


Multi Threading Model in 
Paradox Games
Past, Present and Future



How indeed?

3



The greatest trick

◉ At level 7 pick Improved Software Trick

◉ At level 13 pick Greater Software Trick

◉ Consider the Software Trickster prestige class

◉ Best done with Gnomes or Catfolks

4



Stagnation?

5



Another direction

6



New hardware, new challenges

Core
🔥🔥🔥

Core 1
🔥🔥

Core 2
🔥🔥

Core 3
🔥🔥

Core 4
🔥🔥

7



I am Mathieu Ropert
I’m a Tech Lead at Paradox Development Studio 
where I make Hearts of Iron IV.

You can reach me at:

mro@puchiko.net

@MatRopert

https://mropert.github.io

Hello!

8



About this talk

◉ The importance of multi-threading

◉ Concurrency models...

◉ … in practice

◉ Tips & tricks

9



Profile Machines

Dev Workstation

◉ Intel i7-7700

◉ 4 cores / 8 threads

◉ nVidia GTX 1060

◉ Optick profiles

Home PC

◉ Intel i7-10700

◉ 8 cores / 16 threads

◉ nVidia RTX 2080 Super

◉ vTune profiles & Demos

10



Presentation Machines

Conference Laptop

◉ Intel i5-4300U

◉ 2 cores / 4 threads

◉ Intel HD Graphics

◉ Google Slides

Remote Workstation

◉ Intel i7-12700

◉ 12 cores / 20 threads

◉ nVidia RTX 3060

◉ Demos (hopefully)

11



More than one use case

Why multithreading?1

12



The threads you know

◉ Concept is quite old

◉ pthreads were introduced in 1995

◉ Most (all?) software engineering classes will 
cover the basics

13



The threads you forgot

◉ Desktop machines with more than one CPU 
only appeared late 2002

◉ Consumer CPUs with more than one core 
came up in 2005

◉ 2+ cores became default for Intel only in 2010

14



Threads limitations

◉ Efficiency is limited by the number of CPUs

◉ Over-subscription worsens performance

◉ Don’t spawn more work threads than you have 
cores

15



Desktop multithreading

◉ For a long time the average desktop only had 1 
or maybe 2 CPUs

◉ Good multithreaded code is harder to write

◉ Use threads for async operations, keep most of 
the busy work on the main thread

16



Times are changing

17



Times are changing

18



Multithreading today

◉ Mono thread computation only utilizes about 
25% of the userbase processing power

◉ Multithreading computation is not just a bonus 
for high-end desktops anymore

◉ Code needs to adapt

19



A history of historical strategy games

Paradox Games and 
Multithreading2

20



PDS Releases Timeline

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

21



22



23



PDS Development History

◉ All games use the same in-house engine, 
dubbed Clausewitz

◉ Up until Imperator (2019), games forked the 
engine at some point during development

◉ Big generational jump between Stellaris (2016) 
and Imperator (2019), dubbed Jomini

24



Past Generation Games

◉ Started with Crusader Kings II (2012)

◉ Multithreading done through TBB

◉ Mostly focused on speeding up the world 
simulation

25



Demo Time!

26



A Basic Game Loop

Handle 
Input

Update
Simulation

Render

27



Past PDS Games Loop

Handle 
Input

Update
UI & 

Graphics
Render

Process 
Commands

28



Commands & Time Simulation

◉ Gamestate can only be changed through 
command execution

◉ Player interactions with UI result in new 
commands being added to the queue

◉ Server queues a command to advance time by 
one unit at real time intervals

29



Commands & Time Simulation

◉ Passage of time is simulated by “tick” 
increments.

◉ Depending on game, “ticks” can be an ingame 
hour (HoI4), day (CK2 and EU4) or fraction of 
day (Stellaris).

◉ No in-between!
30



Hearts of Iron IV Sample Update

Session Update UI, 3D & Input 
Update

Rendering

31



Core Utilisation

◉ Each sub-system update is run in a sequence

◉ Core utilisation depends entirely on how a 
given system is implemented

◉ Most multithreading is done through 
parallel_for()

32



Core Utilisation

◉ Rule of a thumb: more recent systems have 
better threading efficiency

◉ Some have been retrofitted over the years to 
use parallelization

◉ UI & Graphics update / rendering are not done 
in a dedicated thread

33



Core Utilisation

◉ Board game heritage can 
still be felt in some game 
systems

◉ Unit/Combat update rely 
on sequence to be 
deterministic

◉ Hard to address in an 
existing game

34



Model Limitations

◉ Parallelizing updates by sub-system is limited 
by entity grain size

◉ HoI4 has:
○ 13236 provinces (tiles on map)
○ 835 states
○ 295 countries

35



Model Limitations

◉ Not all entities are 
created equal

◉ Custom scheduler can 
help a little

◉ Some optimizations turn 
out to be pessimizations

36



Past PDS Games Loop

Update
Countries

C1

C2

Cn

Update
Units

U1

U2

Un

Update
Provinces

P1

P2

Pn

37



Past PDS Games Loop

Update
Countries

C1

C2

Cn

38



Model Limitations

◉ Entities within a system are not equal

◉ System update will be as fast as the slowest 
entity to update, even with many cores

◉ Large entities in one system tend to also be big 
in other systems using the same breakdown

39



Past Model Summary

◉ Good enough for the time

◉ Some systems manage to utilize all cores

◉ Refitting older systems can be difficult and 
risky unless willing revisit game design

40



Illustrated mostly by Crusader Kings 3

Multithreading in 
Current Generation3

41



Current Generation Changes

◉ At some point both Imperator, CK3 and 
Victoria 3 were in development simultaneously

◉ Same engine, different approaches to 
simulation update

42



Present PDS Games Loop

Handle 
Input

Update
UI & 

Graphics
Render

Process 
Commands

Main Thread

Session Thread

43



Present PDS Games Loop

Handle 
Input

Update
UI & 

Graphics

Unlock 
Gamestate

Process 
Command

Main Thread

Session Thread

Render
Lock 

Gamestate

Unlock 
Gamestate

Lock 
Gamestate

44



Threading Efficiency

◉ Dedicated render thread guarantees at least 
some degree of multithreading

◉ Doesn’t solve the biggest CPU bottleneck 
(gamestate update) out of the box

◉ Mutexes 😢

45



Demo Time!

46

👑



Crusader Kings 3 Profile

47



Crusader Kings 3 Model

◉ Parallelize updates by system instead of by 
entity

◉ Split updates between bits that needs read and 
write access to gamestate

◉ Do the heavy lifting with only the read lock if 
possible

48



Past vs Present PDS Games Loop

Update
Countries

Classic Model

CK3 Model

C1

C2

Cn

Update
Units

U1

U2

Un

Update
Provinces

P1

P2

Pn

Update Countries

Update Units

Update Provinces

C1 C2 Cn

U1 U2 Un

P1 P2 Pn

49



CK3 Game Update Principles

◉ Read-lock part of update can only modify 
“private” data in the gamestate

◉ Write-lock part of an update can change any 
data in the gamestate

◉ Try to keep most of the update in the first part

50



CK3 Update Model Benefits

◉ Entities within a system are guaranteed to be 
updated in a deterministic sequential order

◉ Read-lock part of a system update can be 
parallelized with other systems updates
○ And Input update, Graphics update and rendering

51



CK3 Update Model Benefits

◉ Experience has shown this model is easy to 
teach to newcomers

◉ Explain the constraints of the 2 update steps

◉ Newly added system immediately benefit from 
multithreading performance

52



Other Games

◉ Architecture-wise, the CK3 model is the one 
with the most potential

◉ Imperator used an update model fairly similar 
to the previous generation

◉ Victoria 3 tick is a series of tasks, but it can’t 
run them in parallel 😢

53



Present Model Summary

◉ Better threading efficiency even when 
combined with old school update patterns
○ Dedicated session thread 😎

◉ CK3 is really fast

◉ Model is easy enough to teach, but not 
enforced by the engine API

54



Where I look anxiously look at my NDA

Thoughts for the 
Future4

55



Generational Gap



Base Thoughts

◉ CK3 model has proven to be quite more 
effective than the others

◉ No immediate limitation to solve

◉ Focus on making it more accessible as a design 
pattern

57



CK3 Design Pattern

◉ Not formalized / enforced by the update API

◉ More of a best-practice to teach each time

◉ Implementation split between game and 
engine

58



Generalizing CK3 Pattern

◉ Try the same model in next title

◉ Move the base update model to the engine

◉ Rename/refactor interface to emphasize the 
read-lock vs write-lock update steps

59



Beyond the CK3 Model

◉ Look at potential limitations or future 
hindrances

◉ Current average CPU utilisation on CK3 is 
around 5 out of 16 cores

◉ Can we do better?

60



CK3 on 16 cores

61



Beyond the CK3 Model

◉ Make entities in a system only rely on others’ 
public data

◉ Have no order of execution requirement

◉ Each entity (or batch of entities) becomes a 
task you can schedule

62



Present PDS Games Loop

Update Countries

Update Units

Update Provinces

C1 C2 C3

U1 U2 U3

P1 P2 P3

U4 U5

P4 P5 P6 P7 P8

63



Potential Future PDS Games Loop

Update Countries

Update Units

Update Provinces

C1 C2 C3

U1 U2 U3

P1 P2 P3

U4 U5

P4 P5 P6 P7 P8

64



Potential Future PDS Games Loop

Update Countries

Update Units

Update Provinces

C1 C2 C3

U1 U2 U3

P1 P2 P3

U4 U5

P4 P5 P6 P7 P8

65



Potential Future PDS Games Loop

Update Countries

Update Units

Update Provinces

C1 C2 C3

U1 U2 U3

P1 P2 P3

U4 U5

P4 P5

P6 P7 P8

66



Beyond the CK3 Model

◉ Define sub-system update requirements
○ Read-only or read-write gamestate access
○ Entity in-order requirements

◉ Allow the update scheduler to break down 
sub-system updates into smaller chunks when 
the right requirements are filled

67



Potential Future Model

◉ Double-down on what CK3 started

◉ Make the model more explicit in the API

◉ Offer a way to break down systems into 
smaller chunks automatically if possible

68



Let’s take a step back

69

👣



What’s in a task?

UpdateXXX()

70

Data1
(Read)

Data2
(Read)

Data3
(Write)



What’s in a task?

Task()

71

Data1 Data2 Data3



Concurrent Data Access

72

Concurrent?

✅

❌

❌

❌

Data1

Data1

Data1

Data1

Data1

Data1

Data1

Data1

Task1() Task2()



What’s in a task?

Task2()

73

Data1 Data4

Task1()

Data1 Data2 Data3

Task3()

Data1 Data3 Data5



Scheduling

Task2()

74

Data1 Data4

Task1()

Data1 Data2 Data3

Task3()

Data1 Data3 Data5



Scheduling

Task2()

75

Data1 Data4

Task1()

D1

Task3()

Data1 Data3 Data5D2 D3



Game Tick PreUpdate Task

UpdateCountries()

76

Gamestate
(Read)

CountryPrivate
(Write)



Game Tick PreUpdate Tasks

UpdateUnits()

77

GS UP

UpdateCountries()

GS CP

UpdateProvinces()

GS PP



Game Tick Tasks

78

PreUpdateCountries()

GS CP

PreUpdateUnits()

GS UP

PreUpdateProvinces()

GS PP

Update()

GS RD

Render()

RD



Game Tick Tasks Scheduling

79

PreUpdateCountries()

GS CP

PreUpdateUnits()

GS UP

PreUpdateProvinces()

GS PP

Update()

GS RD

Render()

RD



Potential Future Model V2

◉ Game Tick is a series of tasks

◉ Tasks have inputs (read) and outputs (writes)

◉ 2 tasks can be scheduled at the same time if 
they reads and writes don’t conflict

80



Potential Future Model V2

◉ CK3 Pre Update Tasks read all gamestate and 
write to a private stash

◉ CK3 Update Tasks read from one private stash 
and write to all gamestate

◉ Update Task reads all gamestate

81



Potential Future Model V2

◉ Better define update tasks read and writes 
(which subsections of the gamestate)

◉ Make scheduler consider both task logical 
dependencies and r/w data access

◉ Fit update/render task in that model?

82



Potential Future Model V2

◉ CK3 model is really simple to reason about and 
teach to new programmers

◉ Adding task dependencies might run against 
parallelism if there are too many

◉ Explicit data usage declaration make design 
iteration more expensive

83



The threads of past, present and future

Wrapping up5

84



In conclusion

◉ Using modern CPUs efficiently require good 
core utilization

◉ Adding parallel_for to existing code only 
gets you so far

◉ Adopting a model that enforces 
thread-friendly constraints is key

85



“

Furthermore, I think your build 
should be destroyed



“

Furthermore, I think your build 
should be destroyed



Any questions ?
You can reach me at

mro@puchiko.net

@MatRopert

@mropert

https://mropert.github.io

Thanks!

88


