

CCS_ASSERT

1
2
3
4
5
6
7
8
9
1
1

CCS_ASSERT_IS ACTIVE is defined for checked builds, but not for unchecked ones.

CHECKS SHOULD NOT AFFECT CONTROL FLOW (PART II)

std::pair{integral, fractional};

In an uncheked build, all checks will be disabled!
VERY BAD IDEA!

ADDITIONAL UTILITIES

e CCS_ASSERT_INVOKE_HANDLER - invoke currently installed violation handler and

abort (in all build modes)
e Sometimes useful to avoid computing the predicate multiple times

ADDITIONAL UTILITIES

e CCS_ASSERT_INVOKE_HANDLER - invoke currently installed violation handler and

abort (in all build modes)
e Sometimes useful to avoid computing the predicate multiple times

{ CCS_ASSERT_INVOKE HANDLER("Bad enumeration value"); }

PROBLEM 2: SOME CHECKS ARE T0O0 EXPENSIVE

e Application owners need to balance performance vs. amount of checking

e Library developers need a convenient way of allowing that control

e Should each check carry a number expressing the amount of checking work relative
to the useful work of the function?

value) { CCS_ASSERT(@ <= value, 3);

negate(value) { CCS ASSERT(value != INT_MIN, 100);

wer_bound (R&& r, T& value) { CCS_ASSERT(is_sorted(r), size(r) * 100);

In practice, it's too cumbersome

SOLUTION 2: TWO CLASSES OF CHECKS

CCS_ASSERT (default) - checks that take less computation than the useful work the

function does
CCS_ASSERT_AUDIT - checks that take more than that

CCS_ASSERT and CCS_ASSERT_AUDIT is a minimal useful set
Enterprises might choose to implement more levels

m Super-light checks that are almost always enabled

= Super-heavy checks that break computational complexity

PARTIAL CHECKING OF COMPLEX PRECONDITIONS

count = std::distance(first, last);

PARTIAL CHECKING OF COMPLEX PRECONDITIONS

13 std::advance(it, step);

PARTIAL CHECKING OF COMPLEX PRECONDITIONS

13 CCS_ASSERT(!(*std::next(it, step) < *it));

PROBLEM 3: DIFFICULT TO ADD/MODIFY CHECKS

e Adding checks to an existing, functional system is not easy
m Contract violations might be present, but the system works
= Adding contract checks might lead to unnecessary outages
o "Benign" contract violations (they are still defects!)
o Contract check itself might be incorrect
= Example: std: :optional: :operator*()
o Behavior is undefined unless has_value()
o Existing code dereferenced null optionals of fundamental types
e Similarly, changing the level of an existing check might lead to the same
consequences

SOLUTION 3: A DIFFERENT KIND OF ASSERT

e Do not abort execution after violation handler has finished
» Even ifit returned normally

HANDLING A REVI EW FAILURE

e Evenasingleincorrect use canresultin CCS_REVIEW flooding the log
= Might even be worse than abort, hogging resources while doing almost no useful

work
e To mitigate that, the violation handler must be able to differentiate between

CCS_ASSERT and CCS_REVIEW
= For example, to use exponential backoff
e Associate a semantic with each contract check

CONTRACT SEMANTICS

observe,

CONTRACT SEMANTICS (CONT'D.)

ContractViolation {

std: :source_location location()
std::string view comment()

};

CONTRACT SEMANTICS (CONT'D.)

semantic semantic()

CONTRACT SEMANTICS (CONT'D.)

CONTRACT SEMANTICS (CONT'D.)

CONTRACT SEMANTICS (CONT'D.)

CONTRACT SEMANTICS (CONT'D.)

std::cerr << "Contract violation observed at
<< violation.location().file name() << ':'

<< violation.location().line() <<
<< violation.comment()
<< "' - Hit count: << violationCount << '\n';

CCS_REVIEW LIFECYCLE

New check in existing code or level change for existing check

Add CCS_REVIEW/CCS REVIEW_ AUDIT

Observe and fix any violations for a sufficient amount of time (e.g., 3 months)
Once no more violations are detected, convert to a

CCS_ASSERT/CCS _ASSERT_AUDIT

Abort for review violations in the handler used in development/testing environment

EXAMPLE: CHANGING ASSERTION LEVEL

CCS_ASSERT_AUDIT(has_value());

STEP1:ADDA CCS_REVIEW

CCS_ASSERT_AUDIT(has_value());

CCS_REVIEW(has_value());

STEP 2: WAIT AND FIX ISSUES

TYPE& optional:: *()

1
2
3 A

4 CCS_ASSERT_AUDIT(has_value());
5

6

7

8

CCS_REVIEW(has_value());

}

STEP 3: REPLACE WITH CCS_ASSERT

CCS_ASSERT(has_value());

EXAMPLE: RUNNING PRODUCTION BUILDS WITH MORE EXPENSIVE CHECKS

e Scenario
= \We've been running production builds without a problem with CCS_ASSERT
enabled
= \We want a subset of servers to do more checking (e.g., enabling
CCS_ASSERT_AUDIT)
e Solution
» Treat CCS_ASSERT_AUDIT as CCS_REVIEW_AUDIT
o Keep CCS_ASSERT as before

e Similar to adding new checks in existing software

EXAMPLE: NARROWING A CONTRACT

4 : d_lowWatermark(std::min(lowWatermark, highWatermark))
5 , d_highWatermark(highWatermark)

STEP1:ADDA CCS_REVIEW

CCS_REVIEW(lowWatermark <= highWatermark);

STEP 2: WAIT AND FIX ISSUES

ConcurrentCache: :ConcurrentCache(lowWatermark, highWatermark)

: d_lowWatermark(std::min(lowWatermark, highWatermark))

, d_highWatermark(highWatermark)
{

CCS_REVIEW(lowWatermark <= highWatermark);
}

STEP 3: CHANGE CONTRACT AND BEHAVIOR

CCS_ASSERT(lowWatermark <= highWatermark);

PROBLEM 4: CONTRACT CHECKS ARE DIFFICULT TO TEST

Contract checks are code and ought to be unit tested
Trigger a contract violation and verify that the check caught the issue (when
enabled)
How?
Aborting handler would require death tests
= Not supported in many testing frameworks
= Significant performance penalty
= Difficult to discriminate between assertion failure and other reason for a crash

SOLUTION 4: AssertTest APPROACH

Set up a throwing violation handler
= |nvoke the function under test out of contract
Catch the exception
Exception came from the wrong place?
= Bugin a contract check
Exception caught when there should have been none?
= Bugin acontract check!
No exception caught when there should have been one?
= Believe it or not, bugin a contract check!

EXAMPLE NEGATIVE TEST

CCS_ASSERT(address);
CCS_ASSERT_AUDIT(isValidAddress(address));
CCS_ASSERT(@ <= portNumber && portNumber <= 65535);

CONTRACT CHECKS AND noexcept

e Wouldn't noexcept get in the way?

= Yes, yes it would
e That's why we follow the Lakos Rule

= Do notput noexcept on narrow-contract functions

= See the original paper N3279 and the upcoming P2837 (May 15th)
e Alternatives are suboptimal

m Death tests are not available in many testing frameworks

= setjmp/longjmp - UBif jumping over anything non-trivial

o Whether stack unwinding happens depends on the platform
= noexcept active only in unchecked builds - not testing the actual production
code

https://wg21.link/N3297
https://wg21.link/P2837

Having thought more and having grown wiser, NOEXCEPT_DEBUG was a horrible

decision. It was viral, it didn't cover all the cases it needed to, and it was observable to the
user — at worst changing the behavior of their program.

— Eric Fiselier on the libc++ changeset switching to death testing (Mar 8, 2019)

See the upcoming paper "P2834: Semantic Stability Across Contract-Checking
Build Modes" (May 15th)

https://reviews.llvm.org/D59166
https://wg21.link/P2834

SUMMARY: CONTRACT CHECKING AT SCALE

Provide means to set custom violation handler
= Owner of main can choose the violation handling strategy
» Be careful with allowing potentially continuing handlers
Differentiate assertions by relative complexity
= CCS_ASSERT, CCS_ASSERT_AUDIT
m Easy categorization for the function author
m Easy control of performance versus the amount of checking for the owner of
main
Provide mechanism to add new checks to old code
= CCS_REVIEW
Unit-test your contract checks!
= Do notput noexcept on narrow-contract functions

CONCLUSIONS

CONCLUSIONS

e Carefully define the contracts for your functions

= Minimal but complete

» | eave behavior undefined for inputs that do not make semantic sense
e Defend against caller misuse using contract checks
e Choose adocumentation style and follow it consistently

= Make sure to document all important aspects of a function contract

CONCLUSIONS

o Sufficiently flexible contract-checking system is crucial at scale

» Configurable violation handler

= Have a parallel facility for introducing new checks and similar tasks
(CCS_REVIEW)

= Afew assertion levels for ease of creation (by library authors) and control (by
application owners)

m Unit-test contract checks

o Keep in mind not putting noexcept on functions having narrow contracts

