
Overload issue 47 february 2002

contents

credits & contacts

Editor: John Merrells
merrells@acm.org
241 Heartwood Lane,
Mountain View,
CA 94041-11836,
U.S.A

Website: http://www.accu.org/

Readers:
Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Mike Woolley
mike@bulsara.com

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
Thaddaeus.frogley@creaturelabs.com

Membership and subscription
enquires:

David Hodge
membership@accu.org
31 Egerton Road
Bexhill-on-Sea, East Sussex
TN39 3HJ, UK

Advertising:
Peter Goodliffe
ads@accu.org
4 Malvern Road
Cherry Hinton
Cambridge CB1 9LD, UK
01223 518579

minimalism ● the imperial clothing crisis by Kevlin Henney 6

Of Minimalism, Constructivism and Program Code by Allan Kelly 10

Minimalist Constructive Criticism by Kevlin Henney 13

Tiny Template Tidbit By Oliver Schoenborn 15

Introduction to WOC: Abstracting OpenGL 3-D

Model Definition and Rendering with C++ by Steve White 19

What is Boost? by Björn Karlsson 24

4

Overload issue 47 february 2002

editorial
Product Definition

In defining the features of my current project I have tried to reduce them to a minimally useful set, leaving just
enough substance to get the customer interested. The first version may make no sales, but if it draws some
complaints then I will be happy, as every complaint is an opportunity to satisfy a need.
Product Requirements Document

The product requirements document, PRD, is central to the product definition activity. It lists the features that the
product is to provide. It specifically does not prescribe any particular design or implementation strategy.

There are three sections to a PRD: the general goals of the project, the itemized feature list, and a detailed feature
list offering evidence of the feature’s worthiness.

The goals should be broad, and most features should fit within the category of a goal. Perhaps the goals of a
PRD for a 2.0 product would be:

1. Quality: The 1.0 product was well received, but its quality was perceived to be low.
2. Performance: Key areas of the product do not perform well enough.
3. Ease of Use: Administration tools are too hard to use.
The feature list briefly describes each feature and orders them by priority. Each list item includes a snappy name

for easy reference, a brief descriptive paragraph, and a list of any dependent features. Priority is denoted by order.
Each feature on the list is deemed more important than the subsequent features on the list. This prioritization
exercise can involve much soul searching, but pays off greatly towards the end of the project.

The detailed feature list includes a more expansive entry for each feature providing a complete description of the
feature, and as much marketplace evidence as could be collected. The marketplace validates the worth of the feature,
and so influences its priority. Evidence can be drawn from interviews with customers and salespeople, support and
professional services staff, and also from industry research reports, competitor information, and plain gut feeling.

The framework provided by the PRD is designed to guide the project definition process to ensure that the most
return will be realized from the resources being put into the project. Thinking of features is easy. Validating them
against a marketplace is hard work.
PRD for an Established Product

A product manager usually owns the PRD, and collects and validates contributions from many sources. Engineering
is consulted often to ensure that each feature definition is well understood.

Interpreting customer input can be hard work, as customers are mostly interested in what they want right now
and not what they would like to have a year from now.

It is important to discover what they need, not what they say they want. A common mistake is to present customers
with a questionnaire based on everything that the engineering team can think of adding to the product. Question:
‘Dolby and Tweeters?’ Answer: ‘Yes please, we want that.’ The thought has now been seeded in their minds. When
subsequently asked what they need from the product they helpfully suggest ‘Dolby and Tweeters?’1

It can be worse when the idea comes from the data sheet of a competing product. A product I worked on many
years ago had some features in this category. ‘Check box’ features they were called. Two years after we
implemented a particular feature a journalist tried it out for a product review article. He complained that he couldn’t
get it working. ‘Simple-minded journo’ we muttered to ourselves as we investigated the problem. It didn’t work.
We started hunting down the bugs. And, looking back through the source code repository, we found they’d always
been there. The feature had never worked. Customers wanted it, but didn’t need it, so never used it.
PRD for a 1.0 Product

Writing a PRD for a 1.0 product is even harder than writing one for an established product. There are no existing
customers to consult. Prospective customers have to be identified, which involves both a marketing and sales activity.

The key to successful product definition is dissatisfied customers, for customers only
complain about problems they really care about.

1 Oblique reference to a ‘Not the Nine O’Clock News’ sketch involving the humiliation of a naive gramophone purchaser by an ever
so superior sales man.

Part of the 1.0 product release has to include feedback mechanisms for the customer to talk back to the
development team. Communication channels are established from the customer to product management and
engineering via sales, support and professional services. Companies are now also creating communities of customers
around their products, typically through a mailing list or newsgroup. The product development team usually lurks
in these places picking up on complaints and comments, and sometimes dipping in to get more detail, or to explain
a solution to a newly discovered problem.
Project Process

The PRD has to be signed off by all senior management. The PRD serves as a contract between product management
and engineering. Product management promises not to fiddle with the feature set, and engineering promises to implement
no more and no less.

The danger of not signing off on the PRD is feature creep, or feature leak. People slowly add new features to the list
to be implemented, or people decide that they don’t believe in a feature and put it off until it’s never implemented. Often
this is not malicious intent. Poor documentation, faulty memories, long project cycles, and staff turnover all contribute.

The engineering and quality assurance schedules are drawn up from the PRD. Senior management is presented
with the PRD and the schedules for a project review cycle. Decisions are made about the relative importance of
quality, schedule, and features within the project, and how that project inter-relates with other projects, and the
needs of the business as a whole. These three aspects; quality, schedule, and features, are each be traded off against
the other to find a satisfactory balance.

Often time-to-market pressures will dictate that the schedule must be shortened. Management must decide if
the priority for the release is quality or features. Often the feature set will be reduced to bring the schedule back
to the desired release date. A line is drawn between those features deemed ‘in’ and those ‘out’. The feature
prioritization process ensures that all the ‘in’ features are more important than the ‘out’ features.

It is important that the ‘out’ features remain in the document. It must be clear to readers of the PRD that a favorite
feature has not been forgotten, just deferred. And, as the project progresses scheduling feedback might allow ‘out’
features to be moved ‘in’, and more commonly ‘in’ features to be moved ‘out’.

Of course requirements do change during a project, and a strong PRD actually facilitates the renegotiation
process, as much of the determination of relative feature value has already been done. A scaled down project review
cycle is undertaken to ensure that the schedules are features are properly balanced.
My PRD

My solution to the 1.0 product definition problem is to just get something out there and create a community around it.
The community will serve as a marketplace from which I can learn the value of the features I am and could be offering.

New Reader

Thaddaeus Frogley has been programming professionally for eight years, seven of which in the games industry,
five of which in (mostly) C++. He has written articles published online, here in Overload, and over-there in
CVu. Despite being dyslexic, all this apparently qualifies him to be on the editorial team, a responsibility he
has wisely taken on at the same time as becoming a father. His website of fun programming stuff is here:
http://thad.notagoth.og/

John Merrells
merrells@acm.org

Copy Deadline
All articles intended for publication in Overload 48 should be submitted to the editor by March 1st, and for Overload 49 by May 1st.

5

Overload issue 47 february 2002

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

6

Overload issue 47 february 2002

minimalism
● theimperial clothing crisis

By Kevlin Henney

Marx and Engels [Marx+1848] were ahead of the object crowd:
The history of all hitherto existing society is the history of class

struggles.
A spectre is haunting software development — the spectre of

design. There is a growing recognition that design is the essence
of software development and, consequently, the missing link, or
ingredient, in much software. Much of what has passed for
design or design movement has just been theory without
practice, rhetoric or fashion — design is the pictures that you
draw, reuse is a principal foundation of object orientation,
component-based development leads to flexible architectures.
None of these views is particularly useful, and they can
sometimes be considered harmful.

design considered useful

In software, design has often been seen as filler between a
misunderstood concept of analysis and a view of implementation
reminiscent of industrial manufacturing. Design has been seen as
a phased activity divorced from code, associated with the power
of pure thought and the production of never-to-be-quite-built
blueprints. An air it retains today even in many iterative and
incremental lifecycles — the old divisions are often still there,
just more thinly sliced.

In the past, design has also suffered from an image problem: it
has often been branded formal — sometimes, too formal —
equating it to a set of rules, conventions and etiquette, and therefore,
by association, stuffy, impenetrable and elitist. To counterbalance
— and hopefully displace — these rigid views, design can be
considered an endeavour that is continuous and embraces both the
code and the conceptualisation of the system. We can use models
— drawings or prototypes — to demonstrate things that cannot be
shown directly or conveniently in code. But design is a federal
concept, and such models may be a part but they are not — except
in hegemonies like RUP (the Rational Unified Process) — the
whole. It is pragmatism that has acknowledged a more inclusive
definition of design, placing it at the centre, recognising that design
is indeed formal, but in the same sense that code is formal and in
the sense of the word that means “concerned with form”.

What properties should we expect of a good design? The
influential ten-volume de Architectura, by first century BC Roman
architect Marcus Vitruvius Pollio, suggested that all construction
should possess “strength, utility and beauty” (sometimes translated
as “firmness, commodity and delight”). We can relate these directly
to code: robustness is clearly something that we value; use is the
measure of what is built; and, yes, aesthetics matter, although a full
exploration of beauty is outside the scope of this article.

I don’t want to go on record as saying that a two-thousand year
old book on the built environment has the last word on what
software design is all about, but you have to admit that it’s not a
bad start. Are there other things that we should be looking for that
could not be re-shelved under one of those headings? Quite
possibly, but it would be fair to say that the quest for goodness in
design has attracted a number of camp followers — wannabes that
aspire to inclusion on that A-list of desirable properties. Not all are
bad, but some have made more progress than they should —
cyberspace is right next door to hypespace — and it’s time we

cleaned up a little. In particular, I would like to think that the grim
reaper is slowly stalking the mantras of reuse and flexibility.

Reuse has proven to be a false idol to worship. It is at best an ill-
defined term, and at worst an incorrect one. Moving to objects or
components because of reuse is like buying a car because the advert
says it’s the best: for some people it is wishful thinking, for others it is
grasping at straws, and for a few it is simply gullibility. What exactly
is reuse? If we define it with respect to our experience, it would seem
that reuse is often a time waster, an obfuscator, and more of a problem
than a solution. I made this claim recently on a course and got a round
of applause. What was telling is that most of the applause came from
the managers in the group; the precise target audience for much of the
reuse hype that kicked off in the late 1980s and is still rolling today.

The word flexible is like reuse: it should alert you that something
nebulous is probably up. Classes and functions are not designed to
be flexible, they are designed for a purpose: flexibility is not a
purpose, nor is it either a quality or a quantity; it is a bucket term,
a catch all, snake oil.

All of this is not to say that we cannot reuse software or that
software cannot be flexible. Far from it, it is just that in common
parlance they are either vague hand-waving terms (“Our
architecture is flexible” — what does that mean? Can it bend over
backwards so that it touches its own heels?), or incorrect (“We
reused the third-party library” — err, doesn’t that just mean you
used it... for the purpose for which it was intended?). Without
qualification these words mean nothing — but have tremendous
power to mislead — and with qualification they do not turn out to
be the gleaming foundations of a discipline for software
development. Like the emperor’s new clothes, there is not much
there. When it comes to answering the question “What is important
in design?” we should perhaps avert our eyes and look elsewhere.

simplicity before generality

A point I am often at pains to make is that minimalism in
software is not about throwing everything out leaving you with
nothing. That is nihilism. The emperor needs some clothes, just
not too many, and obviously not none. And, of course, it is best if
the clothes fit — a few clothes that fit is better than an apparent
wealth of clothing that does not.

However, my real motivation in bringing the emperor story into all
of this is not specifically the emperor’s attire — or lack thereof — as
related to a pragmatic interpretation of minimalism, but to point the
finger and declare “This has no clothes, there’s nothing there!”. To be
precise — as you may have already established — two fingers. The
two virtual properties of reusability and flexibility are twinned with
generality, and from generality flows a river of good intentions so deep
you could — and many do — drown in it. It might at first glance be
assumed that reuse would form the cornerstone of a minimalist
philosophy of software development, but the opposite transpires.

I confess that the promise of reuse was never one that attracted me,
and was a topic that I never felt entirely at home with, at least not in
the sense that it was most talked about. My traditional stance was that
reuse was a social issue not a technological one, a matter of culture
rather than of mechanism — mechanism could assist but it could never
cause. This view was still reachable from the published party line,
although in truth most others in the party did not follow the line either.

In recent years I have called into question many of the buzzwords
that pass for communication (but pass all understanding). The
realisation has crept up on me that even the mainstream non-
mainstream view, so to speak, is inaccurate and insufficient. These

days, I adopt a more republican stance: when it comes to clothing, so
to speak, we should not even be talking about the emperor. It doesn’t
help. Reuse is not the main challenge facing software engineering;
typing is not the main bottleneck in software development (which
means that most third-party code generation tools are actively solving
the wrong problem); bureaucracy is not the missing link in the
development process. Sometimes the shine is taken off our ability, as
a profession, to solve problems by a frequent and uncanny knack of
identifying the wrong problem to solve. Let’s try to simplify before we
generalise.

The following is from an email I sent Bruce Eckel following a
request on his list for design principles to include in his book,
Thinking in Patterns [Eckel]:

Simplicity before generality: A common problem we find in
frameworks is that they are designed to be general purpose without
reference to actual systems. This leads to a dizzying array of options
that are often unused, misused or just not useful. However, most
developers work on specific systems, and the quest for generality
does not always serve them well. The best route to generality is
through understanding well-defined specific examples. So, this
principle acts as the tiebreaker between otherwise equally viable
design alternatives. Of course, it is entirely possible that the simpler
solution is the more general one.

The slightly flippant tone of the last sentence may hide my
degree of conviction: it is not just that it is “entirely possible”, it is
actually “quite likely”.

Many things that are designed to be general purpose often end up
satisfying no purpose. Software components should, first and foremost,
be designed for use, and to fulfil that use well. Designing for all seasons
is both difficult and not always desirable, a realisation that helps explain
the small markets for thermal bikinis and Ford Edsels, as well as the
challenge of designing general-purpose software components.

Reflecting both on my work in library and framework
development and on my role as a user of such commodities, I have
seen the strong temptation and wasteful consequences of general
featurism. I have also seen a more restrained approach bear fruit. It
may be a cliché, but less really can be more.

Generality is not, of itself, necessarily bad, but we can often
identify the odour of speculative generality [Fowler1999]:

Brian Foote suggested this name for a smell to which we are very
sensitive. You get it when people say, “Oh, I think we need the ability
to this kind of thing someday” and thus want all sorts of hooks and
special cases to handle things that aren’t required. The result is often
harder to understand and maintain. If all this machinery were being
used, it would be worth it. But if it isn’t, it isn’t. The machinery just
gets in the way, so get rid of it.

Generality should equate to simplicity and simplification.
Generalisation can be used as a cognitive tool, allowing us to reduce
a problem to something more essential, a clearer abstraction that
offers greater compression [Henney2001]. However, too often
generalisation becomes a work item in itself, and pulls in the opposite
direction, adding to the complexity rather than reducing it. The initial
sweetness of a general solution can become overwhelming as it
grows, to the point that we feel like we are drowning in syrup.

Design is compromise, and all flexibility is a double-edged
sword. Many people mistakenly see design decisions made in the
name of flexibility as win-only situations, a narrowness that belies
reality. If we equate flexibility with degrees of freedom, then the
degrees of freedom in a design should be reasonable — which I
mean that in the deepest sense of the word: based on reason. In

pursuit of arbitrary flexibility you can often lose valuable
properties, accidental or intended, of alternative designs
[Petroski1999]:

In the mid-twentieth century it became the fashion in library
architecture to design buildings as open-floored structures in which
furniture, including bookcases, could be moved at will. The
Green/Snead Library of Congress bookstack that six decades earlier
had been declared “perfect” was now viewed as disadvantageously
locking a stack arrangement into the configuration of its
construction. In the new approach, reinforced concrete floors carry
the loads of bookshelves, so that they can be arranged without
regard for window placements. This apparently has the appeal of
flexibility in the light of indecision, for planners need not look at the
functional and aesthetic requirements of their space and its fittings
with any degree of finality; they can always change the use of the
space as whim and fashion and consultants dictate. It is unfortunate
that such has become the case, for it reflects not only a lack of
sensitivity to the historical roots of libraries and their use but also
rejects the eminently sensible approach to using natural light as a
means of energy conservation if nothing else. There is little more
pleasing experience in a library than to stand before a bookshelf
illuminated not by fluorescent lights but by the diffused light of the
sun.

And speaking of libraries, it is worth noting that one the strange
things about a so-called reuse library is that it’s one of the few
libraries people only seem to deposit things in but never take things
out. A more honest term is reuse repository.

A more pragmatic and minimal design style does not mean
writing code that hugs its assumptions so closely that only major
surgery will separate the two in the event of change. It is not
about hardcoding everything: it is about both sufficiency and
finding the right amount of space between the elements of your
solution, offering the right amount of slippage or wriggle room.
The challenge of design is in seeking and maintaining local
minima of sufficient simplicity with sufficient generality that
the integrity of the design is not easily disturbed, and the energy
required to adapt to change is proportionate to the degree of
change.

Generic programming often provides good examples of
sufficient generality. Note that generic is not the same as reusable:
something may be generic to express the simplest and most stable
model. But at the same time, genericity can be a hard tap to turn
off, whether expressed through template parameters, function
arguments or an interpreted interface. It is tempting to create some
kind of final solution — a killer class template that is
parameterisable beyond belief, or indeed comprehension. In
practice such parameterisation severely reduces the utility of code.
One size does not fit all: I don’t shop at a single place to buy all of
my goods — food, cars, etc — and although this is possible, one is
left with a sense of diminished quality through lack of appropriate
specialisation. I get better fruit from the local grocer. Likewise,
restaurants: if they try to cater for all types of food, they do so
blandly and uniformly, squeezing out the variety and standardising
the experience.

ex libris

The benefits of libraries are different to those of reuse
repositories. The idea that an arbitrary piece of code is a
candidate for reuse differs from the idea of taking a piece of code
and generalising it — promoting it through practice and

7

Overload issue 47 february 2002

empiricism— into a library, or conceiving of a code library that
scratches a particular design itch, expresses a particular design
idea, refactors a common code chunk.

You cannot reasonably refer to reuse in the context of a library
— “We are reusing the AWT.” “Oh, and what did you do with it the
first time around?” — because there are only three things you can
do with a library: use it; misuse it; not use it. Some might attempt
to leverage a library, but it transpires that this is just a neologistic
circumlocution for use. (Aside: In addition to a popular suggestion
that its use as a verb should be banned, there could be an additional
fine on native English speakers pronouncing it “levverage” if their
common cultural pronunciation is “leeverage”. You could probably
raise a lot of good money for charity with an office swear box filled
on such jargon.)

Libraries offer value based on use, not reuse. And library
architecture, whether in a loose confederation of parts or the more
tightly knit community of a framework, is based ultimately on
modular concepts. But what kind or scale of module forms the basis
of design? Often use at the level of the small is dismissed as
insignificant. And yet this is the level at which most libraries and
infrastructure projects have been most successful. The view that we
are striving ever upwards, always building neatly on the layer
below, moving towards a greater object society or component order
seems to have ensnared a mindshare. It has created a mantra all of
its own: once I worried about structured control flow; then I worried
about my classes; and then I worried about components; but now
life is easy, all I need to worry about is how to interface and tune
these off-the-shelf distributed systems — I no longer need to worry
about any details. It’s not true in software and it’s not true elsewhere
[Salingaros+2001]:

A free design process that allows for numerous subdivisions
permits mathematical substructure on many different scales. By
abandoning an empty modularity, one has access to solutions
based on a far richer approach to design that creates visually
successful buildings. Art Nouveau architects like Antoni Gaudí
used small modular elements (such as standard bricks) to create
curved large-scale structures. This freedom of form contrasts
with those instances where a building reproduces the shape of
an empty rectangular module. The small scale can link to the
large scale mathematically, because scaling similarity in design
is a connective mechanism of our perception. Therefore, the
materials can and do influence the conception of the large-scale
form, and the larger a module, the stronger the influence. When
one chooses to use large, empty rectangular panels, these will
necessarily influence the overall building; often implying a
monotonous, empty rectangular façade.

Uncannily, this sounds like many contemporary large-scale
component-based architectures. It is not modules but inappropriate
modularisation that causes problems: it can be as bad as the absence
of modularity. On the one hand you have a monolithic slab of code
and on the other lots of prefabricated slabs that somehow just don’t
seem to quite fit or make sense together [Salingaros+2001]:

There are arguments to be made in favor of modularity, but not for
the way it is used in many buildings. If we have a large quantity of
structural information, then modular design can organize this information
to prevent randomness and sensory overload. In that case, the module
is not an empty module, but a rich, complex module containing a
considerable amount of substructure. Such a module organizes its
internal information; it does not eliminate it. Empty modules, on the other
hand, eliminate internal information, and their repetition eliminates

information from the entire region that they cover. Modularity works in
a positive sense only when there is substructure to organize.

Undifferentiated modularity seems to be a genuine problem. We
should work with more than one unit of modularity, and many
programmers do so successfully: method, class, package,
component, etc. Software design, and therefore architecture, is
recursive. The reason many people move to object and component
technologies is precisely because of the many and varied levels of
granularity on offer — a better fit to their grasp of the problem and
expression of a solution, a finer level of control over the detail and
its relevance, better choice of abstraction, better resulting
compression. Rather than the brusque and FORTRAN-esque levelling
of program then function, we have a view that can zoom out or in
to the system to the level that we find appropriate to understand a
particular behaviour or solve a particular problem.

And, to be effective, a good grasp of modular diversity must be
coupled with an appropriate sensibility, an understanding of its
intent and reach [Gabriel+2000]:

The real problem with modular parts is that we took a good idea
— modularity — and mixed it up with reuse. Modularity is about
separation: When we worry about a small set of related things, we
locate them in the same place. This is how thousands of
programmers can work on the same source code and make
progress. We get in trouble when we try to use that small set of
related things in lots of places without preparing or repairing them.

The module, at whatever scale, is one of our best tools. But
identifying good modules is hard; software development is a matter
of design. It may seem almost counterintuitive, but a design born
of a minimal and pragmatic approach will often have more modular
parts than one that does not. However, the parts will not all serve
the same purpose — and nor will they serve any arbitrary purpose
— and they will not all be the same size.

commodity

So if it is not reuse and flexibility, what role then do libraries and
related infrastructure play? Commodity — which can be found,
by happy coincidence, in the alternative translation of Vitruvius’
three essential architectural properties. A commodity is quite a
different thing to something that is reusable. A commodity is
something of value and of — and for — use. A commodity
defines a stable platform, something that can be assumed or taken
for granted. A commodity is a product that has been built (or
mined and refined) intentionally, rather than an accidental but
serendipitous artefact. In real world terms we would never
confuse the quite different ideas of commodity and reuse. Whilst
there is certainly overlap, they are not even mistakably
synonymous.

We can see that developing a commodity is quite a different
undertaking to developing reusable code. A lot of per-project
code that is designed to be reusable simply isn’t, and is often
borderline useable. The open pursuit of reuse is unfocused and
adds an inappropriate overhead to some projects, often to the
point of compromising quality or schedule. The return on
investment — time, effort, complexity, money — is often not
recouped. Far better to create code that is fit for purpose and fits
with its purpose. If you follow some of the common practices
for decoupling — easier testing, less impact of change — it is
more likely that the code will see more general use, perhaps even
as a commodity. Some projects recognise that it will cost them
extra to get some kind of reuse, but if they replaced the word

8

Overload issue 47 february 2002

reusable with commodity they might reconsider how much extra
was really needed to be effective.

In a single project you don’t have reuse if a piece of code is used
in more than one place, that’s just what should be going on. This is
just good local design: usage with minimum duplication. A
definition of reuse based on the simplistic and unqualified definition
of “use more than once” would be trite and quite useless — what
value would be gained by replacing “function A calls function B”
with “function A reuses function B”?

If you view a system in terms of layering there is an interesting
relationship between the use of refactoring and the balance of logic
in the system [Collins-Cope+2000]:

Refactoring visibly lowers the centre of gravity of the application
by finding the commonality and factoring out the difference.

This is like annealing. Refactoring provides enough energy to a
system for it to relax into a new and more comfortable state, a new
local minimum. The effect of refactoring commonality is to tame
the complexity of your system. Repeated tempering, with a
conscious effort to reshape, is more likely to move code towards
commodity than a vague ‘plan’ or ‘strategy’ based on reuse.

And, as already noted, if you use a library or framework then
this again is not reuse, this is the idea of commodity and platform.
Features migrate into platforms over the years, e.g. threading,
networking, GUIs, etc. Using an application server is not reuse, it
is use of a commodity as was intended by its design.

Most concepts of reuse are invalid or unachievable in practice.
Therefore, by definition, most reuse strategies are destined to fail.
Consider the inherent contradictions or muddled goals that
sometimes pop up on company technology adoption plans: “We
will start with a pilot project to demonstrate code reuse on a three-
programmer four-month development”. Often what started out as
the path of least resistance can become the path of least
convenience.

accidentally on repurpose

It appears, in part, that the problem is one of vocabulary: we are
misusing words. For some reason, reuse is seen as a more
glamorous and elevated term than use. We can reduce most uses
of reuse to something more precise: use of a commodity, such as
a library, or the result of refactoring to avoid duplication of logic
within a system. We’re in programming not marketing: precision
matters. At least refactoring now has a certain cachet. (Perhaps
there’s something going on with the prefix re-? Rework? Recode?
Retest? Hmm, then again, perhaps not.)

So how did we end up with the reuse groupthink? And why has
it so often been allied with inheritance in object-oriented
approaches? Both hindsight and foresight suggest that it is a
damaging mindset that upsets both schedules and design. We know
that hype merchants are responsible in part, but the cause can also
be traced to the more honest confidence and ebullience of expert
individuals [Meyer1997]:

Here are the most important external quality factors, whose
pursuit is the central task of object-oriented software construction....

Reusability
Reusability is the ability of software elements to serve for the

construction of many different applications.
A few choice words come to mind when I read this, even without

the exploration I have just undertaken of what reuse is not.
However, a quick count to ten and I can respond with something a
little more moderate: there is no such thing as reusable software,

only software that has been reused. This response is adapted from
the porting maxim that “there is no such thing as portable code, only
code that has been ported”. However, unlike reusability, portability
is actually a quality that has some meaningful quantification, both
empirically and theoretically, and can be reasoned about without
resort to theological debate.

Whilst the definition given of reusability is not necessarily a bad
one, the problem is that it is listed as being a core goal and activity
of object development. The problem is then compounded by sewing
up this tidy view of the world with the following mythtake
[Meyer1997]:

Progress in either reusability or extendibility demands that we
take advantage of the strong conceptual relations that hold between
classes: a class may be an extension, specialization or combination
of others. We need support from the method and the language to
record and use these relations. Inheritance provides this support.

The perspective given, which some might consider as
charmingly naïve and others would view as downright misleading,
is countered by a wealth of theory and practice that suggests that
such an approach to development, and especially such a view of
inheritance, is unsound. Commentary reflects this [Murray1993]:

A myth in the object-oriented design community goes something
like this:

If you use object-oriented technology, you can take any class
someone else wrote, and, by using it as a base class, refine it to do
a similar task.

Even in the design of commodity items such as class libraries —
commonly and mistakenly equated with reuse — inheritance is not
necessarily viewed in glowing terms, as witnessed by Martin
Carroll and John Isner, designers of USL C++ Standard
Components [Gabriel1996]:

We take the minimalist approach to inheritance. We use it only
when it makes our components more efficient, or when it solves
certain problems with the type system.

We do not intend for our components to serve as a collection of
base classes that users extend via derivation. It is exceedingly
difficult to make a class extensible in abstracto (it is tenfold harder
when one is trying to provide classes that are as efficient as
possible). Contrary to a common misconception, it is rarely possible
for a programmer to take an arbitrary class and derive a new, useful,
and correct subtype from it, unless that subtype is of a very specific
kind anticipated by the designer of the base class. Classes can only
be made extensible in certain directions, where each of these
directions is consciously chosen (and programmed in) by the
designer of the class. Class libraries that claim to be “fully extensible”
are making an extravagant claim which frequently does not hold up
in practice.... There is absolutely no reason to sacrifice efficiency for
an elusive kind of “extensibility.”

Yes, reuse does happen, but it is not in the tidy centralised or
library-governed vision that you may have been sold, framed
originally by many High-Modernist Object Gurus. It is normally a
more ad hoc, grassroots, opportunistic and — yes — cut-and-paste
affair [Raymond2000]. It has a haphazardness to it that belies the
feed-forward, deterministic nature of many software development
lifecycles that claim to address reuse. It is not sufficiently
deterministic or controllable to form the basis for project planning
or an economic model of software development. Reuse strategy is
practically an oxymoron. How can you have a reasonable strategy
based on good luck? We normally insure against accident, not for
it.

9

Overload issue 47 february 2002

Of Minimalism,
Constructivism

and Program Code
By Allan Kelly

In part this essay is a continuation of Kevlin Henney’s arguments
in “minimalism ● omit needless code,” but it is also, in part a
response and counter argument. Let me say up front: I like
minimalism, I like Kevlin’s piece and I agree with much of what
he says.

However, I worry about some of the advice. I worry about the
direction of modern C++, I worry about what I perceive to be an
increasingly elitist attitude in C++ coding. I worry about all these
things because of accessibility.

Less is more

First let me take Kevlin’s loop example. To remind you, this is a
for-loop that prints out the content of a vector, example 1 is
Kevlin’s first pass using an integer to access the vector.

// example 1
std::vector<std::string> items;
... // populate items

for (std::size_t at = 0;
at != items.size(); ++at)

std::cout << items[at] << std::endl;
Next the code is changed to use an iterator:

// example 2
std::vector<std::string> items;
... // populate items
for (std::vector<std::string>::iterator

at = items.begin();
at != items.end(); ++at)

std::cout << *at << std::endl;
What has this change given us? In terms of functionality:
nothing; in terms of performance, well maybe we save a couple
of index operations; in terms of style it is more “modern” – that is
to say it looks more like modern C++ because we are using
iterators.

But in our haste for fashion what have we lost? We have
increased code complexity, we are demanding a more detailed
knowledge of C++ and its library than we did previously. This isn’t
a crime, after all, if you don’t know iterators how can you claim to
know C++?

On balance I think this is a judgement call, it depends on the style
of the program. I can’t get worked up about this.

Reuse in the outside world is also a less organised affair
[Brand1994], sometimes built almost purely on compromise. It is
normally concerned with recycling and repositioning; not necessarily
the glamorous vision of rapid development, but a matter of
development by necessity and disparate parts, subdivision and
differentiation. The charm of something that is reused often arises from
its accidental properties rather than from a reduced Cartesian order.

But I do not wish to misrepresent the object community. For most
of us the reason to adopt an OO or related style has been about the
qualities that it gives development, not the quantities. You can say what
may actually amount to the same thing in two radically different ways:
“I use X because it is more expressive, allowing me to articulate a more
eloquent design” versus “I use X because it makes me more
productive”. The former is about the individual, the human, and the
latter is about an automaton; more cog than cogitation. I tend to find
surveys and articles that talk about productivity do so from a pseudo-
scientific point of view. Such dehumanisation is also found in the
rebranding of programmers as plug-and-play resources. Being a
resource is not the same as being resourceful: oil, coal and tin are
natural resources; a third-party code library is a software resource; even
our skills and experience can be considered knowledge resources.
However, we, as individuals, are not resources: it is our use of resources
that makes us resourceful. The productivity of a resource does not sit
on one side of an equation with reuse on the other. It would be a tidy
but deceptive fiction.

But I digress. Where any form of reuse can be of assistance is in
the reduction of a problem to something similar, something familiar.
Where reuse is most prevalent is in our knowledge, the use of
experience to resolve similar and out-of-context problems. In each
case, the reuse is a matter of adaptation, repurposing, learning. It is
distinctly unmodular, and rarely preplannable at a detailed level.
But the absence of a fixed and fine plan does not denote chaos, any
more than the omission of a detailed leaf plan filed in your local
town hall suggests that trees do not represent some form of order.

So remember, design is central to software development and
most of the worthwhile reuse and flexibility in software
development comes from your side of the keyboard.

Kevlin Henney
kevlin@curbralan.com

references

[Brand1994] Stewart Brand, How Buildings Learn, Phoenix, 1994.
[Collins-Cope+2000] Mark Collins-Cope and Hubert Matthews, “Let’s Get
Layered: A Proposed Reference Architecture for Refactoring in XP”, XP
2000, http://www.oxyware.com/Publications.html.
[Eckel] Bruce Eckel, Thinking in Patterns, work in progress that can be
downloaded from http://www.mindview.net/Books/TIPatterns/.
[Fowler1999] Martin Fowler, Refactoring: Improving the Design of
Existing Code, Addison-Wesley, 1999.
[Gabriel1996] Richard P Gabriel, “Patterns of Software: Tales from the
Software Community”, Oxford, 1996.
[Gabriel+2000] Richard P Gabriel and Ron Goldman, “Mob Software: The
Erotic Life of Code”, delivered by Richard Gabriel as a keynote at OOPSLA
2000, http://oopsla.acm.org/oopsla2k/postconf/Gabriel.pdf.
[Henney2001] Kevlin Henney, “Minimalism: Omit Needless Code”,
Overload 45,
[Marx+1848] Karl Marx and Friedrich Engels, The Communist
Manifesto, Phoenix, originally published 1848.
[Murray1993] Robert B Murray, C++ Strategies and Tactics ,
Addison-Wesley, 1993.
[Petroski1999] Henry Petroski, The Book on the Bookshelf , Vintage,
1999.
[Raymond2000] Eric S Raymond, The Cathedral and the Bazaar, O’Reilly,
2000, http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/.
[Salingaros+2001] Nikos A Salingaros and Debora M Tejada, “Modularity
and the Number of Design Choices”, Nexus Network Journal 3(2), 2001,
http://www.nexusjournal.com/Sali-Teja.html.

10

Overload issue 47 february 2002

After a couple more iterations Kevlin gives us:
// example 3
std::vector<std::string> items;
... // populate items
typedef

std::ostream_iterator<std::string> out;
std::copy(items.begin(),

items.end(),
out(std::cout, “\n”);

Now we have less code still. However, we have significantly
increased the amount of context information required to
understand the code. We must now understand std::copy,
std::ostream_iterator and the magic typedef. Further, we have
lost our end-of-line abstraction, std::endl, now we must know the
correct end of line terminator – CR? LF? CR and LF? Is this
output intended for the screen where it hardly matters? Or is it
intended for a file where it is more important?

So, although we have less code we actually require more
information to understand it. This cuts to the heart of one of the
fundamental problems of code reuse: to reuse code, that is, to be
able to write less code, we must know more, that is we must
increase our knowledge. In this case it is the standard C++ library,
yes, every C++ programmer should know the library, but I ask you:
do you know the entire library?

Is this really minimalism?

“The aim of Minimalism is to allow the viewer to experience the
work more intensely without the distractions of composition, theme
and so onii.”

Using this definition example 3 is not minimalist because it is
full of distractions, to understand the code we must understand the
context it is written in – the theme is critical to understanding the
code. Example 1 may contain less code but it is actually closer to
a minimalist solution.

“Constructivist art is marked by a commitment to total
abstraction and a wholehearted acceptance of modernity....
Objective forms which were thought to have universal meaning
were preferred over the subjective or the individual. The art is
often very reductive as well, paring the artwork down to its basic
elementsiii.”

In fact, example 3 is more constructivist in nature than
minimalist. It is reduced to the basic elements using every
abstraction available. One of the best known constructivists,
Wassily Kandinsky, created whole pictures from his context
theories:

“elementary shapes were yellow for the triangle, red for the
square and blue for the circle, mixtures of colour would need to
follow from mixtures of form. A pentagon mixes a square and
triangles: it must therefore be orangeiv.”

As in art such minimalism or constructivism can make program
code difficult to comprehend.

Need for context

“For me it was minimalism. I felt at home with it, felt I might of
invented it. Yet I have totally failed to write about it..... [the ultra
minimalist sculptor] Sandback can transfix and subjugate me with
a length of twine strung across a corner of a room but I have found
no way to write about the experiencev.”

So wrote the art critic David Sylvester in 1996. Let us examine
this for a moment. Here is an acclaimed art critic, a man who is

paid to understand and explain modern art, one who we expect to
understand Pop Art, Conceptual Art, Abstract Art and more, yet
here he is holding up his hands and saying “I can’t explain
minimalist art.”

As we push further and further onwards in the direction of
minimalism it becomes less and less accessible. This is true of art,
literature and program code.

Simply claiming that program code is not written by
dummies, for dummies is not enough. As professional
developers we have a responsibility to ensure our code is
maintainable. To paraphrase Arthur C Clarke: “any sufficiently
advanced software implementation is indistinguishable from
unmaintainable codevi.”

Let us suppose you write your masterpiece of a system and you
then leave the project. Who are you going to hand it over to? If
you are lucky you have a team of equally capable developers who
are ready to take over. More likely as Steve Maguirevii points out
it is junior developers, we have a responsibility to these people to
ensure the code is accessible.

If you are in a position to choose your own replacement you may
be able to manage this situation. More likely you aren’t, the
company will go out and hire another contractor. Suppose you give
them a few months notice, and suppose they choose a good
employee and send him on the appropriate C++ courses. Can he
now maintain your program? How many years’ experience does
someone need to maintain your masterpiece?

As I have observed before, we do not develop in a vacuum,
we must be aware on the context we develop in. Are our
universal forms truly universal or do they form a barrier to
understanding?

Maintenance and reuse

There is not much maintenance in the arts community.
Rauschenberg’s White Painting owned by San Francisco
Museum of Modern Art is an exception; the artist has given
instructions that this all white piece should, and has been, from
time to time repainted.

Software development, like art, as an exercise is almost pure
intellectual creativity. But unlike artists we have to produce works
that are practical, useful and maintainable.

As an exercise in intellectual effort art has already visited many
of the same ideas as software. Dan Flavin, for example, practises
component reuse, using standard neon-light tubes (which may be
readily purchased by anyone) he constructs pieces such as his
Monument to V. Tatlin.

Carl Andre (considered a minimalist) has pieces made in a
factory. Consider Maholy-Nagy (a constructivist):

“just before he left for the Bauhaus [he] ordered a series of
three paintings by telephone, giving a factory that made enamel
signs precise verbal instructions and leaving the manufacture up
to themviii.”

As software developers we are in this space: we want to use
standard components, we want to be able to produce software
from precise specifications – some would even argue for a code
factory. But, much of the art that arises from these techniques
is considered inaccessible, this is not a quality we want in our
code. Ironically, minimalist paintings created to be free on
context are difficult to understand exactly because of the lack of
context!

11

Overload issue 47 february 2002

There is more than one way to skin
a cat

Sculpture, minimalism, installation, ready-mades – these are the
languages of modern art. They allow artists to express their
ideas. C++, Java, Python, Perl – these are the languages of
software. They allow developers to express their ideas.

We choose a language that is expressive enough to manipulate our
ideas, we choose Java for internet applications, Visual Basic for desktop
application and so on. None of these languages yield more computing
power, they are all Turing equivalent, no more no less. Yet each in its
own field is more expressive, the power of expression is what gives
one language power over another. The expressiveness means nothing
to the machine; it is expressive power to the human developer.

This richness of expression comes at a cost: the size and
complexity of the language increases. Wirth’s language family has
gone down the path of minimalism, yet Oberon and Modula-3 are
seldom used outside research environments. Oberon is so minimalist
it eliminates the enumeration types and the for-loop, in becoming so
minimalist it has removed the expressive power of its users. This
pursuit leads to Orwell like NewSpeak where it is not possible to think
an incorrect thought because the language does not permit it.

Instead the successful languages allow expression - and they
allow us to make mistakes. Maybe the balance has gone the
wrong way; maybe we do have too many features. Ironically
many of these features are aimed at allowing reuse. In
example 3, code reduction occurs because we use a ready-made
algorithm. Yet the price of this is that we must understand the
context.

Reuse is the Holy Grail of software development, yet we must
not forget that the first reuse of our code occurs in the maintenance
phase, MegaCalc version 1.1 reuses almost everything from
version 1.0. Making code more accessible, that is, more
understandable, benefits reuse in version 1.1 and in MegaWord 1.0.

We want to reuse and have added vocabulary to our language to
allow expression of reuse. However, growing the language does
not lead to minimalism, it leads to constructivism because we have
increased the amount of context information required to understand
the code.

The superfluous has no place in minimalism, constructivism or
program code. However, we must consider our audience. We can
do this through shared context or through explicit statements. Our
shared context, our universal truth, is our language. But this truth
is not singular, it is many and we cannot expect even a true believer
to know the entire truth.

We can reduce the physical amount of code but if we
simultaneously increase the amount of knowledge required to
understand it what have we gained?

“C++ supports the notion of gradual introduction... programmers
can remain productive while learning C++ix.”

Of the examples above no one piece of code is superior: they are
simply different. They may simply be examples written by
developers at different points in their learning cycle. To tell the
author of example 1 that she should have written example 3 adds
nothing to the code but you may have an adverse effect on her self
esteem, her attitude and how she views you.

The place for minimalism

“The results were shown... in New York in 1966... the artist
[Andre, Judd, Morris, Flavin] shared a concern with stripping
sculpture down to its essencex.”

Most developers have rejected minimalism languages.
Minimalism at the code level is self-defeating. Constructivist code
is both advantageous and dangerous.

The place for minimalism is in our designs. A design should
stand alone without distractions. Our design is the kernel of our
system and as such we should ensure it is extendable. Extending
a design should not introduction distractions and complications.

Conclusion

There is nothing wrong with minimalism. I too feel at home with
it, I too feel I could have invented it. However we must direct it
precisely to avoiding feature creep. We must delve down into the
essence of our problem domain and sculpt our solution. We need
the expressive power of our language but this brings the
responsibility to ensure that we use it correctly.

“In the development of our understanding of complex
phenomena, the most powerful tool available to the human intellect
is abstractionxi.”

Constructivism and minimalism are examples of abstraction.
They are also tools in their own right, which can be used to explain
and understand software. Our challenge is to keep our products
accessible, the blind pursuit of abstraction, minimalism or
constructivism is evil when it deprives us of context or burdens us
with too much context.

For me, Wassily Kandinsky could have been talking about
software development when he said:

“The ‘artist’ gives birth to a creation in a mysterious way full
of secrets and enigmas. Freed from him, it attains an
independent life, becomes a personality, a subject whose spirit
breathes on its own but also lives a real material life; who is a
beingxii.”

How many of us know the life our creations are leading
today?

Allan Kelly
allan.kelly@bigfoot.com

References

i Kevlin Henney, Overload 45, October 2001
ii http://www.artmovements.co.uk/minimalism.htm
iii http://www.artmovements.co.uk/constructivism.htm
iv Frank Whitford, Bauhaus, Thames and Hudson, 1984
v David Sylvester, Curriculum Vitae , About Modern Art,
Pimlico, 1997
vi I originally made this observation on the ACCU-general
mailing list in September 2001, Ric Parkin was good enough to
provide the original quote “Any sufficiently advanced technology is
indistinguishable from magic.”
vii Steve Maguire, Debugging the Development Process ,
Microsoft Press, 1994
viii Frank Whitford, Bauhaus, Thames and Hudson, 1984
ix Bjarne Stoustrup, The C++ programming language, third
edition, Addison-Wesley, 1997
x Anna Moszynska, Abstract Art, Thames and Hudson, 1990
xi C. A. R. Hoare, “Notes on Data Structuring”, in Structured
Programming, Dahl, Dijkstra and Hoare, Academic Press.
Thanks to Rob D’Entremont and Peter S Tillier on ACCU-
general for providing the source of this quote.
xii Quoted at Berkeley Art Museum, 2001

12

Overload issue 47 february 2002

13

Overload issue 47 february 2002

Minimalist Constructive
Criticism
By Kevlin Henney

I enjoyed Allan’s article, but couldn’t help thinking that it was
about something else. With the exception of the use of three code
fragments, I was left with the feeling that I was reading about an
article I didn’t write. I looked back over my article and saw most
of the relevant points analysed, rejected or otherwise expressed.
Perhaps I didn’t express them clearly or directly as I might have
done? So, I guess these comments are also a continuation,
response and counter argument!

[0] Just to clarify, the reason that example 2 is presented is
because it is often shallow orthodoxy — fashion without style.

[1] “\n” is an abstraction for CR, LF and CR+LF,
depending on the platform. That is a requirement of the
standard, and is the same in C as it is in C++. The only thing
that std::endl offers us in addition to “\n” is an explicit
std::flush for all stream types. For streams of uniform data this
is not a reasonable necessity. And whether “\n” requires more
or less context to understand than std::endl is more a matter of
opinion rather than fact!

[2] Be careful with the use of the word “reuse”... ;-)

[3] On my use of the word “minimalism”, it is at once
intended to be both descriptive and provocative. In use as an
ordinary noun “minimalism” refers to omission of the
unnecessary and the inessential. The idea of reduction to
sufficiency, but not to its elimination, is implicit. Following from
this is the inherent coupling to a context and style of
composition. This points to the understanding of “minimalism” in
terms of “minimum”, a mathematical concept, and in particular
the application of that to design, which is both a political and a
technical act — definitely the main topic of interest.

If one relates “minimalism” to “Minimalism”, this points more
to the provocative side of things, making reference to art rather
than design or science. “Minimalism” has the specific meaning
as a term that describes visual art and music movements. It
would, however, not be correct to equate what I am talking about
with descriptions — and they are only descriptions, not
definitions — of the Minimalist movement (fond as I am of it).
Refer, yes; equate, no.

The label “Minimalism” was coined originally by critics and
not by its practitioners. It therefore suffers the volatility and
subjectivity that such a classification will inevitably experience.
Contrast:

“The aim of Minimalism is to allow the viewer to experience the
work more intensely without the distractions of composition, theme
and so on.”

with
“Minimalism here becomes deeply relativistic, supportive of the

view that ‘art’ can only acquire value or worth in relation to external
factors, such as its social or institutional meaning.” (After Modern
Art, David Hopkins)

and
“Minimalism is against the subjective realm and for the objective

realm.” (This is Modern Art, Matthew Collings)

Clearly a movement as much divided by critics as it was defined
by them. For some there was the idea that Minimalism made the
experience more intense and whole because of the removal of
context, and for others there was the idea that intensity and
wholeness arose precisely because the art acted as a lens through
which the context could be seen.

So I would have said that although it makes for an interesting
literal comparison, it is perhaps not a wholly valid conceptual one.
The “minimalism” of my article is sympathetic to the
“Minimalism” of art, but is more truly drawn from maths and
science than art, and is deeply bound to context and purpose
through design. And therefore in answer to the question raised:
yes, this really is “minimalism”, but it is only in part
“Minimalism”.

[4] In terms of Constructivism, what I am describing also
falls a little short of that art movement as described by

“Constructivist art is marked by a commitment to total
abstraction and a wholehearted acceptance of modernity....
Objective forms which were thought to have universal meaning
were preferred over the subjective or the individual. The art is often
very reductive as well, paring the artwork down to its basic
elements.”

To specifically relate it back to the code fragments, the use
of STL is not the same as embracing modernity — although I
and others frequently use the term “Modern C++” as a
description of the third age of C++. We must be careful in how
we apply this label: there are many different styles of code that
can claim this title, and some have contradictory aims. Some
might be considered elitist and others not. To lump them all
together and brand them the same way is not always appropriate.
Although the spectre is raised, the question of elitism is never
really explored or answered in the article. It’s a good question,
but a deep one so I will leave it to one side as it is slightly off
the main track.

Is the STL necessarily modern? Not really. It represents the
adaptation and adoption of functional programming techniques
into C++. Is STL radical? Yes, from the perspective of Classic
C++ its introduction pushes C++ in quite a different direction to
a core Modernist Object creed (interesting mix of movements
here...). Some would say that the direction is not different, that
it is either a course correction or a clarification. But not all that
is radical is modern. It is modern in the sense that “Modern
English” is modern, but not truly modern in the sense of
Modernism.

I think my article also makes clear that a total — as opposed to
sufficient — commitment to abstraction is not the answer. However,
there are clearly common points: universal meaning and a reductive
tendency ring bells. If such a comparison is to be made,
Constructivism more accurately describes generative programming
in C++ (see the work of Andrei Alexandrescu, and Krzysztof
Czarnecki and Ulrich Eisenecker’s) than it does generic
programming.

[5] Interestingly, the issue of universal forms actually
points to the elimination of context as a factor in
Constructivism. If the forms are not universal we have
context, if they are universal the distinction between having
context and not becomes at best academic — “When everything
is a triangulation point, then nothing is a triangulation point”

14

Overload issue 47 february 2002

(Software Requirements & Specifications, Michael Jackson).
Of course, how this relates to software development is another
question!

[6] It is interesting to note that Oberon fails the
requirements of sufficiency and utility. Whilst it is has moments
of elegance, its ability to express abstractions with appropriate
compression is severely restricted. It is as if it has missed the
minimum and punched its way through to the x-axis. As
described either in terms of what I was exploring in my article or
in terms of an art movement, Oberon is not a {m,M}inimalist
tool. It increases the amount of code written and the amount of
reading required to recover meaning. The idea of capturing a
model of usage is missing, and is why the reduction is
uninformed from a language user’s perspective.

[7] A telling exercise is to attempt to describe the core of
each C++ code fragment in English. The first example is quite
long, the second example is longer and the third example is the
shortest. I would contend that the last fragment is the one that
has a structure that most closely captures the intent: “copy from
the beginning to the end of items out to the standard output using
newline separation”.

[8] The aim of minimalism as described in my article is
not to “reduce the physical amount of code”. The reduction of
code is not a principle; it is a side effect — “Vigorous writing is
concise.... This requires not that the writer makes all sentences
short... but that every word tell” (The Elements of Style, Strunk &
White). If you reduce code for its own sake you have lost your
audience. To further quote from my article, your code “needs an
audience, and it will be better off for having one in mind”. So I
would say that this is a point of agreement rather than one of
divergence between the articles.

[9] In software, coding is still designing. There is little
distinction except in level of detail and range of formality:
coding is a subset of design. To make a hard and fast
distinction is often artificial, and I would say the cause of
much misguided thinking in software development. The
sculpting of a solution is the process of design, and it makes
little sense to have one recommendation for design and a
contradictory one for code: if the design should be minimalist
then that already covers what we should be doing in code. Of
course, we have to choose the right working definition of
minimalism :-)

Kevlin Henney
kevlin@curbralan.com

By Allan Kelly

Art moves forward because it is readily visible even when it is
not accessible. Software like architecture usually hides the
internals. Maybe, like Richard Rogers, we should try putting
more of our code on the outside!

Source is openly available for FSF and OpenSource projects
but only those who participate in the project look at it, and then
not comparatively. Most commercial software is locked away
where not even the customer can see it.

I’d like to suggest a competition for quality software focused
on the code itself. Programming contests have existed for years
but these are normally races against the clock. This contest
would be run a bit like an art prize. Any organisation may enter
provided:

● the software has been delivered to a customer during the last
twelve months

● the software has been developed by a team
● source code is available for general viewing: together

with documentation it would be made publicly available
on the web

Judging would be by a panel, say five people including a
chair, who would assess each entry and decide on a winner.
Membership would vary year to year and would be made up of
respected authorities, academics and jobbing programmers.

Following the conclusion of the contest the judges’ notes
would be added to the web site. Entries would remain publicly

available and thus serve as a reference and teaching tool. (We
may choose to move the entries to a virtual gallery.)

The contest would aim to promote best practices, advance
current techniques and provide large-scale examples of quality
projects. This is not designed as an effort to further the open
source movement; it is intended to improve software quality.

Any organisation could enter as long as the software was
delivered to a real customer. Although some companies may
object to their source code being publicly available they would
retain copyright and in return, they would be rewarded with
publicity and a free external review of their project. That said,
we might need to allow some elements of a project to be left
out of a submission. I don’t expect to see Microsoft submitting
the Word code but I would hope to see Accenture submitting
projects from the Department of Social Security benefits
system.

I expect consultancies such as Accenture, Cap Gemini and
Logica to be potential sponsors. The prize itself need not be
big, say, $1,000. Naturally there will be administration costs
but the whole thing should be produced for under $5,000. In
time I hope the contest would become a sought after trophy
which actually meant something more than ISO 9000!

Naturally, the award would be presented at the ACCU
conference thus bringing publicity for the ACCU, the winners,
contestants and sponsors. I can hear it now... “The 2002
Logica-ACCU award for quality software engineering goes
to...”

Allan Kelly

How about a Turner Prize for software?

15

Overload issue 47 february 2002

Tiny Template Tidbit
By Oliver Schoenborn

I am constantly amazed at what can be done with templates. I
started programming in C around 1985 and in C++ only around
1995. Most of my work over the past 6 years has involved
using C++ to the maximum of my abilities, but only for three
years have I been working with templates. In this article I
would like to share a very small template tidbit, something I
think is really cool. I hope it can stimulate your interest in
using template capabilities for your own code, or just be
another “trick” to put in your bag, something I think fairly easy
to remember.

I will assume in this article that you are at least familiar with
a few of the STL class templates, and, though you may not have
written your own class templates before, you have “seen how
it’s done”.

Problem statement

We have an application in which a set of objects is being
generated by a third-party library and stored in a container. For
simplicity, I will refer to the objects as “points”. Objects of this
class don’t necessarily have much intrinsic behavior, and are used
by other classes of objects or functions for complex
computations. For instance, an object (which I call a processor
for clarity) might use the set of points to create a spline curve that
best fits the points. That is, each point is simply a 2D coordinate,
an aggregate of two numbers:

struct Point {float x,y;};

std::set<Point> points;

Yet, as the application evolves, it is likely that objects of the
Point class will become more complex. Perhaps other state data,
such as local temperature, contact normal, density, etc, will be
“carried around” along with the coordinates of the point. In this
case, the Point class suddenly changes from being the data to
being an aggregate of a data object and the other state data:

struct Coord {float x,y;};

// coordinates in 2D space

struct Vec {float x,y;};

// vector in 2D space

struct Point {

Coord coords;

// the coordinate pair of the point

Vec contactNormal;

// new state data associated with point

float temperature, density;

// other state data...

};

std::set<Point> points;

The “curve fitter” processor mentioned earlier suddenly no
longer works since it was designed to use the point as a 2D
coordinate pair, not as an object containing the 2D coordinate pair
as a data member.

Assuming the curve-fitter could be designed to compile in
both cases, the application may evolve such that the 2D
coordinates of the point are no longer a publicly accessible
attribute, but rather a private data member than can only be
accessed via a const “get” method (or even computed on-the-fly
instead of being a data member). This could happen when
Point starts having behavior of its own, not necessarily
relevant to the curve-fitting operation of the processor. Since the

latter was designed to access an attribute, it no longer accepts
the new class of Point. For instance,

struct Foo1 {int bar;};

struct Foo2 {int bar() const;};

Both should be adequate for the curve-fitter, yet the latter would
fail to compile if Foo2 is used instead of Foo1, complaining that
bar() is not an attribute (or some equivalent hard-to-decode error
message, different for every compiler). Does the processor really
care how the data is acquired?

If this weren’t enough, the container type may change, yet the
processor object (curve-fitter in this example) does not
care: a std::vector , a std::list , a std::set, or a
your::container, as long as the data is there, the processor
should be satisfied. This is trivial to adapt to, as you will see
below, but more importantly, what if the container stores
pointers to the points rather than the actual points? This is likely
to happen if copying Point is onerous and you need to avoid
copying those objects in your application, so you change the
container type from containing Point to containing Point*.
Suddenly, the curve-fitter no longer compiles since it expects
each element of the container to be an object, not a pointer to an
object.

Finally, our processor (object or function) may be used in
different modules, or even different applications we build, perhaps
for related yet distinct application domains. Do we want to have 10
different versions of the same code, one for each possible container
type and point design?

It turns out that templates can be used in C++ to make one
processor (object or function) that accepts any container that uses
iterators AND, much more interestingly, is able to extract the
needed data from the container elements, regardless of whether the
container element type
● Is the data, or is a pointer to the data (as opposed to

containing it)
● Is an object or pointer to object containing the data
● Makes data available as attribute or method

Moreover, templates allow you to do so at compile time, and
automatically, without your intervention. Yep, no kidding!
Hopefully, you can see that the above is a fairly generic problem,
unrelated to the particular application domain (curve-fitting) in
which I encountered it.

Solution

Let’s start simple and try to keep things simple. Assume we have
a function called fitCurve that takes a container of points and
finds the curve that best fits the set, returning the result as a
Curve object. We are not concerned with the definition of the
Curve class. To be generic, let’s call the point class Coord and
the container of points Coords:

#include “Curve.hh”

#include “Coord.hh”

typedef std::list<Coord> Coords;

Curve fitCurve(const Coord& coords);

This function can be used only to fit a curve to a set of Coord
objects stored in a std::list. If you have a set of Coords
in a std::set or a std::vector, fitCurve cannot be
used. Why should the interface force us to use one type, when
fitCurve only cares that the set is ordered? If you want to use
STL containers, then the containers are not related by
inheritance, but they do share common interfaces for certain

16

Overload issue 47 february 2002

operations. For instance, they all have an iterator type nested.
Let’s make fitCurve independent of the container type. We
use templates to parameterize fitCurve on the container type,
for instance

// note: syntax wrong but you get the idea:

template <class Container>

Curve fitCurve(const Container<Coord>& coords)

{

// ...

// set coord1 to first Coord in coords

// set coord2 to second Coord in coords

Coord c = coord1 + coord2;

// ...

}

The only requirement on the element type (Coord) in the
container is that it have an operator+ defined. The
requirement on the container is that we use
Container::iterator instead of other access operators
such as operator[] to access the individual elements of the
container.

What are some of the advantages and disadvantages of
parameterizing? I can think of the following:

Advantages:

Any kind of container, whose concrete type is known at
compile time, can be given to the curve fitter. For each new type
of container, the compiler takes the “function template” (i.e. a
template for a function) and generates a “template function” (i.e.
a function that comes from a template) — the order of those
words matters. There will be a few constraints on the operations
required from the container, but this is already far better than
being stuck with one container class. The alternative would be
to copy all the elements from your container to the container
expected by fitCurve.

Since fitCurve is a function, most compilers will know to
generate the template function for the given container without your
having to specify it explicitly. The mere act of calling fitCurve
with your container is enough, since the compiler knows the type
of container you are using, and can generate the template function
automatically.

For the same reason, you can change the type of your
container at some later stage of development, without having to
do anything to fitCurve : the compiler and your build
environment will know that the old “template function” should
be changed to a new one, at compilation time, and will do the
change for you.

Disadvantages:

Every template function that is generated by the compiler
means extra code. This is the famous “code bloat” problem of
class and function templates. This is a factor to consider only if
you plan on using several different containers in the same
application (which is not necessarily the case), and memory
footprint matters.

It can be difficult to predict how “well behaved” is the
Container (template) class. Can it throw exceptions? Does
its interface properly identify what is const and non-const? Can
this invalidate the algorithm that accesses the Container?

There will always be cases where the disadvantages outweigh the
advantages, but I have found the reverse to be true much more often.

The next step is to allow the container element type to be a
pointer to a Coord as well as a Coord. Intuitively, we know it
should be possible: the compiler knows exactly what is the type of
what is contained: i.e., a Coord or a pointer to a Coord. When the
element type is a pointer to Coord, the above piece of code would
have coord1 and coord2 be pointers to Coord objects rather
than actual Coord objects. Wouldn’t it be nice if we could write,
in the above code, something like:

const Coord& c1 = getCoord(coord1);

const Coord& c2 = getCoord(coord2);

Coord sum = c1 + c2;

If the element type is a Coord, then getCoord(coord1)
just returns coord1. If on the other hand it is a Coord*, then
getCoord(coord1) returns *coord1. Simple overloading
allows us to do that:

const Coord& getCoord(const Coord& v)

{return v;}

const Coord& getCoord(const Coord* v)

{return *v;}

Now things are going to get a little more interesting. We want to
allow the element type of the container be something else than a
Coord, i.e. it could be a Point that contains a Coord. All we
need is to overload getCoord() once more for the case where v
is a Point:

const Coord& getCoord(const Point& v)

{return v.coords;}

Of course, we want to be able to use our own class instead of
Point. Templates come to the rescue once again:

template <class POINT>

const Coord& getCoord(const POINT& v)

{return v.coords;}

This requires that POINT, the type of object contained by
Container in fitCurve, have a publicly visible “coords” data
member. So it’s not totally generic but again, far better than being
stuck with only Point and Coord objects!

Before dealing with the member “attributes vs. methods”
problem, the last requirement is that the container can contain
pointers to point types that contain the Coord data as a data
member. What we need is a template overload for pointers:

template <class POINT>

const Coord& getCoord(const POINT* p)

{return p->coords;}

It is somewhat like “partial specialization” because some of the
type information is still general and unknown (POINT could be
anything) but some is specific: it must be a pointer to something.
However “partial specialization” specifically refers to specialization
of a subset of the template parameters in a multi-parameter template
definition.

Let’s summarize what we have so far:
/// General function template

template <typename POINT> inline

const Coord& getCoord(const POINT& p)

{return p.coords;}

/// Partial specialization for pointers

/// to things

template <class POINT>

const Coord& getCoord(const POINT* p)

{return p->coords;}

17

Overload issue 47 february 2002

/// Complete specialization for Coord

inline

const Coord& getCoord(const Coord& p)

{return p;}

/// Complete specialization for pointer

/// to Coord

inline

const Coord& getCoord(const Coord* p)

{return *p;}

With those four getCoords put together, we have the following
scenario:

If the element type of the container is anything but a Coord or
Coord*, it will use the first or second definition of getCoord,
depending on whether or not getCoord is called with a pointer
to a POINT or a POINT itself;

Otherwise, it will use the appropriate complete specialization of
getCoord, depending on whether or not getCoord is called
with a pointer to a Coord or a Coord itself.

Our fitCurve() is now able to handle four cases of data
sets:

Container<Coord>

Container<Coord*>

Container<Something>

Container<Something*>

The compiler can choose the right version of getCoord to use
at compilation time. In the last two cases, as long as Something
has a public data member called “coords”, we are ok.
Container can be any class that provides an iterator type (or
whatever operations are required by the processor object or
function).

The last generalization that we must do is to allow the
“coords” to be a method instead of a data member. For instance,

class Point {

public:

const Coord& coords() const

{return coords_;}

private:

Point coords_;

};

You probably know how to “point” to a method in a class. For
instance, the “coords” method can be pointed to with a pointer
of type “const Coord& (Point::*)() const”. Given
a typedef

typedef const Coord&

(Point::* Method)() const;

This typedef defines a new type called Method, as a
pointer to a const method of the Point class returning a
reference to a const Coord. If this seems horribly difficult to
read, don’t worry, you’re not the only one who feels that way.
Pointers to functions and methods is one of the idiosyncrasies of
C++. The syntax is atrociously difficult to get your mind around,
but I guess it could be worse. In any case once you’ve done a few
examples on your own it gets better. Here is an example of using
a Method object:

Method mm = & Point::coords;

// store pointer to coords method

Point point; // create a Point object

Coord coords = (point.*mm)();

// #1: call coords method on it

Coord coords = point.coords();

// #2: exact same thing

The line #2 does exactly the same thing as #1.
So the question is whether there is a way of doing the same thing

with data members. Indeed, when getCoord accesses the
coords field of the class, the compiler knows exactly what
“coords” is: a data member or a method. So if we could write the
general getCoord template like

template <class POINT>

const Coord& getCoord(const POINT& v) {

return getData(v, &POINT::coords);

}

// partial specialization for pointers

template <class POINT>

const Coord& getCoord(const POINT* v) {

return getData(*v, &POINT::coords);

}

and properly define two getData functions, one accepting a
pointer to a method as second argument, and another accepting a
pointer to a data member as second argument, we have
accomplished our goal. The compiler will know which to choose
without us having to tell it. In pseudo-language:

inline const Coord&

getData(const Point& pp, Method mm) {

return (pp.*mm)();

}

inline const Coord&

getData(const Point& pp, ptr_dmem_Point dd) {

return ...;

}

where Method is the typedef described earlier,
ptr_dmem_Point stands for “pointer to data member of
Point” and the ellipsis just means “don’t know the syntax yet”. It
took me a bit of trial and error to find out the correct syntax, but it
turns out it’s not too bad: a “pointer” to a data member of type T
for a class Point is “T Point::*”. Simpler than defining a
pointer to a method.

Our final solution for the getData is therefore, after replacing
Point by a template parameter*:

template <typename POINT>

inline const Coord&

getData(const POINT& pp, Coord POINT::* dd) {

return pp.*dd;

}

template <typename POINT>

inline const Coord&

getData(const POINT& pp,

const Coord& (POINT::* mm)() const) {

return (pp.*mm)();

}

with the four function templates for getCoordmentioned above.

* It is not currently possible, most unfortunately, to define
templated typedefs. Hence writing the following is not
possible, even though it would make perfect sense:
template <typename POINT> typedef

const Coord& (POINT::* Method)() const;

18

Overload issue 47 february 2002

Discussion

What does this give us?
Our fitCurve can use any container of Coord, Coord*,

Something, or Something*, as long as the container has an
“iterator” type defined in it, or whatever methods are required
by fitCurve (!=, ++, etc).

“Something” must have a “coords” field, which must be
either a Coord or a “const method returning a reference to a const
Coord.”

If we make any changes to our container type, no changes are
needed to fitCurve, as long as the changes satisfy the minimal
requirements of 1.

If we make any changes to the type of object stored in the
container, no changes are needed to fitCurve, as long as the new
object is something that satisfies 2. above;

The compiler, as it recompiles the class that uses fitCurve,
will make use of the correct getCoord and getData without
our intervention. This is probably the biggest gain.

Since everything is inlined, there are no function calls involved:
everything is resolved at compile time and is equivalent to your
having typed the coords data member straight where it is used by
the processor object or function.

We now have a far more generic processor with only 15 lines of
extra code, and one that requires almost NO intervention on our
part when using the fitter with a new or different type of container
and contained objects. Pretty good for 15 lines of code.

For a library developer, this level of generality may still be
insufficient: the member in POINTmust be called “coords”. This
is similar to STL containers which all have a member called
“iterator” that defines an iterator appropriate for the container.
To make it completely general, we would need a way of allowing
the user to specify that they want something other than “coords”
to be used by getCoord(). One work-around would be to define
further complete specializations for your point class, using the
appropriate member:

template <>

inline const Coord&

getCoord(const YourPoint& v) {

return getData(v, &YourPoint::yourCoords);

}

and similarly for the pointer version. This is tedious to type and
error-prone, but only a macro could be used to simplify this to a
one-liner:

#define GET_COORD(YourPoint, yourData) \

template <> \

inline const Coord& \

getCoord(const YourPoint& v) { \

return getData(v, &YourPoint::yourData);\

} \

template <> \

inline const Coord& \

getCoord(const YourPoint* v) { \

return getData(*v, &YourPoint::yourData);\

}

which would allow you to type
GET_COORD(YourPointClass, yourCoordMember)

in your source file to get the specialization. The good news is
that if you forget to define this, you get a compile time error. The
bad news is that you have to define it in a place where it is visible
to the compiler by the time your processor object or function calls

getCoord, which is likely to increase the coupling between
header files. The only other way that I can think of is to derive your
class and provide a “coords” alias for the member, but this will
be useful only if you have any control over the type of object stored
in the container. For instance, you could derive
YourPointClass as

struct PointDerived: YourPointClass {

Coord& coords;

// alias for member in YourPointClass

PointDerived: coords(yourCoordMember) {}

};

and use a container of PointDerived objects instead of a
container of YourPointClass objects. This only works if you
have control over the element type of the container.

It is interesting to notice that templates are necessary in C++
only because C++ is such a strongly typed language. Consider
Python, which is essentially untyped: classes are not
differentiated by type, only by name. Hence a List class in
Python that takes as argument the name of an object to store in
the list, can have that object be any class of object. The idea of
templates in Python is implicit in some ways, and unnecessary
in others. There are probably many other languages where this
applies. The strong-typing nature of C++ requires extra typing
(sorry for pun), but it allows the compiler to know much more
about the data being handled, and therefore to do much more
stringent error-checking and optimizations not possible in
weakly typed languages. Templates in C++ are necessary so C++
can support very useful features found in other high-level
languages in a strongly-typed and optimized context.

Note: At the time of this writing, GNU g++ 3.0 (on SGI) has
problems picking the correct getCoord: it seems to get confused
by the pointer overloads. The code compiles and works perfectly,
however, with SGI’s MipsPro C++ compiler 7.3.1.

Summary

I showed how a processor (object or function) that uses data
from a set of objects can be generalized with a very small
number of lines of code, using templates and template
specialization, to support application evolution, without
requiring you to adapt the processor. More specifically, your
processor object or function is able to extract the needed data
from the container elements, regardless of whether the
container element type
● Is the data, or is a pointer to the data (as opposed to

containing it)
● Is an object or pointer to object containing the data
● Makes data available as attribute OR method

Moreover, the compiler does so for you, automatically, without
requiring your intervention. I’ll gladly reply via email to
suggestions and ideas. Sincere thanks to Phil Bass for his critical
comments and ideas.

Oliver Schoenborn
Oliver.Schoenborn@utoronto.ca

References

Bjarne Stroustrup, C++ Programming Language, third edition
Andrei Alexandrescu, Modern C++ Design
Mark Lutz, Python Programming, second edition

19

Overload issue 47 february 2002

Introduction to WOC:
Abstracting OpenGL 3-D
Model Definition and
Rendering with C++.
By Steve White

This article introduces a library of C++ classes which I have
named Windows/OpenGL Classes, or WOC for short. WOC
leverages the substantial functionality of OpenGL and hides its
complexity behind a hierarchy of user-derivable base classes and
leaf classes. In addition, a basic Win32 application-and-
windowing framework is offered, as well as some very flexible
value-generating and member-function-calling class templates
whose purpose is to constitute, and relay values around, ‘virtual
circuits’ for the purposes of either animation or geometry
generation.

Casual users of WOC, and anyone tempted by the instant
gratification of some pretty graphics pictures, are welcome
to visit the WOC section of my website at
www.barkbark.demon.co.uk/woc. The WOC header and
implementation files (127kb zipped) can be found in the same
place. This article is aimed at those interested in WOC ‘under
the hood’ but it also includes a first tutorial on its use.

What do I have to know to use
WOC?

Because WOC hides the OpenGL API, you don’t need to know
OpenGL. It helps to have heard of, and to be able to visualise,
3-D cartesian coordinate space and to have the gist of the
basic translation, rotation and scaling transformations,
particularly the significance of applying either translation or
rotation before the other. With the exception of the animation
templates, only a very basic knowledge of C++ is required to
use WOC; it is in the ballpark of rudimentary MFC. Use of the
animation templates is optional but more demanding as it
requires a good knowledge of the generic programming
techniques of modern C++.

What, briefly, is OpenGL?

OpenGL (Open Graphics Library) was developed by Silicon
Graphics and it is a hardware-independent specification of a
graphics programming interface. Although windowing tasks and
user input are not part of the OpenGL specification,
implementations for different platforms all have a standard core
of functionality and are packaged with the OpenGL Utility
Library (GLU) which does offer a common abstraction of
windowing support hiding a specific implementation for each
platform. GLU is not a perfect solution and on Win32 I prefer to
use the Win32 Extensions.

What does WOC offer?

OpenGL’s interface is at the level of geometric primitives –
points, lines and polygons – and no higher. WOC also allows the
geometry of a 3-D model to be defined at this level, either
manually or generated automatically, but also introduces types
representing higher-level elements, defined once and referenced
many times, in model and scene hierarchies created by the user.
WOC controls OpenGL’s state transparently and is responsible
for managing, transforming and rendering the user’s scene and

animations. Also, for Win32, the basics of registering and
creating windows, a message-loop, window procedure, and
creating and managing an OpenGL rendering context and default
animated model are all taken care of by WOC upon the
instantiation of, in the simplest case, a single Application class
object.

The WOC Class Model

At the bottom of WOC’s geometry class hierarchy [class
diagram on following page] is the VectorT template. This
represents a vector, or one-dimensional matrix. A vector has
magnitude and a direction in space. VectorT is used as a set
of either three or four scalar values which together represent a
vector-like concept. So, it can be used to represent any of: a set
of homogeneous or non-homogeneous coordinates in three-
space (i.e. a point); a free vector in three-space (e.g. a normal
vector); ray rotations, translations and scalings. The class
diagrams shown in the figures are from Rational Rose and give
the class names without their generated ‘C-’ prefixes. I will do
the same in this discussion. WOC specialises VectorT with
the GLfloat type and typedefs the result to Vector.
GLfloat is itself a typedef for the built-in type float. At a
similarly low level the UV class represents a set of floating-
point texture coordinates (u and v, corresponding to the x and
y directions respectively) which identify a point on a texture
map (an image). A Model instance is a collection of all the 3-
D points (Vector), lighting normals (Vector) and texture
coordinates (UV) from which its polygons are constructed. This
repository of geometric resources is then referenced by
Triangle instances so that the points, normals and texture
coordinates can be re-used and mixed and matched as required.
A logical collection of Triangles is placed into a
Geometry – e.g. the triangles defining the surface of a sphere
– also with re-use in mind. Geometries are collected and
managed by the Model, but are referenced by the Model’s
Groups. I will say more about material and transformation in
due course, but a Group applies a Material and a set of
Transformation s to a Geometry so that the same
Geometry (e.g. our sphere) may be stretched, scaled,
translated, textured or coloured many times depending on the
properties of each Group which references it.

As you can see, WOC’s abstraction of a 3-D model is factored
into several classes. It is possible to construct a model at either low,
medium or high level as desired. The lowest level involves defining
points, normals and texture coordinates and then defining
Triangles in terms of the returned indices of the points.
Alternatively, Triangles can be constructed with their points,
normals and texture coordinates as parameters, with the option to
re-use duplicate existing points, normals, etc, within a threshold of
similarity. Normals are optional: they may be supplied or
alternatively WOC will on request calculate face or vertex normals.
Finally, the highest (and easiest) level of model definition is
afforded by the polymorphic model-loader classes. You simply
point these at a Model instance and, together with some optional
parameters, instruct them to load. Several model-loaders (cube,
grid, tetrahedron, sphere, tube) are built into WOC but you can
derive your own. The sphere loader re-uses existing points it has
already placed in the Model’s repository, because the spherical to
cartesian coordinate conversion formula it uses generates a large
number of proximate points at the poles. There is also a model-

20

Overload issue 47 february 2002

loader specialised for reading from a disk file in Wavefront .OBJ
format, making it childsplay to build an .OBJ model-viewer with
WOC. A more Model-centric view of the classes already
mentioned can be found in the WOC Class Reference on my
website; I won’t reproduce it here.

Let’s look at Transformation(s) next.
Earlier I mentioned that a Group applies a set of

Transformations to a Geometry. A Transformation
is an abstract base class for Translation, Scaling and two
types of Rotation. WOC has a class which is a collection of
Transformation-derived types, and is known as a
Transformations. A Transformations’ elements are
applied in the order in which they were added because matrix
multiplication is not generally commutative. As can be seen in
Figure 2, an OGLWnd also has its own Transformations
instance. An OGLWnd is a window with an OpenGL Rendering
Context in its client area, and its Translations and
Rotations are generally sufficient to give the correct view
(or ‘camera angle’) onto the scene as a whole, although
Scalings can be applied if required. An OGLWnd owns a
collection of Models and once the scene itself has been
transformed, each Model in the scene is transformed and
rendered and that process in turn involves transforming and
rendering each Models’ Groups. A Model ’s
Transformations collection (not shown in Figure 2) exists
so that transformations common to all Groups in a Model can
be factored up to the Model. Immediately before transforming
a Model or a Group, the current transformation matrix is
pushed onto OpenGL’s matrix stack and later popped once the

Model or Group has been rendered. This ensures the current
transformation always keeps in step with the inorder walk of the
scene tree. It probably also bears mentioning that Groups
themselves may have a further collection of (sub)Groups in the
way that Models do. This allows the definition of a scene tree
to go to any depth and also provides for Group nodes to contain
only a Transformations collection without a Geometry
nor a Material; this provides for further factoring out of
Transformations common to child Groups. The
OGLWnd’s Transformations are accessed by the class’s
built-in mouse interface which allows the user to translate, rotate
and zoom the scene. Mouse sensitivity along with a host of other
settings are available from the OGLWnd’s context menu.

Materials are another part of a Model’s repository of
resources which are re-usable by its Groups. A Material is
essentially a definition of how the triangles in the Group should
reflect the colour components of the lights illuminating them. A
number of stock Materialdefinitions are built into WOC (e.g.
emerald, ruby, pearl, brass, bronze, red enamel, various colours
of plastic and rubber to name but a few) so the casual WOC user
need never get into the technicalities. The definition of lights is
taken care of by the Light class which wraps OpenGL’s light-
related APIs. A Light contains a Model instance which
defines the appearance of a Light should it need to be
represented visually. By default a Light’s Model is loaded
with low-resolution sphere geometry but you can derive from
Light and change the Model used. Lights also have their
own Transformations collection so that they can be placed
anywhere, or even animated.

Figure 1: Geometry Classes

21

Overload issue 47 february 2002

The remaining corners of the WOC class model can be
explored by checking out the WOC Class Reference on my
website.

WOC Tutorial One: A Skeleton
Project

To follow along with this tutorial you will need to download the
WOC header and implementation files from my website. I
recommend that you unzip them into a folder named woc and
locate it at the same level as (i.e. a sibling of) the project folders
which use it. This is because the projects look for the WOC files
at the path: ..\woc\ as we’ll see later.

About the tutorial

If you like WOC and find it useful then you may want to use it
more than once - perhaps even lots of times. In that case it’s nice
to have a skeleton or template project to model new WOC projects
on. That’s where the Skeleton Project (WOCSkeleton) comes in.
This tutorial shows you how to integrate the WOC source files into
a Visual C++ project, but you can then save the project and re-use
it as a starting-point for new projects. You can either follow along
with the steps or just download the files of the completed project.
Of course you don’t have to use a skeleton project if you don’t want
to, but you’ll find it more convenient than following these steps
each time you make a new project. For those who are unable to use
Visual C++, or who prefer not to, WOC will build under the GNU
Compiler Collection (gcc/g++). I have more to say about this on
my website.

The steps

Step 1
Launch Visual C++ and use the Win32 Application wizard to

create a new project named WocSkeleton. Locate the project folder
as a sibling of the woc folder containing the WOC header and
implementation files. The steps which follow apply to the ‘Hello
World’ option (on Step 1 of the Win32 Application Wizard), but feel

free to choose one of the others if you’re happy to add the
appropriate files, code and resources on your own to make a
minimal Win32 application.

Step 2
Open the file stdafx.h for editing. There is usually a comment

near the end of the file indicating where to place your own headers:
// TODO: reference additional headers
your program requires here

Even if you don’t have this comment, just find a suitable place
near the end of the file before the close of the include guard and
type this:

#include “woc.h” // directory path set in
project settings.
using namespace woc;

This is an include of the main WOC header file which in turn
includes several other WOC header files. Together these files
contain the declarations of all of WOC’s types, and some complete
definitions. Because I have opted for a using directive, and because
stdafx.h is included by the other source files in the project, all names
in the woc namespace will now be visible in the global namespace
throughout the project without further qualification. If you don’t
like this, you can omit the using directive and explicitly qualify. At
this stage the project doesn’t yet know where to find the woc.h file
- that’s done in step 3. However, you can opt to hard-code the path
to the file here (even a relative path) and skip step 3. It’s up to you.

Step 3
If a project includes a lot of header files from the same folder,

and the name or location of that folder may change, then you
wouldn’t want to have to edit the path in every #include.
Although WOC’s include structure presently obviates the
explicit including of more than one header file, that may not
always be the case. So, if you followed step 2 to the letter then
now you’ll need to let the project know where to look for
additional header files, specifically woc.h. You could make this

Figure 2: Transformation Classes

22

Overload issue 47 february 2002

setting for the whole of Visual C++ by adding a new include file
directory on the Directories tab of the Options dialog
(Tools/Options... menu), but I prefer to make the setting apply
only to the project at hand so that it will easily transfer between
Visual C++ installations. To do this, choose Project/Settings...,
choose Settings For: All Configurations, choose the C/C++ tab,
Category: Preprocessor, and in the Additional include
directories: edit box, type:

..\woc\
This is correct for the case where the woc folder is a sibling

of the new project’s folder. You may choose a different
arrangement but, if you do, then you should edit the above
include directory path to match. Note that the Additional include
directories: edit box may contain more than one path, comma-
separated. There is one more change to make whilst you’re
editing the project settings. Use of the dynamic_cast operator
requires run-time type information which is enabled with the /GR
compiler switch. So, choose Settings For: All Configurations, the
C/C++ tab, Category: C++ Language, and check the Enable Run-
Time Type Information (RTTI) checkbox.

Step 4
The project will now compile, but so that it will also link when

we come to using the WOC classes, you’ll need to add the
implementation file to the project’s Source Files folder on the
FileView tab of the Workspace pane. Right-click the Source Files
folder, choose Add Files to Folder... from the context menu,
navigate to the woc folder and choose the file woc.cpp. Whilst
you’re at the FileView tab you can also add all the WOC header
files (woc.h and all the others you’ll find in the folder) to the
Header Files folder so that all the WOC classes will appear on the
ClassView tab.

Step 5
One final step before the project will link is to reference the static

library files for OpenGL and the Win32 Common Controls. To do
this, choose Project/Settings..., choose Settings For: All
Configurations, choose the Link tab, Category: General, and in the
Object/library modules: edit box, add:

opengl32.lib glu32.lib glaux.lib comctl32.lib

Now the project will build. Just check that it does.

Step 6
At present the project is using no WOC features and, if you run

it, it will behave as it did when it was first generated by the wizard.
Now we need to remove most of the wizard-generated Windows
code and replace it with a small amout of WOC code. Open the file
WocSkeleton.cpp for editing and delete everything from it except
the #include directives and the WinMain function. Next, delete all
the code from the body of the WinMain function and type this in
its place:

// Perform application initialization:

if (!theApp.InitInstance(hInstance,

nCmdShow,

IDC_WOCSKELETON,

IDI_WOCSKELETON,

IDI_SMALL,

NULL,

IDS_APP_TITLE))

{ return FALSE; }

return

theApp.MessageLoop((LPCTSTR)IDC_WOCSKELETON);

You may be wondering about the identifier theApp - where is it
declared? Nowhere as yet, so add the following declaration after
the includes but before WinMain:

// The one and only application object.
CWocApp < CWocFrameWnd < CWocOGLWnd > >

theApp;
The meaning of this code is that we are declaring an identifier

named theApp which is of type CWocApp. This is a class
template whose single template parameter specifies the type of
window to use for the application’s main window (defaults to
CWocFrameWnd). The parameter can be any CWocWnd-
derived class so long as it implements a CreateFrame method as
CWocFrameWnd and CWocOGLWnd do. The CWocFrameWnd
class is another class template whose single parameter specifies
the type of the view window it may be required to use to overlay
the client area of the frame window. The parameter must either
be CWocWnd (the default) or a class derived from it.
Incidentally, the constructor of the frame window object takes a
BOOL parameter, defaulting to TRUE, indicating whether or not
the frame window is required to create a view. If this parameter
is FALSE then the view type is ignored. If we wanted to override
the default of creating a view then we have to wait until the
application object has created the frame window then call
SetCreateView(FALSE) on the frame window at any time,
but most logically in an overriden OnCreate handler.

Step 7
Now you can build and run the sample, so let’s leave further

code editing until the next step whilst we look at some of the
default features of the classes. The code that earlier I directed
you to insert specifies the view of the main frame window to be
an OpenGL rendering context window (CWocOGLWnd). When
you run the sample you’ll see the default behaviour of the
CWocOGLWnd class. Firstly, a default 3-D model is displayed
which is lit and rotating and its normals are shown. How this
happens is that an (overridable) initialiser function in
the OpenGL window class (the member is
CWocOGLWnd::InitialiseGL if you want to take a look
at it) creates a new model object, loads some geometry and face
normals into it and then calls a method on the model to require
it to show its normals. The model then makes some changes to
the OpenGL state to reflect its requirements and, since normals
now exist, the model requests the view class to activate lighting
and GL_LIGHT0. The view class also defaults to rotating the
scene a small amount on a timer which fires every few
milliseconds. The CWocOGLWnd class has two significant
features: a mouse interface to manipulate the view
transformations, and a Properties Dialog.

Mouse manipulation is a mode which you can toggle into and
out of by holding down Ctrl and right-mouse clicking inside the
view. When you’re in mouse manipulating mode the mouse cursor
will disappear and you can manipulate the scene in several ways,
even whilst model animation is taking place, by moving the mouse
with various combinations of the mouse buttons depressed. With
no buttons depressed the view is rotated about the X and Y axes;
the left button causes rotation about the Z axis; the right button
causes zooming in and out; and both mouse buttons depressed
together causes the view to pan.

23

Overload issue 47 february 2002

Getting the OpenGL Window Properties Dialog to display
can be done either programmatically by calling
CWocOGLWnd::PropertiesDialogDoModeless or by the
user double-clicking the right mouse button anywhere inside an
OpenGL Window. For a full explanation of all the controls on the
OpenGL Window Properties Dialog together with the theory behind
them, please see the documentation for the
CWocOGLWndPropertiesDialog class (nested within the
CWocOGLWnd class) in the WOC Class Reference.

Step 8
Now to reactivate the application’s main menu. The project

wizard created an About dialog box resource along with a dialog
procedure and command handler to display the dialog. Earlier we
deleted that code but we still have the dialog resource and, as
you’ll see, it’s very easy to add a handler to your project to handle
the menu commands and to create and display the dialog. First,
in order to control the handling of specific commands, we need
to override the command handling functionality in the default
frame window class CWocFrameWnd. Command handlers exist
in all of WOC’s window classes: standard windows, frame
windows and consequently any window used as a view. This
means that you can either derive your own frame window and add
a command handler to it or do the same with a view window; the
only difference being that frame windows get to handle
commands before their views. In this case, because the purposes
of the menu commands being handled are 1. to close the
application and 2. to display the application’s About box, the most
appropriate place to handle these commands is in the application’s
main frame window. The plan then is to derive a class from the
existing CWocFrameWnd template class and implement the
virtual OnCommand method on the derived class. Type the
following code into WocSkeleton.cpp immediately before
your declaration of theApp:

template < class _TyView = CWocOGLWnd > class

CWocSkeletonFrameWnd :

public CWocFrameWnd < _TyView >

{

public:

CWocSkeletonFrameWnd

(BOOL nCreateView = TRUE) :

CWocFrameWnd < _TyView >(nCreateView){};

virtual ~CWocSkeletonFrameWnd(){};

virtual BOOL

OnMenuOrAcceleratorCommand (UINT nId)

{

switch (nId)

{

case IDM_EXIT :

return theApp.Exit();

case IDM_ABOUT :

{

CWocDialog dlgAbout(IDD_ABOUTBOX,

this);

dlgAbout.DoModal();

break;

}

default:

return CWocFrameWnd < _TyView

>::OnMenuOrAcceleratorCommand(nId);

}

return 0; // indicate that the message

// has been handled.

}

};

So what are the handlers doing? The IDM_EXIT handler is
simply calling a method on your application object to destroy
the main window and thus quit the application. The
IDM_ABOUT handler makes use of the CWocDialog class
which in this case needs no specialisation as it handles IDOK
and IDCANCEL straight out of the box. The arguments passed
to the constructor of CWocDialog are: the dialog’s template
resource ID, and a pointer to the window object which owns the
dialog.

Finally, we have to amend the type of our application object as
its main window is no longer the base frame window class but rather
the class we’ve just defined. So replace your theApp declaration
with this line:

CWocApp < CWocSkeletonFrameWnd < > > theApp;

And that’s it. If you build and run now you’ll find that your menu
works again. The WocSkeleton is referred-to by further tutorials
on my website as they all use it as a starting point. For this reason
I suggest you save your project and put it aside if you’ve been
following along, or just download the WOCSkeleton project files
if you prefer.

And That’s All We Have Time For

I hope this introduction to WOC has been of some interest.
Please visit my website if you wish to follow the remaining
four tutorials and learn how to define your own models in
WOC. There is also a gallery of sample demos built using
WOC at:

www.barkbark.demon.co.uk/graphicssamples

Naturally any feedback regarding WOC, good or bad, is
welcome via email.

Steve White
swhite@barkbark.demon.co.uk

Bibliography

The best introduction to OpenGL is the ‘Red Book’:
Woo, M., J. Neider, and T Davis: OpenGL Programming Guide,
Addison Wesley.

The standard computer graphics canon is:
Foley, J., A. van Dam, et al: Computer Graphics: Principles and
Practice, Addison Wesley.

Aspiring 3-D game programmers are directed to the excellent:
Abrash, M: Graphics Programming Black Book Special Edition,
Coriolis Group Books.

SGI, Silicon Graphics and OpenGL are registered trademarks of
Silicon Graphics, Inc.

24

Overload issue 47 february 2002

What is Boost?
by Björn Karlsson

Welcome to an introduction to Boost, and especially the
community behind the Boost libraries. Although many of the
libraries are amazing, the people that are Boost are the reason for
the rapidly growing interest. For those of you that aren’t yet
Boosters, let me give you some fast facts on Boost:

Boost is a collection of class libraries for C++. The libraries
range from math to threading, built on Standard C++ and highly
portable. Moreover, it is also a community of expert C++
programmers, all contributing by taking part in reviews, submitting
libraries, helping users etceteras.

There are currently 35 Boost libraries, and several of them are
proposed for inclusion in the next C++ Standard. Beyond being an
excellent source of inspiration, top-quality libraries and interesting
discussions, Boost is also a place to learn. C++ Library design,
design patterns and idioms are honed to perfection in the peer-
reviewed Boost community.

The libraries

Although reading through a list of libraries with short descriptions
may seem dull to some, I assure you that it’s worth your time: You
will find at least five libraries that would be very useful to you, no
matter what type of application you’re currently working on.
any

Safe, generic container for single values of different value types,
from Kevlin Henney.

array
STL compliant container wrapper for arrays of constant size,
from Nicolai Josuttis.

bind and mem_fn
Generalized binders for function/object/pointers and member
functions, from Peter Dimov.

call_traits
Defines types for passing parameters, from John Maddock,
Howard Hinnant, et al.

compatibility
Help for non-conforming standard libraries, from Ralf Grosse-
Kunstleve and Jens Maurer.

compose
Functional composition adapters for the STL, from Nicolai
Josuttis.

compressed_pair
Empty member optimization, from John Maddock, Howard
Hinnant, et al.

concept check
Tools for generic programming, from Jeremy Siek.

config
Helps boost library developers adapt to compiler idiosyncrasies;
not intended for library users.

conversion
Numeric, polymorphic, and lexical casts, from Dave Abrahams
and Kevlin Henney.

crc
Cyclic Redundancy Code, from Daryle Walker.

function
Function object wrappers for deferred calls or callbacks, from
Doug Gregor.

functional
Enhanced function object adaptors, from Mark Rodgers.

graph
Generic graph components and algorithms, from Jeremy Siek
and a University of Notre Dame team.

integer
Headers to ease dealing with integral types.

iterator adaptors
Adapt a base type into a standard conforming iterator, and more,
from Dave Abrahams, Jeremy Siek, and John Potter.

math
Several contributions in the domain of mathematics, from
various authors.

math/common_factor
Greatest common divisor and least common multiple, from
Daryle Walker.

math/octonion
Octonions, from Hubert Holin

math/quaterion
Quaterions, from Hubert Holin.

math/special_functions
Mathematical special functions such as atanh, sinc, and sinhc,
from Hubert Holin.

operators
Templates ease arithmetic classes and iterators, from Dave
Abrahams and Jeremy Siek.

pool
Memory pool management, from Steve Cleary.

preprocessor
Preprocessor metaprogramming tools including repetition and
recursion, from Vesa Karvonen.

property map
Concepts defining interfaces which map key objects to value
objects, from Jeremy Siek.

python
Reflects C++ classes and functions into Python, from Dave
Abrahams.

random
A complete system for random number generation, from Jens
Maurer.

rational
A rational number class, from Paul Moore.

regex
Regular expression library, from John Maddock.

smart_ptr
Four smart pointer classes, from Greg Colvin and Beman Dawes.

static_assert
Static assertions (compile time assertions), from John
Maddock.

test
Support for program testing and execution, from Beman Dawes.

thread
Portable C++ multi-threading, from William Kempf.

timer
Event timer, progress timer, and progress display classes, from
Beman Dawes.

tokenizer
Break of a string or other character sequence into a series of
tokens, from John Bandela.

tuple
Ease definition of functions returning multiple values, and more,
from Jaakko Järvi.

25

Overload issue 47 february 2002

type_traits
Templates for fundamental properties of types, from John
Maddock, Steve Cleary, et al.

utility
Class noncopyable plus checked_delete(),
checked_array_delete(), next(), prior() function templates, plus
base-from-member idiom, from Dave Abrahams and others.

Behind the libraries

To understand more about the mysterious powers that summons
so many of the very best C++ programmers, I interviewed three of
the original Boosters; Beman Dawes, David Abrahams and Jens
Maurer. They are important people for the C++ community, and I
want to thank them for taking the time to give us their answers.

Q: What is the essence of Boost’s importance?
Beman: It has created a community of C++ library users and

developers.
Dave: Boost is one of the only communities working on the

process and practice of library design. In today’s professional
software development world, it can be hard to make the case for
long-term investment in reusable components. Developers are
(often rightly) expected to do the simplest thing that could possibly
work, under the assumption that the generalization won’t be needed.
As the problems they need to solve become more complex,
however, they need library components that can help them keep
their solutions simple. The C++ standard library goes some distance
towards filling that role, but programmers will continue to need
more than it provides. What should be the design, documentation,
and coding practices for the libraries that programmers need?
Boost’s emergent collaborative process provides one answer.

Jens: First and foremost, Boost gives examples how C++
libraries should be designed. There are lots of libraries available
elsewhere whose design pre-dates the ISO C++ standard. These
libraries often fail to exploit the potential of compile-time
evaluation (i.e. templates) and thus miss type checking and
optimization opportunities. Furthermore, these libraries are
occasionally difficult to extend or poorly documented.

Second, Boost produces ready-to-use, well-documented, high-
quality libraries from the practice of programming. The license
requirements allow the use of Boost libraries in commercial and
non-commercial projects free of charge, thereby helping them to
produce better programs.

Third, Boost is a test-bed for components that may end up in a
future revised C++ standard. I am proud to be part of a respected
effort with worldwide recognition.

Fourth, Boost attracts some of the best C++ programmers in the
world. Its open discussions and peer-reviews cause every
participant to learn quite a lot.

Q: Which parts of Boost do you consider most important for
inclusion in the Standard?

Jens: The small things: Smart pointers, utility.hpp, “functional”,
probably “any” and “function”

Q: When the next C++ standard is final, what do you think
will happen to Boost?

Beman: The potential for Boost libraries goes way beyond the
C++ Standards effort. Standardization of some of the Boost libraries
may help validate the Boost concept, but just plain user interest is
really important too. As long as users ask for new libraries, and
developers are willing to write them, Boost will grow and prosper.

Dave: Yes, I’m sure it will continue. Boost’s value to the C++

community goes well beyond standardization.
Q: The members of Boost are some of the most talented and

experienced C++ developers around. What is the reason that
all this talent is present in Boost?

Dave: I think most talented programmers - in any language -
love to collaborate and are dying to work with others of similar
caliber. A really good programmer craves thoughtful and careful
review of his code, useful feedback and ideas about design
alternatives. That sort of environment can be hard to find, especially
If you are at the top of your game in your daily work. The process
we’ve established at Boost and the highly professional tone of the
discussion give the best programmers what they crave, and gives
others a path to reaching that level.

Jens: Boost has an open discussion policy. Its peer-review
atmosphere, well established in the scientific community, fosters
learning for every participant. Plus, we’ve had the luck to distribute very
little off-topic e-mail in the mailing list so far, and we as the moderators
try our best so that it will stay that way. Also, Boost library authors and
maintainers are asked to acknowledge contributions, another well-
established behaviour in the scientific and open-source communities.
This gives contributors a permanent record to put pride in.

Q: Why should C++ users start using the Boost libraries?
Dave: I can think of four reasons:
0. Would you rather write it yourself? The Boost libraries are

time-savers and code-savers. You’ll spend less time developing
your application and have less code to maintain if you can re-use
the appropriate Boost library.

1. Quality. Most of the boost libraries have had a more thorough
review by more talented and critical eyes than I’ve ever seen in a
commercial environment.

2. Open Source. If you absolutely need to change the library to
suit your own application, the source is all there.

3. Tests. No boost libraries are accepted without a comprehensive
test suite, and all are tested against a wide variety of platforms and
compilers.

Q: Do you see an upper limit to the number of libraries in
Boost?

Jens: No. We may have to adjust our organization to cope, though.
Q: In what areas do you think Boost will grow in the near

future?
Dave: Several interesting and ambitious libraries seem to be on

the immediate horizon. There is a template metaprogramming
library that brings STL-like algorithms and functional programming
idioms to compile-time computation, we have an effort to develop
next-generation linear algebra and matrix computation, and the
developers of the Spirit parsing framework have expressed an
intention to “Boostify” soon.

Q: How (and to what) do you think that Boost will develop?
Beman: More of the same; more libraries, more interesting

discussions. It all depends on the C++ programmers who are
members of Boost, but there is no sign of interest leveling off. Every
measure we have continues to show strong growth. Quality of new
libraries being submitted seems strong. The future looks bright!

Dave: One of the best things about Boost is the way that the
participants generate its direction, and only when enough people
are sufficiently committed to pull it off. For example, in the past
week a group of dedicated Boosters who straddle the developer/user
line set up a separate mailing list and a Wiki for Boost users. I am
convinced that this couldn’t have happened if the boost moderators
had tried to spearhead the effort.

26

Overload issue 47 february 2002

Q: As Boost grows; do you plan to organize differently?
Dave: As shown by the spontaneous creation of the users list and

Wiki, when Boost begins to grow beyond its capacity, I expect it to
reorganize. We have been discussing different ways to enable better
collaboration as this happens: we want to have the required
knowledge when the time comes, but I think we’ve learned not to
try to plan too far in advance.

Jens: We may have separate moderators for library sub-
collections, e.g. for the maths and numerics libraries. We may have
to split the mailing list further, though there are good arguments
against doing so. Namespaces in C++ and directories in the file
system are hierarchical, so we have all the tools we need to
effectively sub-divide organizationally.

Q: When a library is submitted to Boost, the members decide
whether it should be accepted. Will that still be possible if the
number of members keep increasing?

Jens: I think so. Not all members cast a vote on every submission,
and it is assumed that members casting a vote have had a look at the
library before. Also, the review manager is entitled to disregard votes
that are cast without observing the review guidelines.

Q: Does Boost ever organize meetings or conferences?
Jens: Boost meets every half a year on the Sunday afternoon

before the ISO C++ meeting starts, at the same place than the ISO
C++ meeting.

Q: Boost as an independent organization has become a
“waterhole” for developers from all over the world. Is this a
part of the intent for Boost, or is it just a lucky side effect?

Dave: Definitely a lucky side effect. I guess that’s what happens
when you provide services and code that people want.

Jens: For me, it’s part of the intent.
[Author’s note: Select the answer that you like!]
Q: If companies hesitate to use Boost because it is free, and

therefore don’t offer support agreements etc, what would be
your advice to them?

Beman: If the company doesn’t normally have support
agreements for software libraries of about the same scope as Boost,
they probably don’t need a support agreement for Boost either. If
the company does want a support agreement, they should ask their
usual support contractors for Boost support. I know several folks
at one of the support companies, and they would be perfectly
capable of supporting the Boost libraries.

Dave: Re-use first; rewrite if necessary. In other words, start by
using the boost libraries to achieve short time-to-market with high
quality. If independence from open source is important to your long-
term mission, you can always go back and replace boost
components with internally developed and maintained ones.

Jens: Other open-source projects (e.g. Linux) have shown that
when there’s money being offered, someone shows up offering
support for the project. I’m confident that some of Boost’s members
would take a support contract when one was offered.

Q: Boost adds value to users but also aims to impact the next
C++ standard. Which one is more important?

Dave: So far, making it possible for users to cover more domains
with cross-platform code has been our main focus. Although many
libraries seem to fit the bill for addition to the standard, a few are less
likely candidates. We have also made occasional concessions to
nonconforming compilers and compilers that don’t implement all of
the optimizations one would like, because these things have practical
importance for users. One would not expect to see such concessions
to appear in the C++ standard library, however. As the C++

committee prepares to start considering what the next version of C++
will look like, standardization will likely increase in importance.

Beman: The issues really go hand-in-hand. Well-developed,
widely used libraries benefit both users and the C++ Standard.
Users get the use of the libraries, while the standards committee
gets “existing-practice” to standardize, and that is what standards
committees do best. That leads to a better standard, which in turn
benefits users. The circle is closed.

Jens: I agree, there isn’t a clear separation between these two
aims: The next C++ standard is also aimed at providing added value
to users. For me, adding value to users is the major aim of Boost;
be it directly (and rather short-term) or indirectly by impacting the
next C++ standard. Formal standardization has the advantage of
broad recognition even in non-technical circles, but takes longer to
produce results.

Becoming a Booster

There are two different mailing lists of interest for Boosters – the
Boost and Boost-Users. The Boost-Users list was created only a
few months ago, to accommodate the needs of the many users of
the Boost libraries. The list is dedicated to questions and answers
for Boost library usage. The original Boost list on the other hand
deals with library design, submissions, and reviews etc. The list
is rather high-volume, and very suitable for those interested in
library design in general, or Boost libraries in particular. Many
Boost members subscribe to both lists. There is also the new
Boost Wiki web (not officially maintained by Boost developers),
which is another promising venture for spreading the word and
increasing the discussion about Boost.

Of course, you don’t have to be a member of the mailing lists to
use the Boost libraries, but it is nice to know that there is a strong
commitment to helping users of the libraries. The tone is always
friendly, and the level of expertise is outstanding.

I find it very rewarding to follow the discussions even on
libraries that I’m yet not using, because there is always new things
to learn and new ideas being tossed around.

Literature

Just recently, Jeremy Siek, Lie-Quan Lee and Andrew Lumsdaine
finished “The Boost Graph Library User Guide and Reference
Manual”, a book about the Boost Graph Library. I highly
recommend it! (ISBN 0201729148).

Although there are references to Boost in many books and
articles, there are no books other than the BGL book available. I’m
confident this will change in the near future, as Boost is being
recognized for excellent libraries, strong standards committee
presence and a rapidly growing user base.

Meanwhile, be sure to read the top computer magazines – several
of the Boost libraries and the techniques used in the libraries are
being featured in articles.

Björn Karlsson
Bjorn.Karlsson@readsoft.com

Boost links

Boost website, http://www.boost.org
Boost mailing list, http://groups.yahoo.com/group/boost
Boost-Users mailing list,

http://groups.yahoo.com/group/Boost-Users

Boost Wiki, http://www.crystalclearsoftware.com/
cgi-bin/boost_wiki/wiki.pl

