
Overload issue 52 december 2002

contents

credits & contacts

Editor:

John Merrells,
merrells@acm.org
808 East Dana St,
Mountain View,
CA 94041, U.S.A

Advertising:

Pete Goodliffe, Chris Lowe
ads@accu.org

Membership:

David Hodge,
membership@accu.org
31 Egerton Road
Bexhill-on-Sea, East Sussex
TN39 3HJ, UK

Readers:

Ian Bruntlett
IanBruntlett@accu.org

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Website: http://www.accu.org/

Membership fees and how to join:

Basic (C Vu only): £15
Full (C Vu and Overload): £25
Corporate: £80
Students: half normal rate
ISDF fee (optional) to support Standards

work: £21
There are 6 journals of each type produced

every year.
Join on the web at www.accu.org with a

debit/credit card, T/Polo shirts available.
Want to use cheque and post - email
membership@accu.org for an
application form.

Any questions - just email
membership@accu.org.

From Mechanism to Method - Good Qualifications by Kevlin Henney 7

Implementing the Observer Pattern in C++ - Part 1 by Phil Bass 10

Organising Source Code by Allan Kelly 13

File Format Conversion Using Templates and Type Collections
by Richard Blundell 17

Developing a C++ Unit Testing Framework by John Crickett 21

Letters to the Editor 26

4

Overload issue 52 december 2002

Editorial - On Writing

But, why write?

In The Elements of Style [1], Strunk and White describe the rewards of writing as:

“[The writer] will find it increasingly easy to break through the barriers that separate him from other minds, other hearts – which is, of course,
the purpose of writing, as well as its principle reward.”

Well quite, but people write either because they enjoy it, or because they know that it’s good for them. I’m definitely in the latter
group. Words do not flow from my fingertips in the same way that code does, but I know that I have benefited from improving the
quality of my writing. Strunk and White continue:

“…the act of composition, or creation, disciplines the mind; writing is one way to go about thinking, and the practice and habit of writing
not only drain the mind but supply it, too.”

The distinguishing quality of a senior engineer is their ability to communicate ideas clearly and efficiently. I’ve seen talented
engineers limit their progression, unable to project themselves beyond their immediate workgroup, because they do not take up
opportunities to write or conduct presentations.

Selecting a topic

Selecting a topic can be the hardest part of writing an article. We all have a vast array of thoughts spinning around inside our heads,
but it can be hard to pin down one that we think is interesting enough to present to others.

Don’t judge your ideas too harshly. Something you think of as simplistic and well known will turn out to be multi-faceted and interesting
under further examination.

Don’t try to cover too much. It can be overwhelming to write about the architecture of an entire system, or even a hundred lines of
code. Some of the best Overload articles are those that carefully examine a pattern, an idiom, or even a single phrase or keyword.

People naturally want to write about their successes, but we actually learn more from our failures. Learning to examine and share our
failures is an important developmental milestone for us all, both as individuals and as professionals.

‘Write about what you know’, is the most common advice given to prospective authors. Indeed, draw from your own work experiences.
Base your writing on problems you are trying to solve, and the solutions that could be deployed.

Conversely, I find that ‘write about what you don’t know’ to also be true. A difficulty with writing about what you know, is that the
topic material can be so ingrained in your being that it is no longer at the forefront of your mind. The process of researching and
documenting a new topic can be easier than the introspection required to dredge up the reasoning for the everyday assumptions under
which you operate.

Overall I’d say that the journey is more interesting than the destination. For me, the process of solving a problem is more interesting
than a statement of the solution. For example, when I interview engineers I look for people who know how to go about solving a problem,
rather than people who know the solutions to problems.

Audience

In all writing it is important to consider your audience. This is simple for Overload; your readers are people just like you. I have in
mind professional software engineers who are self-educating but busy people. They are seeking a forum of peers in which to share
their thoughts, learn from others, and discuss ideas.

Planning

Inexperienced writers often skip this important stage. Would we start coding before designing? Perhaps that’s not the best analogy, but
a simple plan can keep an article on track. Without a plan, the tendency is to produce a wayward collection of random paragraphs. The
editing process then retrospectively imposes a plan, which rarely works out well.

Developing

This is the process of collecting the material that will make up your article. I personally have most trouble with this stage. I’m unable
to capture all my thoughts on a topic in a single session. I read background material and build up a sheaf of hand-written notes before
I reach for the keyboard. Jotting down potential sub-topics, key phrases, and supportive material like examples, references, and
quotations helps me a lot.

Avoid starting by writing code. The text is more important than the code. The article should be about the writing the code, not what
the completed code looks like.

Iam sometimes asked how one goes about writing an article for Overload. I usually rattle
off an email with a few random thoughts about getting the text down and editing it into
shape. This editorial is my attempt to properly address the topic.

5

Overload issue 52 december 2002

Organizing your material

Given a plan and a collection of notes you can now develop an outline of the article. The outline pulls together related material,
showing how ideas are grouped and related to each other. This process helps bring balance to the article by ensuring sufficient
coverage for each point.

Rough draft

At this stage it is important for you to adopt a state of mind where getting any text down is more important than getting the perfect
text down. Forget grammar, punctuation, and spelling, just get started. Possible ways to approach a draft are to:
l Start at the beginning – Writing the introduction is a natural place to start and planning the route will ease the journey. I often start

with the introduction, but with the explicit assumption that I’ll throw most of it away in the first revision. This seems to help me get
going.

l Start at the end – Writing the conclusion first makes a clear statement about the destination.
l Start in the middle – Start with the part of the document that you feel most confident about.
l Throw one draft away – Just assuming that the first draft is to be thrown away can help grease the writing wheels. When the draft

is done you may decide it’s good enough not to bother starting from a blank page again.
l Develop alternative drafts – Writing multiple drafts from alternative perspectives can help you to find the best way to approach a

topic.
The difficulty with getting started is psychological; you must be in the right frame of mind to write. Any number of factors can
contribute: time pressure, the location, or distractions. Write where and when you feel comfortable. Schedule time specifically for
writing. Turn down the ringer on the phone. Close your office door (if you are so blessed). Go home. Go to work. Go to the library.
Shut down your email client. Above all just focus on the present and set yourself achievable goals.

My favourite technique is to send myself an email. I feel totally uninhibited writing email messages. I can crank out a paragraph in
about thirty seconds, a paragraph that might take me an hour with a word processor.

Editing the rough draft

Having completed the rough draft it’s best to take a break from writing, so that you can return to the text with a fresh mind. I find a
good night’s sleep works for me, others may prefer a couple of days, or even a week. The rough draft should be edited for substance
rather than language. Don’t waste time fixing up the text for publication, concentrate on which points should remain, and which
should be eliminated.

Now is a good time to think about the length of the article. Overload magazine has no minimum or maximum article length restrictions,
but we usually serialize articles longer than five pages. We rarely receive short submissions, which is unfortunate as they are very useful
when composing an issue.

Revising the first draft

Check the draft against the plan. Has the objective has been achieved? Is the message clear, and has the main point been adequately
addressed?

Test the draft against the outline, revise the organization to group ideas together and put them in the proper order. Balance the main
points of the article so that they get equal attention, making sure that there is enough supporting material for each, not too much, and not
too little. A hard, but important, step is removing content that does not contribute to the main point. For example, Allan Kelly makes
excellent use of sidebars to further develop material that is surplus, yet still supportive to the main point.

Revising the second draft

The second revision of the draft focuses on the text of the article; the paragraphs, sentences, and words.
l Revise paragraphs – Each paragraph should express one point. They should vary in length, typically between 30 and 150 words, not

all long, and not all short. Use short paragraphs for emphasis, and long paragraphs for descriptive or discursive text.
l Revise flow – Ensure that the narrative of the article flows smoothly from paragraph to paragraph.
l Revise sentences and words – Use a variety of sentence constructions. Vary sentence length; short sentences for impact, long sentences

for descriptions. Rely on your inner ear to find sentences that don’t scan well. Rework any that sound awkward, imprecise or wordy.
Spike Milligan said, “Clichés are the handrail of the mind”. Substitute them for fresh, interesting descriptions. Prefer the active voice
to the passive voice.

l Revise for tone – Everyone writes in their own voice, but articles written for Overload should be a mixture of instructive, confident,
explorative, and friendly; you should avoid preachy, arrogant, fancy, or overly academic and formal tones.

l Revise the introduction – Check that it introduces the topic of the article. The introduction can also be used to grab the reader’s
attention, possibly by asking a question, or making a blunt statement.

l Check the conclusion – The conclusion can be used to pull together all the parts of the article, it can rephrase the main argument, or
it can reaffirm the importance of the topic. Above all it should convey a sense of completion.

There are three excellent books that I often refer to during this stage of the writing process. The Elements of Style [1] is a short classic
that I mean to reread more often than I do. Essential English Grammar [2] is a short guide that makes up for my not having paid any
attention to my English teacher. And, Bugs in Writing [3] is an instructional and beautifully presented book written specifically for
engineers who write.

6

Overload issue 52 december 2002

Revising the third draft

The final revision is for overall style, grammar, punctuation, and spelling. Read the text slowly, carefully, and aloud. Let your ear
guide you. If some text doesn’t sound quite right, rework it. You can also ask someone else to read and comment on your draft. Select
a reader who will provide you with constructive and affirmative feedback.

Introduce titles and sub-headings to clearly identify topics. They can also pull the reader into the article as they browse through the
magazine.

Use font effects sparingly; reserve them for emphasis to clarify meaning.

Submission to Overload

Articles should be submitted to the Overload editor after the second or third revision. An editorial board, comprised of the editor and a
number of readers, manages the content of the magazine. The editor distributes the article to readers, who read the article for technical
correctness and relevance. The readers return their comments to the author, who revises the article once again and resubmits the final
draft to the editor. The editor performs the final proof reading before passing the article on to the production editor for inclusion in the
next issue.

You’d write, only…
l You don’t have time – You should regard writing as an investment in yourself. You take time to educate yourself to keep your technical

skills fresh and relevant. Writing is another important skill you should nurture. Try asking for some work time to write an article.
Enlightened management will recognize your increased value to the organization. In order words, writing an article for Overload will
get you a promotion!

l You’re not so good at writing – The hardest part is getting started, but by developing a regular writing habit you will improve with
practice. We’ll help you get through the writing process by discussing topics, approaches and editing drafts.

l People won’t want to read what you write – To publish seems to be calling for attention, inviting others to judge you. But the
Overload audience is friendly and supportive and I’ve only ever received positive comments for my writing in Overload.

l “Bjarne is smarter than me” – Probably, but we publish articles at all levels. An issue full of language extension proposals would
not be fun for any of us.

l You just don’t feel good about this – Writing is much like public speaking, it takes time to gain confidence. Start with a small
audience and build from there. Challenge yourself.

l You mean to, but you can’t get started – Take each stage at a time. It’s hard to sit down at your desk with the goal of writing a book.
A more manageable goal to set is to write a page, or even a single paragraph. As each milestone is achieved you build success upon
success until you reach the greater goal.

l You don’t have anything to say – Trust me, you do.

You have no choice

I hope this editorial has persuaded you that there are real benefits from writing for publication, and that writing an article for Overload
or CVu is something that you can and should strive to do.

John Merrells

References

[1] Strunk and White, The Elements of Style, Allyn and Bacon.
[2] Gucker, Essential English Grammar, Dover.
[3] Lyn Dupré, Bugs in Writing, Addison-Wesley.

Copy Deadline

All articles intended for publication in Overload 53 should be submitted to the editor by January 1st 2003, and for Overload 54 by
February 14th 2003. Note earlier than usual deadline for Overload 54 - this is to allow us to produce the April journals in time
for the conference.

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

From Mechanism to Method
– Good Qualifications

by Kevlin Henney

Introduction

When it is not necessary to change, it is necessary not to change.
Lucius Cary, Viscount Falkland, 1610-1643

Change. In every day life it is seen as something either to
embrace and face or to resist and fear. It is either as good as a rest
or something that leopard spots simply do not do. It is also, when
it comes to matters of state, at the heart of procedural
programming, making it a principle and principal concern for
C++ developers: events cause functions to be executed; objects
are created and destroyed; variables are assigned.

But as a path of control flows through our code not everything
is about change. In places the flow is smooth and unchanging, and
importantly so. It is important that things we regard as constants
remain so, giving rise to the oxymoron constant variable. It is
important that some functions do not change the objects they are
called on or with. It is important that some function results do not
allow subsequent changes.

Change Management

In C++ the responsibility of documenting and enforcing the absence
of change is given to const , and that of communicating
asynchronous and unpredictable change is given to volatile, by
far the lesser of the two qualifiers. In combination, the apparently
oxymoronic const volatile leaves many developers bemused,
but makes some sense when applied to references or pointers that
offer read-only semantics to asynchronously changing values.

Ringing the Changes

A simple dictionary class, which allows you to look up a string
value based on a unique string key, demonstrates common
applications of const with respect to member functions,
references, and pointers:

class dictionary {
public:

bool empty() const;
size_t size() const;
const std::string *lookup(

const std::string &) const;
void insert(const std::string &,

const std::string &);
void erase(const std::string &);
void clear();
...

private:
...
typedef std::map<std::string,

std::string> map;
map content;

};
std::ostream &operator<<(ostream &,

const dictionary &);
std::istream &operator>>(istream &,

dictionary &);
...

With the exception of the lookup function, the function names
and semantics correspond to those in the standard library
[ISO1998]. Being able to read this interface with respect to
mutability helps you determine some of the expected behavior of
the class.

Don’t Change the Spots

In some cases we can allow change behind the scenes with
mutable , supporting discreet change on data members even
under the rule of const. Sometimes referred to as the anti-
const, mutable’s role is to support the occasional discrepancy
between a const -correct class public interface and its
underlying physical implementation. Rather than modify the
interface – and therefore affect the class user – to reflect
optimizations such as caching, mutable allows the interface to
remain stable and implementation details that do not affect the
usage to remain encapsulated.

Let us assume that in using the dictionary class we discover
that there is a good chance that we look up a given key many times
in a row. We could try to optimize this by keeping a cache.
Preservation of the class’s perceived interface and functional
behavior is assisted by mutable:

class dictionary {
...
mutable map::const_iterator last_lookup;

};

const std::string *dictionary::lookup(
const std::string &key) const {

if(last_lookup == content.end() ||
last_lookup->first != key)

last_lookup = content.find(key);
return last_lookup != content.end()

? &last_lookup->second : 0;
}

mutable has helped bridge any discrepancy between physical
and logical const-ness. However, note that this solution is not
appropriate in an environment where dictionary objects are
shared between threads. Between each of these two
implementation options the type perceived by the class user has
remained stable.

Substitutability and Mutability

What is an object’s type? Is it the class from which it is created?
Is it the functions that can be applied to it, whether global or
member? Is it its usage? Is it its capabilities and behavior? Is it
the classification that groups similar objects together? In truth,
type can mean any one of these, depending on the context. You
can see that in some way they are all related – or at least can be –
to one another.

Of Types and Classes

If we restrict the notion of type to be the declared class of an
object and the functions that work on it, we may have a syntactic
notion of type, but we are short of a model of usage – sure I can
write code against it that compiles, but what am I expecting at
runtime? In the dictionary example, we can see how to write code
that compiles, but what result are we expecting from a call to

7

Overload issue 52 december 2002

dictionary::lookup? If we say that a class defines the
expected behavior from the member and global functions that can
be applied its instances, we can equate the syntax and semantics
of the class directly with a notion of type that satisfies most
possible definitions of the word.

What about template type parameters? These are constrained by
syntax usage but not by class. That is, after all, the idea of templates:
They are generic and not locked into specific class hierarchies. In
the STL, the compile-time requirements for syntax usage are
supplemented by operational requirements. For instance, an object
that is CopyConstructible [ISO1998] satisfies a set of requirements
that goes beyond the simple syntax of a copy constructor, so that
std::list<int> is CopyConstructible whereas
std::auto_ptr<int> is not. These syntactic and semantic
requirements together form an equally valid concept of type.

What seems to be common across these notions of type is that a type
names and describes a particular model of usage and external behavior
for an object. In the case of a class, the type name exists explicitly in
the source code, the usage is defined by the functions in its interface
(according to the Interface Principle [Sutter2000]), and the behavior
is described outside of the compiled class interface (comments, unit
tests, external documentation, word of mouth, class author’s head, etc.).
In the case of a template type parameter, the type name is not truly in
the source code, the usage is defined by expression syntax, and the
behavior is again implied and beyond the code.

So, how do const and volatile qualifiers relate to our notion
of type? OK, if we’re being practical: How does the const qualifier
affect our notion of type? When const is applied to an object, whether
directly on a value declaration or indirectly via a pointer or reference,
it changes our view of that object. To be precise, it restricts what we
can do with it. In other words it affects the model of usage, and hence
the type. For instance, a plain int supports assignment operations,
such as =, += , and ++, whereas a const int does not. A
std::string supports modifier functions such as clear and
append, whereas a const std::string supports only query
functions. Therefore, the typical class public interface is really two
interfaces: The interface for const qualified objects and the interface
for non-const qualified objects.

Of Type Hierarchies and
Class Hierarchies

Relating classes together with derivation forms a class hierarchy.
From the perspective of an external user of the class hierarchy –
as opposed to someone implementing or extending it – only
public derivation is of interest. What is the best advice for
forming inheritance relationships? Substitutability or, to be more
precise, the Liskov Substitution Principle (LSP) [Liskov1987]:

A type hierarchy is composed of subtypes and supertypes. The
intuitive idea of a subtype is one whose objects provide all the
behavior of objects of another type (the supertype) plus something
extra. What is wanted here is something like the following
substitution property: If for each object o1 of type S there is an object
o2 of type T such that for all programs P defined in terms of T, the
behavior of P is unchanged when o1 is substituted for o2, then S is
a subtype of T.

In a nutshell, class hierarchy should follow type hierarchy. This
recommendation is more detailed than the more common is-a or is-
a-kind-of recommendation, which creates a taxonomy ensuring that
each derived class is a kind of its base class. LSP is more detailed
because it considers explicitly the behavior of the types involved.

Notice that – without actually having it officially stated – the
implicit conversion in C++ from pointers or references from derived
to base underpins an assumption that LSP is followed. The compiler
knows nothing of the expected semantics of your classes, but it
knows in code that where a base instance is expected a derived
instance can be supplied. You drop LSP at your own risk.

There is another assumption that LSP is a recommendation only
for organizing inheritance between classes in OO systems
[Coplien1992, Sutter2000]. Notice that, if you read the
recommendation carefully, there is no mention of classes. LSP is
about relationships between types. Substitutability as defined
applies not only to class hierarchies, but also to other notions of
type based on models of usage [Henney2000a]: conversions
[Henney2000b], overloading [Henney2000c], templates (so there
is no need for a generic variant of LSP [Sutter2000]), and
mutability.

We can relate mutability directly to const and non-const, and
substitutability to the relationship between them: For a given class,
a non-const object is a subtype of a const object because it may
be used wherever the const version is expected. The non-const
type also supports the interface of the const type. Pointer and
reference conversions work in the way that you would expect: To
go from non-const to const is implicit, whereas to go the other way,
against the grain, requires an explicit conversion, a const_cast.
Compare this to the implicit derived to base conversion with
inheritance, and the explicit static_cast (or safer
dynamic_cast) to go the other way.

Returning to the dictionary class, we can take some artistic
and linguistic license to consider it to be two types with a subtyping
relationship between them:

class const dictionary { // not legal C++
public: // const member functions only

bool empty() const;
size_t size() const;
const std::string *lookup(

const std::string &) const;
...

};
// globals taking const dictionary
// references only
std::ostream &operator<<(ostream &,

const dictionary &);
...

class dictionary : public
const dictionary { // not legal C++

public: // additional non-const
// member functions

void insert(const std::string &,
const std::string &);

void erase(const std::string &);
void clear();
...

};
// additional globals taking non-const
// dictionary references
std::istream &operator>>(istream &,
dictionary &);
...

8

Overload issue 52 december 2002

From this, it is clear that when we see const dictionary in
code we are looking at the as-if type represented by the first
fragment, and when we see plain dictionary in code it is the
second fragment, which builds on the first.

Specialization

Where there are subtypes there i s specia l iza t ion .
Specialization can be with respect to extension, i.e. the
subtype extends the interface of the supertype with more
operations. It can also be with respect to constraints, i.e. the
subtype’s operat ions are more specif ic with respect to
behaviour or result types.

In a class hierarchy classes typically acquire more operations the
further down the hierarchy you descend. The guarantees of behavior
can also become more specific. For example, if a base class function
guarantees that its pointer result is null or non-null, an overridden
version in a derived class can satisfy substitutability by never
returning null. Conversely, if a base class function requires that its
pointer argument must never be null, a derived class version can
legitimately liberalize this to also accommodate null. The
specialization of result also applies to return type: Assuming that
the return type is a class pointer or reference, an overridden function
can redeclare the return type to be a derived class pointer or
reference.

This much is standard in OO: Runtime polymorphism offers us
the method for such specialization, and virtual functions the
mechanism. What of const and non-const? There is no concept
of runtime polymorphism related to mutability. However,
overloading offers us a compile-time variant of overriding: We can
overload with respect to const-ness. In this compile-time view of
polymorphism (the foundation of generic programming in C++)
selection is performed with respect to const-ness for member
functions on their target object and functions in general with respect
to their arguments.

Given two member functions of the same name and similar
signature, differentiated only by const-ness, the const
version will be the only viable option for const access to an
object. For non-const access, both functions are in theory
available, but the compiler will select the more specific version,
i.e. the non-const one. The most common reason for such
overriding is to specialize the return type, e.g. operator[]
on strings should allow scribble access for non-const strings
and read-only access for const strings. In our dictionary
class, a more STL-based approach to lookup demonstrates this
approach:

class dictionary {
public:

typedef map::const_iterator
const_iterator;

typedef map::iterator iterator;
...
const_iterator find(

const string &) const;
iterator find(const string &);
...

};

Viewing this again in terms of const-based type and subtype
gives us the following interfaces:

class const dictionary { // not legal C++
public:

const_iterator find(const string &)
const;

...
};

class dictionary : public const
dictionary { // not legal C++

public:
iterator find(const string &);

// more specialized ‘override’
...

};

Conclusion

In C++, const divides the novice from the experienced: on
one side lies a source of confusion; on the other a means of
clarification. Explicit annotation of modifier from query
functions can benefit a system, and this is a concept that can
be expressed in C++ using type qualifiers. Thus volatile
and const – as well as mutable – are unified under the
heading of change, even if the names are not as well chosen as
they might be.

Qualification relates to the notion of type in terms of usage and
behavior, and with it subtyping and all its accumulated practices
and understanding. One valuable property of subtyping is
substitutability. Although it is often clear from the context, we
sometimes need to clarify what kind of substitutability we are
referring to, i.e. substitutability with respect to what? In the case of
const it is substitutability with respect to change.

Kevlin Henney
kevlin@curbralan.com

References

[Coplien1992] James O Coplien, Advanced C++: Programming
Styles and Idioms, Addison-Wesley, 1992.
[Henney2000a] Kevlin Henney, “From Mechanism to Method:
Substitutability”, C++ Report 12(5), May 2000, also available
from http://www.curbralan.com.
[Henney2000b] Kevlin Henney, “From Mechanism to Method:
Valued Conversions”, C++ Report 12(7), May 2000, also
available from http://www.curbralan.com.
[Henney2000c] Kevlin Henney, “From Mechanism to Method:
Function Follows Form”, C/C++ Users Journal C++ Experts
Forum, November 2000,
http://www.cuj.com/experts/1811/henney.html.
[ISO1998] International Standard: Programming Language -
C++, ISO/IEC 14882:1998(E), 1998.
[Liskov1987] Barbara Liskov, “Data Abstraction and Hierarchy”,
OOPSLA ‘87 Addendum to the Proceedings, October 1987.
[Sutter2000] Herb Sutter, Exceptional C++

9

Overload issue 52 december 2002

This article was originally published on the C/C++ Users
Journal C++ Experts Forum in January 2001 at
http://www.cuj.com/experts/1901/henney.htm

Thanks to Kevlin for allowing us to reprint it.

Implementing the Observer
Pattern in C++ - Part 1
by Phil Bass

Introduction

The Observer design pattern is described in the “Gang of
Four” book [1] as a method of propagating state changes from
a Subject to its Observers. The key feature of the pattern is
that Observers register with the Subject via an abstract
interface. The existence of the registration interface decouples
the Subject from its Observers. This makes the Observer
pattern well suited to a layered architecture in which a lower-
level Subject passes information up to its Observers in the
layer above.

This idea is so important that I have formulated it as a design
principle:

Use the Observer Pattern to pass information
from a lower layer to the layer above.

With this in mind I developed some C++ library components
intended to support this use of the pattern. These components
have been used extensively in my work at Isotek. They served
us well for nearly two years, but recently we began to find
situations in which they failed to deliver the ease-of-use we
expected. The library itself seemed fine, but unexpected
complexities started to arise in classes using the library
components.

In this article I shall describe the Isotek library, illustrate the
situations in which it is awkward to use and begin to explore ways
of tackling its limitations. I hope the library will be of interest as a
partial solution to the problem of implementing the Observer
pattern. A complete solution, however, is left as an exercise for the
reader - because I don’t know what it is!

Library Overview

The Observer support library defines a Subject as any object
that publishes Events. A Subject notifies its Observers of state
changes by generating appropriate Events. A Subject may
publish all state changes through a single Event, or provide
separate Events for different sorts of state change. For
example, a Button might publish a single Event that signals
both button-pressed and button-released state changes, or it
might provide both a button-pressed Event and a button-
released Event.

An Observer registers with a Subject by attaching a suitable
function (or function object) to an Event, and unregisters by
detaching the function. The library supports functions taking one
argument or none. In principle it could be extended to use functions
with more arguments but, so far, we have not felt the need.

Conceptually, an Event is a container of polymorphic functions.
Any function (or function object) that can be called with an
argument of a particular type can be inserted into this container. So,
for example, the following callback functions can all be inserted
into an Event that generates an int value:

void f(int); // natural signature
int g(int); // different return type
void h(long); // implicit argument

// conversion

Here is some sample code showing the use of the Event<>
template:

#include <iostream>
#include “Event.hpp”
using namespace std;

// A simple Subject.
struct Button {

enum State { released, pressed };

Button() : state(released) {}
void press() {

stateChanged.notify(state=pressed);
}
void release() {

stateChanged.notify(state=released);
}

State state;
Event<State> stateChanged;

};

ostream& operator<<(ostream& os,
const Button::State& state) {

return os << (state == Button::pressed
? "down" : "up");

}

// A callback function.
void output(Button::State state) {

cout << "New state = "
<< state
<< endl;

}

// A sample program
int main() {

Button button;

cout << "Initial state = "
<< button.state << endl;

button.stateChanged.attach(output);

button.press();
button.release();

return 0;
}

The Button class is a Subject. It publishes a single state-
changed Event. When the Button::press() function is
called the button goes into the Button::pressed state and it
publishes the state change by calling Event<>::notify() .
Similarly, calling Button::release() causes another
change of state and this, too, is published by calling
Event<>::notify.

In this simple example a global function is attached to the
button’s state changed event. There are no Observer objects.

10

Overload issue 52 december 2002

The Event<> Template Declaration

A slightly simplified version of the Event<> class template in
the library is shown below.

template<typename Arg>
class Event {
public:

// Iterator type definition.
typedef ... iterator;

// Destroy an Event.
~Event();

// Attach a simple function to an
// Event.
template<typename Function>
iterator attach(Function);

// Attach a member function to an
// Event.
template<class Pointer,

typename Member>
iterator attach(Pointer, Member);

// Detach a function from an Event.
void detach(iterator);

// Notify Observers that an Event
// has occurred.
void notify(Arg) const;

private:
...

};

The template takes a single type argument and the notify()
function takes an argument of this type. Although not shown
here, the library provides a specialisation for Event<void> in
which the notify() function takes no argument.

There are two member template attach() functions. The first
accepts a simple function; the second takes a pointer to an object
and a pointer to a member function of that object. Both attach()
function templates create a callback function object (stored on the
heap) and insert a pointer to the callback into an internal list. This
makes it possible to attach a non-member function, static member
function, function object or member function to the Event<>. The
only restriction is that the function takes an argument convertible
to the Arg type of the Event.

The detach() function destroys the callback object specified
by the iterator argument and removes the callback pointer from the
list.

The notify() function simply iterates through the internal
callback list calling each in turn, passing the parameter value (if
any).

Finally, the destructor destroys any callback objects that are still
attached.

The Event<> Template Definition

The Event implementation uses the External Polymorphism
design pattern. The Event<> classes store a list of pointers to a

function object base class and the attach() functions create
callback objects of derived classes. The callbacks contain
function pointers or function objects provided by the client code.
The client-supplied objects need have no particular relationship
to each other. In particular, there is no requirement for the client
object types to be classes or to derive from a common base class.
The callback classes perform the role of an Adapter (see [1]), in
effect, adding run-time polymorphism to the client’s function
types.

The implementation described here is slightly simpler than the
one in the Isotek library, but it does illustrate all the essential
features of the library implementation. Note that the “std::”
prefix has been omitted here to save space.

// Event class template
template<typename Arg>
class Event {

// Function object base class.
struct AbstractFunction;

// Concrete function object classes.
template<typename Function>

class Callback;

public:
// Iterator type definition.
typedef list<

AbstractFunction*>::iterator
iterator;

...

private:
// List of function objects.
list<AbstractFunction*> callback;

};

The library uses the standard list class, which ensures that
iterators are not invalidated by insertions/deletions and callback
functions can be removed efficiently in any order. Both
considerations are important for Subjects that can make no
assumptions about their Observers.
AbstractFunction is a simple abstract base class with a

pure virtual function call operator. The Callback classes are
concrete classes derived from AbstractFunction. They store
a function (as a pointer or function object) and implement the virtual
function call operator by calling the stored the function. The same
basic mechanism is used in Andrei Alexandrescu’s generic
functions [2]. The Callback template, however, is less
sophisticated.

// The function object classes

// Abstract Function.
template<typename Arg>
struct Event<Arg>::AbstractFunction {

virtual ~AbstractFunction() {}
virtual void operator()(Arg) = 0;

};

11

Overload issue 52 december 2002

// Callback class template.
template<typename Arg>
template<typename Function>
class Event<Arg>::Callback

: public AbstractFunction {
public:

explicit Callback(Function fn)
: function(fn) {}

virtual void operator()(Arg arg) {
function(arg);

}

private:
Function function;

};

The attach() functions create a callback on the heap and
insert a pointer to its base class into the list of function objects. In
principle, only the single-argument attach() function is
required; the two-argument version is provided for convenience.
In practice, the client code attaches a member function much
more frequently than a simple function, so there is considerable
value in the convenience function.

// The attach() functions

// Attach a simple function to an Event.
template<typename Arg>
template<typename Fn>
Event<Arg>::iterator

Event<Arg>::attach(Fn fn) {
return callback.insert(callback.end(),

new Callback<Fn>(fn));
}

// Attach a member function to an Event.
template<typename Arg>
template<class P, typename M>
Event<Arg>::iterator

Event<Arg>::attach(P pointer,
M member) {

return attach(
bind1st(mem_fun(member),pointer));

}

The detach() function destroys the callback and erases its
pointer from the list.

// Detach a callback from an Event.
template<typename Arg>
void Event<Arg>::detach(

iterator connection) {
delete(*connection);
callback.erase(connection);

}

Notifying observers is simply a case of calling each callback in the
list with the supplied parameter (if any). The code in the library and
presented here uses std::for_each() to iterate through the

list. The function object required as the third parameter of
for_each() is built from the AbstractFunction’s function
call operator using std::mem_fun() and std::bind2nd().

// Notify Observers that an Event has
// occurred.
template<typename Arg>
void Event<Arg>::notify(Arg arg) const {

typedef AbstractFunction Base;

for_each(callback.begin(),
callback.end(), bind2nd(mem_fun(

&Base::operator()),arg));
}

The final part of the Event<> template definition is its
destructor. It just iterates through the callback list destroying any
callbacks that remain. Again, the code uses for_each() and a
simple function object is defined for use as its third parameter.

// Delete function object.
struct delete_object {

template<typename Pointer>
void operator()(Pointer pointer) {

delete pointer;
}

};
// Destroy an Event.
template<typename Arg>
Event<Arg>::~Event() {

for_each(callback.begin(),
callback.end(), delete_object());

}

So Far So Good, But...

When I first wrote the Event<> template I was aware that copying
an Event could cause problems. Each Event contains a list of
pointers that implicitly own the callback they point to. Copying this
list produces two pointers for each callback, one in the original list
and one in the copy. Destroying one of the lists destroys all the
callbacks. Destroying the second list leads to disaster when the code
attempts to destroy each of the callbacks again.

At the time, it wasn’t clear to me how this situation should be
handled. Should the copying of Events be prohibited or should more
appropriate copy semantics be defined? In the end I left the issue
un-addressed on the assumption that any problems would quickly
surface and the hope that specific cases would throw more light on
it. It seems I was wrong on both counts!

The real problems only surfaced when we wanted to store objects
containing Events in standard containers. I shall describe that
scenario in part 2.

Phil Bass

References

[1] Gamma, Helm, Johnson and Vlissides, Design Patterns,
Elements of Reusable Object-Oriented Software, Addison-
Wesley, ISBN 0-201-63361-2.
[2] Andrei Alexandrescu, Modern C++ Design, Addison-Wesley,
ISBN 0-201-70431-5.

12

Overload issue 52 december 2002

13

Overload issue 52 december 2002

Organising Source Code
by Allan Kelly

We’ve all seen it, one directory containing lots and lots of files.
Where to start? Where is main? How do they fit together? This
is the classic Topsy system, someone ran the wizard once and just
kept on adding more and more files.

While it is simple to put all our files in one place we are missing
an opportunity to communicate information about the system. The
original designer may know these five files form a discrete group,
and another six over there form another module but this isn’t
obvious, that information has been lost, recovering it takes time.

Consequently our understanding slows, and changes to the system
are delayed – the software is resisting change. We need to split the
system into comprehensible, logical, cohesive modules; we can then
use the directory tree structure to convey the system structure.

Dividing our system across several directories has other
advantages. It becomes easier for multiple developers to work on
the system at the same time, and it becomes easier to transfer
modules between multiple projects.

The directory structure of a project is closely linked with the source
code control system employed – one mirrors the other. We cannot
consider the layout of files without talking about the source code
control too – once we commit files to source code control it becomes
more difficult to move them to other directories or rename them.

Libraries, files, and directories represent the most physical
manifestation of source code short of a printout. Consequently they
form a key part of our overall strategy. Neglecting these aspects
leads to blob-like software that lacks cohesion.

Splitting the system into modules

Many programming courses start by teaching their students the need
to divide systems into modules. Modularization has moved beyond
buzz-word status, we take for granted that it is a good thing and all
systems should exhibit it. Some of the benefits cited usually include:
l Comprehensibility: while modularization helps us understand

smaller elements of a system we need to be able to integrate this
knowledge. Integrative knowledge is more difficult to express.

l Division of labour: if is easier for multiple developers to work on
a modularised system then a monolithic one. We also get
specialisation of labour where experts in one aspect of the system
can work on one module, and other experts on other modules.

l Modularization should help focus our minds on cohesion,
coupling, dependencies, division of tasks and such, this should
all make the system easier to change.

Reuse is often cited as another advantage of modularization,
given the current debate on reuse I won’t cite it as an automatic
benefit. However, if we wish to share elements between projects
then there must be some division of the source code.

But what are our modules? Module and modularization are such
overloaded words we’re never really sure what they mean.
Component has similar problems.

Individual files can be a module, but that is too fine grained for
most purposes. And if a module is a file why use the word module?
And what difference does it make?

One of our usual objectives in defining modules is that we wish
to practice information hiding. It seems to me that the correct level
to define our modules is the level at which we can actively hide
some information, that is, hide some implementation.

Once our C or C++ code is compiled to object code we can hide
the implementation since we only need distribute the header files

and the object file. Still, the object file has a one-to-one relationship
with the source file so we’re not hiding much.

We need a bigger unit to hide in. When we bundle many object
files together we get a static library. This is more promising. Our
code can interface to the library by including one or more header
files and we shouldn’t need to care whether the library is made up
of one file, two files, or 25.

Static libraries are simple to create and use. Once compilation
and linking are complete then static libraries present no additional
overheads or requirements, we can have as many of them as we
want at no additional run-time cost. Hence, they are well suited to
be building blocks when decomposing a system into discrete
chunks.

Dynamic link libraries are more complicated, by no means are
they simply “static libraries which have been linked differently.” We
must consider run-time issues, where are the libraries found? How
do we find them? Do we have the right version? Dynamic libraries
have their place but they should not be the basic building block.

When we create a static library we want to hide a secret inside
the library. The secret is implementation detail. We want the library
to represent an idea, and we want to hide the realisation of the idea
from the rest of the system. To this end, the library needs to be
highly cohesive, that is, it needs to express its ideas fully but no
more than need be, it should not have lots of bells-and-whistles.
The library also needs to pay attention to what it depends on, how
connected it is to other modules in the system, that is, we want to
minimise coupling.

We can’t reason about the cohesion and coupling of every file,
class and function in a system, that would take forever. While
individual developers may consider these forces within the library
module at a system level we would be overwhelmed by such details.

Static library modules represent the basic ideas from which a
system is built. Since each one contains a complete idea we should
expect to have many static libraries in our system. Many is good,
it shows that your ideas are discrete and can be expressed
individually.

Although you can cram more than one idea into a library you
usually know when you are doing so. It is pretty obvious when the
library is called “Logging” and you are putting database update
functions in that something is wrong.

It is also possible to fracture an idea and split it across multiple
libraries, but again it is pretty obvious. You quickly notice that
library “Logging” always requires library “LogMessage” and
something isn’t quite right here.

Good systems are decomposed into many distinct static libraries
– we should prepare for and encourage this. On top of the libraries
we will find at least one application which results in an executable
program. It may only comprise one file, a main.cpp, with the bulk
of the code farmed out to static libraries.

You may well find that your project produces several
applications, when this happens you can benefit from good
modularization. There is no need for each application to provide
its own logging system, you use the logging library.

Is this reuse? Well, that depends on your definition of reuse. I
would argue that you are producing a family of programs with
common characteristics for which you use common code. In time
you may transfer some of this code to other projects.

How do we encourage modularization? Well, we start by providing
a structure into which we can modularize our project. Since we will
be writing files, we need a directory tree to place them in.

14

Overload issue 52 december 2002

The Directory Tree

In the early days of a project we may like to work light,
especially if there is just one developer on the project. But very
quickly a project crosses a line, usually when a second developer
starts work, or you decide that you could pull in code from a
previous project. Once you’ve crossed this line you need to
structure the work area of the project, that is, the directory layout.

Obviously we want a logical directory structure but we also want
one we can add to. We need to be able to create sub-directories for
new modules, and we don’t want to get overwhelmed by directories.
It is better to have many small modules, in many directories, than
several “catch all” modules in a few directories. Above all, we need
to give ourselves space.

We want to use the directory tree to partition the system into
recognisable chunks: all the database files in one directory, all the
logging files in another, and so on. When someone comes new to
the system each chunk is clearly defined. Of course, they still have
to understand the insides of each chunk, and how they fit together
but you are not faced with one overwhelming mass of files.

The directory structure we use should map directly into the
structure used in our source code control system. The two are
closely intertwined, and although I’ve tried to separate the rationale
for each I can’t, there is one hierarchy and it should apply in the
directory tree and in the source code control tree.

Some control systems allow us to break this link and check files
out to different locations. On occasions this can be useful but if
you find you need to do this regularly you should consider why.
Your structure is lacking something. Even with the best intentions
breaking the link becomes troublesome, in the long run it is better
to come up with a solution which does not break the link between
directory hierarchy and source code hierarchy.

Where is the root?

All trees need to be rooted somewhere and software trees are no
different. If we always refer to our directories by relative paths we
need not care where they are rooted. However, experience shows
that this eventually breaks down, at sometime we need to refer to the
absolute location of files. It is a lot easier to reason about a path like

/home/allan/develop/lib/include/logging than to
reason about ../../../include/logging – try shouting the
latter across the room.

In the Unix world there is only one ultimate root, /, but we all have
local roots, e.g. /home/allan. Usually our trees are rooted in our
home directory but not always. Typically we set an environment
variable to the point where our tree is rooted and append from there,
so we get PROJECT_ROOT=/home/allan/develop, and
$PROJECT_ROOT/lib/include/logging.

(I was confused for far too long over Unix environment
variables, sometimes they just wouldn’t work for me. What I was
failing to appreciate is that there are two types: shell variables, and
exported variables.)

In the one-root-per-disc world of Microsoft things are a little
more complex. Traditionally I would use the subst command to
create a virtual drive on my machine, this I could point wherever I
liked – it is worth putting this command in a start up script.

subst w: d:\develop
Thus, each developer can have their directory tree where they
like, their C: drive, or D:, at the root, or within another tree.

More recently I’ve moved over to the Unix way of doing things
even in the Microsoft world. As it happens .dsp project files are
happy to pick up environment variables so you can use the same
technique as in Unix.

Unfortunately, Microsoft has made environment variables a lot
more hassle under Windows than Unix. Unix is simple: set them
in your shell .rc file and change them at the command line. The .rc
file can be copied, e-mailed and edited easily. Under Windows, you
need to go fiddling in the control panel, and the location seems to
move slightly with each version of Windows.

This may seem like a lot of unnecessary work but it pays for
itself if you ever need to maintain two different development trees
on the same machine, say a maintenance version 2.1.x and the new
development 3.0.

The External Tree

It is it increasingly unusual to find a system that doesn’t use any
third party code or libraries. Whether these are commercial

Source Code Control
The fact that the directory structure outlined above maps well to
a source code control system is no accident. Which came first?
The two are closely intertwined, I’ve tried to separate the
rationale between the two before – and failed, the two are the
same.

Some source code control systems, for example, Visual Source
Safe, allow you to put your source files in a check-out directory
which is different to the source control directory. For each Source
Safe repository folder containing source files, there is a working
directory, but you are free to have a working directory hierarchy
that is completely different to the folders directory. This doesn’t
work, there are not two hierarchies, there is one, why should the
hierarchy under control be different to the one on your hard disk?

Normally, left to our own devices we usually keep the two
hierarchies in synch. On occasions though we face pressures that
may lead us to break the link. This frequently happens when it is
necessary to share files between two groups. Even with the best
intentions this becomes troublesome, in the long run it is better to
come up with a solution that does not break the link between
directory hierarchy and source code hierarchy.

Putting code in a source code control system does remove some
flexibility. I’ve yet to find a system which is good at renaming and
moving files. Suppose we have a static library Toys.lib, and
suppose we decide to make it an optional DLL, Toys.dll, so we
need to change its position in the tree. Most of the files can be used
“as is” but it is surprisingly difficult to move them, we may end up
adding them as completely new files and losing their history.

In fact, this opens up a more perplexing question: just how
should we treat those files? Sometimes we may be happy to treat
them as new, erase the long history that is getting in the way,
sometimes we may want to explicitly state the relationship.

The problem can be particularly bad when a file changes over time,
quite legitimately the code comes to represent something which isn’t
reflected in the name. Should we change the name? The current name
may be confusing but to change it would lose its history.

Worse still is what happens when we delete files. We want them
gone for good reason, but they must exist somehow so we can
reference what happened.

I can’t provide fixed answers for these questions. Each case is
different, influenced by your source control system, your
environment and your team’s attitude.

15

Overload issue 52 december 2002

libraries like RogueWave, Open Source projects like Xerces or
future standards like Boost we are increasingly dependent on
code we have not created.

It is important to differentiate between in-house code, which we
have created and own the rights to, and code which is external to
our organisation. The development cycle for these two sources of
code is very different. Our own code is changing according to a
cycle which we dictate, the third party code changes whether we
want it to or not, of course, we decide if and when we accept these
changes so in the meantime the code is static.

Once we’ve decided on our root, and how we refer to it, we need to
split our directory tree to show what is ours and what is not. Typically
this means we create an External directory tree which contains third
party code, e.g. /home/allan/develop/external, while our
own code goes in a separate tree such as
/home/allan/develop/ProjectFire. (Sometimes the
External tree is called “third party” tree, but this gets confused, is it:
3rdParty, or ThirdParty, or 3Party, where are the capitals?)

Sometimes we find one external tree can be used for several
projects. This may mean we have multiple versions of the same
product in the tree, say Xerces 1.6 and Xerces 1.7. We have two
solutions here: one is to include everything in one external tree and
reference what we need, the second is multiple external trees, we
may have /home/allan/develop/external/v2.1 and
/home/allan/develop/external/v3.0. Which way you
jump depends on your project requirements.

It is not normally a good idea to try and delta one version of an
external product on top of a previous version. The complications
of new files, removed files and renamed files usually make this a
lot of effort for little reward. It is simpler to just allow multiple
versions in the tree.

On my current project I have environment variables for almost
everything, so I have one external tree and within that I can point
XERCES_ROOT to the version of Xerces I need.

The other half of the development tree is your own source code.
You’ll probably find this is dwarfed by the third party code, I normally
find that even on my biggest projects a Zip file of our code will happily
fit on a floppy disc but the third party stuff needs its own CD.

Of course, life isn’t quite this straightforward, you may well have
code from elsewhere in your organisation, perhaps this is supplied
by the infrastructure team, or the client application group or the
New York office. Sometime you’ll want to share the tree with them,
sometimes you’ll want to treat them as external code, or maybe you
split your tree three ways: external, enterprise and team. It depends
on how much you need to isolate yourself from these developers.

Align libraries with namespaces

If you’re following my guidelines from above the chances are
you’ve got at least one executable application, several DLLs and
lots of static libraries. Each application, DLL and library needs
its own space – that is: its own directory. Only by giving them
their own directories can you explicitly spell out what belongs
where.

Where static libraries are concerned you need to split the files
into two directories. Most, of the code in a static library is contained
in .cpp files (or .c, or .cxx or whatever.) This is implementation
detail. You want to put this out of the way – out of sight, out of
mind. However, the interface to the library is going to be expose
in a set of .h files, these need to be put somewhere publicly visible,
somewhere obvious, somewhere well known.

Traditionally we do this by creating a lib subdirectory, inside this
we would have:

/lib
/include
/Logging
/AccessControl

(Although most OS’s now allow you to have spaces in directory
and filenames they are still best avoided, they complicate
matters.)

In our lib/Logging directory we would put all files
implementing our logging system, the files exposing the public
interface would be put in the lib/include directory where we
can all find them. Similarly, lib/AccessControl contains
the implementation for our access system, and the public interface
files are also put in lib/include.

Using one include directory we quickly fill it with a lot of
disparate files which adds nothing to our structural information. We
could leave them with the implementation files – but now we can’t
tell what is a private, implementation only header file, and what is
a public interface file.

Alternatively, we could put them all in separate directories but
this could mean we end up with lots and lots of –I options on the
link line, imaging:

gcc –I $PROJECT_ROOT/libs/include/Logging

-I $PROJECT_ROOT/libs/include/AccessControl

....

Well who cares what it looks like? Does it really matter? No,
but, each time you add a new library you need to change your
makefile to specify the new include directory.

A better solution is to specify one root include directory, and within
our code specify the actual library we’re interested in, hence we get

gcc -I $PROJECT_ROOT/libs/include

and
// main.cpp

#include "Logging/LogManager.hpp"
#include "AccessControl/AccessOptions.hpp"

The real power of this comes when we align with namespaces. So,
each library has its own namespace and the namespace corresponds
to the sub-directory. Continuing the above example we get:

...

int main(int argc, char* argv[]) {

Logging::Logger log;

AccessControl::User user(argv[1]);

...

}

Looking back to the source tree, we should also think about
balancing it is little bit, it now seems a little lop-sided, so we get:

/lib
/include

/AccessControl
/Logging
/Utils

/source
/AccessControl
/Logging
/Utils

The extra level of directories may seem surplus but actually helps
space the project quite well. When you put this altogether you get
a very powerful technique for managing your files and module
structure, it really pays off.

16

Overload issue 52 december 2002

A couple of points to note however: firstly, not all header files
will go in the /include directories. Some don’t represent an
interface to the library, they are not intended for public use so they
should only exist in the /source directories. It is good to make
a clear distinction between what is available to the general public
and what is considered local implementation detail.

Second, I’ve taken to prefixing my header guards with the
namespace name as well, so:

#ifndef ACCESSMGR_HPP
becomes:

#ifndef ACCESSCONTROL_ACCESSMGR_HPP
Once you’re free of thinking up completely unique filenames you
quickly find several Factory.hpp files appearing, it doesn’t
really matter because one will be Logging/Factory and one
will be AccessControl/Factory . However, some
debuggers (OK, I’m thinking of one from Redmond) can have
problems telling the files apart.

If you already think of namespaces as program modules this
technique may be obvious, if you’re still thinking of namespaces
as a convenient way to avoid name clashes then you haven’t realised
their full potential yet. A namespace is a C++ language module; a
static library is the natural corollary.

Lastly, and fairly obviously, this doesn’t quite apply to template
files where the implementation must be exposed in the same file as
the interface. I’ll still tend to stick with my solution and place them
in the lib/include/xxx directory because nowhere else really
makes sense. Hopefully, in time, the C++ compiler vendors will
resolve this problem, but in the meantime systems where the
majority of the code is templates are fairly rare.

DLLs

DLLs should be treated just like static libraries, that is, I give
them a DLL directory and split this into source and includes.
DLLs are different from static libraries, the linkage rules are
different, they are used for different reasons – some people
regard use of one over the other as fairly arbitrary but with
experience you come to see them as two very different beasts.

One of my personal rules is to avoid subtlety in design. Let’s
call it Kelly’s Law of Software Subtlety:

Subtlety is bad
If it is different make it obvious - Write it BIG

Since DLLs are different to libraries put them somewhere else.
As your system grows you can easily find you have 10 or more

static libraries to manage and perhaps another 3 or 4 DLLs. If we
separate out DLLs, we give ourselves more space. There is a
natural difference here so use it.

We need to add another –I to our compile line, but it is just one
more, the same namespace alignment scheme can be used for DLLs
provided you don’t need to specify C linkage for any of your
functions.

Applications

Even if your objective is to produce just one final application,
say, server.exe, the chances are you will end up with more
than one executable, even if all but one are trivial. Executables
are the top of the food chain when it comes to source code so it
pays to put them there - straight off the project root.

If however, your project is going to produce many applications
you may want to avoid littering the project root with lots of

directories. In this case create a project_root/app directory
and create a sub-directory for each on there.

There is no need to split header files from source files because
the application does not expose its internals like this. If you find
you need to access application files, and you see things like
#include "../otherapp/widget.hpp" appearing in
your code it is an indication that there is some shared functionality
that belongs in a library where it is readily accessible to all. The
directory tree is highlighting a refactoring needed in your system.

On some projects you may find that one or more applications are
large enough to warrant being broken into libraries by themselves.
If so then don’t hesitate, go for it!

Each one becomes a mini-project in its own right, apply the tree
design I’ve just outlined to each application. You’ll probably find
some common libraries shared between them all, they stay where
they are, but for a large application it should have its own library
structure. This is just recursion, apply the pattern over again taking
the application’s directory as your new root.

Putting it together

You’ll probably find that you have other stuff which needs to be
in the tree, makefiles, documentation and such. Where these
belong to a component, say documentation for your logging
library, then place the documents same directory as the library.
Where they are common, say system documentation, place them
in a docs directory from the root – if necessary divide it.

In the case of makefiles you’ll find that some are common and
need to be placed in a well known place in the tree, but most are
specific to individual elements – indeed each library, dll,
application, should have its own.

Your source tree should now be looking something like this:
$project_root

/apps
/repairtool
/server
/testtool

/dlls
/include

/BlueWidgets
/RedWidgets

/source
/BlueWidgets
/RedWidget

/docs
/libs

/include
/AccessControl
/Logging
/Utils

/source
/AccessControl
/Logging
/Utils

/make
At first sight this may seem a bit excessive, but the important
point is it gives you space, it gives you organisation, you are free
to do what you like in any sub-directory and it won’t interfere
with another. This model will scale, we are building in depth for
extendibility.

[concluded at foot of next page]

17

Overload issue 52 december 2002

External tree and source control

Nor do I have a good answer for the question “Do we check in
the external tree?” There are three possible answers here:
1 Check nothing in: the code has come from elsewhere, you can

always get it again, download it, install from CD. Maybe you want
to burn some CDs with downloads on so you can always get old
versions. Of course, what happens when you fix a bug in external
code? I once found a fault in the ACE library, I devised a fix and
contributed it back but it was several months before a version of
ACE was released with my fix. In the meantime we checked-in my
fix to our ACE copy in CVS and carried on working.

2 Check in source code: if you have the source code you can
recreate the binaries, this will save people having to locate
several dozen different resources. And it helps when you make
a change to external code. However, each developer needs their
own copies of the binaries - access over a network to a common
store can substantially slow compile time - but it can be quite
time consuming to build lots of third party libraries.

3 Check in source and binaries: source control systems aren’t really
built for binaries and they rapidly bloat when you check in
everything, and if we do then developers need even bigger hard
discs to get trees containing lots of stuff they don’t actually want.

Nor does the external tree contain all the third party products in
your system. Do you check in your compiler? Perl? Your OS?

Source control is not confined to your source code control
system, it should encompass all the elements needed by your
system: compilers, OS, patches, etc, etc. It is unrealistic to put
everything under source control so you need to look elsewhere.

The best solution I know to this dilemma is:
1 Only check in source code, this means you can tinker with Boost,

ACE, or whatever as you need to.

2 Build the binaries under clean conditions – as you would your own
source but place it somewhere generally available, say a Samba
drive. This is a kind of cache and ensures that everyone is using
the same thing and saves everyone rebuilding it. Some people
may care to place some of this stuff on their local hard disc.

3 Burn CD copies of all third party product used to build your
system, be they libraries, compilers or whatever, and put them
in a safe, well known location.

The objective is: to be able to take a new machine and only use
what is in the cupboard and source code control be able to build
your entire system.

Conclusion

Our directory structure affects our source code. At the simplest
level this is shown in our makefiles, makefiles are the glue that
links the two, makefiles explain how to integrate the system.
Directory trees always have an effect on code, rather than hide
this detail we should use it to our advantage. The directory tree
can encode important details about the system structure and
organisation, and its extension points.

Much comes down to your work environment, your schedule,
your team, but these issues are important. The ideas I’ve laid out
come up again and again, each team will have slightly different
needs but all solutions exhibit a general similarity.

Above all you need to actively organise your source code,
external tools and resources. These things don’t just happen. This
organisation is an integral part of your software development
strategy and helps communication.

Allan Kelly
Allan.Kelly@bigfoot.com

File Format Conversion
Using Templates and Type
Collections
by Richard Blundell

A recent project involved upgrading some files from an old format to
a new one (and possibly back again), as a result of changes to the
data types being stored. Several possible implementations were
considered. The final solution made use of template methods, and
type-collection classes, and supported forward and backward file
format conversion with no code duplication and minimal overhead.

Requirements

Many years ago, one of our projects was converted from a 16-bit
application running on Windows 3.11 to a 32-bit one running on
Win32. Most of the code was ported at the time, but some changes
were not made because they would have required a change to the
file formats. 16-bit identifier values were being stored in a file.
Changing the file format was seen as too much of an upheaval
(especially at a time when so many other changes were being
made). And besides, 16-bits should be enough for anyone...

Time passed. Suddenly, 16-bits were no longer enough
everyone. The file format needed to be upgraded. Discussions were
had, and the following requirements emerged:
1 The old version of the software would not be required to read

the new file format (i.e. no forwards compatibility – see [2]).

2 The new version of the software was required to use the new format
(obviously) but only had to recognise the old format, and prompt
the user to upgrade (i.e. limited backwards compatibility – see [2]).

3 An upgrade utility would convert from the old format to the
new format. A ‘downgrade’ facility would be a ‘nice-to-have’
(just in case users were running both software versions on site
and upgraded the wrong site by mistake) but was not a
necessity.

4 The interfaces of the data classes should be changed as little as
possible.

5 Any solution should support future changes (we don’t want to
have to re-implement everything when it comes to 64-bits).

Initial suggestions

Support for the new format in the software, and for both formats
in the upgrade utility, required old and new versions of the
persistence code for the data types involved, as well as some
form of user-interface for the upgrade utility, and logic for
converting the files as a whole. Suggestions were put forward for
tackling the serialisation issues:
1 Copy the old serialisation source code to the upgrade tool

project, modify the original code to use the new format so the
application can read and write the new files, and include this
modified code in the upgrade utility as well. The upgrade utility
would therefore have code for both the old and new formats, and
the application would have only the new code.

[continued on next page]

18

Overload issue 52 december 2002

2 Append methods supporting the new formats to all the affected
data classes. The application would use the new format only,
and the upgrade utility would use both.

3 Modify the serialisation methods to handle both formats,
determining which one to use with some form of flag or version
number.

Drawbacks

The first suggestion set warning bells ringing left right and centre.
Every time I have ever copied code around it has come back to haunt
me. When the same, or similar, code is in two places you have twice
as much code to manage. Changes need to be made in two places
instead of one, which is highly error-prone. Furthermore, people
inevitably forget about one or other of the copies, and so it gets out
of date, it doesn’t get built properly, documentation stagnates, and it
causes endless confusion to new team members when they stumble
across it. Re-use good; copy-and-paste bad!

However, criticisms were levelled at the second suggestion too.
The application would need to cart around both old and new
serialisation code, despite only ever using the new code. Small
classes would find the majority of their source code comprising
multiple persistence methods. Changes and fixes would still need
to be made to both versions. Even if they sit right next to each other
in the source file it is easy to miss one when editing the code
through a tiny keyhole source code window1.

Finally, the third suggestion leads to spaghetti serialisation code,
with huge conditional blocks based on ever-more complicated
version dependencies. In later versions you have a mess of if blocks
checking for file formats that have not been supported for years [2].
As with the previous suggestion lean classes become fat with
persistence methods.

Types, typedefs and templates

In our project we were making no changes other than the types
and sizes of various data values. Instead of a version flag, why
not parameterise the persistence methods on the relevant types?
This way we can support a whole raft of file formats using
different types all with the same code. Simple wrapper methods
can then be written to forward to the parameterised method with
the correct types.

As a rather trivial example, consider the code for a class that
stores an array of id values (see [1]).

// id_array.h
class id_array {

...
short m_size; // should be plenty...
short *m_ids; // should be wide enough

};

// id_array.cpp
void id_array::extract(out_file &f) const
{

f << m_size; // raw write, 16-bits
for (short i = 0; i != m_size; ++i)

f << m_ids[i];
}

void id_array::build(in_file &f) {
short size;
f >> size; // raw read of 16-bits
resize(size);
for (short i = 0; i != size; ++i)

f >> m_ids[i];
}

This class is limited in a number of ways for our purposes.
m_ids only holds 16-bit short ints, and we wish to extend this
to 32-bit regular ints (on our platform). We also wish to be able
to hold lots of these, so a 16-bit container size is also insufficient.
Finally, an unsigned type would be more appropriate for the size
of the container.

Our first step is to parameterise our persistence methods:

template <typename T>
void id_array::extractT(out_file &f)

const {
T size = m_size;
f << size;

for (T i = 0; i != m_size; ++i) {
T value = m_ids[i];
f << value;

}
}

template <typename T>
void id_array::buildT(in_file &f) {

T size;
f >> size;
resize(size);

for (T i = 0; i != size; ++i) {
T value;
f >> value;
m_ids[i] = value;

}
}

As you can see, there is very little change to the code. The
two methods are pref ixed wi th a templa te dec lara t ion
containing the type required. This type is then used inside the
methods. One point worth noting here is that the type must be
used in any overloaded function calls rather than the data
members from the class itself. Writing f << m_size; will
output m_size as the type defined in the class itself, rather
than the required type T . Hence you must write T size =
m_size; f << size; instead. Easy to overlook, that
one (he says from experience :-) 2.

Explosion of types

It soon becomes clear that, strictly, we should have parameterised
the class both on the capacity and the contained type, because
these are not necessarily the same. Thus, our class is now
parameterised on two types:

1 which is all the space you seem to be left with, these days, in between the project
windows, watch windows, output windows, toolbars, palette windows, etc., of the
modern IDE.

2 But fortunately one that is easy to spot when the automated unit tests, which of
course you wrote first, fall over.

19

Overload issue 52 december 2002

template <typename Count, typename T>
void id_array::extractT(out_file &f) const{

Count size = m_size;
f << size;
for (Count i = 0; i != m_size; ++i) {

T value = m_ids[i];
f << value;

}
}
template <typename Count, typename T>
void id_array::buildT(in_file &f) {

Count size;
f >> size;
resize(size);
for (Count i = 0; i != size; ++i) {

T value;
f >> value;
m_ids[i] = value;

}
}

More complicated data structures may have even more types, and
when you have many such low-level data types you can end up
with a huge number of types and a huge number of different
parameters to each method. It gets nasty very quickly.

Classes of types

What we really want is to be able to say, “My old file format used
types t1, t2, …, tn, whereas in my new format I use types
T1, T2, ..., Tn.” It would be nice to be able to group
these relevant types together so you can just say “new format” or
“old format” rather than “short, unsigned short, int and short” to
one method and something else to another. Enter the class as a
method of naming things as a group:

// format_types.h
class old_types {
public:

typedef short count_t;
typedef short my_id_t;
... // lots more follow, if nec.

};
class new_types {
public:

typedef size_t count_t;
typedef int my_id_t;
... // lots more...

};
Now, rather than passing in as many parameters as each class
requires, persistence methods can be parameterised solely on a
single format type. These methods then pull out whatever named
types they require from the file format ‘types class’:

template <typename Format>
void id_array::extractT(out_file &f) const{

Format::count_t size = m_size;
f << size;
for (Format::count_t i = 0;

i != size; ++i) {
Format::my_id_t value = m_ids[i];
f << value;

}
}

template <typename Format>
void id_array::buildT(in_file &f) {

Format::count_t size;
f >> size;
resize(size);
for (Format::count_t i = 0;

i != size; ++i) {
Format::my_id_t value;
f >> value;
m_ids[i] = value;

}
}

Forwarding functions

We did not want to alter the interfaces of the data classes more
than necessary. In particular, we wanted persistence from our
main application to work exactly as before. To achieve this we
created one more typedef for the types currently in use:

// format_types.h
// current_types points to new_types
// now (not old_types)
typedef new_types current_types;
...

and wrote forwarding functions to call the buildT() and extractT()
template methods with the correct types:

// id_array.h
class id_array {
public:

// these are the original method names
void extract(out_file &f) const;
void build(in_file &f);
// these are new forwarding methods
void extract_old(out_file &f) const;
void extract_new(out_file &f) const;
void build_old(in_file &f);
void build_new(in_file &f);

private:
// These are the implementations
template<typename Format>
void extractT(out_file &f) const;
template<typename Format>
void buildT(in_file &f);

};

We then implemented these forwarding methods:
void extract(out_file &f) const {

extractT<current_types>(s);
}
void build(in_file &f) const {

buildT<current_types>(s);
}
void extract_old(out_file &f) const {

extractT<old_types>(s);
}
... // etc.

These are all just one-liners, making it trivial to implement and
maintain.

20

Overload issue 52 december 2002

New formats

If a new format is required in the future (64-bits, etc.) supporting
it is simple:
1 Add code to the unit test class to check that the new format works

OK.
2 Add a new types class, really_new_types, containing the

relevant typedefs.
3 Add one-line forwarding methods to each class to pass this types

class in.
4 Update current_types to point to the new types class,
really_new_types.

5 Build and check that your unit tests pass, to ensure the single
persistence methods are sufficiently generalised to support the
new types.

If you want you can omit step 3 and expose public templated
serialisation methods. That way, clients can use any file format
they choose by calling the method with the correct types class.
We did not do this, (a) to control access to the different formats
more closely, and (b) because our compiler, Visual C++ 7 (the
latest .NET version) requires template methods to be
implemented inline, which we did not want to do. Some of our
persistence methods were quite involved. Implementing them in
the header files could have introduced additional compilation
dependencies from extra #include directives being required.

Our workaround involved declaring a private friend helper class
at the top of each data class:

// id_array.h
class id_array {

class persister;
friend class id_array::persister;

public:
...
};

Class persister then simply had two methods: the two
template persistence methods moved from the main class:

// id_array.cpp
class id_array::persister {
public:

template<typename Format>
static void extractT(const id_array &a,

out_file &f) {
... // inline because of VC++7

}
template<typename Format>
static void buildT(id_array &a,

out_file &f) {
... // inline because of VC++7

}
};

The use of this private helper class allowed us to move the inline
implementations of these template methods out of the header file.
Making it a nested class avoided name clashes because we were
not polluting the scope of our data classes with additional names
(and therefore each class could use the same nested class name,
persister). The forwarding methods within each data class
could now simply forward to the static methods of class
persister, passing in a reference to themselves:

// id_array.cpp
void id_array::extract(out_file &f) const {

persister::extractT<current_types>(
*this, f);

}
... // etc.

Alas we were not quite in the clear yet. Another weakness of
VC++7 is that it does not support explicit specification of
template parameters for template methods/functions. We had to
work around this one as well by passing in a dummy object to
each method and letting the compiler sort out which function to
call:

// id_array.cpp
class id_array::persister {
public:

template<typename Format>
static void extractT(const Format &,

const id_array &a,
out_file &f) {

...
}
...

};
...

void id_array::extract(out_file &f) const {
id_array::persister::extractT(

current_types(), *this, f);
}
...

Conclusion

Classes were used as a scope to package up the whole set of
types, used when serialising to a given file format, into a ‘types
class’. A typedef was provided to allow current_types
always to refer to the primary types class, and hence the current
file format. Template serialisation methods were used to localise
a single serialisation algorithm for each class in a single place to
aid implementation and maintenance. One-line (non-template)
forwarding methods were used to provide an easy interface to the
current, old, and new file formats. And finally the use of a
private nested friend class and dummy template function
parameters allowed us to work around various weaknesses in the
Microsoft C++ compiler and to move our templated persistence
methods out of the header files.

None of these choices were rocket science, but the end result was
a seamless implementation of multi-format persistence with very
little overhead, either overall (just the format classes were needed)
or in each of the persisted classes.

Richard Blundell

References

[1] Blundell, R.P., “A Simple Model for Object Persistence Using
the Standard Library,” Overload 32, June 1999
[2] Blundell, R.P., “Automatic Object Versioning for Forward
and Backward File Format Compatibility,” Overload 35 , January
2000

21

Overload issue 52 december 2002

Developing a C++ Unit
Testing Framework
by John Crickett

Introduction

Testing is an important part of all software development, yet a
part that is so often overlooked or skimped on. Why is this?
Perhaps i t’s because testing software is not considered
exciting, or perhaps it’s because it’s not trivial, and if we’re
honest with ourselves it’s impossible to write a set of tests
that’s perfect, the only way of knowing a test works is if it
shows that the software doesn’t. Passing all the tests does not
mean the software is perfect, it may mean your tests just aren’t
good enough.

As the title suggests I’m going to look solely at unit testing,
as it’s currently something I’m focused on, having adopted
Extreme Programming (XP) [1]. So what is unit testing? To us
it’s testing individual software units to prove that they work as
specified. In our case, tests may well form part of that
specification, as XP is pro Test First programming, whereby we
write our tests before writing the code, and we stop writing the
code when all the tests pass. As such tests are both a way of
ensuring quality and a way of measuring the status of our
development. It’s always worth remembering (and reminding
the boss) that the sooner problems are found, the cheaper they
are to fix. Tests formalise the testing process, they move it from
just running the debugger and seeing what happens, to a
structured, repeatable process. To encourage regular running of
the tests, they should be quick and easy to use, in other words,
fully automated. This will help you to get unit testing accepted
as part of your personal and company development culture.

Prerequisites

Ok, so you see a benefit to unit testing, or at least I assume you
do otherwise you’d probably have stopped reading by now. What
do we need to begin developing effective unit tests? Happily not
much, consider the following example:

bool isZero(long value) {

return value == 0;

}

Which we can test with the following code:

#include <iostream>

int main() {

if ((isZero(0)) && (!isZero(1))) {

std::cout << "Passed." << std::endl;

}

else {

std::cout << "Failed." << std::endl;

}

}

However not all code is as simple to test, nor do we want to
have to repeat the basic features that all tests share. The ability
to report the success or failure of the test is the most obvious
feature that we’ll be requiring again. We’ll also probably want

to test the function with more than two inputs, and a massive
conditional statement is not clean, maintainable and readable.
It would be very nice to know which part of the test failed,
and which resulted in an error. It would be useful if we were
able to run the tests on application start-up, choosing to run all
the tests or a specified subset. Finally, unlike many C++
testing frameworks, we won’t assume that the user will only
ever test classes.

Building our Framework

Let’s start by changing the code to allow for our first prerequisite,
which is to easily allow testing with multiple inputs. Firstly we’ll
add a function to determine if the test succeeded, and record the
result:

void Test(bool eval, bool& result) {

if (result) {

result = eval;

}

}

I’ve chosen to implement it this way so a pass after a failure will
not overwrite the failure, in other words if result is already
false we don’t lose the failure when the next test passes. We can
then change main to the following:

int main() {

long const max_test = 100;

bool result = false;

Test(isZero(0), result);

for (int i = 1; i < max_test; ++i) {

Test(!isZero(i), result);

}

if (result) {

std::cout << "Passed." << std::endl;

}

else {

std::cout << "Failed." << std::endl;

}

}

Which allows us to test the function for potentially all
possible positive values of a long (if we changed max_test
to be std::numeric_limits<long>::max()). Ok, so
we’re now able to run multiple tests, but should it fail, it
would be very helpful to know which part failed. So how
could we do that? Well, we could stop on the first failure, but
we probably don’t want to stop the entire unit test, so it’s time
to break our test down a little and practice some of our
procedural/object-oriented design. We can start by changing
the result to a structure as follows:

struct test_result {

bool passed;

unsigned long line;

std::string file;

};

22

Overload issue 52 december 2002

We will then change the test function to set these additional values:

void Test(bool eval,

const char* file,

unsigned long line,

test_result& result) {

result.passed = eval;

if (!result.passed) {

result.file = file;

result.line = line;

}

}

We’ll also need to call the function differently (I’ve changed it to
only print out failures, to reduce the clutter, and introduced a
failed test) so our final program becomes:

#include <iostream>

#include <string>

// . . . code . . .

int main() {

long const max_test = 100;

test_result results[max_test];

Test(!isZero(0), __FILE__, __LINE__,

results[0]); // fails 0 is zero!

for (int i = 1; i < max_test; ++i) {

Test(!isZero(i), __FILE__, __LINE__,

results[i]);

}

for (int i = 0; i < max_test; ++i) {

if (!results[i].passed) {

std::cout << "Test failed in file "
<< results[i].file << " on line "
<< results[i].line << std::endl;

}

}

}

Ok, so far so good, however it’s rather tedious to have to add
__FILE__, __LINE__ to each call, and not terribly pretty
either, so I’m going to pull them out, and use a macro (don’t look
so horrified) to save us the effort. We’ll call the macro
ASSERT_TEST(), just because that’s a common naming style
in testing frameworks. We’ll define it as so:

#define ASSERT_TEST(condition, result)

Test(condition, __FILE__, __LINE__, result)

However, having decided to use a macro we can now use a bit of
magic to get the actual code that failed and print that as part of
our diagnostics, so here’s the new macro, with the
test_result structure changed to accommodate the new
information and the Test() function renamed to
assertImpl():

#include <iostream>

#include <string>

struct test_result {

bool passed;

unsigned long line;

std::string file;

std::string code;

};

bool isZero(long value) {

return value == 0;

}

void assertImpl(bool eval, char* code,

char* file, unsigned long line,

test_result& result) {

result.passed = eval;

if (!result.passed) {

result.file = file;

result.line = line;

result.code = code;

}

}

#define ASSERT_TEST(condition, result) \

assertImpl(condition, #condition, \

__FILE__, __LINE__, result)

int main() {

long const max_test = 100;

test_result results[max_test];

ASSERT_TEST(!isZero(0), results[0]);

// fails 0 is zero!

for (int i = 1; i < max_test; ++i) {

ASSERT_TEST(!isZero(i), results[i]);

}

for (int i = 0; i < max_test; ++i) {

if (!results[i].passed) {

std::cout << "Test "
<< results[i].code

<< " failed in file "
<< results[i].file

<< " on line "
<< results[i].line

<< std::endl;

}

}

}

Having used our little bit of macro magic (for those that feel it’s
voodoo read [2] page 90), it’s time to start thinking about how we
can scale this up.

Refactoring into Classes

At this stage it is worth reviewing our requirements for a C++
testing framework:

23

Overload issue 52 december 2002

l We need to know if a test failed.
l If a test failed we want the code for the test, the name of the file

it is in, and the line it is on.
l We want to be able to test multiple conditions in each test, failure

of any single condition is a failure for the test.
l Failed test(s) should not stop the rest of the test running.
l We want a report on the test results, after all tests have run.
l We may need to be able to set up some data before a test, and

destroy it afterwards.
l We should cope with exceptions.
l The testing framework must be easy to use, as part of which we

will implement our code in the test namespace.
We might also want the following information at some stage in
the future:
l Duration of each test.
l Free/Used memory before and after the test.
l Log results to file.
Ok, lets take these one at a time starting with the easiest, the test
result. We’ve already solved this the easy way with our
test_result structure. So we’ll dive right in and do the
whole lot:

class TestResultCollection {

public:

void error(const std::string& err);

void fail(const std::string& code,

const char* file, size_t line);

unsigned long failedCount() const;

void reportError(std::ostream& out) const;

void reportFailures(std::ostream& out) const;

private:

class TestResult {

public:

explicit TestResult(

const std::string& code,

const char* file, size_t line);

void report(std::ostream& out) const;

private:

std::string code_;

std::string file_;

unsigned long line_;

};

typedef std::list<TestResult>

results_collection;

typedef results_collection::iterator

iterator;

typedef results_collection::const_iterator

const_iterator;

results_collection results_;

std::string error_;

};

To save space I’m not going to detail each function here, as a full
description is available in the code [3].

As each test class may evaluate multiple expressions we’re going
to need to store more than one result for each test, as such we’re

going to use the class TestResultCollection to provide the
interface for a test’s results. It in turn will store a TestResult
class for each failure, or error (we don’t record passes; they are
determined by the absence of a failure).

An error is defined as an exception that escapes the test code, or
a failure of the setUp() or tearDown() methods, which are
explained later. A failure is an expression that evaluates to false
inside an IS_TRUE(), or an expression that evaluates to true
within an IS_FALSE(). IS_TRUE and IS_FALSE are
explained later.

Next we need a base class for tests, which will define our
common interface to each test:

class Testable {

public:

Testable(const std::string& name);

virtual ~Testable() = 0;

virtual bool setUp();

virtual void run();

virtual bool tearDown();

virtual std::string name();

};

The constructor requires a name argument, this name will be
returned by the member function name() and should be a
human friendly name for this test class, as it is only used for
reporting.

The four member functions have been designed to allow
overriding in order to allow the client to perform appropriate action
for each class. setUp() should be used to prepare any data
required for the test, the body of the tests should be in run(), and
tearDown() should tidy up any resources allocated in
setUp(). The function name() returns the name provided to
the constructor. Each function has a default implementation
provided.

The class also contains the protected member test_out_,
intended to allow tests to write out a stream of data during the test.
Note however that it is implemented via a
std::ostringstream, and as such is not printed to the screen
immediately.

As we can only ever have one instance of the
TestCollection, it is implemented as a Singleton [4]. This has
the additional benefit of allowing us to be able to register each test
with the collection through the public static method
TestCollection::Instance(). The Testable class’s
default constructor is implemented as so:

Testable::Testable(const std::string& name)

: name_(name) {

TestCollection::Instance().addTest(this);

}

Now any class deriving from Testable is automatically
registered with the testing framework. The great benefit of this is
that it allows us to add a test without changing any of the code
already in the test build; all we need to do is add the new test’s
implementation file to our build list (or makefile). I believe this is
important as I’ve several times seen code go untested as someone
has forgotten to add the call to the test suite to the test driver
code.

24

Overload issue 52 december 2002

The header testable.h also contains the following macros:

#define IS_TRUE(exp) test::isTrue(exp, \

#exp, __FILE__, __LINE__)

#define IS_FALSE(exp) test::isFalse(exp,\

#exp, __FILE__, __LINE__)

which call the following helper functions, ensuring we capture
the line of code being tested, and the details of the file and line
where the test can be found:

void isTrue(bool val, const char* code,

const char* file, size_t line);

void isFalse(bool val, const char* code,

const char* file, size_t line);

These functions evaluate the result of the test, and ask the test
collection to log a failure if they are not true or false,
respectively.

Our tests are then gathered up into the main body of the
framework; the class TestCollection. The main body of the
testing framework is contained in the function
TestCollection::run() which looks like this:

void TestCollection::run() {

const iterator end = tests_.end();

run_number_ = 0;

for (iterator current = tests_.begin();

current != end; ++current, ++run_number_) {

try {

test::Testable& test = *current->first;

test::TestResultCollection& test_result

= *current->second;

if (test.setUp()) {

try {

test.run();

}

catch(...) {

error("Error occurred while
running test");

test.tearDown();

continue;

}

if (test_result.failedCount() == 0) {

++pass_count_;

}

else {

++fail_count_;

}

if (!test.tearDown()) {

error("Error occurred while
tearing down the test");

}

}

else {

error("Setup failed");
}

}

catch (std::exception& e) {

error(e.what());

}

catch (...) {

error("Unexpected error");
}

}

}

The main purpose of the function is to iterate through the list of
tests, calling setUp() , run() and tearDown(), for each
test in turn, catching any exceptions thrown, and checking that
we only run tests that have been successfully set up, or recording
tests that have failed to properly tear themselves down.

The final thing the test framework does is call
TestCollection::report() which iterates through the
TestResultCollection, reporting any passed tests, or failed
tests along with any associated failures or errors.

Reading the Code

The actual code supplied on my website contains a few more
comments than are displayed in this article, and is documented
with Doxygen [5], so you can generate HTML, RTF, Latex, or
man pages from it.

Using the Testing Framework

To demonstrate the use of the unit testing framework, I’ve chosen
to use a modified version of the calculator Bjarne Stroustrup
presents in The C++ Programming Language. I’ve modified it
slightly, changing it into a class, and making it perhaps a little
more reusable and testable.

The Calculator is intended to compute the result of simple formulae,
possibly reusing the result of an earlier expression to calculate a more
complex one such as: (a + b) * (c - 0.147) + d;

Calculator is a simple class defined as follows:

class Calculator {

public:

Calculator();

double evaluate(const std::string expression);

// ... private members ...

};

A nice simple interface for us to test! So we’ll create a
CalculatorTest.cpp file and we can begin writing our test:

#include "Testable.h"
#include "Calculator.h"

We need the definition of Testable, as we’re going to inherit
from it, and we need the definition of Calculator, as that’s
what we’re going to test. Next we need to define our unit test class:

class CalculatorTest

: public test::Testable {

public:

explicit CalculatorTest(const std::string&

name) : Testable(name) {}

// ... rest of class follows ...

Remember that we need to pass the human readable form of our
test name down to the base class. Next we’ll want to provide the
code to set up and tear down any classes or data we’ll need for
the test, in this case I’ve decided to dynamically allocate the
Calculator here:

25

Overload issue 52 december 2002

virtual bool setUp() {

try {

calc_ = new Calculator;

}

catch(std::bad_alloc& e) {

std::cerr << "Error setting up test: "
<< e.what() << std::endl;

return false;

}

return true;

}

virtual bool tearDown() {

delete calc_;

return true;

}

The teardown() method assumes delete calc_; will
always succeed. Last but not least we need to implement the
run() method:

virtual void run() {

testBasics();

testVariables();

testCompound();

}

in which I’ve chose to break my tests down into related groups
and run each group in turn. So let’s look at the simple tests in
testBasics():

void testBasics() {

double result = calc_->evaluate("1 + 1");
IS_TRUE(equal_double(2.0, result));

result = calc_->evaluate("1 + 1");
IS_TRUE(equal_double(2.0, result));

result = calc_->evaluate("3 - 1");
IS_TRUE(equal_double(2.0, result));

result = calc_->evaluate("1 * 2");
IS_TRUE(equal_double(2.0, result));

result = calc_->evaluate("6 / 3");
IS_TRUE(equal_double(2.0, result));

}

Now we’ve gotten to the meat of it. We know calc_ must be
valid for the framework to have called run() on our test class,
so we can start using it, and what simpler test for a calculator
than 1 + 1, so we create a double called result to store the
result of the evaluate() call:

double result = calc_->evaluate("1 + 1");
Then we use the IS_TRUE() macro to compare the result to 2,
our expected answer:

IS_TRUE(equal_double(2.0, result));

Finally after our class declaration we need to create a single
instance of the class, we can do this as so:

static CalculatorTest

the_test("Calculator Test");
You may prefer to place it in an anonymous namespace, as well
as or instead of the static. We can then run the testing framework
and hopefully we’ll see something that looks like this:

C++ Testing Framework v1.0 Copyright 2001

Crickett Software Limited

The latest version can be downloaded from

http://www.crickett.co.uk

— —

Ran 1 test(s)

Passes: 1

Failures: 0

Errors: 0

— —

Test: Calculator Test

Output:

No failures.

No errors.

— —

If we deliberately introduce a failure, say:

IS_TRUE(equal_double(7.0,

calc_->evaluate("1 + 1")));

Then the framework will produce the following results:

C++ Testing Framework v1.0 Copyright 2001

Crickett Software Limited

The latest version can be downloaded from

http://www.crickett.co.uk

— —

Ran 1 test(s)

Passes: 0

Failures: 1

Errors: 0

— —

Test: Calculator Test

Output:

Failures:

Failed IS_TRUE(equal_double(7.0,

calc_->evaluate("1+1"))) at line 68 in file
d:\dev\c++\testingframework\calculatortest.cpp

No errors.

— —

Which gives us the location (file and line number) of the failed
test, and the actual code for the test that failed. I suggest that you,
dear reader, experiment with the supplied examples, perhaps
undertaking the following exercises:
1 Extend the tests; there is scope for more comprehensive

testing.
2 Extend Calculator to support function calls, for example

sin, cos, and tan. Also write suitable tests for each.
3 Add another class to the project, and a suitable test class.

Logging

Sometimes it’s just not that easy to test results directly, or we
really might just want to log some text during the test, so the
framework allows the test to log data. This is provided by the
protected member variable test_out_, and all you need to do
to record text during the test is treat it exactly as you would
std::cout. The text is then reported in the Output section of
the tests report.

Comments on “Applied
Reading - Taming Shared
Memory” by Josh Walker in
Overload 51.

I really enjoyed to see an article about shared memory in Overload
51. For one, it (re-)promoted a solution for a frequent problem
(managing common access to shared objects) that is generally much
more appropriate than the usual solution “multi-threading”. The
overwhelming number of publications (books and articles) about
multi-threading had the effect that most developers think that multi-
threading is the proper solution to the sharing problem (and even for
problems that share virtually no resources). Therefore, it is really
good to see an article about a long-known solution that is in my
opinion nearly always more appropriate.

Then, I enjoyed the article because I’m now working for quite a
while on a library to make the use of shared memory easier.
Unfortunately, it turned out that using standard containers or strings
inside of shared memory is virtually impossible. Not that there is a
fundamental problem with containers in shared memory. Though it is
not completely easy, it is possible to provide shm_ptr as a full blown
pointer type (including pointer arithmetics). And providing a wrapper
around shm_allocator that implements the STL allocator
requirements is pretty easy. But unfortunately, the C++ standard gives
library implementors the leeway to ignore the type
Allocator::pointer and instead just assume that it is a raw
pointer. And though the standard explicitely encourages library
implementors not to use this leeway, I didn’t yet come across an
implementation that actually worked when Allocator::pointer
was not a raw pointer. (Probably I just looked in the wrong places.)

What is really sad is that when I looked at the implementation, it
seemed that there is no real reason for that, but just a general sloppiness
by using “T*” instead of “Allocator::pointer”. (The main
reason for this is probably historical as well as an unwillingness to
really think about the requirements of “Allocator::pointer”

and document them as an implementation defined enhancement.) So,
to make shared memory really comfortable, you need to provide your
own replacements for the standard containers and string. Or you ensure
that the shared memory segment is mapped to the same address in all
processes, but this is an option that is rarely available.

Some final notes: Whether shared memory is actually the proper
solution for the problem at hand I’m not so sure. If only, because
it’s pretty hard to implement a clean and safe message queue. But
then, if a different solution would have been chosen, we wouldn’t
have got this excellent article. And a minor issue with the presented
code: Why is the size parameter of the shm_segment
constructor of type “int”, while the return of get_size() and
the internal size_ member are of type “unsigned int”. The
proper type would probably be “size_t”.

Detlef Vollmann
<dv@vollman.ch>

Response to Detlef
Vollmann’s comments

I found Detlef’s comments on using standard containers in shared
memory very interest ing. It is unfortunate that current
implementations fail to support this natural and useful extension.
I hope this will change as libraries and compilers mature.

As I mentioned in the article, the choice of shared memory was
influenced by my own skill set. It has so far proved an adequate
solution, though I agree that it may not be the ideal one. Of course,
it was also a useful topic for exposition.

As Detlef keenly points out, the shm_segment members and
methods concerned with size should use size_t. The use of
signed int is just sloppiness on my part.

Finally, let me thank Detlef for his comments. I hope more
readers will send their feedback on Overload articles.

Josh Walker
joshwalker1@earthlink.net

26

Overload issue 52 december 2002

Taking It Further

This article has introduced the design and development of the
C++ unit testing framework we use at Crickett Software. It’s
continually evolving as we need it to, and the latest version will
normally be available from our website.

In a future article we will look at how to use unit testing to improve
the quality of your code, by catching tests earlier, and automating as
much testing as possible. I’ll also look at test first design. Any questions
on the article are most welcome to john@crickett.co.uk.

John Crickett

Thanks To

Jon Jagger (www.jaggersoft.com) for feedback on an earlier
testing framework and some suggestions that got me started on
this incarnation of a C++ unit testing framework.
Mark Radford (www.twonine.co.uk) for comments on both the
framework and this article.
Paul Grenyer (www.paulgrenyer.co.uk) for comments on
several drafts.

References

[1] Extreme Programming – http://www.xprogramming.com
[2] The C Programming Language by Kernigan & Richie, 1988.
[3] C++ Unit Testing Framework – available from

http://www.crickett.co.uk

[4] Singleton – http://rampages.onramp.net/~huston/
dp/singleton.html

[5] Doxygen, an open source C++ documenting tool, similar to
JavaDoc – http://www.doxygen.org

Other Interest

JUnit – a Java unit testing framework –
http://www.junit.org, covered recently in CVu by
Alan Griffiths

XP Unit Testing Frameworks –
http://www.xprogramming.com/software.htm

XP Unit Testing – http://www.xprogramming.com/xpmag/
expUniTestsat100.htm

Letters to the Editor

