
Renovating a Legacy C++ Project

Alan GriffithsAlan Griffiths
alan@octopull.co.uk

Octopull LimitedOctopull Limited

www.octopull.co.uk



Who am I?

Alan Griffiths is a regular at the ACCU conference and has 
been developing software through many fashions in 
development processes, technologies, and programming 
languages.

During that time he's delivered working software and 
development processes, written contributions for magazines 
and books, spoken at a number of conferences and made 
many friends.

Firmly convinced that common sense is a rare and marketable 
commodity he's currently working as an independent through 
his company: Octopull Limited. (http://www.octopull.co.uk/)



A Rich C++ Legacy

The world is full of functionally rich, slow to build, hard to 
maintain, C++ systems. Some of these have been developed 
over time by many and varied hands.

They continue to exist because they provide valuable 
functionality to the organisations that own them.

To maximise their value it is necessary to provide interfaces to 
today's popular application development languages, and make 
it possible to continue to develop them in a responsive and 
effective manner.



A Multi-language Paradigm

As time goes by

Computers get more powerful, so...

We build bigger and more complex systems

We are using more powerful and specific tools

One programming language is not enough

C++ is mixed with other languages

Java, C#, ...

Javascript, Python, Perl, ...



A C++ Legacy

This is the story of one such 
system, the problems it 
presented and the approach 
taken to addressing these 
problems.

While I'll have slides to 
guide discussion and tell 
this particular story, I also 
want to encourage the 
audience to share their 
experiences during the 
session.



What I'll talk about

Overview of the system I worked on

Interfacing to Java and C#

Automating of Build and Release



System Overview

C++ Quantitative Analytics library

Implements models used to calculate trade 
values

Uses C++ to control...

Memory use

Memory layout

Processing order

Threading



System Overview

Client applications

Java applications Windows & Linux

C# applications on Windows

An Excel plugin



System Overview

Long build (especially on Windows)

No clear public interface

System tests (only)

long running

only on developer builds



System Overview

Developed on Windows



System Overview

Deployed on 

(32 bit) Windows 

(32 bit) Linux



Comments & Questions?  



The Legacy Interface

Supply C++ headers and compiled libraries

All the .h files

.DLLs (and an .XLL) on Windows

A .so on Linux

No clear public interface

(based on all the .h files)

Not obvious which changes break client code

Meets need of implementer, not user



A SWIG Interface

User applications are Java and C#

Generate interface using SWIG

SWIG code generation owned by a client team

Not version controlled with analytics library

We compile and distribute but:

Can't change

Can't test

Can break



A New Interface

Idiomatic Java/C# API

Stable over time

Based on user (not implementation) concepts

Validated



New Architecture

Client Application

LoaderData representation

Trade/Model transform

(V8)

Analytics Analytics

Scripts



Results

✔ Idiomatic C# 

✔ Idiomatic Java



Results

✔ Stable over time
✔ Some “tweaks” 

during first 6 months
✔ A few naming 

changes later to 
conform to corporate 
initiative



Results

✔ Automated validation



Results

✔ Faster delivery by client applications
✔ Before: 3 months
✔ After: 3 weeks



Comments & Questions?  



Building, Integration and 
Release

Half “development” effort spent firefighting 
build and release problems



Continuous Integration

Using CruiseControl

Building Release and Development branches

Building for multiple target platforms

Reporting on a chat channel

Not reporting on regression tests



Building

Linux build failed a lot...

Makefile bug failed about half the builds

Developers got case wrong on #includes

Sometimes needed standard headers adding



Building

Windows “Release” build depended on “Debug” 
build

Debug build wasn't used otherwise

“Debug(DLL)” used by developers

“Quantify” builds



Integration

CruiseControl didn't control checkout and build

Delegates to agent running on target platform
✶ Agent does checkout (of HEAD!)

Incorrect change reporting

Poor error reporting



Feedback from integration

Slow

“Noise” from spurious build failures (from 
buggy scripts)

Misdirection from incorrect change recognition

No reporting of test failures



Release

The release process was

Multiple manual steps

pre-build and label

release build

stage

deploy

Fragile and error prone scripts

Not under CM



Slow progress on build

Not only fixing build

Running releases

Developing new interface

Poor structure to release scripts

Coupling prevents testing

Changes often “broke” in next release

Gradually things improved

Makefile bug fixed

Debug and Quantify builds retired



Introducing TeamCity

Build agents on multiple platforms

Building the version CI reports on

Artefact repository and traceability



Results: Easy to change

✔ Added regression 
and validation tests

✔ Changing compiler 
and library versions

✔ Setting up (and 
retiring) release 
branches

✔ Changing distribution 
targets



Results: Easy to Extend

✔ Multiple build agents

✔ New compiler 
versions

✔ 64 bit platforms



Results

It took 6 months to get a maintainable build 
system

Start:

could take a week and days of developer time to 
get a release out

End:

From checkin to deployment took two hours and 
a few developer minutes on change bureaucracy



Comments & Questions?  



 “C++ for Quants”

Head Quant set up lunchtime meetings

Run by volunteers (engineers or quants)

about engineering aspects of C++ code



Renovating a Legacy C++ Project

Alan GriffithsAlan Griffiths
alan@octopull.co.uk

Octopull LimitedOctopull Limited

www.octopull.co.uk



Renovating a Legacy C++ Project

Alan GriffithsAlan Griffiths
alan@octopull.co.uk

Octopull LimitedOctopull Limited

www.octopull.co.uk



Who am I?

Alan Griffiths is a regular at the ACCU conference and has 
been developing software through many fashions in 
development processes, technologies, and programming 
languages.

During that time he's delivered working software and 
development processes, written contributions for magazines 
and books, spoken at a number of conferences and made 
many friends.

Firmly convinced that common sense is a rare and marketable 
commodity he's currently working as an independent through 
his company: Octopull Limited. (http://www.octopull.co.uk/)

I've been using C++ for a long time, at first because it was the principle language 
available for developing desktop applications, more recently either for non-technical 
reasons or because it provides better control over resources than other popular 
languages.



A Rich C++ Legacy

The world is full of functionally rich, slow to build, hard to 
maintain, C++ systems. Some of these have been developed 
over time by many and varied hands.

They continue to exist because they provide valuable 
functionality to the organisations that own them.

To maximise their value it is necessary to provide interfaces to 
today's popular application development languages, and make 
it possible to continue to develop them in a responsive and 
effective manner.

The project that I'm going to describe used C++ for a mixture of reasons – the non-
technical reason was that the codebase has been developed over a couple of decades, 
originally in “C With Objects” but more recently, after a port, in C++ with man-
centuries invested in the codebase a rewrite in a fashionable language would be hard 
to justify.  The technical reasons for choosing C++ were the usual “control over 
resources” ones – principally CPU and memory.



A Multi-language Paradigm

As time goes by

Computers get more powerful, so...

We build bigger and more complex systems

We are using more powerful and specific tools

One programming language is not enough

C++ is mixed with other languages

Java, C#, ...

Javascript, Python, Perl, ...

Over that time there has been an increasing need to work effectively with other 
languages more suited developing parts of the systems. In recent years the projects 
I've worked on have combined C++ with Java, C#, Python and Javascript.



A C++ Legacy

This is the story of one such 
system, the problems it 
presented and the approach 
taken to addressing these 
problems.

While I'll have slides to 
guide discussion and tell 
this particular story, I also 
want to encourage the 
audience to share their 
experiences during the 
session.



What I'll talk about

Overview of the system I worked on

Interfacing to Java and C#

Automating of Build and Release



System Overview

C++ Quantitative Analytics library

Implements models used to calculate trade 
values

Uses C++ to control...

Memory use

Memory layout

Processing order

Threading

The code in question is a “Quantative Analytics Library” - it does the numeric 
analysis that underlies the valuation of the trades done by an investment bank.  
Among other things it builds multi-dimensional datastructures of largely floating 
point numbers and processes these on a number of threads – small changes to layout 
and processing order can have big effects on performance. (And the resulting 
numbers!)  Using C++ does give some indeed control over this – while there are 
other plausible languages for this work C++ remains a popular choice for such code.



System Overview

Client applications

Java applications Windows & Linux

C# applications on Windows

An Excel plugin

There are a lot of applications in different areas of the bank that make use of this 
library to value the trades they are making.  Most of the Linux based users are using 
Java, and most of the Windows users are using C#.



System Overview

Long build (especially on Windows)

No clear public interface

System tests (only)

long running

only on developer builds

The codebase is monolithic – highly coupled, incohesive and with no agreed “public” 
interface, but it does have a suite of tests that covers all the financial models 
supported in production and, at least in principle, any bug fixes do come with a 
corresponding test case. [These are system test, not unit tests.]



System Overview

Developed on Windows

The “Quants” working on the analytics library work almost entirely in Windows.



System Overview

Deployed on 

(32 bit) Windows 

(32 bit) Linux

The library is supported on a range of platforms: initially 32 bit Windows and 32 bit 
Linux.

64 bit Linux is now supported for development use for roll out to production later 
this year.

64 Windows is under development – to be supported next year.



Comments & Questions?  



The Legacy Interface

Supply C++ headers and compiled libraries

All the .h files

.DLLs (and an .XLL) on Windows

A .so on Linux

No clear public interface

(based on all the .h files)

Not obvious which changes break client code

Meets need of implementer, not user

Historically the users have been given a set of libraries (.sos or .dlls) and all the 
header files extracted from the codebase.  Neither the Java not C# users are 
particularly happy with this as the supported interface.  Not only are things forever 
changing (because there is no agreed public interface), it is also far from clear how a 
particular type of trade should be valued. Each application team therefore has to do 
work to map from its own representation of trades to the corresponding analytic 
model for valuing it.



A SWIG Interface

User applications are Java and C#

Generate interface using SWIG

SWIG code generation owned by a client team

Not version controlled with analytics library

We compile and distribute but:

Can't change

Can't test

Can break

At some time in the past one such client group wrote a series of scripts to generate 
and build an interface to the library using SWIG. Other groups started using this 
interface and it is now shipped with the analytics library.  This isn't ideal as, while 
there are multiple groups using this interface, there are no tests at all.  Provided it 
compiles and links it will be shipped.  When we started work the code wasn't even 
part of the main repository (it was a svn “extern” to a repository owned by the group 
who once employed the original author - we didn't have commit access).

The lack of ownership of this interface generating code was particularly problematic 
as the same code is pulled in by all the active branches. (There are typically a couple 
of branches in production and another in development – but this can increase 
occasionally.)  The main problems occur if changes on one of the branches 
necessitate changes to the generating code – which, as it has lots of special case 
handling for particular methods and constructors, happens.  (In particular SWIG isn't 
able to expose the C++ distinctions between const, references, pointers and smart 
pointers – this can, and does, lead to unintended duplication of method signatures.  
There are some sed scripts to remove problematic functions from the source code.)

One of the changes we made was to “adopt” this code into our repository so that we 
could fix problems for each of the active branches.  This wasn't entirely satisfactory 
as we still had no tests or access to the client code to validate it against – the best we 
achieved was to ensure that it compiled and linked then wait for users to “shout”. (As 
we wanted people to move off the legacy interface we felt we'd “done enough” at this 
point.)



A New Interface

Idiomatic Java/C# API

Stable over time

Based on user (not implementation) concepts

Validated

As mentioned earlier, the legacy interface caused problems for our users. The 
interface didn't reflect normal Java (or C#) conventions, wasn't stable and reflected 
the need of the implementer, not the user. Each client application's developers needed 
to understand not only the trades they were valuing but also the correct way to value 
them. In addition, they needed to get “sign-off” of the valuations being produced for 
each trade type they implemented.

With these issues to contend with it could take over three months to get a new type of 
trade and valuation into production. For competitive reasons the business wanted to 
move faster than this.

[[Prototype and issues with it – leaks, non-idiomatic interface, non-orthogonal 
functionality, etc.]]

To address this we built a new, more stable, public interface that directly supports 
Java and C# and incorporates the mapping between a trade definition and the 
valuation models. This should be much easier for client applications as the 
developers need only to present the trade in an agreed format and don't need to be 
concerned with the method of valuation.



New Architecture

Client Application

LoaderData representation

Trade/Model transform

(V8)

Analytics Analytics

Scripts

This comprised a number of components:
One that supports a uniform data representation (this can be thought of as a subset of 

JSON – as that is it's serialised form);
Another that maps a trade representation to a model representation;
A third that uses the modelling library to value the model; 
A fourth that manages all of this; and,
Native C# and Java APIs that provide access to all of this.

Much of this is implemented in C++, but there are obviously bits of C# and Java and 
the mappings between trades and models is implemented in Javascript.



Results

✔ Idiomatic C# 

✔ Idiomatic Java

C# API designed using properties for the data representation and IDisposable for 
resources (so that “using” blocks correctly managed resources).

Java API designed using setters and getters and a “dispose()” method.



Results

✔ Stable over time
✔ Some “tweaks” 

during first 6 months
✔ A few naming 

changes later to 
conform to corporate 
initiative

The client interfaces have remained relatively stable over time, during the first six 
months there were binary interface changes, and through the first year there were 
tweaks to the trade definitions to approach a more uniform naming style and to co-
ordinate with a global initiative to represent trade elements in the same way 
throughout the business.  All of that is settling down and work now focusses on 
reflecting changes and enhancements to the valuation engine and providing mappings 
for new trade types.



Results

✔ Automated validation

Naturally we introduced some “acceptance tests” for the supported trade types that 
ensured that they were validated correctly. This greatly simplified the task of 
application developers who now only need sign-off that they were presenting us with 
correct trade representations (our tests established the correctness of the results for all 
the application teams).



Results

✔ Faster delivery by client applications
✔ Before: 3 months
✔ After: 3 weeks

As a measure of success a new type of trade was implemented by a client application 
in three weeks instead of the three months that would have previously been required.  
They were also able to ditch several hundred thousand lines of code when migrating 
code to the new interface.  (Although, as they were also removing a massive tangle of 
Spring that work must share some of the credit.)



Comments & Questions?  



Building, Integration and 
Release

Half “development” effort spent firefighting 
build and release problems

When I joined the project much of the effort was expended “firefighting” the build and release process. 
There were a number of problems:



Continuous Integration

Using CruiseControl

Building Release and Development branches

Building for multiple target platforms

Reporting on a chat channel

Not reporting on regression tests



Building

Linux build failed a lot...

Makefile bug failed about half the builds

Developers got case wrong on #includes

Sometimes needed standard headers adding

Even with good code the Linux build failed about half the time – this turned out to be a parallelism 
issue, one make rule created a directory, another wrote to it and there was no dependency between 
them. Some very fragmented makefiles (lots of includes) made this hard to spot.



Building

Windows “Release” build depended on “Debug” 
build

Debug build wasn't used otherwise

“Debug(DLL)” used by developers

“Quantify” builds

The Windows “Release” build would fail if the Windows “Debug” build wasn't built first. Apart from 
this the “Debug” build wasn't used – the “Release” and “Debug” builds produced a single library, 
for developers there was a more useful “Debug(DLL)” build that allowed components to be 
worked on independently. Building all these configurations took a few hours.



Integration

CruiseControl didn't control checkout and build

Delegates to agent running on target platform
✶ Agent does checkout (of HEAD!)

Incorrect change reporting

Poor error reporting

CruiseControl was used to manage continuous integration but it didn't actually 
control the checkouts or build processes.

It took a while to figure out what was going on!  What CC thought was a build was 
actually a shell script that wrote a token file to a shared directory – another shell 
script on the corresponding target platform looked for these tokens and checked out 
the current source and built it.

This then wrote the build results back to the share for the first script to pick up. The 
results were confusing as HEAD often changed between CC scanning the repository 
and the build script checking things out.

The idea of having an “agent” on another platform do the build is good – and 
centralises reporting – but this implementation left problems.



Feedback from integration

Slow

“Noise” from spurious build failures (from 
buggy scripts)

Misdirection from incorrect change recognition

No reporting of test failures

The speed of the build process was important as, with all the noise of meaningless 
build failures and the lack of clear feedback on who, if anyone, was responsible for 
breaking the build developers were not as alert as might be hoped to problems they 
caused with their checkins. HEAD was frequently broken so getting a release out as 
soon as possible after a good integration build was a way to mitigate problems.



Release

The release process was

Multiple manual steps

pre-build and label

release build

stage

deploy

Fragile and error prone scripts

Not under CM

The release process worked in a similar way, except that there was a pre-release build 
that would label the release if it succeeded.  Then the label was checked out and built 
to create the release binaries.  Again, HEAD would often change after the build was 
requested.  (And, as the build failed randomly half the time, it often took several 
attempts to build before a label was applied – with the codebase evolving all the 
time.)

Pushing the release binaries out to the development and production environments 
was also problematic. Apart from the inevitable organisational change control forms 
that needed to be completed, there was a sequence of scripts to be run in sequence. 
The various shell and perl scripts involved were fragile.  They had hidden hardcoded 
interdependencies, poor error checking, needed to be run as specific accounts, and no 
documentation.

The scripts and Makefile targets used for developer, integration, pre-release and 
release builds were different and had subtle differences in behaviour. Several scripts 
coded the exact list of binaries to be distributed and their build locations – any time 
this changed something was likely to go wrong.

The release process was slow and failure prone – it copied the release to multiple 
development and production environments around the world (which could be offline 
or have space issues).  With little error handling in the scripts it was necessary to 
inspect the output carefully.

While there was a test suite for validating the system it was only run on Windows 
and the results were not checked in the integration or release builds.



Slow progress on build

Not only fixing build

Running releases

Developing new interface

Poor structure to release scripts

Coupling prevents testing

Changes often “broke” in next release

Gradually things improved

Makefile bug fixed

Debug and Quantify builds retired

Although these issues were a constant drain, fixing them was a background task – 
getting releases out was a full time job.  On top of which there was the new library 
interface to be built. With a small team progress was slow.

Changing the build system was also time consuming - even with pairing to review 
changes, and trying to separate out bits that so that they could be tested 
independently, changes tended to break things in ways that were not detected until 
the next release was attempted.

But every time we fixed one of these problems life got easier.  The race condition 
was the first fixed and made things a lot more predictable.  Killing the dependency on 
“Debug” and eliminating the “Debug” build also sped up integration and release 
builds.  (In later days the “Debug(DLL)” build was renamed “Debug” to keep things 
simple.)



Introducing TeamCity

Build agents on multiple platforms

Building the version CI reports on

Artefact repository and traceability

The cure for this was, of course, to be able to build the version of the code that the CI 
tool was looking at. This could have been fixed with CruiseControl but, in practice, 
waited until we replaced CruiseControl with TeamCity.  TeamCity has direct support 
for having “build agents” on a variety of platforms – which eliminated the scripting 
complexity used to achieve this with CruiseControl.

TeamCity also integrates an Ivy artefacts repository which allowed us to eliminate the 
pre-release and release builds – our new release process took the binaries directly 
from the integration build and tagged the corresponding source revision in the 
repository.



Results: Easy to change

✔ Added regression 
and validation tests

✔ Changing compiler 
and library versions

✔ Setting up (and 
retiring) release 
branches

✔ Changing distribution 
targets



Results: Easy to Extend

✔ Multiple build agents

✔ New compiler 
versions

✔ 64 bit platforms

Easy to add extra build configurations that use different compilers and/or target 
platforms



Results

It took 6 months to get a maintainable build 
system

Start:

could take a week and days of developer time to 
get a release out

End:

From checkin to deployment took two hours and 
a few developer minutes on change bureaucracy

After the first six months we'd worked out way through the issues and life was a lot 
easier.  If integration was “green” then a release could be requested of that code (and 
even if integration were broken, if the needed change was in the last successful build 
then that version could be released).



Comments & Questions?  



 “C++ for Quants”

Head Quant set up lunchtime meetings

Run by volunteers (engineers or quants)

about engineering aspects of C++ code



Renovating a Legacy C++ Project

Alan GriffithsAlan Griffiths
alan@octopull.co.uk

Octopull LimitedOctopull Limited

www.octopull.co.uk


	Renovating a Legacy C++ Project
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36

