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Abstract
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Much has been said about how the 
upcoming module feature in C++ will improve 
compilation speeds and reduce reliance on 
the C++ preprocessor. However, program 
architecture will see the biggest impact. This 
talk explains how modules will change how 
you develop, organize, and deploy your code. 
We will also cover the stable migration of a 
large code base to be consumable both as 
modules and as normal headers.  
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What’s The Problem?
Large-Scale C++ Software Design is Multi-Dimensional:

• It involves many subtle logical and physical aspects.

• It requires an ability to isolate and modularize 
logical functionality within discrete, fine-grained 
physical components.

• It requires the designer to delineate logical 
behavior precisely, while managing the physical 
dependencies on other subordinate components.

• The C++ language itself lacks a mechanism to 
characterize and render software at a sufficiently 
high level of logical and physical abstraction.
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a b

c
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int a;                                      // Declaration And Definition
extern int a;                                      // Declaration Only
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int Foo::d_s;                                      // Definition Only
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Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first                   
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the 
corresponding .h file.

3. All constructs having external or dual bindage
declared in a .h file (if defined at all) are defined 
within the component.

4. A component’s functionality is accessed via a 
#include of its header, and never via a “forward” 
(extern) declaration.
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Criteria for having a #include in a.h File
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1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

Recall that: 

A header file must

be “self-sufficient”

w.r.t. compilation.
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1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A

3.inline (used in function body)

4.enum

5.typedef (e.g., template specialization)
Note: Covariant return types is another edge case.

131



1. Review of Elementary Physical Design

End of Section

Questions?
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1. Review of Elementary Physical Design

What Questions are we Answering?  

• What distinguishes Logical from Physical Design?
• What are the fundamental properties of a component?
• How do we infer dependencies from logical relationships?  
• What are level numbers, and how do we determine them?
• How do we extract component dependencies efficiently?
• What essential physical design rules must be followed?
• What are the criteria for collocating classes & functions?
• What do we mean by the term Insulation?
• How does Insulation compare with Encapsulation?
• Why/when would we put a #include directive in a .h file?
• What cost/benefit is generally associated with insulation
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

1. Introduction and Purpose 

Modules are considered to be a critically needed language feature by many 
C++ developers, but the reasons for the urgency vary considerably from one 
engineer to the next. Some are looking, primarily, to reduce protracted build 
times for template-ladened header files (e.g., with build artifacts). Others 
want to use modules as a vehicle to clean up impure vestiges of the 
language, such as macros, that leak out into client code. Still others are 
looking to "modernize" the way we view C++ rendering completely — even if 
it means forking the language. These are all very different motivations, and 
they may or may not be entirely compatible, but if the agreed-upon 
implementation of modules does not take into account established code 
bases, such as Bloomberg's, they will surly fall far short of wide-spread 
adoption by industry.
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

The primary purpose of this paper is to serve as a proxy for discussion 
regarding critically important requirements for substantial software 
organizations, such as Bloomberg, that have very specific architectural needs, 
yet also have vast amounts of legacy source code that cannot reasonably be 
migrated to a new syntax in any bounded amount of time. 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

2. Current Situation 

Some of the strategies require existing code bases to change before they can 
take advantage of modules. Significant work has gone into tooling that 
converts existing code bases to become "modularized", replacing 
conventional .h/.cpp pairs with the equivalent in module syntax, import 
statements in place of #include directives, etc. For companies, like 
Bloomberg, that have an enormous sprawling code base along with numerous 
disparate clients at every level of the software's physical hierarchy, any 
approach that requires transforming the entire codebase along with all the 
clients is a non-starter. 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

Don Knuth asserted that premature optimization is the root of all evil. Any 
sensible implementation of modules will enable the kind of compile-time 
optimizations we are all looking for, but the converse is not true. If we come 
up with an optimization-oriented implementation of modules and release it 
first, it will be impossible to graft on the necessary architecture-oriented 
features that would make modules realize their potential value for large-scale 
C++ software designers and architects. If we are to be truly successful, we 
must start with a fully-baked design; only after that should we attempt to 
optimize it. 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

In order for any new module technology to have a plausibly successful path to 
adoption, its integration must be (purely) additive, hierarchical, incremental, 
and interoperable, but not necessarily backward compatible with traditional 
rendering (e.g., .h/.cpp pairs). By (purely) additive, we mean that providing 
a module-style interface to existing code does not require that code to be 
modified (in any way whatsoever). By hierarchical, we mean that what we 
add to an existing code base to provide module interfaces depends on that 
code base (and never vice versa). By incremental, we mean that adding a 
module interface to one part of the code base never implies adding it to 
some other, disparate part of the code base. Finally, by interoperable, we 
mean that a C++ construct consumed through both a module interface and a 
(conventional) header-file interface is understood by the client's compiler to 
be the same construct without violating the ODR. 

143



2. Introduce the Notion of a module in C++

Business Requirements for Modules

3. High-Level Requirements 

Modules will realize their full potential as an important new feature of C++ 
only if: 

I. Modules deliver effective support for a larger, more powerful unit of 
logical and physical architectural abstraction, beyond what is currently 
realizable using conventional .h/.cpp pairs to form components 
compiled as separate translation units. 

a. Logical versus physical encapsulation. Today, if I have a private data 
member, my client needs to see the definition of that data member. 
Modules should allow that definition to be exported to the client’s 
compiler, but not to the client, for arbitrary reuse. In this way, 
modules fix an important and pervasive problem: transitive 
includes.

144



2. Introduce the Notion of a module in C++

Business Requirements for Modules

I. 

a.

b.Modules should be atomic with respect to compilation for all of 
the elements they comprise. That is, if I build a module containing 
templates and inline functions at a given level of contract 
assertions, the client will see that level, rather than the level at 
which the client was build. While this is just an example, it should 
apply to any and all build options. 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

I.  

a.

b.

c. Modules can be used as views on existing software subsystems 
consisting of arbitrary numbers of .h and .cpp files. That is, without 
changing an existing, conventionally implemented subsystem, one can 
create a module interface (purely additively) that provides an 
arbitrary subset of the logical entities that the module comprises. 
Ideally, but not necessarily initially, the level of filtering will enable one 
to drop below global entities to incorporate (or not) nested entities 
such as individual member functions. In this way a module does not 
encapsulate the original definition of the legacy code, but rather its use 
through this module interface. Finally it should be possible for multiple 
modules to wrap the same conventional software as views aimed ad 
distinct clients that converge to a single main. All of the entities 
exported should be known to be the same with no ODR violation. 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

I.  

a.

b.

c.

d.Modules that act as views should behave similarly to C procedural 
interfaces. (See Lakos'96, section 6.5.1, pp. 425-445.) What I mean 
by that is that if a conventional TU is exposed in parallel with a 
modular view of that TU, then a client importing entities from both 
will get the union of access, and overlapping entities will be 
considered by the client's compiler as being the same entity 
(without violating the ODR). 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

II. There exists a well-considered, viable adoption strategy that does 
NOT require existing software to be altered in any way in order to begin 
to make use of the new features to allow new clients to consume legacy 
software. 

a. Let's take a look at a real-world scenario. Suppose we have a 
library, L1_h, implemented as .h / .cpp pairs. Suppose 
further that we have a subsystem, S1, that depends on, and 
traffics in types defined in L1_h in its interface. Now suppose we 
want to add, hierarchically, a module interface for L1_h, which 
we'll call L1_m. The current state of affairs now looks roughly like 
this: 

[L1_m]     [S1_h] 

\ / 

[L1_h] 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

II. 

a.

b. Now suppose that we get another client subsystem written 
entirely in module speak, S2_m. This client has no legacy 
implementation and none of its sub-components are consumable 
by conventional renderings (which is "fine" because it is new code 
and no old code currently depends on it):

[S2_m] 

| 
[L1_m] [S1_h] 

\ / 

[L1_h] 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

II. 

a.

b.

c. Finally a client, C1_m comes along and wants to use both S2_m
and S1_h, both of which make use in their respective interfaces of 
types defined in L1_h: 

[C1_m] 

/    |      | 

[S2_m] |      | 

|           |      | 

[L1_m] |   [S1_h] 

\ | / 

[L1_h] 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

II. 

a.

b.

c.

d. Types defined in L1_h and consumed from both S2_m and S1_h
need to refer to the same entities. In this way, we can keep our 
current code base while continuously evolving towards the 
"more modern" module only approach. At some later point, 
S1_m may be created at which point C1_m may or may not may 
want to convert to use it instead, but now all new code will 
benefit from using the more powerful, more modern, more 
efficient S1_m rendering.
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

III. The implementation chosen does not require centralized repositories or 
other known-to-be brittle techniques that would render important software 
processes such as distributed development or interaction with source-code 
control systems significantly more problematics than they already are. 

a. The Google approach seems to me to rely heavily on a module 
cache which, from what I recall with template repositories from the 
1990s was sufficiently problematic that it ushered in the current 
linker technology where template instantiations are duplicated 
locally in each translation unit in which they are used. (By 
“repository” here, I mean a cache of binary template instantiations 
that can be reused across translation units.) 
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

IV. Once we have addressed I, II, and III, it is assumed and expected that 
compile-times – especially for template-ladened interfaces – will realize 
dramatic improvements over always fully reparsing source text in every 
translation unit.  
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2. Introduce the Notion of a module in C++

Business Requirements for Modules

4. Conclusion 

There are many different competing ideas surrounding the design and 
implementation of modules in C++. There are many ways to realize modules 
in ways that address the requirements elucidated in this paper. It is hard for 
me to know, from what I have read, if and to what extent all of these 
requirements are addressed by the current proposal. It is my intention that 
this paper serve as a proxy for a discussion to learn more about where are 
currently, and where we need to be to move forward. 
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Some typical motivations

• Reduce compilation time.

• Eradicate macros.

• Change look and feel of C++.

Yet must not ignore a serious, real-world concern:

Large, legacy code bases!!
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Review: Why Modules?
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2. Introduce the Notion of a module in C++

Properties for Legacy Code

Property Description

(Purely) Additive Adding module interfaces need not require 
changes to existing code at all.

Hierarchical Added interfaces depend on the existing code, 
never vice versa.

Incremental Module interfaces can be added individually, 
as needed (without requiring it of others).

Interoperable A C++ construct consumed via a module is no
different (w.r.t. ODR) from that same construct 
consumed via header file.



• Fix the transitive #include problem.  Provide 
private symbols for compilation, but not
arbitrary reuse by clients.

• Contract-assertion level set by the module 
builder, not the builder of the client.

• Future: Modules could provide multiple views 
of a code base without violating the ODR.

– Clients w/multiple views get the union those views.
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Enhancing C++ via Modules
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Adoption Strategy
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Adoption Strategy
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• Focus on compiler optimization (prematurely) 
might preclude needed architectural features.

• Implementations requiring centralized 
repositories (for faster builds) might impede 
distributed software development:

– I.e., We need to be able to build any translation 
unit – independently of any other – directly from 
source code.

• To soon to commit to a specific module design.
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End of Section

Questions?
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logical and physical software design.

• No cyclic dependencies/long-distance friendships.
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Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both 
logical and physical software design.

• No cyclic dependencies/long-distance friendships.

• Colocate logical constructs only with good reason: 
i.e., friendship; cycles; parts-of-whole; flea-on-elephant.

• Put a #include in a header only with good reason:
i.e., Is-A, Has-A, inline, enum, typedef-to-template.
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Conclusion

The End
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3. Review of Elementary Physical Design

Physical Dependency

Five levels of physical dependency:

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:
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3. Review of Elementary Physical Design

Physical Aggregation

Only one level of physical aggregation:

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

a b

c
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3. Review of Elementary Physical Design

The Package

Two levels of physical aggregation:

“Dependency by

Decree”

(Metadata)

“A Hierarchy of Component Hierarchies”
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3. Review of Elementary Physical Design

The Package

Two levels of physical aggregation:

“Dependency by

Decree”

(Metadata)

Metadata governs, even absent of any components!
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3. Review of Elementary Physical Design

The Package

Two levels of physical aggregation:

Allowed 

Dependencies

Metadata governs allowed dependencies.
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3. Review of Elementary Physical Design

Package Dependencies

Aggregate dependencies:

Aggregate Level 3:

Internally, 

dependencies

among components

are inferred.

Allowed direct

external 

dependencies 

are stated 

explicitly

(with simple 

metadata).

Aggregate Level 2:

Aggregate Level 1:
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The Package Group

Package Groups

Components

Packages

“Dependency by

Decree”
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3. Review of Elementary Physical Design

Non-Uniform Physical-Aggregation Depth
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Non-Uniform Physical-Aggregation Depth
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Uniform Depth of Physical Aggregation

Component Package Package Group
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Uniform Depth of Physical Aggregation

Component Package Package Group
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Uniform Depth of Physical Aggregation
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Component Package Package Group Package Group Hierarchy
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Uniform Depth of Physical Aggregation

main

Component Package Package Group Package Group Hierarchy
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3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Package naming is more than just a convention:

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3
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Package naming is more than just a convention:

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subim
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Package naming is more than just a convention:

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim
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Package naming is more than just a convention:

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim
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Escalating Encapsulation

Package naming is more than just a convention:

subw_comp1

subim_comp1

subt_comp2

subim_comp2

subt_comp1 subt_comp3

subw

subim

subt
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Escalating Encapsulation

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

Package Group
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Escalating Encapsulation

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

Package Group
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Escalating Encapsulation

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

sub

Package Group
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Escalating Encapsulation

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

sub

Package Group

Exactly Three Characters
208



3. Present-Day, Real-World Design Examples

Introduction

All of the software we write is governed 
by a common overarching set of 

Organizing Principles.

209



3. Present-Day, Real-World Design Examples 

Introduction

All of the software we write is governed 
by a common overarching set of 

Organizing Principles.

Among the most central of which is 
achieving 

Sound Physical Design.
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Lib A

App 1
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3. Present-Day, Real-World Design Examples 

Creating a Big Ball of Mud



Lib A

App 1

App 2

212

Where We Put Our Code Matters!

3. Present-Day, Real-World Design Examples 

Creating a Big Ball of Mud



Lib A

App 1 Lib B

App 2

App 3Each new edge is introduced by  

the addition of code that 

depends on code elsewhere.

Where We Put Our Code Matters!
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Lib A

App 1 Lib B

App 2

App 4

App 3

?

?
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Lib A

App 1 Lib B

App 2

Lib C

App 4

App 3
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App 1.1 Lib B

App 2

Lib C

App 4

App 3

Lib A
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Lib A.1

App 1.1 Lib B

App 2

Lib C

App 4

App 3

?
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Lib B

App 2
Lib D

App 4

App 3

App 1.1

Lib A.1

Lib C
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Lib B

App 2
Lib D

Lib C.1

App 4

App 3

App 1.1

Lib A.1

?

(?)

(?)

(?)
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Lib B

App 2
Lib D

App 4.1

App 3

App 1.1

Lib A.1

Lib C.1

?
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Creating a Big Ball of Mud



Lib B

App 2
Lib D

Lib C.2

App 4.1

App 3

App 1.1

Lib A.1

??
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Over time …

222

3. Present-Day, Real-World Design Examples 

Creating a Big Ball of Mud



3. Present-Day, Real-World Design Examples 

Creating a Big Ball of Mud

Over time …
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Creating a Big Ball of Mud

Over time …
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Large-Scale Physical Design



• Good physical design is an engineering
discipline, not an afterthought. 
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• Good physical design is an engineering
discipline, not an afterthought. 

• Good physical design must be introduced 

from the inception of an application.
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• Good physical design is an engineering
discipline, not an afterthought. 

• Good physical design must be introduced 

from the inception of an application.

• The physical design of our proprietary

libraries should be coherent across the firm.
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Logger
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Cyclic Link-time Dependency



Transport

Logger
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Transport

Logger

Mail System
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Transport

Logger

Mail System

Bad idea!
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Transport

Logger

Mail System

Good idea!

Adapter
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Cyclic Link-time Dependency



Date
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Excessive Link-time Dependency



?

Database

Presentation Layer

Control Object Layer

Business Object Layer

Data Access Layer

Get Account

Balances

Account

Data

InstrumentsAccounts

Real Time

Data Feed
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class Account {

// ...

public:

Account(int accountNumber);

// Create an account

// corresponding to the 

// specified 'accountNumber'

// in the database.

// ...

};
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What Does Account Depend On?



Database

getAccountBalance

Account
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On the Database!



GUI

Business

Logic

Business

Objects

Database
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Everything Depends on the Database!



Business Logic

Business

Objects
Oracle

Business Object Loaders

main

242
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Escalating Heavy-Weight Dependencies



Business Logic

OraclePersistor

(Interface)

main

Oracle Persistor

Date Position Account

Position

Loader

Account

Loader

TestPersistor
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Levelization

Levelize (v.);  Levelizable (a.);  Levelization (n.)

244



3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.);  Levelization (n.)
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Levelization

Levelize (v.); Levelizable (a.);  Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make 
its physical dependency graph acyclic.

247



3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.);  Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make 
its physical dependency graph acyclic.
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Levelization

Levelize (v.);  Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make 
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know 
how to make its physical dependencies acyclic?
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Levelization

Levelize (v.);  Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make 
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know 
how to make its physical dependencies acyclic?
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Levelization

Levelize (v.);  Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make 
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know 
how to make its physical dependencies acyclic?

• What levelization techniques would you use – i.e., what 
techniques would you use to levelize your design?  
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Levelization

Levelize (v.);  Levelizable (a.);  Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make 
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know 
how to make its physical dependencies acyclic?

• What levelization techniques would you use – i.e., what 
techniques would you use to levelize your design?  

Note that Lakos’96 described 9 different ways to untangle 
cyclic physical dependencies: Escalation, Demotion, 

Opaque Pointers, Dumb Data, Redundancy, Callbacks, 
Manager Class, Factoring, and Escalating Encapsulation.252
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Levelization

Levelize (v.);  Levelizable (a.);  Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make 
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know 
how to make its physical dependencies acyclic?

• What levelization techniques would you use – i.e., what 
techniques would you use to levelize your design?  

Note that Lakos’96 described 9 different ways to untangle 
cyclic physical dependencies: Escalation, Demotion, 

Opaque Pointers, Dumb Data, Redundancy, Callbacks, 
Manager Class, Factoring, and Escalating Encapsulation.254



3. Survey of Advanced Levelization Techniques

Escalation

Escalation – Moving 
mutually dependent 
functionality higher in 
the physical hierarchy.
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Escalation

BoxRect

Point

256



3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h> 

#include <box.h>

class Rect {

Point d_origin;

int d_width;

int d_length;

public:

// …

Rect(const Box& b);

// …

};

// box.h

#include <point.h> 

#include <rect.h>

class Box {

Point d_lowerLeft;

Point d_upperRight;

public:

// …

Box(const Rect& r);

// …

};
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Escalation

// rect.h

#include <point.h> 

#include <box.h>

class Rect {

Point d_origin;

int d_width;

int d_length;

public:

// …

Rect(const Box& b);

// …

};

// box.h

#include <point.h> 

#include <rect.h>

class Box {

Point d_lowerLeft;

Point d_upperRight;

public:

// …

Box(const Rect& r);

// …

};
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Escalation

// rect.h

#include <point.h> 

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h> 

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};
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Escalation

// rect.h

#include <point.h> 

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h> 

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};
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Escalation

// rect.h

#include <point.h> 

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h> 

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};

261
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Conversions
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Escalation

// rect.h

#include <point.h> 

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h> 

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};
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Escalation

// rect.h

#include <point.h> 

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h> 

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};
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Escalation

// rect.h

#include <point.h> 

class Box;

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

class Rect;

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};
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Escalation

// rect.h

#include <point.h> 

class Box;

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

class Rect;

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};
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Escalation

BoxRect

Point
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Escalation

BoxRect

Point
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Escalation

Box

Rect

Point
1

2

3
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Escalation

// rect.h

#include <point.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(Rect& r);

// …

operator Rect() const;

// …

};
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Escalation

// rect.h

#include <point.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(Rect& r);

// …

operator Rect() const;

// …

};
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Escalation

Box

Rect

Point
1

2

3
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Escalation

Box

Rect

Point
1

2

3If rectangle.h is 
modified, all clients of Box

will need to recompile.
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Escalation

Point
1

Rect

Box

3

2
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Escalation

// rect.h

#include <point.h>

class Box;

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

operator Box() const;

// …

};

// box.h

#include <point.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

// …

};
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Escalation

// rect.h

#include <point.h>

class Box;

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

operator Box() const;

// …

};

// box.h

#include <point.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

// …

};
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Escalation

Point
1

Rect

Box

3

2

If box.h is modified, 
only direct clients of Box

will need to recompile.
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Escalation

BoxRect

Point

ConvertUtil

277
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Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};
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// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h> 
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};
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inline functions
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// rect.h
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Rect();
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in order to support  
inline functions

more on
this later
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Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};
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// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h> 
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to avoid  
transitive  includes
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hierarchy.
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Opaque Pointers –
Having an object use 
another in name only.
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Dumb Data – Using data 
that indicates a 
dependency on a peer 
object, but only in the 
context of a separate, 
higher-level object.
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Redundancy –
Deliberately avoiding 
reuse by repeating a 
small amount of code or 
data to avoid coupling.
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Callbacks – Client-
supplied functions/data 
that enable lower-level 
subsystems to perform 
specific tasks in a more 
global context.
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There are several flavors:
1. DATA (Effectively Demotion)

2. FUNCTION (Stateless/Stateful)

3. FUNCTOR (Function Object)

4. PROTOCOL (Abstract Interface)

5. CONCEPT (Structural Interface)
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Factoring – Moving 
independently testable 
sub-behavior out of the 
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complex component 
involved in excessive 
physical coupling. 303
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Escalating Encapsulation 
– Moving the point at 
which implementation 
details are hidden from 
clients to a higher level 
in the physical hierarchy.
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// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// … 

};



Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

358

2

Hiding Header Files

// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// … 

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};
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};
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};

Hide
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// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// … 

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Hide
cookie.h?

Bad Idea:
(1) Convolves architecture with 
deployment.
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// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// … 

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Hide
cookie.h?

Bad Idea:
(1) Convolves architecture with 
deployment.
(2) Inhibits side-by-side reuse of the 
“hidden” component.
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// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// … 

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Hide
cookie.h?

Bad Idea:
(1) Convolves architecture with 
deployment.
(2) Inhibits side-by-side reuse of the 
“hidden” component.
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syst

// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …
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// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …
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// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …
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// wrap_left.h

// …

class wrap_Left {
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// wrap_right.cpp

// …

void wrap_Right::someFunction(const wrap_Left& v) {

const syst_Left& vImp = *reinterpret_cast<syst_Left *>(&v);

d_imp.someFunction(vImp);
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// …
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const syst_Left& vImp = *reinterpret_cast<syst_Left *>(&v);
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3. Survey of Advanced Levelization Techniques

Levelization Techniques (Summary)
Escalation – Moving mutually dependent functionality higher in the physical hierarchy.

Demotion – Moving common functionality lower in the physical hierarchy.

Opaque Pointers – Having an object use another in name only.

Dumb Data – Using data that indicates a dependency on a peer object, but only in    

the context of a separate, higher-level object.

Redundancy – Deliberately avoiding reuse by repeating a small amount of code or 

data to avoid coupling.

Callbacks – Client-supplied functions/data that enable lower-level subsystems to 

perform specific tasks in a more global context.

Manager Class – Establishing a class that owns and coordinates lower-level objects.

Factoring – Moving independently testable sub-behavior out of the implementation 

of a complex component involved in excessive physical coupling.

Escalating Encapsulation – Moving the point at which implementation details are 

hidden from clients to a higher level in the physical hierarchy. 403
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3. Review of Elementary Physical Design

What Questions are we Answering?  

• How are components aggregated into larger physical units?
• How many levels of physical aggregation do we employ?
• How are component package names restricted physically?
• What do levelize, levelizable, and levelization mean?
• What does the escalation levelization technique involve?
• What does multi-component wrapper (MCW) delineate?
• Why is MCW difficult to achieve properly in classical C++?
• What specific MCW goals would we want C++ to support?

405



3. Review of Elementary Physical Design

What Questions are we Answering?  

• How are components aggregated into larger physical units?
• How many levels of physical aggregation do we employ?
• How are component package names restricted physically?
• What do levelize, levelizable, and levelization mean?
• What does the escalation levelization technique involve?
• What does multi-component wrapper (MCW) delineate?
• Why is MCW difficult to achieve properly in classical C++?
• What specific MCW goals would we want C++ to support?

406



3. Review of Elementary Physical Design

What Questions are we Answering?  

• How are components aggregated into larger physical units?
• How many levels of physical aggregation do we employ?
• How are component package names restricted physically?
• What do levelize, levelizable, and levelization mean?
• What does the escalation levelization technique involve?
• What does multi-component wrapper (MCW) delineate?
• Why is MCW difficult to achieve properly in classical C++?
• What specific MCW goals would we want C++ to support?

407



Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers 

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

408



Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers 

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

409



4. Packaging Libraries Using C++ Modules

Introduction

(Effective Use of Fine-Grained Filtering)

Under 

Construction
410



Questions?

411

4. Packaging Libraries Using C++ Modules

End of Section
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What Questions are we Answering?  

• How do modules help us to better package our software?
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Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both 
logical and physical software design.

• No cyclic dependencies/long-distance friendships.

• Colocate logical constructs only with good reason: 
i.e., friendship; cycles; parts-of-whole; flea-on-elephant.

• Put a #include in a header only with good reason:
i.e., Is-A, Has-A, inline, enum, typedef-to-template.
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