
© 2019 Bloomberg Finance L.P. All rights reserved.

C++ Modules and

Large-scale

Development
ACCU 2019 (Autumn)

November 12, 2019

John Lakos

Senior Architect

C++ Modules &
Large-Scale Development

John Lakos

Tuesday, November 12, 2019
This version is for ACCU’19 (Autumn), Belfast Ireland

2

Copyright Notice

3

© 2018 Bloomberg L.P. Permission is granted to copy, distribute, and display
this material, and to make derivative works and commercial use of it. The
information in this material is provided "AS IS", without warranty of any
kind. Neither Bloomberg nor any employee guarantees the correctness or
completeness of such information. Bloomberg, its employees, and its
affiliated entities and persons shall not be liable, directly or indirectly, in any
way, for any inaccuracies, errors or omissions in such information. Nothing
herein should be interpreted as stating the opinions, policies,
recommendations, or positions of Bloomberg.

Abstract

4

Much has been said about how the
upcoming module feature in C++ will improve
compilation speeds and reduce reliance on
the C++ preprocessor. However, program
architecture will see the biggest impact. This
talk explains how modules will change how
you develop, organize, and deploy your code.
We will also cover the stable migration of a
large code base to be consumable both as
modules and as normal headers.

5

What’s The Problem?

6

What’s The Problem?
Large-Scale C++ Software Design is Multi-Dimensional:

7

What’s The Problem?
Large-Scale C++ Software Design is Multi-Dimensional:

• It involves many subtle logical and physical aspects.

8

What’s The Problem?
Large-Scale C++ Software Design is Multi-Dimensional:

• It involves many subtle logical and physical aspects.

• It requires an ability to isolate and modularize
functionality within discrete, fine-grained physical
components.

9

What’s The Problem?
Large-Scale C++ Software Design is Multi-Dimensional:

• It involves many subtle logical and physical aspects.

• It requires an ability to isolate and modularize
logical functionality within discrete, fine-grained
physical components.

• It requires the designer to delineate logical
behavior precisely, while managing the physical
dependencies on other subordinate components.

10

What’s The Problem?
Large-Scale C++ Software Design is Multi-Dimensional:

• It involves many subtle logical and physical aspects.

• It requires an ability to isolate and modularize
logical functionality within discrete, fine-grained
physical components.

• It requires the designer to delineate logical
behavior precisely, while managing the physical
dependencies on other subordinate components.

• The C++ language itself lacks a mechanism to
characterize and render software at a sufficiently
high level of logical and physical abstraction.

11

Purpose of this Talk

12

1. Review the basics of component-based design:

Purpose of this Talk

13

1. Review the basics of component-based design:
• Component Properties and Logical Diagrams
• Implied Dependency and Level Numbers
• The Two Most Important Physical Design Rules
• Guidelines for Collocating Classes in a Component
• Logical Encapsulation Versus Physical Insulation
• When to #include a Header File in a Header
• Our Three-Level Physical-Packaging Hierarchy

Purpose of this Talk

14

1. Review the basics of component-based design:
• Component Properties and Logical Diagrams
• Implied Dependency and Level Numbers
• The Two Most Important Physical Design Rules
• Guidelines for Collocating Classes in a Component
• Logical Encapsulation Versus Physical Insulation
• When to #include a Header File in a Header
• Our Three-Level Physical-Packaging Hierarchy

Purpose of this Talk

15

1. Review the basics of component-based design:
• Component Properties and Logical Diagrams
• Implied Dependency and Level Numbers
• The Two Most Important Physical Design Rules
• Guidelines for Collocating Classes in a Component
• Logical Encapsulation Versus Physical Insulation
• When to #include a Header File in a Header
• Our Three-Level Physical-Packaging Hierarchy

Purpose of this Talk

16

1. Review the basics of component-based design:
• Component Properties and Logical Diagrams
• Implied Dependency and Level Numbers
• The Two Most Important Physical Design Rules
• Guidelines for Collocating Classes in a Component
• Logical Encapsulation Versus Physical Insulation
• When to #include a Header File in a Header
• Our Three-Level Physical-Packaging Hierarchy

Purpose of this Talk

17

1. Review the basics of component-based design:
• Component Properties and Logical Diagrams
• Implied Dependency and Level Numbers
• The Two Most Important Physical Design Rules
• Guidelines for Collocating Classes in a Component
• Logical Encapsulation Versus Physical Insulation
• When to #include a Header File in a Header
• Our Three-Level Physical-Packaging Hierarchy

Purpose of this Talk

18

1. Review the basics of component-based design:
• Component Properties and Logical Diagrams
• Implied Dependency and Level Numbers
• The Two Most Important Physical Design Rules
• Guidelines for Collocating Classes in a Component
• Logical Encapsulation Versus Physical Insulation
• When to #include a Header File in a Header
• Our Three-Level Physical-Packaging Hierarchy

Purpose of this Talk

19

1. Review the basics of component-based design:
• Component Properties and Logical Diagrams
• Implied Dependency and Level Numbers
• The Two Most Important Physical Design Rules
• Guidelines for Collocating Classes in a Component
• Logical Encapsulation Versus Physical Insulation
• When to #include a Header File in a Header
• Our Three-Level Physical-Packaging Hierarchy

Purpose of this Talk

20

1. Review the basics of component-based design:
• Component Properties and Logical Diagrams
• Implied Dependency and Level Numbers
• The Two Most Important Physical Design Rules
• Guidelines for Collocating Classes in a Component
• Logical Encapsulation Versus Physical Insulation
• When to #include a Header File in a Header
• Our Three-Level Physical-Packaging Hierarchy

2. Introduce the notion of a new C++ language
entity, module…, and describe it in terms of the
essential engineering requirements it must fulfill
if it is to be readily adopted widely by industry.

Purpose of this Talk

21

1. Review the basics of component-based design:
• Component Properties and Logical Diagrams
• Implied Dependency and Level Numbers
• The Two Most Important Physical Design Rules
• Guidelines for Collocating Classes in a Component
• Logical Encapsulation Versus Physical Insulation
• When to #include a Header File in a Header
• Our Three-Level Physical-Packaging Hierarchy

2. Introduce the notion of a new C++ language
entity, module, and describe it in terms of the
essential engineering requirements it must fulfill
if it is to be readily adopted widely by industry.

Purpose of this Talk

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

22

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

23

1. Review of Elementary Physical Design

Logical versus Physical Design

What distinguishes Logical from Physical Design?

Logical

physical

24

1. Review of Elementary Physical Design

Logical versus Physical Design

What distinguishes Logical from Physical Design?

Logical: Classes and Functions

Logical

physical

25

1. Review of Elementary Physical Design

Logical versus Physical Design

What distinguishes Logical from Physical Design?

Logical: Classes and Functions
Physical: Files and Libraries

Logical

physical

26

1. Review of Elementary Physical Design

Logical versus Physical Design

Logical content aggregated into a
Physical hierarchy of components

a b

c

27

1. Review of Elementary Physical Design

Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

// ...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

A Component Is Physical

28

1. Review of Elementary Physical Design

Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

// ...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

Implementation

29

1. Review of Elementary Physical Design

Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

// ...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

Header

30

1. Review of Elementary Physical Design

Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

// ...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

Test Driver

31

1. Review of Elementary Physical Design

Component: Uniform Physical Structure

// component.t.cpp

#include <component.h>

// ...

int main(...)

{

// ...

}

//-- END OF FILE --

component.t.cpp

// component.h

// ...

//-- END OF FILE --

// component.cpp

#include <component.h>

// ...

//-- END OF FILE --

component.h component.cpp

component

The Fundamental Unit of Design

32

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

my::Widget

my_widget

33

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

34

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

35

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

36

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

37

A declaration

introduces a
name*

into a scope

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

38

A declaration

(typically)
introduces a name

into a scope

Hypertechnically,
According to the
C++ Grammar,

Every Definition
is a Declaration.

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

39

A declaration

introduces a
name*

into a scope

For our
purposes

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

40

int a; // Declaration And Definition
extern int a; // Declaration Only
extern int a = 0; // Declaration And Definition
void f(); // Declaration Only
void f(){} // Declaration And Definition
class Foo; // Declaration Only
class Foo { // … // Declaration And Definition

static int d_s; // Declaration Only
} object; // Declaration And Definition
int Foo::d_s; // Definition Only

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

41

int a;

static int a;

void f(){};

static void f(){}

inline void f(){}

static inline void f(){}

class Foo { // …

static int d_s;

} object;

int Foo::d_s;

// External Linkage
// Internal Linkage
// External Linkage
// Internal Linkage
// External Linkage
// Internal Linkage
// External Linkage
// External Linkage
// External Linkage
// External Linkage

Declaration

Definition

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

42

namespace { class Foo {
static int d_s;

} object; }

int Foo::d_s;
namepsace ns {

class Foo {

static int d_s;

} object; }

int ns::Foo::d_s;

int Foo::d_s;

// Internal Linkage
// Internal Linkage
// Internal Linkage
// Internal Linkage
// None (External-ish)
// External Linkage
// External Linkage
// External Linkage
// External Linkage
// Doesn’t Compile!

Declaration

Definition

Declaration

Definition

Definition

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

43

namespace { class Foo {
static int d_s;

} object; }

namepsace ns {

class Foo {

static int d_s;

} object; }

int ns::Foo::d_s;

int Foo::d_s;

// Internal Linkage
// Internal Linkage
// Internal Linkage

// None (External-ish)
// External Linkage
// External Linkage
// External Linkage
// External Linkage
// Doesn’t Compile!

Declaration

Declaration

Definition

Definition

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

44

namespace { class Foo {
static int d_s;

} object; }

namepsace ns {

class Foo {

static int d_s;

} object; }

int ns::Foo::d_s;

int Foo::d_s;

// Internal Linkage
// Internal Linkage
// Internal Linkage

// None (External-ish)
// External Linkage
// External Linkage
// External Linkage
// External Linkage
// Internal Linkage

Declaration

Declaration

Definition

Definition

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

45

namepsace ns {

class Foo {

static int d_s;

} object; }

int ns::Foo::d_s;

int Foo::d_s;

// None (External-ish)
// External Linkage
// External Linkage
// External Linkage
// External Linkage
// Internal Linkage

Declaration

Definition

Definition

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

46

namepsace ns {

class Foo {

static int d_s;

} object; }

int ns::Foo::d_s;

int Foo::d_s;

// None (External-ish)
// External Linkage
// External Linkage
// External Linkage
// External Linkage
// Doesn’t Compile!

Declaration

Definition

Definition

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

3. All constructs having external or dual bindage
declared in a .h file (if defined at all) are defined
within the component.

47

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

3. All constructs having external or dual bindage
declared in a .h file (if defined at all) are defined
within the component.

48

examples of bindage

1. Review of Elementary Physical Design

Component: Not Just a .h /.cpp Pair

1. The .cpp file includes its .h file as the first
substantive line of code.

2. All logical constructs having external linkage
defined in a .cpp file are declared in the
corresponding .h file.

3. All constructs having external or dual bindage
declared in a .h file (if defined at all) are defined
within the component.

4. A component’s functionality is accessed via a
#include of its header, and never via a “forward”
(extern) declaration.

49

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Polygon

Point

50

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-A

Polygon

Point

51

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-A

Polygon

Point

52

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-A

Uses-in-the-Interface

Polygon

Point

53

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-A

Uses-in-the-Interface

Polygon

Point

54

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-A

Uses-in-the-Interface

Polygon

Point

55

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface

Polygon

Point

56

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface

Polygon

Point

57

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface

Polygon

Point

58

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Polygon

Point

59

1. Review of Elementary Physical Design

Logical Relationships

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Polygon

Point

60

1. Review of Elementary Physical Design

Implied Dependency

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Polygon

Point

61

1. Review of Elementary Physical Design

Implied Dependency

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

62

1. Review of Elementary Physical Design

Implied Dependency

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

63

1. Review of Elementary Physical Design

Implied Dependency

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

64

1. Review of Elementary Physical Design

Implied Dependency

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

65

1. Review of Elementary Physical Design

Implied Dependency

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

66

1. Review of Elementary Physical Design

Level Numbers

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface Uses in name only

Depends-On

Polygon

Point

67

1. Review of Elementary Physical Design

Level Numbers

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface

1

Uses in name only

Depends-On

Polygon

Point

68

1. Review of Elementary Physical Design

Level Numbers

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface

11

Uses in name only

Depends-On

Polygon

Point

69

1. Review of Elementary Physical Design

Level Numbers

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface

11

2

Uses in name only

Depends-On

Polygon

Point

70

1. Review of Elementary Physical Design

Level Numbers

Shape

PointList

PointList_Link

Is-AUses-in-the-Implementation

Uses-in-the-Interface

11

2 3

Uses in name only

Depends-On

Polygon

Point

71

1. Review of Elementary Physical Design

Essential Physical Design Rules

72

1. Review of Elementary Physical Design

Essential Physical Design Rules

There are two:

73

1. Review of Elementary Physical Design

Essential Physical Design Rules

There are two:

1.No Cyclic Physical
Dependencies!

74

1. Review of Elementary Physical Design

Essential Physical Design Rules

There are two:

1.No Cyclic Physical
Dependencies!

2.No Long-Distance
Friendships!

75

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

76

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

There are four:

77

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

There are four:

1. Friendship.

78

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

There are four:

1. Friendship.
2. Cyclic Dependency.

79

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

There are four:

1. Friendship.
2. Cyclic Dependency.
3. Single Solution.

80

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Single Solution

Not reusable

independently.

Single Solution

81

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Single Solution Hierarchy of Solutions

Not reusable

independently.

Single Solution

Independently

reusable.

82

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Single Solution Hierarchy of Solutions

Not reusable

independently.

Single Solution

Independently

reusable.

83

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Single Solution Hierarchy of Solutions

Not reusable

independently.

Single Solution

Independently

reusable.

84

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Single Solution Hierarchy of Solutions

Not reusable

independently.

Single Solution

Independently

reusable.

85

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Single Solution Hierarchy of Solutions

Not reusable

independently.

Single Solution

Independently

reusable.

86

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Single Solution Hierarchy of Solutions

Not reusable

independently.

Single Solution

Independently

reusable.

87

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Single Solution Hierarchy of Solutions

Not reusable

independently.

Single Solution

Independently

reusable.

88

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Single Solution Hierarchy of Solutions

Not reusable

independently.

Single Solution

Independently

reusable.

89

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

There are four:

1. Friendship.
2. Cyclic Dependency.
3. Single Solution.
4. “Flea on an Elephant.”

90

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Elephant

Flea

Flea

Elephant

“Flea on an Elephant” (Elephant on a Flea)
91

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Elephant

Flea

Flea

Elephant

“Flea on an Elephant” (Elephant on a Flea)
92

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Elephant

Flea

Flea

Elephant

“Flea on an Elephant” (Elephant on a Flea)
93

1. Review of Elementary Physical Design

Criteria for Colocating “Public” Classes

Elephant

Flea

Flea

Elephant

“Flea on an Elephant” (Elephant on a Flea)
94

1. Total and Partial Insulation Techniques

Insulation

95

1. Total and Partial Insulation Techniques

Insulation
Logical encapsulation versus physical insulation:

96

1. Total and Partial Insulation Techniques

Insulation
Logical encapsulation versus physical insulation:

An implementation detail of a component
(type, data, or function) that can be
altered, added, or removed without forcing
clients to rework their code is said to be
encapsulated.

97

1. Total and Partial Insulation Techniques

Insulation
Logical encapsulation versus physical insulation:

An implementation detail of a component
(type, data, or function) that can be
altered, added, or removed without forcing
clients to rework their code is said to be
encapsulated.

An implementation detail of a component
(type, data, or function) that can be
altered, added, or removed without forcing
clients to recompile is said to be insulated.

98

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

99

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

100

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

101

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

102

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

103

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

104

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

105

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

106

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

107

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

108

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

109

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

110

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

111

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

112

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

113

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

114

1. Total and Partial Insulation Techniques

Insulation

a.h a.cpp

a

#include b #include c

b.h b.cpp

b

d.h d.cpp

d

c.h c.cpp

c

#include d #include e

e.h e.cpp

e

115

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

116

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

Recall that:

A header file must

be “self-sufficient”

w.r.t. compilation.
117

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

118

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

119

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A

120

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A
But not Uses !

121

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A
But not Uses !

Point appendVertex(int index,

const Point& vertex);

#include <point.h>

122

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A
But not Uses !

Point appendVertex(int index,

const Point& vertex);

#include <point.h>

123

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A
But not Uses !

Point appendVertex(int index,

const Point& vertex);

class Point;

124

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A
But not Uses !

Point appendVertex(int index,

const Point& vertex);

#include <point.h>

125

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A
But not Uses !

Point appendVertex(int index,

const Point& vertex);

class Point;

126

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A

127

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A

3.inline (used in function body)

128

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A

3.inline (used in function body)

4.enum

129

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A

3.inline (used in function body)

4.enum

5.typedef (e.g., template specialization)

130

1. Total and Partial Insulation Techniques

Criteria for having a #include in a.h File

There are five:

1. Is-A

2. Has-A

3.inline (used in function body)

4.enum

5.typedef (e.g., template specialization)
Note: Covariant return types is another edge case.

131

1. Review of Elementary Physical Design

End of Section

Questions?

132

1. Review of Elementary Physical Design

What Questions are we Answering?

• What distinguishes Logical from Physical Design?
• What are the fundamental properties of a component?
• How do we infer dependencies from logical relationships?
• What are level numbers, and how do we determine them?
• How do we extract component dependencies efficiently?
• What essential physical design rules must be followed?
• What are the criteria for collocating classes & functions?
• What do we mean by the term Insulation?
• How does Insulation compare with Encapsulation?
• Why/when would we put a #include directive in a .h file?
• What cost/benefit is generally associated with insulation

133

1. Review of Elementary Physical Design

What Questions are we Answering?

• What distinguishes Logical from Physical Design?
• What are the fundamental properties of a component?
• How do we infer dependencies from logical relationships?
• What are level numbers, and how do we determine them?
• How do we extract component dependencies efficiently?
• What essential physical design rules must be followed?
• What are the criteria for collocating classes & functions?
• What do we mean by the term Insulation?
• How does Insulation compare with Encapsulation?
• Why/when would we put a #include directive in a .h file?
• What cost/benefit is generally associated with insulation

134

1. Review of Elementary Physical Design

What Questions are we Answering?

• What distinguishes Logical from Physical Design?
• What are the fundamental properties of a component?
• How do we infer dependencies from logical relationships?
• What are level numbers, and how do we determine them?
• How do we extract component dependencies efficiently?
• What essential physical design rules must be followed?
• What are the criteria for collocating classes & functions?
• What do we mean by the term Insulation?
• How does Insulation compare with Encapsulation?
• Why/when would we put a #include directive in a .h file?
• What cost/benefit is generally associated with insulation

135

1. Review of Elementary Physical Design

What Questions are we Answering?

• What distinguishes Logical from Physical Design?
• What are the fundamental properties of a component?
• How do we infer dependencies from logical relationships?
• What are level numbers, and how do we determine them?
• How do we extract component dependencies efficiently?
• What essential physical design rules must be followed?
• What are the criteria for collocating classes & functions?
• What do we mean by the term Insulation?
• How does Insulation compare with Encapsulation?
• Why/when would we put a #include directive in a .h file?
• What cost/benefit is generally associated with insulation

136

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

137

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

138

2. Introduce the Notion of a module in C++

Business Requirements for Modules

1. Introduction and Purpose

Modules are considered to be a critically needed language feature by many
C++ developers, but the reasons for the urgency vary considerably from one
engineer to the next. Some are looking, primarily, to reduce protracted build
times for template-ladened header files (e.g., with build artifacts). Others
want to use modules as a vehicle to clean up impure vestiges of the
language, such as macros, that leak out into client code. Still others are
looking to "modernize" the way we view C++ rendering completely — even if
it means forking the language. These are all very different motivations, and
they may or may not be entirely compatible, but if the agreed-upon
implementation of modules does not take into account established code
bases, such as Bloomberg's, they will surly fall far short of wide-spread
adoption by industry.

139

2. Introduce the Notion of a module in C++

Business Requirements for Modules

The primary purpose of this paper is to serve as a proxy for discussion
regarding critically important requirements for substantial software
organizations, such as Bloomberg, that have very specific architectural needs,
yet also have vast amounts of legacy source code that cannot reasonably be
migrated to a new syntax in any bounded amount of time.

140

2. Introduce the Notion of a module in C++

Business Requirements for Modules

2. Current Situation

Some of the strategies require existing code bases to change before they can
take advantage of modules. Significant work has gone into tooling that
converts existing code bases to become "modularized", replacing
conventional .h/.cpp pairs with the equivalent in module syntax, import
statements in place of #include directives, etc. For companies, like
Bloomberg, that have an enormous sprawling code base along with numerous
disparate clients at every level of the software's physical hierarchy, any
approach that requires transforming the entire codebase along with all the
clients is a non-starter.

141

2. Introduce the Notion of a module in C++

Business Requirements for Modules

Don Knuth asserted that premature optimization is the root of all evil. Any
sensible implementation of modules will enable the kind of compile-time
optimizations we are all looking for, but the converse is not true. If we come
up with an optimization-oriented implementation of modules and release it
first, it will be impossible to graft on the necessary architecture-oriented
features that would make modules realize their potential value for large-scale
C++ software designers and architects. If we are to be truly successful, we
must start with a fully-baked design; only after that should we attempt to
optimize it.

142

2. Introduce the Notion of a module in C++

Business Requirements for Modules

In order for any new module technology to have a plausibly successful path to
adoption, its integration must be (purely) additive, hierarchical, incremental,
and interoperable, but not necessarily backward compatible with traditional
rendering (e.g., .h/.cpp pairs). By (purely) additive, we mean that providing
a module-style interface to existing code does not require that code to be
modified (in any way whatsoever). By hierarchical, we mean that what we
add to an existing code base to provide module interfaces depends on that
code base (and never vice versa). By incremental, we mean that adding a
module interface to one part of the code base never implies adding it to
some other, disparate part of the code base. Finally, by interoperable, we
mean that a C++ construct consumed through both a module interface and a
(conventional) header-file interface is understood by the client's compiler to
be the same construct without violating the ODR.

143

2. Introduce the Notion of a module in C++

Business Requirements for Modules

3. High-Level Requirements

Modules will realize their full potential as an important new feature of C++
only if:

I. Modules deliver effective support for a larger, more powerful unit of
logical and physical architectural abstraction, beyond what is currently
realizable using conventional .h/.cpp pairs to form components
compiled as separate translation units.

a. Logical versus physical encapsulation. Today, if I have a private data
member, my client needs to see the definition of that data member.
Modules should allow that definition to be exported to the client’s
compiler, but not to the client, for arbitrary reuse. In this way,
modules fix an important and pervasive problem: transitive
includes.

144

2. Introduce the Notion of a module in C++

Business Requirements for Modules

I.

a.

b.Modules should be atomic with respect to compilation for all of
the elements they comprise. That is, if I build a module containing
templates and inline functions at a given level of contract
assertions, the client will see that level, rather than the level at
which the client was build. While this is just an example, it should
apply to any and all build options.

145

2. Introduce the Notion of a module in C++

Business Requirements for Modules

I.

a.

b.

c. Modules can be used as views on existing software subsystems
consisting of arbitrary numbers of .h and .cpp files. That is, without
changing an existing, conventionally implemented subsystem, one can
create a module interface (purely additively) that provides an
arbitrary subset of the logical entities that the module comprises.
Ideally, but not necessarily initially, the level of filtering will enable one
to drop below global entities to incorporate (or not) nested entities
such as individual member functions. In this way a module does not
encapsulate the original definition of the legacy code, but rather its use
through this module interface. Finally it should be possible for multiple
modules to wrap the same conventional software as views aimed ad
distinct clients that converge to a single main. All of the entities
exported should be known to be the same with no ODR violation.

146

2. Introduce the Notion of a module in C++

Business Requirements for Modules

I.

a.

b.

c.

d.Modules that act as views should behave similarly to C procedural
interfaces. (See Lakos'96, section 6.5.1, pp. 425-445.) What I mean
by that is that if a conventional TU is exposed in parallel with a
modular view of that TU, then a client importing entities from both
will get the union of access, and overlapping entities will be
considered by the client's compiler as being the same entity
(without violating the ODR).

147

2. Introduce the Notion of a module in C++

Business Requirements for Modules

II. There exists a well-considered, viable adoption strategy that does
NOT require existing software to be altered in any way in order to begin
to make use of the new features to allow new clients to consume legacy
software.

a. Let's take a look at a real-world scenario. Suppose we have a
library, L1_h, implemented as .h / .cpp pairs. Suppose
further that we have a subsystem, S1, that depends on, and
traffics in types defined in L1_h in its interface. Now suppose we
want to add, hierarchically, a module interface for L1_h, which
we'll call L1_m. The current state of affairs now looks roughly like
this:

[L1_m] [S1_h]

\ /

[L1_h]

148

2. Introduce the Notion of a module in C++

Business Requirements for Modules

II.

a.

b. Now suppose that we get another client subsystem written
entirely in module speak, S2_m. This client has no legacy
implementation and none of its sub-components are consumable
by conventional renderings (which is "fine" because it is new code
and no old code currently depends on it):

[S2_m]

|
[L1_m] [S1_h]

\ /

[L1_h]

149

2. Introduce the Notion of a module in C++

Business Requirements for Modules

II.

a.

b.

c. Finally a client, C1_m comes along and wants to use both S2_m
and S1_h, both of which make use in their respective interfaces of
types defined in L1_h:

[C1_m]

/ | |

[S2_m] | |

| | |

[L1_m] | [S1_h]

\ | /

[L1_h]

150

2. Introduce the Notion of a module in C++

Business Requirements for Modules

II.

a.

b.

c.

d. Types defined in L1_h and consumed from both S2_m and S1_h
need to refer to the same entities. In this way, we can keep our
current code base while continuously evolving towards the
"more modern" module only approach. At some later point,
S1_m may be created at which point C1_m may or may not may
want to convert to use it instead, but now all new code will
benefit from using the more powerful, more modern, more
efficient S1_m rendering.

151

2. Introduce the Notion of a module in C++

Business Requirements for Modules

III. The implementation chosen does not require centralized repositories or
other known-to-be brittle techniques that would render important software
processes such as distributed development or interaction with source-code
control systems significantly more problematics than they already are.

a. The Google approach seems to me to rely heavily on a module
cache which, from what I recall with template repositories from the
1990s was sufficiently problematic that it ushered in the current
linker technology where template instantiations are duplicated
locally in each translation unit in which they are used. (By
“repository” here, I mean a cache of binary template instantiations
that can be reused across translation units.)

152

2. Introduce the Notion of a module in C++

Business Requirements for Modules

IV. Once we have addressed I, II, and III, it is assumed and expected that
compile-times – especially for template-ladened interfaces – will realize
dramatic improvements over always fully reparsing source text in every
translation unit.

153

2. Introduce the Notion of a module in C++

Business Requirements for Modules

4. Conclusion

There are many different competing ideas surrounding the design and
implementation of modules in C++. There are many ways to realize modules
in ways that address the requirements elucidated in this paper. It is hard for
me to know, from what I have read, if and to what extent all of these
requirements are addressed by the current proposal. It is my intention that
this paper serve as a proxy for a discussion to learn more about where are
currently, and where we need to be to move forward.

154

Some typical motivations

• Reduce compilation time.

• Eradicate macros.

• Change look and feel of C++.

Yet must not ignore a serious, real-world concern:

Large, legacy code bases!!
155

2. Introduce the Notion of a module in C++

Review: Why Modules?

156

2. Introduce the Notion of a module in C++

Properties for Legacy Code

Property Description

(Purely) Additive Adding module interfaces need not require
changes to existing code at all.

Hierarchical Added interfaces depend on the existing code,
never vice versa.

Incremental Module interfaces can be added individually,
as needed (without requiring it of others).

Interoperable A C++ construct consumed via a module is no
different (w.r.t. ODR) from that same construct
consumed via header file.

• Fix the transitive #include problem. Provide
private symbols for compilation, but not
arbitrary reuse by clients.

• Contract-assertion level set by the module
builder, not the builder of the client.

• Future: Modules could provide multiple views
of a code base without violating the ODR.

– Clients w/multiple views get the union those views.

157

2. Introduce the Notion of a module in C++

Enhancing C++ via Modules

158

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S1_h

159

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S1_hL1_m

160

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S2_m

S1_hL1_m

161

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S2_m

C1_m

S1_hL1_m

162

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S2_m

C1_m

S1_hL1_m

163

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S2_m

C1_m

S1_hL1_m

164

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S2_m

C1_m

S1_hL1_m

S1_m

165

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S2_m

S1_hL1_m

S1_m

C1_m

166

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S2_m

C1_m

S1_hL1_m

S1_m

167

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S2_m

C1_m

S1_hL1_m

S1_m

C2_m

168

2. Introduce the Notion of a module in C++

Adoption Strategy

L1_h

S2_m

C1_m

S1_hL1_m

S1_m

C2_m

• Focus on compiler optimization (prematurely)
might preclude needed architectural features.

• Implementations requiring centralized
repositories (for faster builds) might impede
distributed software development:

– I.e., We need to be able to build any translation
unit – independently of any other – directly from
source code.

• To soon to commit to a specific module design.

169

2. Introduce the Notion of a module in C++

Additional Concerns

2. Introduce the Notion of a module in C++

End of Section

Questions?

170

2. Introduce the Notion of a module in C++

What Questions are we Answering?

• What are the engineering requirements for C++ Modules?

171

2. Introduce the Notion of a module in C++

What Questions are we Answering?

• What are the engineering requirements for C++ Modules?

172

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

173

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

174

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both
logical and physical software design.

175

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both
logical and physical software design.

• No cyclic dependencies/long-distance friendships.

176

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both
logical and physical software design.

• No cyclic dependencies/long-distance friendships.

• Colocate logical constructs only with good reason:
i.e., friendship; cycles; parts-of-whole; flea-on-elephant.

177

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both
logical and physical software design.

• No cyclic dependencies/long-distance friendships.

• Colocate logical constructs only with good reason:
i.e., friendship; cycles; parts-of-whole; flea-on-elephant.

• Put a #include in a header only with good reason:
i.e., Is-A, Has-A, inline, enum, typedef-to-template.

178

Conclusion

The End

179

© 2019 Bloomberg Finance L.P. All rights reserved.

We are hiring!

Questions?

https://www.bloomberg.com/careers

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

181

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

182

3. Review of Elementary Physical Design

Physical Dependency

Five levels of physical dependency:

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

183

3. Review of Elementary Physical Design

Physical Aggregation

Only one level of physical aggregation:

Level 5:

Level 4:

Level 3:

Level 2:

Level 1:

a b

c

184

3. Review of Elementary Physical Design

The Package

Two levels of physical aggregation:

“Dependency by

Decree”

(Metadata)

“A Hierarchy of Component Hierarchies”

185

3. Review of Elementary Physical Design

The Package

Two levels of physical aggregation:

“Dependency by

Decree”

(Metadata)

Metadata governs, even absent of any components!

186

3. Review of Elementary Physical Design

The Package

Two levels of physical aggregation:

Allowed

Dependencies

Metadata governs allowed dependencies.

187

3. Review of Elementary Physical Design

Package Dependencies

Aggregate dependencies:

Aggregate Level 3:

Internally,

dependencies

among components

are inferred.

Allowed direct

external

dependencies

are stated

explicitly

(with simple

metadata).

Aggregate Level 2:

Aggregate Level 1:

188

3. Review of Elementary Physical Design

The Package Group

Package Groups

Components

Packages

“Dependency by

Decree”

189

main

1 1, 2, & 3 1, 2, 3, & 4 deep 1, 2, 3, 4, & 5 deep1 & 2

3. Review of Elementary Physical Design

Non-Uniform Physical-Aggregation Depth

190

main

1 1, 2, & 3 1, 2, 3, & 4 deep 1, 2, 3, 4, & 5 deep1 & 2

3. Review of Elementary Physical Design

Non-Uniform Physical-Aggregation Depth

191

main

1 1, 2, & 3 1, 2, 3, & 4 deep 1, 2, 3, 4, & 5 deep1 & 2

3. Review of Elementary Physical Design

Non-Uniform Physical-Aggregation Depth

192

3. Review of Elementary Physical Design

Uniform Depth of Physical Aggregation

Component Package Package Group

193

3. Review of Elementary Physical Design

Uniform Depth of Physical Aggregation

Component Package Package Group

194

3. Review of Elementary Physical Design

Uniform Depth of Physical Aggregation

main

Component Package Package Group Package Group Hierarchy

195

3. Review of Elementary Physical Design

Uniform Depth of Physical Aggregation

main

Component Package Package Group Package Group Hierarchy

196

3. Review of Elementary Physical Design

Uniform Depth of Physical Aggregation

main

Component Package Package Group Package Group Hierarchy

197

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Package naming is more than just a convention:

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

198

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Package naming is more than just a convention:

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subim

199

Package naming is more than just a convention:

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim

200

Package naming is more than just a convention:

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim

201

Package naming is more than just a convention:

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim

202

Package naming is more than just a convention:

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subc_comp4

subim_comp1

subc_comp2

subim_comp2

subc_comp1 subc_comp3

subc

subim

203

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Package naming is more than just a convention:

subw_comp1

subim_comp1

subt_comp2

subim_comp2

subt_comp1 subt_comp3

subw

subim

subt

204

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

Package Group

205

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

Package Group

206

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

sub

Package Group

207

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

subw_comp1

subim_comp1

subt_comp1

subim_comp2

subp_comp1 subt_comp2

subw

subim

subp subt

sub

Package Group

Exactly Three Characters
208

3. Present-Day, Real-World Design Examples

Introduction

All of the software we write is governed
by a common overarching set of

Organizing Principles.

209

3. Present-Day, Real-World Design Examples

Introduction

All of the software we write is governed
by a common overarching set of

Organizing Principles.

Among the most central of which is
achieving

Sound Physical Design.

210

Lib A

App 1

211

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Lib A

App 1

App 2

212

Where We Put Our Code Matters!

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Lib A

App 1 Lib B

App 2

App 3Each new edge is introduced by

the addition of code that

depends on code elsewhere.

Where We Put Our Code Matters!

213

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Lib A

App 1 Lib B

App 2

App 4

App 3

?

?

214

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Lib A

App 1 Lib B

App 2

Lib C

App 4

App 3

215

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

App 1.1 Lib B

App 2

Lib C

App 4

App 3

Lib A

216

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Lib A.1

App 1.1 Lib B

App 2

Lib C

App 4

App 3

?

217

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Lib B

App 2
Lib D

App 4

App 3

App 1.1

Lib A.1

Lib C

218

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Lib B

App 2
Lib D

Lib C.1

App 4

App 3

App 1.1

Lib A.1

?

(?)

(?)

(?)

219

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Lib B

App 2
Lib D

App 4.1

App 3

App 1.1

Lib A.1

Lib C.1

?

220

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Lib B

App 2
Lib D

Lib C.2

App 4.1

App 3

App 1.1

Lib A.1

??

221

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Over time …

222

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

3. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Over time …

225

4. Present-Day, Real-World Design Examples

Creating a Big Ball of Mud

Over time …

226

227

228

3. Present-Day, Real-World Design Examples

Large-Scale Physical Design

• Good physical design is an engineering
discipline, not an afterthought.

229

3. Present-Day, Real-World Design Examples

Large-Scale Physical Design

• Good physical design is an engineering
discipline, not an afterthought.

• Good physical design must be introduced

from the inception of an application.

230

3. Present-Day, Real-World Design Examples

Large-Scale Physical Design

• Good physical design is an engineering
discipline, not an afterthought.

• Good physical design must be introduced

from the inception of an application.

• The physical design of our proprietary

libraries should be coherent across the firm.

231

3. Present-Day, Real-World Design Examples

Large-Scale Physical Design

Logger

232

3. Present-Day, Real-World Design Examples

Cyclic Link-time Dependency

Transport

Logger

233

3. Present-Day, Real-World Design Examples

Cyclic Link-time Dependency

Transport

Logger

Mail System

234

3. Present-Day, Real-World Design Examples

Cyclic Link-time Dependency

Transport

Logger

Mail System

Bad idea!

235

3. Present-Day, Real-World Design Examples

Cyclic Link-time Dependency

Transport

Logger

Mail System

Good idea!

Adapter

236

3. Present-Day, Real-World Design Examples

Cyclic Link-time Dependency

Date

237

3. Present-Day, Real-World Design Examples

Excessive Link-time Dependency

?

Database

Presentation Layer

Control Object Layer

Business Object Layer

Data Access Layer

Get Account

Balances

Account

Data

InstrumentsAccounts

Real Time

Data Feed

238

3. Present-Day, Real-World Design Examples

Classical Layered Architecture

class Account {

// ...

public:

Account(int accountNumber);

// Create an account

// corresponding to the

// specified 'accountNumber'

// in the database.

// ...

};

239

3. Present-Day, Real-World Design Examples

What Does Account Depend On?

Database

getAccountBalance

Account

240

3. Present-Day, Real-World Design Examples

On the Database!

GUI

Business

Logic

Business

Objects

Database

241

3. Present-Day, Real-World Design Examples

Everything Depends on the Database!

Business Logic

Business

Objects
Oracle

Business Object Loaders

main

242

3. Present-Day, Real-World Design Examples

Escalating Heavy-Weight Dependencies

Business Logic

OraclePersistor

(Interface)

main

Oracle Persistor

Date Position Account

Position

Loader

Account

Loader

TestPersistor

243

3. Present-Day, Real-World Design Examples

Breaking Dependencies Via Interfaces

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)

244

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

245

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

246

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

247

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

248

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

249

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

250

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

• What levelization techniques would you use – i.e., what
techniques would you use to levelize your design?

251

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

• What levelization techniques would you use – i.e., what
techniques would you use to levelize your design?

Note that Lakos’96 described 9 different ways to untangle
cyclic physical dependencies: Escalation, Demotion,

Opaque Pointers, Dumb Data, Redundancy, Callbacks,
Manager Class, Factoring, and Escalating Encapsulation.252

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

• What levelization techniques would you use – i.e., what
techniques would you use to levelize your design?

Note that Lakos’96 described 9 different ways to untangle
cyclic physical dependencies: Escalation, Demotion,

Opaque Pointers, Dumb Data, Redundancy, Callbacks,
Manager Class, Factoring, and Escalating Encapsulation.253

3. Survey of Advanced Levelization Techniques

Levelization

Levelize (v.); Levelizable (a.); Levelization (n.)
Usage:

• We need to levelize that design – i.e., we need to make
its physical dependency graph acyclic.

• Are you sure that design is levelizable – i.e., do we know
how to make its physical dependencies acyclic?

• What levelization techniques would you use – i.e., what
techniques would you use to levelize your design?

Note that Lakos’96 described 9 different ways to untangle
cyclic physical dependencies: Escalation, Demotion,

Opaque Pointers, Dumb Data, Redundancy, Callbacks,
Manager Class, Factoring, and Escalating Encapsulation.254

3. Survey of Advanced Levelization Techniques

Escalation

Escalation – Moving
mutually dependent
functionality higher in
the physical hierarchy.

255

3. Survey of Advanced Levelization Techniques

Escalation

BoxRect

Point

256

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

#include <box.h>

class Rect {

Point d_origin;

int d_width;

int d_length;

public:

// …

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

Point d_lowerLeft;

Point d_upperRight;

public:

// …

Box(const Rect& r);

// …

};

257

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

#include <box.h>

class Rect {

Point d_origin;

int d_width;

int d_length;

public:

// …

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

Point d_lowerLeft;

Point d_upperRight;

public:

// …

Box(const Rect& r);

// …

};

258

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};

259

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};

260

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};

261

Note Implicit Conversions
Implicit

Conversions

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};

262

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

#include <box.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};

263

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

class Box;

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

class Rect;

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};

264

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

class Box;

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

};

// box.h

#include <point.h>

class Rect;

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(const Rect& r);

// …

};

265

3. Survey of Advanced Levelization Techniques

Escalation

BoxRect

Point

266

3. Survey of Advanced Levelization Techniques

Escalation

BoxRect

Point

267

3. Survey of Advanced Levelization Techniques

Escalation

Box

Rect

Point
1

2

3

268

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(Rect& r);

// …

operator Rect() const;

// …

};

269

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

// …

};

// box.h

#include <point.h>

#include <rect.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

Box(Rect& r);

// …

operator Rect() const;

// …

};

270

3. Survey of Advanced Levelization Techniques

Escalation

Box

Rect

Point
1

2

3

271

3. Survey of Advanced Levelization Techniques

Escalation

Box

Rect

Point
1

2

3If rectangle.h is
modified, all clients of Box

will need to recompile.

272

3. Survey of Advanced Levelization Techniques

Escalation

Point
1

Rect

Box

3

2

273

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

class Box;

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

operator Box() const;

// …

};

// box.h

#include <point.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

// …

};

274

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h

#include <point.h>

class Box;

class Rect {

// …

public:

Rect();

Rect(const Point& o,

int w, int l);

Rect(const Box& b);

// …

operator Box() const;

// …

};

// box.h

#include <point.h>

class Box {

// …

public:

Box();

Box(const Point& ll,

const Point& ur);

// …

};

275

3. Survey of Advanced Levelization Techniques

Escalation

Point
1

Rect

Box

3

2

If box.h is modified,
only direct clients of Box

will need to recompile.

276

3. Survey of Advanced Levelization Techniques

Escalation

BoxRect

Point

ConvertUtil

277

3

22

1

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

278

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

279

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

280

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to support
inline functions

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

281

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to support
inline functions

more on
this later

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

282

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

283

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to avoid
transitive includes

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

284

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to avoid
transitive includes

Presumes inline
implementations of

(elided) functions using
Point.

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

285

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

inline
ConvertUtil::boxFromRectangle(

const Rect& r)
{
int length = r.ur.x() – r.ll.x();
int width = r.ur.y() – r.ll.y();
Point origin(r.ll.x() + length/2,

r.ll.y() + width/2);
return Box(origin, length, width);

}

in order to avoid
transitive includes

Presumes inline
implementations of

(elided) functions using
Point.

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

286

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to avoid
transitive includes

Presumes inline
implementations of

(elided) functions using
Point.

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

287

// convertutil.h
#include <rect.h>
#include <box.h>

struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to avoid
transitive includes

Presumes inline
implementations of

(elided) functions using
Point.

// box.h
#include <point.h>
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

// rect.h
#include <point.h>
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

3. Survey of Advanced Levelization Techniques

Escalation

288

// convertutil.h
#include <rect.h>
#include <box.h>

struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

// box.h
class Point;
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
class Point;
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

289

// convertutil.h
#include <rect.h>
#include <box.h>

struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

// box.h
class Point;
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
class Point;
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

290

// convertutil.h
#include <rect.h>
#include <box.h>

struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

// box.h
class Point;
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
class Point;
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

291

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to avoid
transitive includes

Presumes inline
implementations of

(elided) functions using
Point.

// box.h
class Point;
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
class Point;
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

292

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to avoid
transitive includes

// box.h
class Point;
class Box {
// …

public:
Box();
Box(const Point& ll,

const Point& ur);
// …

};

3. Survey of Advanced Levelization Techniques

Escalation

// rect.h
class Point;
class Rect {
// …

public:
Rect();
Rect(const Point& o,

int w, int l);
// …

};

293

// convertutil.h
#include <rect.h>
#include <box.h>
#include <point.h>
struct ConvertUtil {
static Box boxFromRect(const Rect& r);
static Rect rectFromBox(const Box& b);
// …

};

in order to avoid
transitive includes

3. Survey of Advanced Levelization Techniques

Escalation

BoxRect

Point

ConvertUtil

294

3

22

1

3. Survey of Advanced Levelization Techniques

Escalation

295

point

point.h

point.cpp

convertutil

convertutil.h

convertutil.cpp

rect

rect.h

rect.cpp

box

box.h

box.cpp

3. Survey of Advanced Levelization Techniques

Escalation

Discussion?

296

3. Survey of Advanced Levelization Techniques

Demotion

Demotion – Moving
common functionality
lower in the physical
hierarchy.

297

3. Survey of Advanced Levelization Techniques

Opaque Pointers

Opaque Pointers –
Having an object use
another in name only.

298

3. Survey of Advanced Levelization Techniques

Dumb Data

Dumb Data – Using data
that indicates a
dependency on a peer
object, but only in the
context of a separate,
higher-level object.

299

3. Survey of Advanced Levelization Techniques

Redundancy

Redundancy –
Deliberately avoiding
reuse by repeating a
small amount of code or
data to avoid coupling.

300

3. Survey of Advanced Levelization Techniques

Callbacks

Callbacks – Client-
supplied functions/data
that enable lower-level
subsystems to perform
specific tasks in a more
global context.

301

3. Survey of Advanced Levelization Techniques

Callbacks

There are several flavors:
1. DATA (Effectively Demotion)

2. FUNCTION (Stateless/Stateful)

3. FUNCTOR (Function Object)

4. PROTOCOL (Abstract Interface)

5. CONCEPT (Structural Interface)
302

3. Survey of Advanced Levelization Techniques

Factoring

Factoring – Moving
independently testable
sub-behavior out of the
implementation of a
complex component
involved in excessive
physical coupling. 303

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Escalating Encapsulation
– Moving the point at
which implementation
details are hidden from
clients to a higher level
in the physical hierarchy.

304

Car
3

Engine
2

SparkPlug
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

305

Car
3

Engine
2

SparkPlug
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

306

Sphere of
Encapsulation

Car
3

Engine
2

SparkPlug
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

307

Car
3

Engine
2

SparkPlug
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

308

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

309

Car
3

Engine
2

SparkPlug
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

310

Car
3

Engine
2

Fuel
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

311

Car
3

Engine
2

Fuel
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

312

Car
3

Engine
2

Fuel
1

Edge
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

313

1

2

Edge
1

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

314

1

2

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

315

2

2

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

316

2

2

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

317

2

3

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

318

2

3

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

319

2

3

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

320

2

3

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

321

2

3

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

322

2

3

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

323

2

3

Edge
2

NodeData
1

EdgeData
1

vector<T>

0

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Node

Graph

324

2

3

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Graph

Node Edge
11

2

325

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Graph

Node Edge
11

2

326

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Graph

Node Edge
11

2

Single-Component Wrapper

327

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Graph

Node Edge
11

2

3

MyGraph

MyEdgeMyNode

Single-Component Wrapper

328

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Graph

Node Edge
11

2

3

MyGraph

MyEdgeMyNode

Single-Component Wrapper

329

ds

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Graph

Node Edge
11

2

3

MyGraph

MyEdgeMyNode

Single-Component Wrapper

330

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

331

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

332

DateSet
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

333

DateSet
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

334

DateSet
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

335

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

336

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

337

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

338

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

339

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

340

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

341

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

342

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

343

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

344

MyDateSet
3

DateSet
2

MyDate
2

Date
1

?

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

345

MyDateSet
3

DateSet
2

MyDate
2

Date
1

?

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

346

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

347

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

348

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Multi-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

349

MyDateSet
3

DateSet
2

MyDate
2

Date
1

Single-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

350

MyDateSet
3

DateSet
2

MyDate

Date
1

Single-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

351

MyDateSet
3

DateSet
2

MyDate

Date
1

Single-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

352

MyDateSet
3

DateSet
2

MyDate

Date
1

Single-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

353

MyDateSet
3

DateSet
2

MyDate

Date
1

Single-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

354

MyDateSet
3

DateSet
2

MyDate

Date
1

Single-Component Wrapper

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

355

MyDateSet
3

DateSet
2

MyDate

Date
1

Single-Component Wrapper

Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

356

2

Hiding Header Files

Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

357

2

Hiding Header Files

// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// …

};

Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

358

2

Hiding Header Files

// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// …

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

359

2

Hiding Header Files

// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// …

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Hide
cookie.h?

Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

360

2

Hiding Header Files

// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// …

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Hide
cookie.h?

Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

361

2

Hiding Header Files

// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// …

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Hide
cookie.h?

Bad Idea:

Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

362

2

Hiding Header Files

// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// …

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Hide
cookie.h?

Bad Idea:
(1) Convolves architecture with
deployment.

Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

363

2

Hiding Header Files

// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// …

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Hide
cookie.h?

Bad Idea:
(1) Convolves architecture with
deployment.
(2) Inhibits side-by-side reuse of the
“hidden” component.

Left Right
2

Cookie
1

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

364

2

Hiding Header Files

// left.h

#include <cookie.h>

class Left {

// …

void setC(const Cookie& c);

// …

};

// right.h

#include <cookie.h>

class Right {

// …

const Cookie& getC() const;

// …

};

Hide
cookie.h?

Bad Idea:
(1) Convolves architecture with
deployment.
(2) Inhibits side-by-side reuse of the
“hidden” component.

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

365

Wrapper Package

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

366

Wrapper Package

2 22 2

3 33

1 11

\

2 22 2

3 33

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

367

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 33

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

368

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 33

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

369

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 33

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

370

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 33

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

371

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 32

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

372

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 3

2

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

373

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 3

2

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

374

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 3

2

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

375

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 3

2

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

376

Wrapper Package

2 22 2

3 33

1 11

\

\

2 22 2

3 3

2

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

377

Wrapper Package

2 22 2

3 33

1 11

\

\

2 2

3 3

2

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

378

Wrapper Package

2 22 2

3 33

1 11

\

\

2 2

3 3

2

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

379

Wrapper Package

2 22 2

3 33

1 11

\

\

2 2

3 3

2

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

380

Wrapper Package

2 22 2

3 33

1 11

\

\

2 2

3 3

2

1 11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

381

Wrapper Package

2 22 2

3 33

1 11

\

\

2 2

3 3

2

11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

382

Wrapper Package

2 22 2

3 33

1 11

\

\

2 2

3 3

2

11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

383

Wrapper Package

2 22 2

3 33

1 11

\

\

2 2

3 3

2

11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

384

Wrapper Package

2 22 2

3 33

1 11

\

\

2 2

3 3

2

11

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

385

Wrapper Package

2 22 2

3 33

1 11

\

\

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

386

1

Wrapper Package

syst

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

387

1

Wrapper Package

Left Right
21

wrap

syst

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

388

1

Wrapper Package

Left Right
21

wrap

syst

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

389

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

390

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

391

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

392

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

393

1

Wrapper Package

Left
21

wrap

syst

// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …

Right

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

394

1

Wrapper Package

Left
21

wrap

syst

// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …

Right

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

395

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

396

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_left.h

// …

class wrap_Left {

syst_Left d_imp;

public: // …

// wrap_right.h

// …

class wrap_Right {

syst_Right d_imp;

public: // …

// wrap_right.cpp

// …

void wrap_Right::someFunction(const wrap_Left& v) {

const syst_Left& vImp = *reinterpret_cast<syst_Left *>(&v);

d_imp.someFunction(vImp);

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

397

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_right.cpp

// …

void wrap_Right::someFunction(const wrap_Left& v) {

const syst_Left& vImp = *reinterpret_cast<syst_Left *>(&v);

d_imp.someFunction(vImp);

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

398

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_right.cpp

// …

void wrap_Right::someFunction(const wrap_Left& v) {

const syst_Left& vImp = *reinterpret_cast<syst_Left *>(&v);

d_imp.someFunction(vImp);

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

399

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_right.cpp

// …

void wrap_Right::someFunction(const wrap_Left& v) {

const syst_Left& vImp = *reinterpret_cast<syst_Left *>(&v);

d_imp.someFunction(vImp);

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

400

1

Wrapper Package

Left Right
21

wrap

syst

// wrap_right.cpp

// …

void wrap_Right::someFunction(const wrap_Left& v) {

const syst_Left& vImp = *reinterpret_cast<syst_Left *>(&v);

d_imp.someFunction(vImp);

Left Right
2

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

401

1

Wrapper Package

Left Right
21

wrap

syst

3. Survey of Advanced Levelization Techniques

Escalating Encapsulation

Discussion?

402

3. Survey of Advanced Levelization Techniques

Levelization Techniques (Summary)
Escalation – Moving mutually dependent functionality higher in the physical hierarchy.

Demotion – Moving common functionality lower in the physical hierarchy.

Opaque Pointers – Having an object use another in name only.

Dumb Data – Using data that indicates a dependency on a peer object, but only in

the context of a separate, higher-level object.

Redundancy – Deliberately avoiding reuse by repeating a small amount of code or

data to avoid coupling.

Callbacks – Client-supplied functions/data that enable lower-level subsystems to

perform specific tasks in a more global context.

Manager Class – Establishing a class that owns and coordinates lower-level objects.

Factoring – Moving independently testable sub-behavior out of the implementation

of a complex component involved in excessive physical coupling.

Escalating Encapsulation – Moving the point at which implementation details are

hidden from clients to a higher level in the physical hierarchy. 403

3. Survey of Advanced Levelization Techniques

End of Section

Questions?

404

3. Review of Elementary Physical Design

What Questions are we Answering?

• How are components aggregated into larger physical units?
• How many levels of physical aggregation do we employ?
• How are component package names restricted physically?
• What do levelize, levelizable, and levelization mean?
• What does the escalation levelization technique involve?
• What does multi-component wrapper (MCW) delineate?
• Why is MCW difficult to achieve properly in classical C++?
• What specific MCW goals would we want C++ to support?

405

3. Review of Elementary Physical Design

What Questions are we Answering?

• How are components aggregated into larger physical units?
• How many levels of physical aggregation do we employ?
• How are component package names restricted physically?
• What do levelize, levelizable, and levelization mean?
• What does the escalation levelization technique involve?
• What does multi-component wrapper (MCW) delineate?
• Why is MCW difficult to achieve properly in classical C++?
• What specific MCW goals would we want C++ to support?

406

3. Review of Elementary Physical Design

What Questions are we Answering?

• How are components aggregated into larger physical units?
• How many levels of physical aggregation do we employ?
• How are component package names restricted physically?
• What do levelize, levelizable, and levelization mean?
• What does the escalation levelization technique involve?
• What does multi-component wrapper (MCW) delineate?
• Why is MCW difficult to achieve properly in classical C++?
• What specific MCW goals would we want C++ to support?

407

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

408

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

409

4. Packaging Libraries Using C++ Modules

Introduction

(Effective Use of Fine-Grained Filtering)

Under

Construction
410

Questions?

411

4. Packaging Libraries Using C++ Modules

End of Section

4. Packaging Libraries Using C++ Modules

What Questions are we Answering?

• How do modules help us to better package our software?

412

4. Packaging Libraries Using C++ Modules

What Questions are we Answering?

• How do modules help us to better package our software?

413

Outline

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

2. Introduce the Notion of a module in C++
Requirements: Comparison with Conventional Headers

3. Achieving Physical Aggregation in C++ Today
Organizing Components into Packages and Package Groups

4. Packaging Libraries Using C++ Modules
Abstraction: Providing Refined Views on Existing Software

414

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

415

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both
logical and physical software design.

416

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both
logical and physical software design.

• No cyclic dependencies/long-distance friendships.

417

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both
logical and physical software design.

• No cyclic dependencies/long-distance friendships.

• Colocate logical constructs only with good reason:
i.e., friendship; cycles; parts-of-whole; flea-on-elephant.

418

Conclusion

1. Review of Elementary Physical Design
Components, Modularity, Physical Dependencies

• A Component is the fundamental unit of both
logical and physical software design.

• No cyclic dependencies/long-distance friendships.

• Colocate logical constructs only with good reason:
i.e., friendship; cycles; parts-of-whole; flea-on-elephant.

• Put a #include in a header only with good reason:
i.e., Is-A, Has-A, inline, enum, typedef-to-template.

419

Conclusion

The End

420

