Overload issue 56 august 2003

contents

Reshaping an Old Piece of Design
Mark Radford

Stream-Based Parsing in C++
Frank Antonsen

EuroPLOP 2003 Conference Report
Allan Kelly

Three Phantastic Tales
Alan Griffiths

A Unified Singleton Framework
Jeff Daudel

10

18

20

22

credits & contacts

Overload Editor:

John Merrells
over |l oad@ccu. org

Contributing Editor:

Alan Griffiths
al an@ct opul | . denon. co. uk

Readers:

lan Bruntlett
lanBruntlett @ntigs. ukl i nux. net

Phil Bass
phi | @t oneynmanor . denon. co. uk

Mark Radford
t woni ne@ woni ne. denon. co. uk

Thaddaeus Frogley
t.frogley@t!world.com

Richard Blundell
ri chard. bl undel | @ret apr axi s. com

Advertising:

Pete Goodliffe,
Chris Lowe
ads@ccu. org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://wwmv. accu. or g/

Information and Membership:
Join on the website or contact

David Hodge
nmenber shi p@ccu. org

ACCU Chair:

Ewan Milne
chair @ccu. org

Overload issue 56 august 2003

Editorial - How much is

a good thing?

ow much what is a good thing?” you may ask — the answer is “many things”.

In design it is often “how much abstraction is a good thing”. In explaining it is

often “how much simplification is a good thing?” In editing Overload it is “how
much change is a good thing”. Change is double edged: that which isn’t prepared to
change must be prepared to design, but inappropriate changes can lead to a quick death.
The other problem with change is that it can catch the unwary. And, if you refer to my last
editorial you will see that | was unaware of a change. (If you don’t know what I'm talking
about don’t be concerned — I'm not being mysterious — all will be explained after a short
digression into the role that Overload plays in ACCU.)

Sometimes queries arise as to why ACCU produces two
publications — especially as it is sometimes unclear why
material appears in one rather than the other. There are
many answers, but, to me at least, the thing that
distinguishes Overload from C Vu is that Overload covers
design issues at a range of levels of interest. In
comparison C Vu is much more focused on programming,
and where design appearsin C Vu it is mostly at the level
of idioms. I'm happy with this division of scope, but in
writing the last editorial had failed to realise quite how
far away from its origins as a specialist C++ publication
Overload has evolved. | wrote that | was unsure if a
pattern language about team working would be
appropriate. The editor and “readers’” soon put me right
about this! Of course, I'm happy about this — where else
would | get such an article published? — but | do wonder
if the readership is being left behind by the pace being
set. | hope not, but unless some of you make your views
known to us | can’'t be confident.

Whenever | meet up with ACCU members the
conversation sooner or later turns to complaints about the
way the industry operates. Y ou know the sort of thing: why
do managers make unreasonable demands? Why are (other)
developers so incompetent? ... You have been there; you
know how it goes. These issues are often raised as rhetorical
guestions; but, they are genuine problems and deserve
answers; and, it is only by seeking answers that we can lay
the groundwork for an effective solution. Thistype of issue
should be appropriate to ACCU publications — after all it is
clearly of interest to the members. And it was the view of
the rest of the Overload team that it was appropriate for
Overload to publish material that presentsan analysis of these
guestions.

On the basis of my experience and beliefs I’m certain
that in looking for solutions we should apply the lessons
that we've learnt in our work. In particular, we know that
some ways of communicating a solution are more
effective than others. A particular lesson | draw from the
“design patterns” movement isthat it is helpful to include

aq

details of the motivating problem, the solution, and any
trade-offs in the discussion of a “solution”. However,
when dealing with our less enlightened colleagues we
often find orphaned solutions cut off from the original
problems or rationale. And it is often these orphaned
solutions that appear unreasonable. But is dismissing them
as unreasonable a reasonable reaction? Is it just that we
fail to recognise the motivating problem they successfully
solve or is it that they are being used where they are not
applicable?

One such “solution” that cropped up in discussion at a
recent get-together of ACCU membersin Nottingham —they
know who they were — comes under the banner of “don’t do
as| do; do as| tell you”. That is. a widespread tendency to
make a statement about how things should be done and then
toignoreit. A developer might tell you that maintainability
isthe most important concern in writing their code, but may
be found trying the latest “ cool trick” they have found in the
language. Or an author may write, “error handling is
important” and then omit mention of it throughout the book.
Or a methodologist may say, “team building is important”
and then only discuss the work processes and the work
products.

We all know that these strategies can have undesirable
consequences. The developer is unlikely to produce
maintai nable code from their experiment (although they may
well learn something that can improve subsequent work). The
author will fail to inform the reader how code should be
written in a production environment (although they may
successfully teach the principles). And the methodologist
won't convey successful strategies for running a successful
project (but may provide some useful milestones). But,
instead of just complaining about the consequences, it is
important to recognise that all of these behaviours reflect
solutions to problems —and to consider what these problems
might be.

It is easy to assume that these characters are idiots, but
if we make the effort to think about what they are trying to
achieve we see that there is a common thread running

amongst them: “how much scope is a good thing”. Without
understanding the problem they face it is impossible to
decide whether their approach improves the situation. The
developer might need to master a new language feature in
order to express the solution to a problem effectively. The
author may need to simplify the subject matter to
communicate the ideas or because of space constraints. The
methodologist may be addressing the more serious
problems. (Admittedly they might not — just don’t jump to
this conclusion.)

Whatever the case, if you don’t take the time to
understand why someone is acting the way they are then
you will fail to engage them in a discussion of the merits
of that behaviour. | have a lot of sympathy with the
devel oper, author and methodologist (because I’ ve done
these things). | also have a lot of sympathy with
confronting them (done that too). This editorial isn't really
about solving these problems (and | don’t have all the
answers) but rather than leave them unresolved thisiswhat
| doin their positions:

+ As a developer experimenting with a new coding
technique | try to leave it awhile and to write it up
before using it in production. (I'll be submitting an
article about template metaprogramming for the next
issue.) And if | can’t explain it then | don’t understand
it well enough to useit. (So, if you don't see the article
next time...) Occasionally | feel tempted to succumb to
the “haven’t got time for it” argument — but every time
| do that I am reminded that “if you haven’t got time to
do it right then you haven’t got timeto do it wrong first
and then fix it”.

« Asan author | try to structure my code so that the error
handling is as painless as possible and doesn’t need to be
omitted in articles. More often I' [l omit whole functions
or sections of code whose implementation is
unsurprising. Sometimes | have to omit error handling
during the initial presentation of ideas and then cover
errorsin asecond pass. (And sometimes that second pass
gets cut for space or time —to my subsequent regret.) But
messy error handling usually indicates bad design: mine,
or the API, or the programming language that I'm
working with. (And that leads to another interesting

Overload issue 56 august 2003

discussion: how to work within the constraints of an
imposed bad design.)

+ In talking about development methods | find that it is
problematic to get ideas relating to team formation and
environmental factors across. | don't yet know if thisisa
problem with me or the audience. (I have my suspicions—
one senior manager dismissed my observation that
improved morale on a project indicated that things were
getting better with “they feel better because they think they
can meet the new delivery dates, but that doesn’t prove
they will”.) Seriously, though: it is my task to get the
message through and I’ m still working onit. (If you have
ideas that can help, I, and a certain journal, will be
interested.)

The moral of this editorial is to ensure that we understand
the impact that our actions will have on others and the
motives of others whose actions affect us. If only everyone
in the industry would write code others will understand,
would explain (and apply) techniques for handling error
conditions, and would promote teamwork and improve (not
denigrate) people’s ways of working. If only everyone
could belikeus...

The team that produces Overload is dealing with a
problem: the world is changing and we change with it.
ACCU is changing — what was once a C specialist user
group has now expanded its interests. Not only to other
languages (C++, Java, Python, C#, etc.) but to software
design, working practices and organisational issues. | think
that most of us are programmers because we delight in
novelty — | would certainly prefer to solve a new problem
each day than to repeat atired old solution endlessly. This
is unusual in the population at large, but the ACCU
members | speak to have that same attitude. Overload is
changing — because the editorial team is solving the
problemsthey think matter. These problemsarereflectedin
the articles submitted and the experience of the team
members. If you don’t like our solution, try to understand
why we are doing this — and if you have a better solution
then we'll be glad of your help.

al an@ct opul | . denon. co. uk

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines

All articles intended for publication in Overload 57 should be submitted to the editor by September 18t and for Overload 58 by

November 18

5

Overload issue 56 august 2003

Reshaping an Old Piece

of Design
by Mark Radford

In C++, virtual functions are fundamental in supporting the
capability to implement an object-oriented design. They dlow acal
to a member function made on a pointer/reference to a base class to
result in a member function of the object’s concrete class being
cdled. In doing so, they are the language' s fundamental mechanism
of run time polymorphism — the function actualy caled depends on
the type of the object pointed to, as determined at run time.

Sometimes being able to select afunction to call based on the run
time type of one object is not enough. Sometimes there is a need to
crestetheeffect of afunction being virtua with respect to two or more
objects. Some languages (e.g. CLOS) have such a mechanism, and
such functionsare known asmulti-methods. However C++ hasno such
feature, and where multi-methods are required in C++ the effect must
be achieved using design and programming techniques.

In this article | will first describe a problem | once faced, that
motivated meto take an interest in these techniques. | will describe
the solution | chose (which unfortunately was not a good one) and
the aternatives | considered, examining the tradeoffs they offer.
Then | will go on to look at the solution | would choose if | faced
the problem now, and explain why | would prefer it.

The Problem

A few years ago | was involved in the development of a package
for producing two-dimensiona technical drawings. The drawing
program supported two basic shapes: straight lines, and semi-
circular arcs, and it is easy to understand how the hierarchy in the
figure below was fundamental to the design.

<<interfaces:=
shape
move x{coordinate units x

move_y(coordinate _units
rotaté(radians rotation)

intersection(shape s)

Implements

line arc

intersection(shape s) intersection(shape s)

It is obvious that these shapes would need an interface capable of
supporting the operations the user is certain to expect, such as being
able to move the shagpes around and rotate them. However, because
the program was for producing drawings of a technical nature —
essentialy 2D CAD — an operdion to caculate the intersection with
another shape was aso necessary. Unfortunately having available a
shape abstraction is not good enough: the i nt er secti on()

methods need to implement the intersection calculation formula, and
implementing the formula requires the concrete type of both shapes.
In passing, it was to my delight that | found Bjarne Stroustrup cites
amost this very problem as an example (in [D&E]) of where multi-
methods would be useful.

6

The solution | came up with at the time was not very good and
theirritating thing wasthat | knew | knew this— I just didn’t know
what else to do. | could think of other approaches, but they all
seemed worsethan the one | used. For example, some sources (e.g.
[More Effective C++]) usethe brute force approach of downcasting
in conjunction with RTTI. In hindsight though, the RTTI approach
offered a better set of tradeoffs.

Thisproblem hasbeenin my mind (on and off) ever snce, andyears
later, | have come up with what | think is a satisfactory approach.

Two Alternative Solutions

| considered two solutions at the time. One of them worked by
finding out the run time types of the shapes using run time type
information (RTTI); this could be described as a “brute force”
approach. The aternative used an object-oriented approach, and |
consider it to be a classic example of a solution being flawed
while being unquestionably object-oriented.

Solution 1: The RTTI Approach

First consider what a fragment of the code to implement this
approach would look like. Here, dynam c¢_cast is used to
check for each possible type, and to provide the necessary
downward conversion (or downcast):
void intersection(const line& |, const shape& s,
i ntersection_points& where) ({
if (const line* Ip
= dynami c_cast <const |ine*>(&s)) {
lines_intersection(l, *Ip, where);
}
else if (const arc* ap
= dynam c_cast <const arc*>(&s)) {
line_arc_intersection(l, *ap, where);
}
el se
/..

}

void intersection(const arc& a, const shape& s,
i ntersection_poi nt s& where)

(1% .. %}
Now consider the consequences of adding a new specialisation of
shape, e.g. an dliptical arc. This would mean two things:
1 Addinganewi nt ersection() function overload.
2 Adding more code to the existing i nt er sect i on functions.
In passing, note there is a historical twist to my rejection of this
solution: neither dynam c¢_cast, nor any other form of RTTI
for that matter (remember | said it was a few years ago), were
implemented in the compiler used on the 2D CAD project!
Therefore, this approach would have required the manual
implementation of some kind of an RTTI substitute (e.g. each
class having an integer constant to identify it).

Solution 2:
A Flawed Object Oriented Approach

Thisisthe solution | implemented at the time. It employs an object-
oriented mechanism of type recovery using virtua functions. The
mechanism takes advantage of the fact that an object’s concrete type
is known within the member functions of the object’ s class.

Let’'slook at a C++ fragment showing relevant parts of the
shape hierarchy’s class definitions:

cl ass shape {
public:
virtual ~shape();
virtual void intersection(const shape& s,
i ntersection_poi nts& where) const = 0;
virtual void intersection(const arcé& s,
i ntersection_poi nts& where) const
virtual void intersection(const |line& s,
i ntersection_poi nts& where) const

I
e

I
e

/...
b
class arc :
private:
virtual void intersection(const shape& s,
i ntersection_points& where) const;
virtual void intersection(const arcé& s,
i ntersection_points& where) const;
virtual void intersection(const |line& s,
i ntersection_points& where) const;

public shape {

I
b
class line :
private:
virtual void intersection(const shape& s,
i ntersection_points& where) const;
virtual void intersection(const arcé& s,
i ntersection_points& where) const;
virtual void intersection(const |line& s,
i ntersection_points& where) const;

public shape {

/1

b
The shape class provides the interface class heading up the
hierarchy. Note that it has a virtual function overload taking
shape asaparameter, aswell asonefor each of | i ne and ar c;
if another type of shape (e.g. an dliptical arc) were ever to be
added to the hierarchy, shape would need a further virtual
function taking the new type as a parameter, and derived classes
would need to implement it. Therefore, this design is awkward to
extend because it would require a change to code in many of the
files participating in the implementation of theshape hierarchy.

The next code fragment shows what happens during an attempt
to find the intersection (if any) of objects of typel i ne and ar c:

shape* shapel = new line(..);

shape* shape2 = new arc(..);

shapel- >i ntersecti on(*shape2, where);
/1 Calls line::intersection()

void line::intersection(const shape& s,
i ntersection_poi nts& where) const {
s.intersection(*this, where);
/1 Call is re-dispatched...
}
void arc::intersection(const line& s,
i ntersection_poi nts& where) const {
line_arc_intersection(s, *this, where);
/1 ...and handl ed by the
[/ arc::intersection()
/1 overload that handles |ines

Overload issue 56 august 2003

The first call is made on an object of concrete type | i ne, so the
first virtual function implementation entered is that of the
overload I i ne: :intersection(const shape& ..).
Note: the type of the pointer returned by thisis | i ne* (rather
than shape*).

Next,acdltos.intersection(*this, ..) ismade
and resultsin acall tothei nt er secti on() overload taking a
| i ne as a parameter. Given that the pointer passed in (i.e.
shape?2) points to an object of concrete typear c, theresult isa
cdltoarc: :intersection(const |line& ..).Nowthe
concrete types of both objectsis known.

Sadly this solution is flawed because, in a nutshell, it renders
derived classesintrusive not only on each other, but aso onthe base
class. It must be remembered that calculating intersection pointsis
only one aspect of shape functiondlity, yet providing it needsthree
virtual functionsin the interface of each classin the hierarchy.

Towards A Better Solution (?)

In seeking a better solution, I'm going to start by asserting that
the flawed object oriented solution would actually have been
quite reasonable but for one thing: classes are intrusive on each
other. My point is that this intrusiveness would not be such a
problem if it could be compartmentalised and therefore its impact
limited. To this end | will recruit the help of the ExTeEnsioN
OsJEcCT design pattern (originally documented by Erich Gamma—
see [PLoPD3] for the full write-up). What follows is only a brief
and slightly C++ centric summary of the pattern, but the
description (below) of how it is used to implement a better
solution should compl ete the picture.

Pattern

ExTENSION OBJECT.

Context, problem and forces

Different clients will have different requirements of an object’s
interface. The precise interface that will be required by each
client cannot always be anticipated at design time. Also, it is
often unacceptable to trade provision for them against the
interface bloat that would result. In C++ this problem can be
addressed to some extent by an approach using freestanding
functions. However this does not solve all the (potential)
problems (for example, freestanding functions cannot be virtua).
Solution

Support the additional interfaces using separate objects and give
the Subject an interface for returning Extension Objects.
Configuration

The extensions hierarchy (see figure below) is headed up by the
ext ensi on interface, while the facilities the extension offers to

Su.f.'lj Extensi canterfacess
gl exlensioniype) ¢ﬂ) extension
sentertaces

specific_extension

gufension operafion)

T

concrete_specific_extension

extansion_oparation])

client

concrete_subject | OMer

qet_extension(type)

Overload issue 56 august 2003

clients are made available through the interface

speci fi c_ext ensi on.

Theext ensi oninterface doesnot support the operationsrequired
by the client, because different extensions will offer different
operations. Therefore client obtains access to extensions via
get _ext ensi on(), towhich it passes type, where type is Smply
some kind of indication of the extension type being requested.
Consequences
It can be seen that this pattern offers benefits in terms of flexible
extensibility, but there are some drawbacks, for example:

1 Some of the behaviour of subject is moved out of it, so subject
no longer expressesall the behaviour that clients can perceiveit
as having (whether this is a good or bad thing depends on the
actual behaviour).

2 Theclient codewill needto recover thespeci fi c_ext ensi on
type. A typical method of doing so in C++ is by using
dynam c_cast . Therefore, clientsbecome more complex inthe
face of the “machinery” needed to use the extensions. This
machinery can be encapsulated, but the issue till needs to be kept
in mind.

Solution Using Extension Objects

The solution presented as a flawed object-oriented solution was in

some ways an attractive one, exhibiting the benefits of object-

oriented design, keeping code performing a function together and
separate from code performing other functions. It was only flawed as

a conseguence of making classes within the shape hierarchy

intrusive on each other, and the interface clutter caused (three virtual

functions were needed in each class's interface). Introducing

ExTeENsioN OsJecT alows the same mechanisms to be deployed

while keeping the intrusiveness and interface clutter out of the shape

hierarchy. The design now looks as shown in the figure below.
In this design, the following mappings from the ExTENSION

OsJect configuration are used:

* shape’s create() method takes over from subject’s
get _ext ensi on() method. Thisis because of a C++ object
lifecycleissue that will soon become clear.

* shape_ext ensi on and shape_i nt er sect or assume the
rolesof ext ensi onandspeci fi c_ext ensi on, regpectively.

* line_intersector andarc_intersector arethe
concr et e_speci fi c_ext ensi ons.

As an aid to understanding these mappings, the names from the

configuration are used as stereotypes in the exposition in UML

(see figure below).

Implementation

The mechanics of recovering the types and working out the
intersection points are the same as in the flawed solution — the
only difference is that this time the participants are
shape_i ntersector, arc_intersector,
line_intersector the additional
shape_ext ensi on.

The class definition contains very little:

cl ass shape_extension {

and

public:

virtual ~shape_extension();
I
i

It has avirtual destructor, but that needs no explanation:
namespace i ntersections {
cl ass shape_i ntersector {

public:

virtual ~shape_intersector();
virtual void intersection(

const shape_i ntersector& obj,

i ntersection_poi nts& where) const = 0;
virtual void intersection(

const line_intersector& obj,

i ntersection_poi nts& where) const = 0;
virtual void intersection(

const arc_intersector& obj,

i ntersection_poi nts& where) const = 0;
I
b

boost: : shared_ptr<shape_intersector>
down_cast (
boost : : shared_pt r<shape_ext ensi on> obj);

}

<<jnterface»»

shape create()

shape_extension

Theshape_i nt er sect or class
is the first one in the hierarchy to
have an interface of any substance.
It declaresi ntersection()

<<extension=>

create() : shape_extension

Implements T

member function overloads in

move_x(coordinate_units x,
move_yicoordinate_units y
ro radians rotafion)

<<5pecific_extension=:>
shape_intersector

much the same way as shape did
in the flawed object oriented
solution — the difference here

T implements
|]

intersection(shape_intersection s)
intersection(iine_irmersection I)
intersection(arc_intersection a)

being that these overloads take
line _intersector and
arc_i ntersector parameters,

<<concrete_subject=> <<concrete_subject>>

line arc

create() : shape_extension | | create() : shape_extension

<<COncrete_specific_extension>:>
line_intersector

in place of line and arc

parameters respectively.
Imp.'emenf.J Another declaration of interestis
that of the down_cast ()
function: not a member of
<<concrete_specific_extensions> shape_i ntersect or but
arc_intersector provided within the

intersection(shape intersection s)
intersection |ln0ﬁl|'ﬂﬂl‘i.¢ﬂ°ﬂ I
intersection(arc_intersection a

intersection

intersection{shape_intersection s)
intersection!arc_”mtersecﬁon a)

i ntersecti ons namespace. To
understand its role, first we need to

line_irtersection |
) look at shape:

cl ass shape {
public:
virtua
virtua
virtua
I
virtual boost::shared_ptr<shape_extensi on>
create(const std::type_info& type) const=0

voi d move_x(coordi nate_units x)
voi d move_y(coordi nate_units y)
void rotate(radians rotation) = 0

0;
0;

b
The shape interface class provides (besides the functiond interface
supporting user operations) a virtual member factory function
creat e() that returns a shape_ext ensi on instance. Here
there is a deviation from the canonical ExTeNsioN OBJECT
configuration, because concr et e_subj ect (I i ne or arc,
omitted from the UML diagram) is designated asits owner, which is
not quite the case here. The design in this example uses the C++
idiom of using a smart pointer to manage memory acquisition and
release, to avoid running into problems with object lifetimes.

Returning to down_cast(): in order to use the
shape_i ntersector interface, the
shar ed_pt r<shape_ext ensi on> instance returned from
shape::create() must be converted to type
shared_ptr<shape_i nt er sect or > (remember this was
listed as a consequence of theExTeENsIoN OBJECT design pattern).
A custom mechanismin the form of down_cast () isprovided
to achieve this, because unfortunately the use of a smart pointer
cuts across the natural approach of usingdynani c_cast .

The definitions of classes | i ne and ar ¢ are self-explanatory:
they just provide implementations of shape’s virtual member
functionsmove_x(),move_y(),rot at e() etc.|’'mnot going
to list them here because | don’t believe they will actually add
anything to the illustration. Instead I’m going to move on to
i ntersection(),another freestanding function declared within
thei nt er sect i ons namespace:

namespace intersections {
intersection_points intersection(
const shape& sl, const shape& s2) { // 1
i ntersection_points where
boost: : shared_ptr<shape_intersector> first
= down_cast (sl. create(
typei d(shape_intersector))); // 2
boost: : shared_ptr<shape_i ntersector> second
= down_cast (s2. creat e(
typei d(shape_intersector))): //
first->intersection(*second, where); /Il 4
return where

b}

Before looking ati nt er sect i on() 'simplementation, | fedl it
is worth digressing briefly to look at a trade-off that has been
made. It was observed that as a consequence of the ExTeEnsion
OsJEcCT design pattern, the machinery for obtaining ext ensi on
(shape_ext ensi on) instances and down casting them to
speci fic_extension (shape_i ntersector) adds
complexity to clients. It was also observed that one way to
address this complexity is to encapsulate it, and this is the
approach taken here: i.e. it's all wrapped up in the
i ntersection() function. This encapsulation introduces a
tension with the design decision to create shape_ext ensi on
instances on the heap (instead of the originating object owning

Overload issue 56 august 2003

them): there is no way to preserve these instances between calls

tointersection(). Thus efficiency is traded for simplicity

of usage (and tidiness of exposition in an article :-)).

Getting back toi nt er sect i on() ’'simplementation...

The function takestwo shape instances (by reference so they
exhibit run time polymorphism), s1 and s 2, asits parameters
(statement 1). Statements2 and 3 createf i r st andsecond, these
beingtheshape_i nt er sect or instances, and here two things
should be observed:

* Theshape: : creat e() functionis called within the call to
down_cast () sotheinstances, dthough present, never appear
explicitly astypeshape_ext ensi on.

* Inthecdlstoshape: : creat e(), theargumentsare in both
casest ypei d(shape_i nt er sect or), i.e. not the typeid
of the most derived classes. Thisis because the concrete classes
I i ne andar ¢ know they must createl i ne_i nt er sect or
and ar c_i nt er sect or respectively —they only need to be
told they are creating extensions to a type
shape_i nt ersect or, as opposed to any other type of
extension.

Statement 4 is where the intersections (if any) are calculated. The

rest of how this works is very similar to the way in which the

flawed object-oriented solution worked:

shape* shapel = new line();

shape* shape2 = new arc();

And their intersections cal cul ated:

i ntersection_points where =
i ntersection(*shapel, *shape2)

The workings of thei nt ersecti on() function were

explained above, so we now need to look at how

line_intersector::intersection() and
arc_intersector::intersection() work. When

i ntersection() iscaled with shapel and shape2 as

arguments, statement 4 in its implementation results in a call to

theline_intersector::intersection() overload
takingashape_i nt er sect or parameter:

void line_intersector::intersection(

const shape_intersectoré& s,
i ntersection_poi nts& where) const {
s.intersection(*this, where);
/1 Call is re-dispatched...

}

Remember shape?2 has concrete type ar ¢, so re-digpatching the

cdl resultsinacdl toarc_i ntersector::intersection()

— gpecificaly, the overload that tekesal i ne_i nt ersector asa

parameter:

void arc_intersector::intersection(

const line_intersector& s
i ntersection_points& where) const {
line_arc_intersection(s, *this, where);

}

That’s it. At this point the concrete types of both

shape_i nt er sect or sare known, and the calculation (details

of which we are not concerned with here) can be performed.

Phew!

Tradeoffs - In Favour

Intersection logic is non-intrusive with respect to the shape
hierarchy. In the case of the flawed object oriented solution, the
[concl uded at foot of next page]

9

Overload issue 56 august 2003

Stream-Based Parsing in C++

by Frank Antonsen

This paper shows how to implement general parsers as a family
of streams. This allows for very readable, maintainable and
flexible parsers. The method isillustrated with a parser for smple
arithmetic expressions, but can easily be extended to a parser for
a full-fledged programming language. Moreover, the same
technique can be applied to the entire process from lexing to
execution, since actions can be associated with each sub-parser.

Introduction

The parsing of input is a very important problem appearing in many
different parts of software development — parsing user input in the
form of command-line options, the parsing of arithmetic expressons
in acaculator, parsing vaues in a user-defined configuration file or
compiling some programming language.

Thismakesit important to have different pproaches. What wewill
present here in this paper, is amethod of parsing inspired by what is
doneinfunctiona programming (FP). The paper isnat about functiona
programming in C++1, rather it is about how to implement a
particularly elegant ideafrom FPin an object oriented context.

The entire process, from lexical analysis to actua execution of
aprogram can be divided into a number of individual steps:

source -> | exer -> parser -> optimser
-> execution -> output

1 Although, C++ being a multi-paradigm language this would be a worthwhile topic.

In FP, this could be represented by a family of functions:
out put = execution ° optimser ° parser
° | exer(source)
The advantage of this approach is flexibility: it is easy to omit or
modify individual steps, which isimportant for playing around with
different gpproachesin language design or compiler construction.

One could attempt to implement the different sub-parsers as
functions or (better) function objectsin C++. The disadvantage of
doing so, however, is the proliferation of parentheses this would
entail. In C++ there is no operator for function (or functor)
composition corresponding to © above (which may be called many
different things in a functional language — e.g. a period or smply
theletter ‘0’). Nor can such an operator be defined in anatural way
— none of the overloadable operators are well suited for becoming
composition operators.2

Moreover, the presence of too many parentheses makesthe code
harder to read and is hence aso more error prone.

One can consider a function as a stream, however. Instead of
writing x=f (y) onecouldtry towritex << f << y.Here we
do have a natural operator for composition, namely the stream
operator <<. This suggests considering the entire process as a
collection of streams:

out put << execution << optim ser
<< parser << | exer << source

2 That being said, it ought to be mentioned too that the Standard Template Library
(STL) has introduced many FP features, among these a limited support for partial
binding and the ability to write function composition operators, [7], although this still
cannot be done by overloading a natural operator.

[continued from previ ous page]

problem was that derived classes were intrusive on the base class,
and on each other. In the case of the solution that uses ExTension
OBJECTS, classes derived from shape_i nt er sect or are also
intrusive on each other, but there is a very important difference:
thereis no intrusiveness on the shape hierarchy. For example: if
another shape is added, only the classes in the multi-methods
hierarchy are affected.

Note that, in the case of the example of adding another type of
shape (an elliptical arc for example), the bodies of existing
shape_i nt er sect or member functions will not need their
implementations changing. This is a consequence of virtual
functions being used to automate the control flow by placing it in
the hands of the C++ language. By contrast, in the case of the RTTI
solution, the control flow isimplemented directly in the code, and
as a consequence adding the code for a new type of shape means
modifying existing code. In the former case, the absence of aneed
to change existing code means that the chance of introducing an
error into it is reduced.

Tradeoffs - Against

The shape and shape_i nt ersect or hierarchies have
paralel corresponding classes. Working with and maintaining
such paralel hierarchies always creates abalancing act of design.

The most obvious burden is the extra types that now inhabit the
design, and these must be managed —not just in physical terms but
also in addressing the communication issues that arise (more
documentation will be needed).

More subtle isthe lack of any direct mention of intersectionsin
the shape interface, and in the interfaces of classes derived from
it. Here, a consequence associated with applying the ExTEnsion
OsJecT design pattern haunts the design.

10

In Conclusion

Using the object-oriented paradigm does not automaticaly make a
design superior. In the past object orientation has been adopted in the
hope that it would be the silver bullet that would solve al software
development problems. Of course, history now records that nothing
was further from the truth. There were many factors involved, one
being the lack of understanding of object orientation itself. Another
critical factor however, was the assumption that being object
oriented automatically made a design a good one. The flawed object
oriented solution presented earlier is an excellent counter example.

An important lesson is that even good OOD has its costs. It
comes back to the fact that when solving problems with any level
of complexity, thereisno such thing asasolution per-se—thereare
options and tradeoffs.

Finally, the BSI C++ pand are currently discussing a proposa
by Julian Smith to add multi-methods to the language — therefore
this feature may or may not be present in the language when the
next edition of the standard appears. Full details of the proposal can
be found at Julian’s web site (see [Multi-Methods Proposal]).

Mank Radford
References

[Boost] The Boost library (seewww. boost . or g)

[D& E] Bjarne Stroustrup, The Design and Evolution of C++, Addison-
Wedey, 1994

[More Effective C++] Scott Meyers, More Effective C++: 35 New Ways
to Improve Your Programs and Designs Addison-Wesley, 1996.
[Multi-Methods Proposal] Julian Smith’s proposal for adding multi-
methods to C++ (www. op59. net/ cmm r eadne. htm)

[PLoPD3] Robert Martin, Dirk Riehle and Frank Buschmann (Editors),
Pattern Languages of Program Design 3, Addison-Wesley, 1998.

This won't work, however, since << is left-associative. Hence,
either one needs to introduce parentheses once more, e.g., writex
<< (f << y) andsoon, or onewill need to use another, right-
associative operator. The former case will automaticaly suffer
from the abovementioned problems with using function objects.

Conseguently, we will have to use a right-associative operator
instead. Unfortunately, C++ does not allow one to declare an
operator to have a user-defined associativity, soinstead wewill have
to replace << by one of the right-associative operators defined by
C++. Therearevery, very few of these. Infact, the only binary right-
associative operators are the assignment operators+=, * =,.... Thus,
the simplest possible change is to use oper at or <<=. Thisaso
hasthe added advantage of resembling an arrow, more showing the
direction of the flow of data.

Now, even though strictly speaking the sub-parsers won't be
stream objects, we will still refer to them as such by analogy to
ordinary streams (/O stream, file streams, string streams) present
in C++. Thereason being that the defining feature of astreamisits
ability to processinput and to be pipelined, whichis precisely what
our generalised stream will do.

In this paper, we will concentrate on theparsing step, but in such
away that the remaining steps of the process could beimplemented
in asimilar fashion. In fact, we will see how to make a simple
modification to our parser and turnit into an expression caculator.
For concreteness, we will consider a particular example, which is
simple enough not to introduce unnecessary complications yet
complex enough to be non-trivial. The chosen example is the
parsing of arithmetic expressionslike 1+(2- 3) *4. Wewill only
consider integers.3 Furthermore, we will not worry about the
precedence levels of the standard arithmetic operators—this could
be done by glightly modifying the grammar as shown in for
instance, [1]. It will be shown later how to accommodate thiswith
very few changesto our framework.

Hence, the basic ingredients in our language are;

<digit> =0 1| 2| 3] 4] 5] 6|
71 81 9

<operator> ::=+| - | * | [

<| par > = (

<r par > =)
To this we add the definition of a number as a sequence of one or
more digits.

<nume = <digit>+

Now, a simple expression is either a number on its own or it is
two numbers separated by an operator:

<simexp> ::= <nun® | <nun® <operator> <nune
Such an expression is the smallest string composed from the
symbols which makes sense in this simple language. A general
expression can then be built like this:

<exp> ::= <sinexp> | <l|par> <exp> <rpar>

| <exp> <operator> <exp>

Actualy, the smple expression is redundant and could be omitted by
replacing the first option in the production for <exp>. In any case,
the set of rules above condtitute the entire grammar.

Thebasicideain the FP-style of parsingisto split-up the parser into
afamily of sub-parserseach corresponding to aterm in the grammar,
with specid combinators corresponding to ways of combining these
sub-parsers (therewill be onefor combining them —often just standard
function composition in an FP-language — and one for representing

3 Floating point numbers could be accommodated with small changes, but this will
introduce an unnecessary level of complexity

Overload issue 56 august 2003

optionsin the BNF grammar), see [2-4]. For away to implement part

of thisin another multi-paradigm language, Perl, see[5].

In the functiond language Miranda, for instance, one could writea
parser for this smple language like this (following [2] and ignoring
problemswith left-recursive grammars for sake of illustration):

exp = (exp $then operator $xthen exp) $alt
(literal "(' $then exp $xthen
literal ")') $alt sinmexp

Here, exp, t hen, xthen, al t, literal andsi mexp are dl
sub-parsers (the prefix * $' turns any function into an infix operator in
Miranda, and brackets around arguments are optional in Miranda as
well as in Haskell and ML). The sub-parser oper at or simply
parses operators, while the sub-parser | it er al parses the litera
string given as the argument, and al t is a sub-parser representing
aternatives as given by the symbol ‘| * in the BNF grammar. We
won't be able to reach the same level of conciseness in this C++
implementation though, but we will try to get as close as possible.

Such parsers may not be as efficient as the ones generated by
general high-quality parser-writing tools such as| ex and yacc
(and their variousrelatives such asf | ex and bi son from GNU),
but they have other advantages.

* Readability: By splitting the parser up into a number of sub-
parsers each corresponding to atermin the BNF grammar, there
will be a much closer relationship between the structure of the
entire parser and the original BNF grammar.

» Maintainability: Since the syntax isfairly straightforward and
closely mirrors the corresponding BNF grammar, such parsers
are easy to maintain.

» Flexibility: The same splitting-up aso impliesthat productions
can be added or omitted very easily. Hence, such parsers are
extendable. Furthermore, different versions of the various sub-
parsers can be tried out.

For simplicity, we will assume that the lexing has been done and
resulted in an array of single characters. Thisis of course a rather
trivial lexing (which, moreover, is easy to implement) — most
lexers would return not a list of characters but a list of tokens. In
order to show the power of the technique, however, it is
advantageous to consider such trivial lexers. Such a lexer, for
instance, could be implemented by simply reading from afile, one
character at atime, returning alist of characters read when done.

This paper will be structured as follows: Firgt, the abstract base
classis defined. Thisis avery basic class skeleton, but will form
the foundation of all the richer sub-parsers to be defined later. At
the same time we define the basi ¢ parse tree class and other related
datatypes. Secondly, we introduce some simple general utilities (a
Boolean function for testing for digits and two list processing
functions found in all functiona languages). Next, we define our
first generic sub-parsersfor numbersand operators. Thefourth step
isto define general parser combinators, alowing usto combine sub-
parsersto generate new types of sub-parsers.

All of these geps are completely general and form abasic parsing
library. We then turn to using these general tools to actually parse
integer arithmetic expressions. Thisturnsout to bevery easy and there
isavery, very close reaionship between the BNF grammar and the
actua implementation of the sub-parsers as promised.

Finally, we discuss various ways to refine the framework.

The basic stream class

We will begin by defining a general parse streamor pstream. The
various sub-parsers will then all be derived from this base class.

11

Overload issue 56 august 2003

The parser will need to keep track of a list which is passed on
between consecutive parses. Even though, we will only consider
lists of single characters here, it is worthwhile to work with a
more general set-up, namely that of lists of strings.

Our pstreams will have a state, containing the parse tree
constructed so far. In order to be able to pipe pstreams together,
thereby building more complex parsers from simple sub-parsers,
wewill aso need the pstream to keep track of the remaining tokens.

Hence, we define a new data type:

typedef std::pair<Ptree, List> Presult;
where Pt r ee isthe class defining parse treesand where Li st is
defined by:

typedef std::list<std::string> List;
which will be our basic data structure. Similarly, Pt ree isa
specialisation of amore general parse tree:

typedef ParseTree<std::string> Ptree;

The Par seTr ee classisasimplebinary tree:
tenpl ate <class T>
cl ass ParseTree {
private:
ParseTree *left; [/
ParseTree *right; //
T root;
public:
/'l constructors & destructor
i sEnpty() const { return root==T(); }
i sLeaf () const
{ return left==0 && right==0; }
T getRoot () const { return root; }
ParseTree* getLeft() const { return left; }
Par seTree* getRi ght () const
{ return right; }
void setLeft(ParseTree& Ift) { left = &ft; }
voi d set Ri ght (ParseTree& rgh)

{ right
setRoot (T rt) { root =rt; }
update(T); // used for operators
insert(T); // used for nunbers
i nsert(ParseTree&);

/'l used for

left sub tree
right sub tree

bool
bool

= &rgh; }
voi d
voi d
voi d
voi d
par ent heses
b
The member functions updat e and i nsert are there to alow
parsers to manipulate the parse tree. The former adds a node as
theroot, copying the old tree to the left sub-tree, thisis to be used
when parsing binary operators. The latter inserts a node at the
first empty sub-tree it finds. This is used for parsing either
numbers or parentheses.
Using just recursion these methods could beimplemented simply
likethis:
t enpl at e<cl ass T>
voi d ParseTree<T>::update(T val) {
i f(isEmpty())
throw std::logic_error(
"Syntax error:
Par seTree* newlLeft Subtree
= new ParseTree(*this);

M ssi ng operand");

root = val;
| eft = newLeft Subtree;
right = 0;

12

t enpl at e<cl ass T>
voi d ParseTree<T>::insert(T val) {
if(isEmpty()) {
set Root (val) ;
return;
}
if(getLeft() == 0) {
setLeft(*new ParseTree(val));

return;
}
el se {
if(getRight() == 0) {
set Ri ght (*new ParseTree(val));
return;
}
get Ri ght ()->i nsert(val);
/1 use right recursion
}

}

t enpl at e<cl ass T>
voi d ParseTree<T>::insert(ParseTree<T> &pt) {
if(isEmpty()) {
set Root (pt. get Root());
setlLeft(*pt.getLeft());
setRight (*pt.getRight());
return;
}
if(getLeft() ==
setLeft(pt);
return;
}
el se {
if(getRight() ==
setRi ght (pt);
return;
}
get Ri ght ()->i nsert (pt);
/] use right

0) {

0) {

recursion

}

}
Thei f -statements in the above implementations are the C++

analogue of the argument pattern matching of functional
languages, they are needed to control the recursive steps and to
ensure termination. The code above can be shortened a little bit
and most of the r et ur n-statements can be omitted if one
instead uses nested i f -clauses. While this will make the code a
few lines shorter, | think the present coding style has the
advantage of clearly showing the reader that the function returns
after having handled each special case.

Both methods first handle the case of an empty tree. For
i nsert,thevauepassed simply becomesthe new root, whereas
forupdat e an exception isthrown. Next comesthe case of aledf,
i.e., anodewithout children. Here, updat e insertsthe passed value
as a new root moving the leaf to the left subtree, whilei nsert
merely insertsitsva ue astheleft subtree rooted at the original leaf
node. If the left subtree is occupied, i nsert first tries the right

4 This “pattern matching” is really an advanced dispatch mechanism allowing the user
to “overload” functions not just on basis of different types of arguments but also on
different values.

one, if thisisa so non-empty it usesrecursion to find the first empty
subtree.
The abstract base class, pst r eamis now:
cl ass pstream {
pr ot ect ed:
Presul t
public:
/'l constructors & virtual
Li st const& getlList() const
{ return pres.second; } // accessor nethod
Presult const& getPres() const
{ return pres; } /'l accessor nethod

pres; [// contents so far

destructor

virtual Presult operator<<=

(const List & = 0;
virtual Presult operator<<=

(const Presult& = 0;

b
Notice that only the accessor methods, get Li st and get Pr es,
are non-trivial and that the streaming operator, oper at or <<=is
apurevirtual function.

Writing the parser

We will now turn to the question of actually writing the parser by
splitting it up into a number of sub-parsers as stated in the
introduction.

Utility functions

It is advantageous to define a number of utility functions
representing the basic ingredients of the grammar. This can be
done by defining a few boolean functions like this:

bool isDigit(std::string c) {
return c == "0" [| ¢ =="1" || ¢c =="2
|| ¢ =="38" || c=="4"|] c=="5
|| ¢ =="6"|] c=="7" || c=="8
Il c =9
}

with a similar function i sOper at or for testing whether a
character is an operator. In general, one should write one such
Boolean utility function for each type of symbol in the language.
Hence, we define two such functions, i sDi git and
i sQper at or. Itis, of course, aso possible to define a Boolean
function testing for brackets but since we only have one type of
these it is much easier to simply insert atest ¢ "(" or
¢ == ")" directly in the code than define specia functions
i sLPar andi sRPar respectively.

Of course, a similar result could be obtained by using built-in
functions such asi sdi gi t but the advantage of writing them
ourselves isthe ability to illustrate the generd principle.

We will also need a pair of basic list processing functions
available in all FP languages. Thefirst isfor extracting the head
of alist, i.e, itsfirst element. Thisfunctioniscalled fi rst, car
or hd in various functional languages (Common Lisp, old Lisp,
and ML respectively). Here we will settle for the name used in
Haskell:

string head(List Is) {

return Is.front();

}

Similarly, for extracting the tail of alist, i.e., the remaining
elements, we will write a wrapper around one of the STL list
member functions:

Overload issue 56 august 2003

List tail (List Is) {
I s2.pop_front(); //
return | s2;

renove head

The tail function also goes under various names in the FP-
community, eg. rest, cdr or t|1 in Common Lisp, old Lisp
and ML respectively. Once more, we have settled for the Haskell
name. Note, by the way, that none of these actually change the
list passed to them — we could have declared the arguments
const , but we would then have to use const _cast <> dl the
time, whenever we want to call them, and this would be rather
tedious.

These are the only two list utility functions we will be needing.

The sub-parser for numbers

The entire code for the sub-parser for numbersis very simple,
illustrating the ease of the functional-style parsing. It is

simply:
class pNum: public pstream {
public:
pNun() {};
pNun{const List & I5s)

{ pres = nake_pair(Ptree(),ls); };
pNun{const Presult &pt) { pres = pt; };
pNun() {};
inline Presult operator<<=(const List &;
inline Presult operator<<=(const Presult &);

H
inline Presult pNum :operator <<=(

const List &s) {
return operator<<=(make_pair(Ptree(),ls));

}

inline Presult pNum :operator <<=(

const Presult &pr) {
List |I's = pr.second;
if(ls.empty())
return pr; /1 nothing to parse
std::string ¢ = head(ls);
if(lisDigit(c)) {
return pr; // not a nunber,
}
el se {
std::string val (c);
Is =tail(ls);
whil e(isDigit(c=head(ls)) && !ls.enpty()) {
val += c; /] construct nunber
Is =tail(ls);
}
Ptree pt(pr.first);
pt.insert(val);
return make_pair(pt,ls);

}

do not hi ng

This sub-parser illustrates the basic idea of FP-style parsing using
streams: To parse a particular expression-type, write a very
simple parser (basically just acopy of the abstract base class) and
implement the corresponding oper at or <<= for acting upon a
referenceto aPr esul t -object.

13

Overload issue 56 august 2003

The sub-parser for operators

The sub-parser for operators is almost identical, with the only
significant change taking placein oper at or <<=:
inline Presult pQOp::operator<<=
(const Presult &pt) {
List I's = pt.second;
if(ls.enpty())
return pt; // nothing to parse
std::string ¢ = head(ls);
if(lisOperator(c))
return pt)

Ptree ptt(pt.first);

ptt.update(c);

return nake_pair(ptt,tail (l1s));

}

The main difference between parsing numbers and operators is
the way the parse tree is updated. Parsing numbers simply inserts
the number at the first available empty place, whereas operators
have to identify their operands first and hence use the updat e
method instead. Numbers are typically leaves while operators are
roots of subtrees.

Parser combinators

It is convenient to be able to handle combinations of sub-parsers
aswell, eg. to indicate that a particular token must aways come
after another (sequencing) or to indicate a choice between two
tokens (alternatives). In the BNF grammar, such combinators are
represented by concatenation and by | , respectively.
Combinators are higher-order parsers, taking parsers as
arguments and returning new parsers. In typical FP-
implementations, in Haskell, say, these would often be represented
by currying, i.e., by partia binding of arguments> In C++, however,
it ismore convenient to define new objects. As anillustration, we
will define the following combinators pAl t, for handling
alternatives, pThen, for handling sequencing, and finaly pMor e
for handling one or more occurrences of atoken. Wewill also define
some syntactic sugar by overloading the operators| | , && and ++,
respectively, to be alternative methods to use these combinators.
The combinators are just parsestreams, although higher-order,
hence they are defined by deriving from the abstract base classand
by implementing oper at or <<=. Since they have to be able to
deal with all kinds of parsers, they are defined using templates. In
a sense, one can think of templates as C++'s analogue of such
higher order constructs. One might call them “higher order objects’.
For instance, the combinetor for aternativescan bewrittenlikethis
tenpl ate <class T, class S>

class pAlt public pstream {
private:

T pl,

S p2; /| component pstreans

public:
/'l constructors & destructor
/1l & accessors & operator<<=
b
This class differs from the previous parsestreams in having two
pstreams as internal data members (together with the appropriate
accessor methods). These are just defined, for simplicity, as

5 C++ can also do this in a limited way using bi nd1st and bi nd2nd on
function objects. These are available in the <f unct i onal > header file and
provide one more example of FP-concepts being introduced into C++. See e.g. [7]

14

generd classes of types T and S respectively, relying on compile-
time polymorphism to ensure that these can be used as pstreams.
To actually be able to use this combinator, we must implement
oper at or <<=, This can be done asfollows:
tenpl ate<class T, class S>
inline pAlt<T, S> operator]||
(const T& pl,
return pAlt<T, S>(pl,p2);
/1 alternative way of creating pAl't objects

const S& p2) {

}

/1 definition of how pAlt works is given
/'l by operator<<=

tenpl ate<class T, class S>

inline Presult pAlt<T, S>::operator<<=

(const Presult& pr) {
Presult | pl(pl <<= pr), |Ip2(p2 <<= pr);
/| use conponent parsers
Li st |1=I pl.second, |2=lp2.second,

return (I 1.size() <=12.size())? Ipl:
/'l return best parse

| p2;

}
where we have also taken the opportunity to add some syntactic

sugar by providing pl || p2 as an aternative syntax for
constructing a pAl t -object out of two sub-parsers.
Theimplementation of oper at or <<= isabit naive, but will suffice
for the present case. In general, one may need a more complicated
criterion for “best parse” than smply returning the parse resulting in
the smallest list of remaining tokens, but in our caseit will suffice.
Similarly, the code for pThen, the sequencing combinator, is:

tenpl ate<class T, class S>
class pThen : public pstream {

private:
T p1;
S p2; /1 conponent parsers
publi c:
/1 usual stuff
s

tenpl ate<class T, class S>
inline pThen<T, S> operator &
(const T& p1,

return pThen<T, S>(pl, p2);
/1 alternative syntax

const S& p2) {

}

tenpl ate<class T, class S>
inline Presult pThen<T, S>::operator<<=
(const Presult& pr) {
return p2 <<= pl <<= pr;

}

Finally, the combinator for one or more occurrences of a token,
which would be expressed by a regular expression in BNF,
(t oken) +, can be written as:

t enpl at e<cl ass T>

class pMore : public pstream {

private:
T p; /1 conponent parser
public:
/'l usual stuff
b

t enpl at e<cl ass T>
inline Presult pMore<T>::operator<<=
(const Presult& pr) {

Presult pr2(p <<= pr)
List Is = pr.second;
List 1s2 = pr2.second

while(!ls2.empty() && (Is2.size()
< lIs.size())) { /! something was parsed

pr2 = (p <<= pr2), /'l continue parsing
ls =1s2
| s2 = pr2.second,;

}

return pr2;

}

t enpl at e<cl ass T>
inline pWore<T> operator++(const T pp) {
return pMre<T>(pp)

}
Here, we have settled for a straightforward “procedural”
implementation, one could aso have used recurson (as one would
amost certainly have donein FP) in the definition of oper at or <<=.

In a sense, these combinators together with a parser for literal
subgtrings, pLi t, whichwehaven't given but whichisamost identica
to pNumand pQp earlier, are dl we need to parse anything. Parsing
numbers, for ingtance, could symbolically bewritten as.

pNum = ++(pLit("0") || pLit("1") || pLit("2")
[l pLit("3") || pLit("4") || pLit("5")
[l pLit("6") || pLit("7") || pLit("8")
[l pLit("9"));

which is more or less what one would have written in a functiona
language such as Haskell or Miranda. C++, however, does not dlow
one to define new classes from old ones in this manner, hence one
would have to put this definition of pNuminto the implementation of
oper at or <<=, In the next section we will seethat thisis precisely
what we will do to parse general expressions.

Thereisone morereason, however, one cannot Smply usetheabove
trick to write pNum Parsing numbers, aswell as operators, one needs
to perform certain actions (inserting or updating the parse tree). We
will later see how to associate actions to parsers, but for now we will
haveto make do with custom-written parserspNumand pQp explicitly
taking care of the necessary parse tree manipulations.

The sub-parser for
bracketed expressions

Thisis dightly more complicated. It turns out to be advantageous
to consider bracketing as a kind of parser combinator. Hence,
given a parse stream p we will define a new pstream type just
like we did for pAl' t and the other combinators. This, by the
way, is one way in which our implementation differs from the
normal functiona approach.

The definition of the bracketing combinator, pBr ack, is very
similar to the previous combinators:

t enpl at e<cl ass T>

class pBrack : public pstream{

private:
T p; // internal sub-parser
Presult pr2
public:
/1 usual stuff
b

Overload issue 56 august 2003

Asusud, al of thework isdonein the overloaded oper at or <<=:
tenpl at e<cl ass T>
inline Presult pBrack<T>::operator<<=
(const Presult &pr) {
if((pr.second).enpty())
throw |l ogic_error(“Syntax error.
Cl osi ng bracket expected!”);
std::string ¢ = head(pr.second);
if(c =="(") {
Presult prr(p <<= nmeke_pair
(pr.first, tail(pr.second)));
/1 apply internal parser
(pr2.first).insert(prr.first);
/1 update interna
return operator<<=
(rmake_pair(pr.first,

parse tree

prr.second));
}
if(c ==")") {
Ptree pt(pr.first)
pt.insert(pr2.first)
/1 insert parsed subtree
return nake_pair(pt,tail (pr.second));
//skip closing bracket & term nate recursion

}

return pr; /1 do not hing

}

The only subtlety isin maintaining an interna, temporary parse tree.
Upon returning, thisinterna parse tree will hold the parse tree for the
entire bracketed expression, which can then be inserted into the full
parse tree. This pstream mimics the way human beings often read
parenthesised expressions — one sees an opening bracket and
immediately one begins to parse the interna expression until one
seesamatching end bracket. If nested brackets are found, one resorts
to recursion.

Putting it all together

We now have all the ingredients needed for parsing integer
arithmetic expressions. One could put the previous classes and
functions into general header files to be used for al parsers, and
then proceed to write parsers for the specific language at hand,
which iswhat we will turn to now.

Now, the grammear is recursive and while C++ is certainly capable
of handling recursion (in fact, we have used it frequently in this paper),
thelanguageisnot redly capable of handling recursivedefinitionssuch
as the grammar in its present state. Hence, we will have to introduce
an extralayer of indirection. Rewrite the grammar as.

<aexp> ::= <nunP | <nunP <op> <nune
<sexp> ::= <aexp> | <l par> <aexp> <rpar>
<exp> ::= <sexp> | <lpar> <sexp> <rpar>

| <sexp> <op> <sexp>
The idea is now simply to write three parsers pAExp, pSExp
and pExp. These classes are completely trivia, with al the work
being done inoper at or <<= asusual.
Thefirst sub-parser is.
inline Presult pAExp::operator<<=

(const Presult &pr) {
PO po;
pNum pn;
return pn || (pn & po && pn) <<= pr

}
15

Overload issue 56 august 2003

Notice the simple expression in the last line. It is a simple,
faithful reflection of the definition of the corresponding term in
the BNF grammar.

The remaining sub-parser, pSExp, and final parser, pExp, are
very smple and only their non-trivial oper at or <<=functionwill
be given.

For pSExp the codeissimply:

inline Presult pSExp::operator<<=
(const Presult &pr) {
PAEXP pa;
return pa || pBrack<pAExp>(pa) <<= pr
}
Which, once more, is a faithful representation of the
corresponding definition in the BNF grammar.

Finally, the full parser, parsing general integer arithmetic

expressionsissimply:
inline Presult pExp::operator<<=
(const Presult &pr) {
PSExp ps;
pOp po;
return ps || pBrack<pSExp>(ps)
[l (ps && po && ps) <<= pr;
}
Hence, with the generic sub-parser tools defined, writing a
functional style parser using pstreams is an easy task, which
makes it well suited for language experiments and for rapid
prototyping.

With these definitionsin place, to parse alist of characters, | s,
using this parser, one simply writes:

PEXp pe;

result = pe <<= I|s;
wherer esul t isof type Presul t. For a complete parse, this
would contain a parse tree as first component and an empty list as
second.

Refinements

The previous sections have shown one way to implement
functional-style parsing in C++ using a generalisation of streams
together with operator overloading. Incidentally, the heavy usage
of operator overloading shows one advantage of C++ over a
language like Java that does not support the overloading of
operators. Most of the above could aso be carried out in Java,
but one would then have to use functions instead of operators
resulting in harder to read code. Java dso lacks C++'s features
for generic programming (the templates), although a library
providing some of this support is available. Some of the same
effects could be mimicked in Java, however, by judicious use of
the universal base class Obj ect and frequent casting. Such an
approach will not be as easy to read and will, moreover, be more
error prone than the one presented here. Although a direct
translation of the above C++ code into Java would not be
satisfactory, one could instead use Java Beans — in some sense,
these are able to model a behaviour similar to that of functionsin
afunctional language.

On the other hand, C++ is not perfect in this respect either, sinceit
lacks the possibility of user defined operators aswell as a method to
pecify the associativity of an operator and whether it isto be applied
asinfix, podtfix or prefix. Such possibilities are often avalable in FP
languages, e.g. in ML and Haskell, and they are also likely to be
availablein future versons of exigting languages such as Perl6.

16

The necessity of writing the execution from right to left liesin
the standard OO-convention that y<<=f isreally short for
y. oper at or <<=(f) and hence treats the left hand operand
differently from the right hand one. Thisisaconsequence of OOF's
dispatching rules. If one wanted to make left-to-right parsing work
instead, one would have to define, insideall classes, methods for
handling the different parsestreams. For instance, one would have
to define Li st : : oper at or >>=(T &p) , where the typename
T can be any valid parsestream subclass. This could of course be
done with templates much the same way as was done for the
combinators, but it would also necessitate the writing of awrapper
classfor the List-object in order to be able to extend it thisway. A
much cleaner solution would be to use multi-methods. However,
unlike Lisp's CLOS, these are not directly availablein C++. There
areways around this, of course, C++ being after al avery flexible
language, [6].

A problem not addressed at al in this paper is the problem of
optimisation. Clearly, the parsestreams as developed here are
optimised neither for speed of execution nor for space, but rather
for speed of definition. By this phrase, it isto be understood that
the method isintended for rapid prototyping and for experimenting
with language features. Although the programisn’t low, it would
certainly be advantageous to have the parsestreams run faster in
real-life applications. One simple way of doing thisisto pass a
tree-iterator around keeping track of where the last insert/update
of the parsetree occurred, for instance by pointing to the first empty
subtree. This would speed up the i nsert and update
operations.

Handling ambiguity and precedence

For simplicity, we did not consider operator precedence in the
example above, i.e.,, 1+2* 3 will be parsed as (1+2) * 3 and not
1+(2*3) . Of course, this could always be enforced by
appropriate use of parentheses, but it would clearly be
advantageous to conform closer to the likely expectations of the
end-user.

It is well-known that operator precedence can be handled by
dightly modifying the grammar (see e.g. [1]):

<expr > ci= <term> + <ternmp | <term> - <ternp
| <ternms
<ternp ::= <factor> * <factor>
| <factor> / <factor> | <factor>
<factor> ::= <nunber> | (<expr>)

Thus, at the cost of adding new terms to the grammar, one can
handle operator precedence in the expected way. It is trivia to
change our family of sub-parsers to accommodate this, in
particular since the recursive definitions have been removed in
the same step.

Our parser stream framework worked well for the smple case
of basic arithmetic expressions, but a general grammar islikely to
be ambiguous with the parser effectively having to make certain
choicesat various stages of the parsing. Clearly, it would be of great
interest to be able to handle this case too.

The standard way thisis dealt with in FP is to replace the
Presul t datatypewith another one, [2-4].

In the face of ambiguity, what we have to deal with is not a
single, unique parse, but rather afamily of possible parses Hence,
the proper way of dealing with ambiguity isto introduce anew data
type, let'scall it LPresul t (for List of Parse results). Thisis
defined as:

typedef std::list< Presult > LPresult;
All the parsers must then return this data type instead. This, of
course, necessitates some modifications. Each sub-parser must
now act on all the elements of the list of possible parses.
Consequently, the individual parse trees will have different sizes,
in genera with the largest one corresponding to an empty list of
remaining tokens, and thus to a complete parse.

With these quite simple changes, our parse stream framework
will be able to deal with ambiguous grammars as well.

Adding actions

The FP-style of parsing discussed in this paper opens up further
modifications. In the arithmetic expression example, we saw how
one of the types (the operators) had to perform some non-trivial
operations on the parse tree.

This can be generalised. Instead of just allowing the simple
manipulationsinvolved in parsing binary operators and parentheses,
one could allow more general actionsto be associated with stepsin
aparse.

Various examples could be:

a) a pretty printer, printing out the code in a nicely formatted
manner as the parse goes along;

b) cross-trangdation, trandating each element of a parseinto some
code in another language, in the sameway asyacc and similar
tools do;

¢) execution of the result asit goes aong, in the case of arithmetic
expressions this would be one very natural action to add,
effectively turning the parser into a calculator.

To associate an action with astep in aparsg, i.e., with aparticular

sub-parser, we need two things. First of all, we need afunction to

perform. This is done by using a function object, as this is the
best way of passing around function definitions in C++.

Secondly, we need an operator associating an action with a given

sub-parser. This latter step will be done by overloading the >>=

operator. Hence, given a sub-parser p and a functor f, we will

define p>>=f to be the sub-parser p with the actions given by f

added to it.6 Thisis consistent with interpreting the sub-parsers as

streams: the output of one pstream is sent to the associated
function object for further processing.

The definition of the corresponding sub-parser type, pUse, is
just like the definitions of al the other combinators. Explicitly?:

tenpl ate<class T, class S>
class pUse : public pstream {

private:
T p; /1 conponent parser
Sf; /1 function to apply
public:
/'l usual stuff
b

tenpl ate<class T, class S>
inline Presult pUse<T, S>:: operator <<=(const
Presult& pr) {
Presult pr2(p <<= pr); [/ apply parser
return f(pr2); // apply function — MJST
return Presult

}

6 In monadic parsing in Haskell one often uses the sequencing operator >>= for
precisely this purpose, hence we will use that here too.

7 In most FP languages one would say that f must be of type Pr esul t
Presul t.

->

Overload issue 56 august 2003

tenmpl ate<class T, class S>
inline pUse<T, S> operat or >>=
(const T &pp,

return pUse<T, S>(pp, ff);
/1 alternative syntax

const S &ff) {

}
To use this, one must then define a function object. For instance:

class printer {
public:

Presult operator() (Presult &pr) const ({
std::cout << "Parse tree: ";
(pr.first).print();
std::cout << std::endl <<"
pr Li st (pr.second);
return pr;

}

and ";

b
assuming that a pri nt method has been added to the
Par seTr ee class and that the function pr Li st printsalistin
some appropriate format.

Let| s bealist of characters, one can then write:

pUse<pExp, pri nter> pu(pe, prn);

pu <<= Is;
where pe, prn are instances of pExp and pri nter
respectively. This would then print the parse tree together with
the list of unparsed characters. In fact, precisely such a
construction was used during the test phase of developing the
programs presented here.

Alternatively, one could write:

(pe >>= prn) <<= |s;
leaving the creation of the proper classes to C++. This latter
syntax is probably as close as one will be able to get to the FP-
syntax in C++,

Similarly, one could define afunction object, execut or , which
executes the code found in the parse tree.

Finally, once pUse has been defined, one could redefine pNum
and pOp intermsof i t and pLi t. The former would have to
extract the inserted individual digits, combine them to form a
number and re-insert thisat the proper placein the parsetree, while
the latter would have to extract the operator and call updat e.

Conclusion

We were able to extend the functional-style parsing using sub-
parsers to C++ by defining a generalised class of streams, called
pstreams. With this, we could define combinators allowing us to
build new sub-parsers by combining old ones. With these general
tools out of the way, it turned out to be very easy, once recursion
had been handled properly, to implement the BNF grammar for
integer arithmetic expressions. Moreover, similarly to the
situation in FP, there was a very intimate relationship, in fact
more or less an isomorphism, between the actual BNF production
rule and the corresponding sub-parser, making it very easy to
write such sub-parsers — it would even be feasible to write a
general sub-parser generator to do so automaticaly.

It was also shown how to handle operator precedence and,
perhaps even moreimportantly, ambiguous grammars. None of this
involved major changes to the framework, thus the proposed
framework scaleswell to more complicated grammars such asthose
of typical programming languages.

[concl uded at foot of next page]

17

Overload issue 56 august 2003

EuroPLoP 2003

Conference Report
by Allan Kelly

Exciting. Tiring. Fun. Intoxicating. Mind stretching. Brilliant.
Just a few words to describe EuroPLoP 2003, the annual
European conference on Pattern Languages of Programming held
in Germany during the last week of June. Although, I’'m not
completely sure ‘conference’ is the right word, nor does the
gathering confine itself to programming patterns. 1I'll try and
giveyou an idea of what happened somewhere in Bavaria

Where is it?

The venue, as adways with EuroPLOP, is Kloster Isree, a former
monastery turned hotel and conference venue about 100km west
of Munich. The hotel is set in beautiful countryside outside a
small town — not that you have much time to explore the town or
the countryside, but it adds to the general feeling of cam. The
conference is actually something of a retreat, abeit a retreat
which involvesalot of hard work (and, erh, beer.)

Full price this year was €900, but this included the conference,
accommodation, meals, refreshments and as much beer asyou can
drink — or any other liquid refreshment you may prefer. Asif al
this didn’t make for enough of a bargain the organisers threw in a
brightly coloured yoyo. Who could ask for more?

Who goes to EuroPLoP?

Since everything is included the conference really starts over
breakfast where conversation quickly turns to the conference
itself and all matters patterns. This continues through lunch and
dinner down to the bar and into the small hours of the night.
Only interrupted by traditional conference drinking songs. And
thisis a conference with traditions carried on by a core of regular
attendees.

For the conference newbie this core of regulars could seem off
putting. But everyoneis very friendly and by the end of the first
day thisfeeling is disappearing, is gone by the end of the second,
and by the time the conference ends you fedl like you' re part of an
extended family.

In total there were 65 people at this year's conference.
Unsurprisingly the mgjority of attendees were German but the
second largest group (14) people, were from the UK. Add to this
a couple of New Zealanders, half a dozen Americans, 5-6
Scandinavians and another dozen from assorted other European
countries.

These seem to be split in equal thirds between academics,
independent consultants and regular employees. The academics

have aparticular problem to wrestle with when it comesto patterns,
that is, academia places a particular emphasis on origina work, yet
the very essence of patternsisthat they document known solutions
to problems.

The small scale and interactive nature of the conference means
that by thetimeit comesto leave you have 64 new friends. (Well,
in my case afew less as about 8-9 people are also to be seen at
ACCU conferences.)

At most conferences the speakerslist is one of the attractionsto
pull in the crowds, providing the opportunity to hear known
speakers address atopic. EuroPLoP doesn’t have any speakers, no
big names, instead there are authors, and most of the attendees are
themselves pattern authors. And rather than receiving a speakers
list before the conference, you leave with a participants list. This
leaves me thinking the conference is kind of upside-down.

What do you do?

Like any conference EuroPLOP is split into sessions, punctuated
by meals and coffee breaks. The sessions though are split into
Workshops and Focus Groups — the former in the morning and
the latter in the afternoon.

Workshops are an opportunity for workshop membersto review
the patterns presented by the members of the group. These have
been submitted and shepherded in advance so are dready of high
quality. The author introduces their paper then steps back,
becoming afly on thewall whilethe group discussthe paper. Only
at the end is the author allowed to return and talk, and then he/she
isonly allowed to ask for clarification, they do not engage in
defence of the paper.

The objective is to improve the paper. Over the months
following the conference the author incorporates those suggestions
they wishtointo their paper. Therevised paper isthen resubmitted
to beincluded in the conference proceedings. Thisisanother way
in which the conference is upside-down, the papers which make it
into the proceedings have been changed from the papers presented.

I’m glad to say that my paper, a pattern entitled Encapsulate
Execution Context, was well received by my group. However,
when they turned their attention to improvements it can be most
frustrating as the group discusses changes you have already
wrestled with, or different group members contradict one another.
Receiving feedback, even that meant positively, can be abruising
experience. Only later when | had a chance to write up my notes
and reflect on the experience could | honestly say it wasall positive.

Most of the afternoon istaken up with focus groups. Theformat
of each group differs depending on what the workshop leader(s)
wish to achieve. For example, one of this year’s groups worked
with Lego Mindstormsto build robots. Thegroup leader’ sintention

[continued from previ ous page]

Moreover, we showed how one could associate actions to
individual sub-parsers thereby dramatically extending the
possibilities of stream-based parsing. The associated actions could
be used to create a pretty printer, or even to trandate or execute the
code.

Srank Untensen
f rankant onsen@et scape. net

References

[1] J. C. Martin, Introduction to languages and the theory of
computation, 2nd ed, McGraw-Hill (1997).

18

[2] G. Hutton, “Higher-order functions for parsing”, J. Funct.
Prog. 2 (3), p323 (1992).

[3] J. Fokker, “Functional parsers’, Lect. Notes of the Baastad
Sring School on Funct. Prog. (1995).

[4] S. L. Peyton-Jones, D. Lester, Implementing functional
languages. A tutorial, Prentice-Hall (1992).

[5] F. Antonsen, “Functional programming in Perl”, to appear in
The Perl Review.

[6] A. Alexandrescu Modern C++ Design : Generic Programming
and Design Patterns Applied, Addison-Wedey, 2001.

[7] N. M. Josuttis, The C++ Standard Library. A tutorial and
reference, Addison-Wedey, 1999.

was to investigate the pattern discovery process by looking for
patternsin robot construction.

Another group discussed team working and practices for human
interaction in groups. Again the objective was pattern discovery.
This meant working in small teams and discussing what we do in
the work environment and looking for documentable practices.

In addition to workshops and focus groupsthere are avariety of
other activities such as writers' groups and birds-of-a-feather
sessions. Thethird night sees a grand banquet during which prizes
are awarded, some serious, some humorous.

I’ve heard you play games at
EuroPLoP?

Something which marks out EuroPLoP from your average
conference, and even your not so average conference, is the
presence of games and art. The conference has a resident artist
who runs an art studio and organises games at severa breaks
during the day. The games are non-competitive and not
necessarily physically demanding — although some attendees
made a decision not to offer themselves for stage diving!

Apart from having some good fun thereisaseriousintent behind
the games. Giving feedback to people can be difficult, and it can
be more difficult to hear people talk openly about one’ s own work.
However, it is hard to take any of this personally when the person
giving it was sitting on your knees last night.

Thereisaso alot of humour a EuroPLoP. This occursinside
meetings where there is a very relaxed, upbeat atmosphere, in the
drinking songs and in the conference’s own daily magazine.
(Although Overload readers may have felt strangely at home with
a magazine edited and largely written by two regular Overload
contributors.)

The games also add to the sense of “getting to know you” that
breeds trust and creates a sense of community between the people
there. In a sense, the conference didn’t end when everyone went
home, it goes on, each of usis part of something bigger than
ourselves that will continue to evolve.

Where are patterns going?

If anyone 4till thinks Patterns equals the Gang of Four (Gammaet d,

1994) book and “Pattern Languages of Programming” (PLoP)

means the conference concerns itself with just programming or 1T

matters, now isthetime to wake up and smell the Bavarian Beer.

Infact, | think the pattern | presented was one of the most GoF
like asit concerned itself with acommon high level programming
technique. Other patterns in my workshop dealt with embedded
systems — giving their example in assembler code — or techniques
for using Aspect Oriented Programming. Other workshops|ooked
at pedagogical patterns, use case patterns, pattern writing,
leadership patterns, and even patterns of shepherding patterns.

| detected three trendsin patternsin the papers presented and the
conversations about patterns:

* Pushingtheboundaries: pattern writers are starting to explore
the boundaries of what patterns can do and where they can be
used. As already mentioned academia has problems with
patterns, however, thisis not stopping some academics from
trying to use them and research with them. A recurring theme
was the use of patterns as aform of knowledge management.

» Application to new domains: software people may have
adopted patterns from architects but they have been more
successful than architects in spreading the word. Fields with

Overload issue 56 august 2003

immediate relevance to software are now starting to experiment

with patterns, educators are starting to write pedagogical

patterns, whilethe I T security community isattempting to frame
much of their work as patterns.

+ Dividon of patterns: another recurring themeisthe correct “level”
or “audience’ for patterns. Some people are exploring how wemay
group patternsinto hierarchies, so wemay have abstract patternsat
the top, with other implementation patterns forming asecond layer
of concrete patterns. For example, an abstract pattern may describe
how to implement a scheduler, while a concrete pattern would
extend this to techniques on DOS based computers. Thereisaso
adebate asto whether thiskind of information is best presented as
aconcrete pattern or as a case Sudy.

Others are interested in how to present patterns to different

audiences. A format and content that is great for an

inexperienced developer may not work so well for a battle
hardened veteran. Even one's own demands on a pattern may
change when the document moves from being an introduction
to being areference. What is the solution? Multiple styles?

Hypertext?

What isincreasingly clear isthat patterns can lend a more human
dimension to technical literature. This may occur directly,
through patterns about human behaviour, or through the
presentation of highly technical information in more accessible
formats. Either way, the greater emphasis on people makes
patterns a useful knowledge management tool.

(Now | come to think about it, | seem to recall Jim Coplien,
either in print or morelikely at an ACCU conference talking about
Christopher Alexander’s reaction to software patterns. If | recall
correctly, he thought that the software community wasn't paying
enough attention to the human aspects of patterns. Maybe the
software patterns community is now addressing this, or maybe
Alexander didn’t realise that by computer industry norms, the
patterns community does appreciate people more.)

What else?

What else can | say about EuroPLoP? | got home and felt asiif |
had been running for three days, physicaly it was very tiring.
This was not just from the games and beer, the conference
maintains avery high level of intellectua activity. My body may
have been exhausted but my mind felt like it had been given a
workout in amental gym.

Much of the credit must rest with the conference regulars who
form the pattern community, and in particular the European patterns
community centred on Hillside Europe. Thisisacommunity with
a noticeable ACCU overlap, | counted about 10 participants had
been to one or other of the ACCU conferences — most notably the
programme was chaired by our own Kevlin Henney.

Different conferences fulfil different roles. Academic
conferences may belittle morethan presenting papers. Commercia
conferences may be glorified training sessions. For me EuroPLoP
was about two things. Firstly it was about contributing to the
growing body, and secondly it was about growing as a person and
opening myself to some new idess.

Would | recommend it? Yes with one reservation: if you are
going, be prepared to be open, thisis not aconferencefor those with
fixed ideas, fears or apoint to prove. Itisaconference whereyou
give and you receive, and like Christmas, much of the pleasure
comes from the giving.

lhan Felly

19

Overload issue 56 august 2003

Three Phantastic Tales
by Alan Griffiths

When people work together (and most software development
involves people working together) they are often not pulling in
the same direction. When you notice that others are pulling in a
different direction it is natural to assume that they are the cause
of the problem. After all you know that you are not doing
anything stupid. But in redlity the behaviour of your colleagues
isn't stupid, it isjust strange, because you don’t understand what
they are trying to achieve. And you can’t fix what you don’t
understand.

Strange behaviour requires explanation, and the form the
explanation takes reflects the prevailing cultural context.
Behaviourists will talk of “conditioned responses’, psychologists
of “archetypes’, evolutionists of “memes’, and I’'m going to talk
of ghosts On onelevel these particular ghosts are anarrative device
but, on another, they are very real and pose adanger to any project
that is visited by them. Anyone experienced in software
development will recognise the spirits in the stories that follow. |
have met them many times with many names but, to protect the
people who have been possessed by them, | have chosen to use
names that reflect their essence.

These shades are Mr Deadline, Seymour Checks and Noah
Shortcut; the first of these is a project manager and the others are
developers. Each of them contributes to the failure of a project,
although each isworking in away that isarational responseto the
way they see events unfolding.

Mr Deadline’s tale

Like most project managers Mr Deadline has alot of demands on
his time. He keeps the customer and management informed and
contented with progress of the project. He ensures that the
equipment, software and developers required for the project are
available when they are needed. And he ensures that work is
allocated to and completed by developers.

With so many demands upon histime he seeks simple strategies
for satisfying them: create a plan against which he marks off
progress, predicts when resources will be needed, and records the
allocation and completion of development tasks.

At the beginning of the project he gives out the first tasks to
Seymour Checks and Noah Shortcut and, happily, both tasks are
completed on time. But, as the project progresses, he finds that
although Noah continues to complete his work on time Seymour
takes longer and longer to complete his work and the project falls
behind the planned schedule.

Adding developersto the project helpsalittle, but none of them
are as productive as Noah Shortcut (or as slow as Seymour). Mr
Deadline ensures that all the critical elements of the system are
completed on time by giving them to Noah, while anything less
urgent (or unplanned) is passed to the less reliable developers
(Seymour and the others).

The project continues to fall further behind schedule and,
additionally, some serious bugs are detected during testing and
acceptance testing leading to significant delays through rework.
Eventually, the planned delivery date is reached without all the
work being completed to an acceptable standard. The project has
failed to deliver (and, because of the extrastaff, isalso over budget).

Sometimes a project will be cancelled at this point, but in this
case the project continues. Mr Deadline is required to fix the
problems as soon as possible but also comes under pressure to

20

release staff to the next project. In the hope of avoiding a repeat of
these problems the next project is staffed with the most productive
developers. After awhile Seymour isleft as the sole developer on
the project to fix the remaining problems.

Eventually, al the problems are fixed and the project brought to
an (unsuccessful) conclusion.

Noah Shortcut’s tale

Noah is bright, eager and understands the need to minimise the
amount of time and effort spent on the project. From the moment he
receives hisfirg piece of work heistrying to avoid any activity that
would delay the ddivery of that work. When he looks through the
documentation for that work there may be a few things that he
does’t fully understand, but he can see what classes and functions
he needsto write—which isal he needsto sart cutting code.

Once the code is done the job is almost over — he just needs to
integrate it and check that it is working. He spends some time
exercising his code through the debugger “to make sure it works”,
fixing any problems he encounters, and he can soon announce that
he's finished.

Astime passes his confidence grows. he alwaysfinishesontime
and is trusted with all the important new stuff to write. He's aso
very awarethat the project is behind schedule—and he does his best
to catch up by finding new shortcuts through the project processes.
In particular, he finds that he can reduce the time spent checking
hiswork: if the testersfind problems he can fix them easy enough;
and, since they don't find many, this approach avoids a duplication
of effort.

When the last piece of functiondity is handed over Noah feels
a sense of triumph — there are probably a few bugs to fix, but the
hard partisover. And, in recognition of thisachievement, Noah and
the other great programmers are moved onto the next project to
work their magic there!

Seymour Checks’ tale

Degpite the impression one may gain from Mr Deadling's story,
Seymour writes reliable code quickly. Why then does he take so
long completing histasks?

When Seymour receives hisfirst piece of work he readsthrough
the documentation and makes notes on anything that isn’t clear and
on how hewill prove the code that he writes (to be specific, hedoes
this by writing automated tests). Then he seeks clarification on all
theissues, writesthe code and checksit works (by running histests)
before announcing he' s finished.

As the project progresses he finds that more and more of his
work relies on existing code. Where this is code Seymour wrote
himsdlf it is clear what the code should be doing and there are tests
that demonstrate that thisis indeed what it does. Where another
developer wrote the code this is not the case and it is frequently
unclear whether the code achieves its intent. At first Seymour
assumes that his colleagues have validated their code. But after
repeatedly finding that his code is failing because of errorsin the
existing codebase Seymour becomes disillusioned with the dapdash
work of his colleagues.

Because in addition to the work assigned to him, Seymour is
fixing problems in existing code, he begins to fall behind Mr
Deadline’ s schedule. Seymour is conscious of these delays and
especialy of the length of time it takes to prove that the problem
isn't in his new code and to locate it. So, in an effort to find and
correct these problems effectively, he takes to writing tests for any

existing code he uses that is missing tests and fixing the problems
he discovers. However, as more and more code is added to the
project (and as changes are made to the production code without
updating the tests) the effort of doing this leads to an even greater
overhead to Seymour’s activities.

Only when the codebase in the project begins to stabilise
(because no more features are being added and developers are
leaving the project) does it become possible for Seymour to make
progress in addressing the many bugs hidden in the codebase.

Seymour isthe last devel oper on the project: the hero tracking
down and fixing the problems that others left unresolved.
Eventualy he succeeds: the system reaches an acceptable standard
and work on the project is brought to aclose.

Why does the project fail?

Clearly the above tales are different views of the same failing
project, and each of the tales describes someone who is doing
their best to ensure that the project succeeds. There is no evil
villain plotting to prevent the success of the project, nor anyone
doing anything that is obvioudy stupid at an individual level. The
problem lies in the interaction between individuas — our spirits
do not consider the effect that their actions have on other project
members or the project asawhole:

» Mr Deadline attemptsto speed up the project by getting each piece
of work done asfast aspossible. But the pressure that he placeson
Noah and Seymour promotes hidden rework and this dows down
the project. He cannot see thiswithout understanding the dynamics
of the project as awhole. Unless he redlises that he is part of the
problem he will resigt changing his behaviour.

» Similar comments apply to Noah Shortcut who is going as
quickly as he can but, in doing so, produces careless work that
(sooner or later) needs rework and so delays the progress of the
project. Once again, unless the connection is made apparent then
he will continue to focus on speed to the detriment of progress.

* By now you should see the pattern: Seymour Checks' effort to
remove the bugs conceals the level of rework and prevents it
being recognised as aproblem. But, without an appreciation that
thisis happening, he won't change his approach.

One reason that I’ ve discussed these stories together is that these

spirits travel together. Once a team member succumbs to one of

the spirits they (unintentionally) encourage the other behaviours.

This point is important when effecting an exorcism, so we will

examine this mechanism more closely now.

By not enforcing an adequate quality check on the work done
Mr Deadline creates an environment that encourages cutting
corners. The spirit of Noah Shortcut will soon possess anyonewho
looks for the simplest way to complete a task. The opportunity to
cut corners also affects Seymour Checks — although his self-
disciplineissufficient to keep him from shortcutsit also temptshim
to the opposite excess (introducing redundant tests). Mr Deadline
also fails to ensure that rework is recognised as a continuation of
the original task; this creates an environment that encourages
Seymour to “just go ahead and fix it” and keeps from Noah an
awareness of the cost of his carelessness.

Noah Shortcut’s need for speed will lead him to skimp on any
quality checks included in the project process (review meetings,
tests or whatever) and to discourage any such “time wasting”
procedures. Mr Deadlineis eager to speed things up and will listen
sympathetically to ideas that will “save time”. At the same time
Noahisleaving atrail of careless mistakes through the codebase —

Overload issue 56 august 2003

while each time Seymour is tripped up by one of them he becomes
more determined to root them all out.

Seymour Checksis keeping key information to himself: the cost
of the time spent fixing other people’s mistakes. To him it is
reasonable: by the time he' s found the bug, it is quicker and easier
tofix it than to explain it to someone else (who is probably in the
middle of something important). But if Mr Deadline isn’'t aware
that rework is happening (and that it ismainly in work produced by
Noah) then he will assume that the code is of an adequate quality.
Equally, if Noah isn't made aware that he is making mistakes he
will not try to rectify them.

How to fix it

The first step is to be sure that what is going on realy matches

thetalesI’ve told. Not every project manager is Mr Deadline, not

every quick programmer is Noah Shortcut and not every slow
programmer is Seymour Checks. But they are easy to recognise
once you know their characteristic behaviours.

Now, it is pretty well known that if people are to be changed they
must first want to change. And unless your colleagues (or you) reglise
that they are possessed by one of these three spirits then they won't
takeany stepsto exorcisethem. Accordingly the next stepistoexplain
to them just what is going on. Thisisn't easy because, asthe tales
illustrate, each of them is already doing his best according to his
understanding. The soriesare auseful device to Sdestep thetar pit of
telling people they are doing something wrong. It is human nature to
reect defensively to such aconfrontationa approach (which dlowsthe
ghosts to entrench themselves). The stories are much less threatening
— 0 fed freeto use them to present the case for change.

Until | came up with these stories| struggled to get the necessary
ideas across. Naturaly the stories are not enough: you must tell
them at the right time and have evidence to show that they apply to
the current project. For example: you might find occasion to tell
your project manager how substandard work products can impact
downstream tasks and use the story of Noah Shortcut to illustrate
that his fastest programmer could be aligbility. He won't know if
thisisreally what is happening on his project, so you also need
evidence that Noah's shortcuts are costing other people on the
project time. In one recent case |'d just told this tale to the project
manager when theintegration test team complained that it had been
stalled for two hours trying to compile the system. A little
investigation showed that Noah had checked in a change without
first building the system properly. (This led to a tightening of
procedures and awillingnessto consider the other tales.)

There are no guarantees: the battle isn't over once there is
agreement that thereisaproblem —habitsdo not change easily. The
ghostswill still put up afight! Y ou will need to have an answer to
the argument that “there isn’t anything we can do about it”. The
different spirits have different ways of putting it:

» Mr Deadline will tell you that “I can't tell if a piece of code
works until it is tested. And, after abug isfound in testing and
someone hastracked it down to the right piece of code, it would
take too long to give it back to the original developer.”

» Noah will see most suggestions as a waste of time: “there are
always bugs regardless of any checking process— so why knock
yourself out trying to eiminate them?”’

» Seymour will tell you that “I’ve already done most of the work
tracking down the problem, people don’t want to do anything if
| do tell them and | don’'t want to make a big deal of it.”

[concl uded at foot of next page]

21

Overload issue 56 august 2003

A Unified Singleton

Framework
by Jeff Daudel

Introduction

Software systems often contain objects that exist for the duration
of the program. A relatively small system may have only a
handful of these objects, where a large system could have
hundreds. At first glance, maintaining these objects, including
their creation and destruction order, may not seem too difficult.
However, closer inspection reveals the true magnitude of the
complexity involved. Only ten such objects have over 3.6
million different orderings, one hundred objects have a number
of orderings that is represented with 157 zeros. Now consider
periodically adding or modifying the relationship of these
objects. In asystem where core systems and even piecesin those
systems are built with these objects, it would not be unreasonable
for a system to have many ongoing changes, even if it were well-
designed. Accounting for al these factors, maintenance of both
the proper orderings and all the dependencies can quickly
become anightmare.

Many developers attempt to handle these objects by hand and
encounter difficulties. Others conclude that large C++ systems
cannot be written without automated garbage collection, and |
would say that the belief hasalot of credit given the numbers they
areup against. But garbage collection can be costly. Therun-time
and memory overhead, coupled with its complexity, make it
unacceptable for many applications. And | would haveto ask, “Is
this the best we can do to handle such acritical problem?’

Additionally, let me add that this may not even be an isolated
problem, but only one of several unaddressed issues of a common
design pattern. Similar problems exist and are more prevalent as a
system grows. Thisdesign patternisapowerful tool to build complex
C++ sygtems, but it so might have afew gaping holesin its support.

The pattern | am referring to isthe singleton. | believeitisone
of the most fundamental patterns for a software foundation. If a
system consisted purely of objects, singletons might be the only
reason to have the word “the” in a programmer’s vocabulary.
Anyone that ever said, “the manager”, “the renderer”, or “the
startup state” would bereferring to aspecific singleton object. But
just because something has a lot of potential, does not mean a
gloomier side doesn’t exist. Unfortunately in software, the
gloomier side is usually in the implementation details. The
singleton pattern is no exception.

Inthis paper, | will outlinethe classical singleton patternin more
detail. 1 will present ageneric system that will not only providethe
basic capabilities of the singleton pattern, but will provide severa
other useful abilities. 1t will extend the notion beyond the current
scope of a singleton to provide answers in alarger context of
problems. | will discuss the common problems that occur when

implementing the pattern in the C++ language. | will then describe
how the system attempts to solve al the issues, even on massive
scales.

More specifically, the new system will deal with:

1 Integrating two different families of singletons — static and
dynamic

2 Handling massive numbers of dynamic dependencies

3 Deducing avadid destruction order for all singletons

4 Providing robustness by detecting cyclic dependencies and
invalid uses of the system

These benefits, along with several others, will be provided to the

programmer at a cost of usually two lines per object.

These capabilities form “A Unified Singleton Framework”. It
atempts to unify common problems of all such objects. It unifies
different classifications of singletons. It unifies their solutions,
relieving the usual hand crafting on an object by object basis. Once
| have demonstrated this system to you, | hope you will agree that
you would not want to write another system without using the
unified singleton approach.

The Classic Singleton

Thefirst book to formally document the singleton was the Design
Patterns book by Gamma et al. The book describes singletons as
objects that have two properties — global access and single
instance. Let’s examine each in turn.

Global access could be another term for “convenient access”.
The benefit of easily accessing an object, such asnot having to pass
aparameter through a multitude of functions, isless code and less
up-front planning. This together means simpler. One downside to
a singleton being globally accessible, is that it conflicts with the
principle of encapsulation. If there were away to make an object
conveniently accessible but only selectively availabletoitsintended
audience, therewould be room for improvement on the pattern. But
current methods of restricting access encroach on convenience,
which would void the primary reason in the first place.

The second principle assures the use of the same object. Many
assumptions and synchronization requirements rely on this
singularity, and the singleton pattern delivers thiswell.

Singleton Usage

Consumers of singletons really care about one usage feature —
getting a singleton. They need not concern themselves when
singletons are created or destroyed, or the dependent relationship
between one singleton and another. Nor do they care about
where they came from, where they live, or what parameters were
needed to create them. They proclaim, “Give me! No Details
Please!” | will demonstrate thisin code shortly.

It isthis “getting” that provides the simple interface into the
singleton abstraction. The following is an interface for singletons
which covers all possible singleton classes. It is a templated
function that takes the singleton class as a type parameter.

[continued from previ ous page]

Y ou need answers that fit your organisation (like using pair
programming, test harnesses or code reviews to ensure the
standard of work). These are all techniques that focus on quality
— but the truth is that is it quicker to develop things right than to
develop them wrong and then fix them. This is often a hard
cultural change for an organisation because the connection
between quality and progressisn’t easy to make explicit.

22

Whatever working practices you try to introduce you also must
lead each of the affected individuals to redlise that their habits are
causing problems on the project. Unless the majority of these
individuals are prepared to change at the same time the individuals
concerned will return to the “comfort zone” of their habitual
behaviour and the project will dip back into failure mode.

lan Guiffiths

al an@ct opul | . denon. co. uk

t enpl at e<cl ass TSi ngl et on>
TSi ngl et on* Get Si ngl et on();
Using the interface, an example of singleton usage would be:
Get Si ngl et on<Printer>()->
Print (CGet Si ngl et on<DocManager >() - >
Get MyDocunent ()) ;
This shows two singletons, Pri nt er and DocManager , being
accessed in the same line. No previous preparations were made.
No objects had to be passed in. This is especialy useful for the
main function, since no objects are ever passed in.

Making a Singleton

How difficult is it to make a class a singleton? This is a good
guestion since many highly regarded books have differing
opinions. Effective C++ by Scott Meyers, and the Design
Patterns book present dightly modified versions based on what
appear to be a similar theme. You might have to write a half-
dozen or more lines of cookie-cutter code using a static variable
of some sort:

class Singleton {

public:

static Singleton& GetSingleton() {
static Singleton instance
return(instance);
}
private:
Singleton() {}

b

Si ngl eton Singl eton::instance;

Modern C++ Design by Andrei Alexandrescu takes a step
forward in providing some templated classes to alleviate most of
this work, but there are still several template decisions and
instantiations to make. He also presents several usage
modifications that can be applied to individua singletons. Thisis
important given there are probably innumerable variations of
problems. But what is equally important is to allow a system to
deal with these pieces in a unified manner. This will be
demongtrated later on.

If the previous code seems like a lot, that's because it is.
There is a simpler way, and it can be done in two additional
lines:

class log {

public:

APl _SI NGLETON(I og) ;

b

/1 Ina .cpp file

DEFI NE_SI NGLETON(| og_i nmpl) ;

That'sit. | og is now a singleton. Any function can retrieve the
singleton by making the call:

Get Si ngl et on<l 0g>()

The function will retrieve the one and only instance of | 0g. The
| og_i npl classcan bethe | og classitself or any derived type.
This would allow for polymorphic singletons and their
implementations to be encapsulated from the user. The singleton
will be properly created by the time it is needed and destroyed
before the program exits. No further work is needed and no
singleton memory leaks are assured.

Thefollowing isasimplified version of the APl _SI NGLETON
macro. |’ ve temporarily stripped out the notion of multiple types of
singletons, linkages and private data:

Overload issue 56 august 2003

#define APl _SI NGLETON(T)\
class SingletonTraits {\
public:\
Singl etonTraits();\
~SingletonTraits();\
static T* nplnstance;\
J
Singl etonTraits SingletonTraitslnstance
This macro declares an interna class traits type and then makes
an instance of that trait.

Y ou might wonder why not use a templated traits class instead
of amacro. Itisatechnical issue about what can be templated and
what cannot. | will point out later in the article that a unified
singleton can be shared across component boundaries. On some
platforms, such as Microsoft’s Windows, certain linkage specifiers
cannot be templated. One component is required to export the
definition while another component will need to import it. There
is some leeway for member functions, but not for member data.
Although not my preference, macros seem like the only way around
thisissue. But that’sok. The macro/template combination provides
a powerful idiom. The DEFI NE_SI NGLETON() macro has
requirements that cannot be templated either.

Thistrait instance allowsthe system to detect whenever the class
isconstructed or destroyed, by monitoring the respective methods.
Because of this, the system is always aware if more than one
singleton is created, or if oneisimproperly destroyed. It will
immediately notify the user of any invalid usage, making it difficult
to accidentally subvert the system. It will be shown later that some
singletons need to be made by the user at least once, so we cannot
protect the constructors or destructorsfor their implementation type.

For example, if a user attempts to make a singleton class on the
stack, the system will report an assertion. If a user attempts to delete
the singleton by calling delete, an assertion is reported. Thereisn't a
lot of room for misuse, which meanslesstime tracking down errors.

The DEFI NE_SI NGLETON() macroisabit moreinvolved. It
implements several features that are not present in previous
singleton frameworks. | would like to outline their functionality
first before discussing it further.

With these traits, a simplified version of the Get Si ngl et on
template looks like this:

tenpl at e<cl ass T>
inline T* GetSingleton() {
typedef typename T::singleton_traits traits;

if(traits::mplnstance == NULL) ({
Create< T >();

}

return(traits::nplnstance);

}
Most of the difficult work is deferred to the Cr eat e() method

which is defined by the DEFI NE_SI NGLETON macro and
explained later.

Dynamic Singletons

Let’s take another look at a different singleton case. There is one
case in particular that usualy influences a programmer to reject
singleton as a design for managing an object’ s lifetime.

Let’s assume that a program uses a global object called the
“Renderer”. Let'saso say that we want two different versions of
the renderer — one for OpenGL and one for DirectX. They both
utilize the same interface. We want to choose which renderer to

23

Overload issue 56 august 2003

use when the program starts. This means the selection of which
object cannot be made until run-time. We also want to create the
renderer with some run-time arguments.

This is where a programmer may now say, “Oh well. The
renderer is sort-of asingleton, but just doesn’t quite fit the pattern.
I'll have do everything from scratch on this one and manage it by
hand.” Let's pausethere.

This is the case where if something doesn’t exactly fit one's
conception of singleton, then it might not fit at all. But if the
programmer were willing to slightly extend his notion of a
singleton, there would be alot more room to work with.

If you recall, the original usage of asingletonisquitesimpleand
has only one requirement —“ GetSingleton”. If both renderers have
the same interface, then the consumer does not care which version
of the singleton heisgetting. Hewantstheoneand only “renderer”.
Somebody else should have already taken care of selecting which
version the renderer represents underneath.

This is an example of a dynamic singleton. As far as the
consumer can tell, it is no different from a static singleton, which
is bound during compile-time. Consumers just say “get” and they
expect a singleton. Who bound it, created it, or anything elseis
remains unnecessary detail to them.

A dynamic singleton is just as easy to make:

cl ass Renderer {

public:

APl _DYNAM C_SI NGLETON(Render er) ;

b

/1 in the .cpp file

DEFI NE_DYNAM C_SI NGLETO\(Render er) ;
Functions can get the singleton by making the same call:

Get Si ngl et on<Render er >();
The one instance of the renderer will be returned. 1t will either be
the OpenGL or the DirectX version, depending on the setting
code.

The dynamic singleton leads to other benefits aswell. It can be set
by modules that are loaded later in the program, aso called late-
binding. They can also be swapped out for another singleton. For
example, it is possible to swap the OpenGL renderer for the DirectX
version during the middle of the program execution. If al the
consumers use the Renderer interface, they will never be aware of the
difference, dlowing for alot of flexibility. If asingleton must be
created with run-time eval uated arguments, dynamic singletonsshould
be your choice. In contragt, static Singletons are waysready, so there
redly is no appropriate time to provide congtructor arguments.

Y ou might think that thisviolatesthe principle of singleinstance.
From auser’s point of view, there must be only one instance of a
singleton at any point in time. And the unified system assuresthis.
But deleting a current singleton and then immediately creating a
new one to replace it, would not imply multiple instances at any
framein time. Getting the singleton will never be ambiguous,
which as pointed out previously, isthe fundamental requirement of
any singleton framework.

There is a slight extension to the interface of a dynamic
singleton. We need to allow the singleton-producer code to select
which singleton to use, and we do thisthrough Set Si ngl et on:

tenpl at e<t ypenane TInterface
typenanme Tl npl ent ati on>
Set Si ngl et on(Tl npl ement at i on* pSi ngl et on) ;
This method will set the singleton pointer. Any function that calls
Get Si ngl et on() on adynamic singleton that has not been set

24

would be undefined. Notice there is a second templated
argument — Tl npl enent ati on. This type is used as the
derived type when deleting — which means the interface need not
expose a public destructor, and the implementation is kept
encapsulated from the consumer. For trivial classes, the
implementation could be the same type as the interface. When a
dynamic singleton is destroyed, it will be deleted properly.

Contrast thiswith a static singleton. Static singletons are dways
set, and do not support the Set Si ngl et on() interface. If you
wereto cal Set Si ngl et on() onone, the compiler would report
a syntax error. One big advantage of static singletons is that you
can get them during global initialization as well, which occurs
before mai n isinvoked.

Destruction and Dependencies

Now that al superficial interface discussion has been touched
upon, | can discuss the real bread-and-butter of a unified
singleton framework. It solves a problem that is more devious
than most engineers may at first imagine, or at least until they
actually want their program to shutdown without making a
mess.

Asaproject’ slifetime progresses, developersare usualy capable
of getting a program to boot up and eventually load up all the
objects they will need. But, getting the program to shutdown and
actually delete all those objects is usually another matter. The
complexities of preventing one object being destroyed too early
(before another that it depends upon), or of avoiding an
unanticipated cyclic dependency during the devel opment, are often
realized too late. A program may not be able to shut itself down
cleanly without crashing and might have to rely on the operating
system to abruptly kill the process.

The solution to this problem lies in well-defined dependencies.
If the singleton framework knows the proper dependencies, then
this problemiseasier to solve.

Let’s say there areakeyboar d, al og and adi sk. The
keyboar d writesto thel og. Thel oginturnwritestothedi sk.
Thekeyboar d dependsonthel og, and thel og dependson the
di sk. It would look like this:

keyboard -> | og

log -> disk
There is only one proper destruction order if a dependee were to
aways be available to its dependent:
1 Destroy keyboar d (no object depends on it)
2 Destroy | og (keyboar d isaready destroyed)
3 Destroy di sk (keyboar d and| og are dready destroyed)
In Modern C++ Design, Andrei Alexandrescu suggests that a
programmer could manually assign longevity numbers to
singletons to convey these dependencies. This is certainly
plausible if there were only a few objects, but what about a
dozen? Longevity numbers themselves have no inherent
meaning; they are only relative to other singletons. As a system
develops, some of those singletons will change. And if you recall,
ten objects already have 3.6 million different longevity orders. If
a programmer were able to continually consider 1,000 of those,
there would still a few million he was omitting. This is an
intractable problem. Onething | learned in my computer science
classes, | could spend my time more wisely than trying to solve
an intractable problem.

Y ou might be tempted to think that finding an order for tenreally
isn't that hard. If there are only a couple dependencies between

singletons, finding one usually isn’t. But every time a new
dependency is introduced, the entire order needs to be reevaluated
and could change. As the system grows and more code needs to
get shared, the dependencies will get complex. That is when the
magnitude of this problem usually shows up.

Andrei does suggest an alternative by aluding to a dependency
manager for singletons. But he also brings up a separate
optimization issue in that singletons that are not explicitly used
should not be created. The overhead of unused singletons could be
inefficient. Because of this, references must be placed in the
dependees that refer to the dependents. Using the above example,
thedi sk would havetorefer tothel og. Therelationshipswould
then look like this:

| og- >di sk

di sk->l og
This would cause a circular dependency. Due to this, Andrei
dismisses the idea of singleton dependencies atogether.

| would first have to examine the reasoning for such an
optimization. Most singletons that are at the system-level will
eventually be required anyway and must be alowed for. Another
difficulty is that one dependent may have multiple other
dependents, forming a large dependency tree. Temporarily
optimizing out a root singleton may prevent many other
dependencies from being specified. It may not be possible to
recover these at alater point in the program.

If asingleton’s creation overhead is really significant, there
are alternative solutions available. The overhead could be
moved out of the singleton’ s constructor and into the first usage
of the object, such asin its member methods. For example, in a
| og class, afile could be opened when the “logging” method is
first executed. | would describe the benefit of this removal
optimization as minimal compared to the enormous difficulty of
obtaining a proper destruction order out of a million
possibilities, or even a number represented with 157 zeros. To
put thisin different perspective, | wouldn’'t want to be distracted
away from a taming a man-eating beast because a small mouse
crossed my path.

The reason why correct dependencies will find a proper
destruction order is that the unified singleton framework has a
“Singleton Stack”. Whenever an object is fully constructed, it is
pushed on to the singleton stack. When the program exits, it will
destroy the singleton stack in the reverse order it was created.

To specify a dependency, there is an additiona line of code in
the dependent’ s constructor:

di sk::disk() {}

log::log() {

Get Si ngl et on<di sk>();

}

keyboard: : keyboard() ({

Get Si ngl et on<l 0g>();

}

A rule of thumb that has been helpful to meisthat if you access
another singleton in any member function (or the destructor),
then you must get the singleton in the constructor as well. | call
this the principle of “symmetric getting”. The result will be
correct dependencies.

A couple of othersthingsto note. Static singletons are created
during their first get. Singletons are not added to the singleton
stack until their constructors have completed. So no matter
which singleton is requested first — di sk, | og, keyboard,

Overload issue 56 august 2003

the singleton stack will always be the same - di sk,
keyboar d, then| og.

If | ogisaskedfor first, | og will createdi sk and put it on the
stack first. If keyboar d isasked for first, it will createdi sk and
then | og and then keyboar d. Thisis very similar to how
constructors in derived objects work in C++. It represents the
essence of dependencies.

Cyclic Dependencies

There is also one inherently invalid sequence of dependencies —
cyclic dependencies. When cyclic dependencies are introduced,
they eventually lead to an infinite loop. Thus they always need to
be avoided. For example, if we had these dependencies:
log::1og() {
Get Si ngl et on<di sk>();
}
di sk::disk() {
Get Si ngl et on<l 0g>();

}

Which should be created first? Which should be destroyed first?
There is no correct answer. But that’'s ok, since the unified
singleton framework will detect cyclic singleton dependencies
during run-time. An assertion will be encountered if one exists.
This means that if no assertion is encountered, you are
guaranteed to have a non-cyclic singleton design, which could
otherwise be very difficult to prove in a large system. You can
then rest easy as a maintainer of such a system. This also
guarantees that there exists a correct destruction order, and the
system will be able to invoke that order — another comforting
thought.

Putting it all together

Now that I've touched upon the main issues that the unified
singleton framework addresses, we can return to the Cr eat e
method which isinstanced by DEFI NE_SI NGLETON() macro.
At ahigh level, it implements the following:
1 Creation code for the polymorphic implementation type.
2 Registering the singleton onto the “ singleton stack”
3 Tracking al possible states a singleton may bein.
4 Detecting misuse— cyclic dependencies, multiple runtime-bound
singletons
Here is the Cr eat e method from the static singleton
implementation:
tenpl at e<typenane T, typenane TCreatePolicy,
t ypename TThreadPolicy = BasicThreadPolicy>
class static_singleton_inpl
public singleton_inpl<T> {
static void Create() {
T*& instance = Instance();
TState& state = State();
if(state Constructing) {
/1 Cyclic construction was found
ASSERT_MSG(0, "Cyclic
si ngl et on dependency detected");

}
else if(state Destroyed) ({

/1 Accessing a dead singleton
ASSERT_MSG 0, "Accessing
dead singl eton");

25

Overload issue 56 august 2003

el se {
/1 must be in uninitialized state
ASSERT(state == Uninitialized);
/1 set constructing state
state = Constructing;
instance = TCreatePolicy::Create();
/1l after instance has conpl eted
/1 construction, register it on the
/'l singleton stack
state = Constructed;
Get Si ngl et on<Si ngl et onSt ack>() - >

Regi st er (Destroy);

/'l register an atexit call
atexit(AtExit);

}

}

}
The method is primarily responsible for dealing with two

variables — the instance and its state. It treats the singleton as a
mini-state machine.

Thefirgt “if check” looksto seeif the singleton is already being
constructed. If so, then thissingleton has a construction cycle. This
can often be difficult to visually inspect, since singleton recursion
may occur several layers deep.

The second “if check” looksto seeif the singleton was previoudy
destroyed. Thiswould bea“ dead singleton” access. Theframework
is responsible for ensuring that this does not happen; that is the
benefit of the framework in thefirst place. It ismore of an interna
check to make sure the framework isworking properly.

If the singleton passes dl those tests, then the creation begins. It
setsthe satetoConst r uct i ng and theninvokesthe creation policy,
which may be customized to each singleton. A provided simple
cregtion policy will call newon theimplementation type, which might
be a derived type or the type itsdlf. After it is fully constructed, the
state is set to Const ruct ed and then registered with the
Si ngl et onSt ack. The Si ngl et onSt ack is a singleton itsdf
and will always be on the bottom of its own stack. The Dest r oy
parameter is a gatic class member that ensures smooth destruction of
the singleton in asimilar fashion to how it was created.

AnAt Exi t handler isthen registered with the C run-time system.
It will detect when amoduleisbeing shutdown. It isworth noting that
theat exi t must becdledin singleton templateimplementation and
notintheSi ngl et onSt ack implementation. Therecanbeseverd
at exi t stackswhen there are multiple run-time modules. We want
to ensure that asingleton’s at exi t is regigered in the module that
was responsiblefor cresting the singleton.

A dynamic singleton implementation does not have a related
Cr eat e method, sinceit never actually createsasingleton. But it
does deal with custom destruction methodsthat are passed in when
adynamic singletonisset. Atthat time, it registersthe destruction
with the Si ngl et onSt ack. There is a helper template that
makesit smplefor usersto passin these destruction methods easily.

It is these details, and integration of the subtle variations of
singletons, that prove to be abit of work. If done by hand for each
singleton, | would ask if an individual ly written singleton isthe best
choice for arobust system.

Other Benefits

Singletons in a unified framework can be accessed across
component and dll boundaries. In fact, singletons could serve as

26

the only interface between components. One component could
get a singleton that is provided by another. Users would get this
for free and do nothing special when retrieving a foreign
singleton. Gets are resolved at linking time so there is no run-
time performance penalty.

Developers aso can have full access to all static singletons
before mai n isexecuted. There could be a complex initialization
routine during program static initialization. They need not worry
whether asingletonisready sincethe system ensuresit will be, and
by the way, destroyed properly. The system works equally well
before or during execution of mai n. Thisisadifficult task to do
outside such asystem, and | had personally never seen anything do
it correctly, much less on alarge scale.

This framework also allows for singletons to be template
template parameters. In modern generic programming, this provides
a powerful mechanism for many advanced techniques.

Future Directions

The unified singleton framework can serve as the foundation for
more complex systems. To date, factory systems, state machines, and
resource managers have all been built onto using this architecture.
Sinceno requirements are placed on any of their congtituent, i.e. forced
base classes or required implementation, it is easy to build on top of.

Conclusion

Singletons can provide abasisfor other componentsin amodular
system. They can come in two flavours. static and dynamic. Each
has atrade-off of capabilities. The unified system maintainsalive
singleton stack. Singletons are destroyed in the reverse order to that
in which they were created. Cyclic dependencies represent an
invalid design and minimally can be detected by the singleton
framework at run-time. Best of all, it providesatechniqueto solve
thelarge-scale dependenciesand life cyclesof al singleton objects.

Jetf Daudel
j ef f daudel @ahoo. com

References

[1] Design Patterns by Gammaet a., 1995

[2] Modern C++ Designby Andrel Alexandrescu, 2001

[3] Effective C++: 50 Specific Ways to Improve Your Programs
and Design (2nd Edition) by Scott Meyers, 1997

Full code of a unified singleton framework and usage examples
canbefound at: htt p: // daudel . or g/ code/ Si ngl et on. zi p

EDITORIAL COMMENT

This article prompted considerable debate amongst the members of
the editorial team. Some feel it should not be published in this form
because it encourages excessive use of the Singleton pattern, while
others feel that it deserves publication because it describes a valid
technique for implementing Singleton classes.

Singleton does two things: 1) it ensures that no more than one
instance of a class can exist in a program and 2) it makes it easy to
access the single object from anywhere in the program. The first is
sometimes (although rarely) useful. The second is an invitation to
excessive coupling which needs to be resisted.

This is an unusual situation for the editorial board, as most issues are
fully resolved before publication, and | rarely (if ever) comment on articles
directly in these pages. We are not here to censor though, just to guide
authors through the process of creating technically correct, well written,
and interesting articles. We would certainly welcome any comments from
the readership about this article for publication in Overload 57.

John Merrells, Editor

