
3

Overload issue 56 august 2003

contents credits & contacts

Overload Editor:

John Merrells
overload@accu.org

Contributing Editor:

Alan Griffiths
alan@octopull.demon.co.uk

Readers: 

Ian Bruntlett
IanBruntlett@antiqs.uklinux.net

Phil Bass
phil@stoneymanor.demon.co.uk

Mark Radford
twonine@twonine.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Pete Goodliffe,
Chris Lowe
ads@accu.org

Overload is a publication of the
ACCU.  For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:

http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Reshaping an Old Piece of Design

Mark Radford 6

Stream-Based Parsing in C++

Frank Antonsen 10

EuroPLOP 2003 Conference Report

Allan Kelly 18

Three Phantastic Tales

Alan Griffiths 20

A Unified Singleton Framework

Jeff Daudel 22



4

Overload issue 56 august 2003

Editorial – How much is
a good thing?

Sometimes queries arise as to why ACCU produces two
publications – especially as it is sometimes unclear why
material appears in one rather than the other.  There are
many answers ,  but ,  to  me at  least ,  the thing that
distinguishes Overload from C Vu is that Overload covers
design issues at  a  range of levels of interest .  In
comparison C Vu is much more focused on programming,
and where design appears in C Vu it is mostly at the level
of idioms. I’m happy with this division of scope, but in
writing the last editorial had failed to realise quite how
far away from its origins as a specialist C++ publication
Overload has evolved. I wrote that I was unsure if a
pat tern language about  team working would be
appropriate. The editor and “readers” soon put me right
about this! Of course, I’m happy about this – where else
would I get such an article published? – but I do wonder
if the readership is being left behind by the pace being
set. I hope not, but unless some of you make your views
known to us I can’t be confident.

Whenever I meet up with ACCU members the
conversation sooner or later turns to complaints about the
way the industry operates. You know the sort of thing: why
do managers make unreasonable demands? Why are (other)
developers so incompetent? ... You have been there; you
know how it goes. These issues are often raised as rhetorical
questions; but, they are genuine problems and deserve
answers; and, it is only by seeking answers that we can lay
the groundwork for an effective solution.  This type of issue
should be appropriate to ACCU publications – after all it is
clearly of interest to the members.  And it was the view of
the rest of the Overload team that it was appropriate for
Overload to publish material that presents an analysis of these
questions.

On the basis of my experience and beliefs I’m certain
that in looking for solutions we should apply the lessons
that we’ve learnt in our work. In particular, we know that
some ways of communicating a solution are more
effective than others. A particular lesson I draw from the
“design patterns” movement is that it is helpful to include

details of the motivating problem, the solution, and any
trade-offs in the discussion of a “solution”. However,
when dealing with our less enlightened colleagues we
often find orphaned solutions cut off from the original
problems or rationale. And it is often these orphaned
solutions that appear unreasonable. But is dismissing them
as unreasonable a reasonable reaction? Is it just that we
fail to recognise the motivating problem they successfully
solve or is it that they are being used where they are not
applicable?

One such “solution” that cropped up in discussion at a
recent get-together of ACCU members in Nottingham – they
know who they were – comes under the banner of “don’t do
as I do; do as I tell you”. That is: a widespread tendency to
make a statement about how things should be done and then
to ignore it. A developer might tell you that maintainability
is the most important concern in writing their code, but may
be found trying the latest “cool trick” they have found in the
language. Or an author may write, “error handling is
important” and then omit mention of it throughout the book.
Or a methodologist may say, “team building is important”
and then only discuss the work processes and the work
products.

We all know that these strategies can have undesirable
consequences. The developer is unlikely to produce
maintainable code from their experiment (although they may
well learn something that can improve subsequent work). The
author will fail to inform the reader how code should be
written in a production environment (although they may
successfully teach the principles). And the methodologist
won’t convey successful strategies for running a successful
project (but may provide some useful milestones). But,
instead of just complaining about the consequences, it is
important to recognise that all of these behaviours reflect
solutions to problems – and to consider what these problems
might be.

It is easy to assume that these characters are idiots, but
if we make the effort to think about what they are trying to
achieve we see that there is a common thread running

“How much what is a good thing?” you may ask – the answer is “many things”.
In design it is often “how much abstraction is a good thing”. In explaining it is
often “how much simplification is a good thing?” In editing Overload it is “how

much change is a good thing”. Change is double edged: that which isn’t prepared to
change must be prepared to design, but inappropriate changes can lead to a quick death.
The other problem with change is that it can catch the unwary. And, if you refer to my last

editorial you will see that I was unaware of a change.  (If you don’t know what I’m talking
about don’t be concerned – I’m not being mysterious – all will be explained after a short
digression into the role that Overload plays in ACCU.)



amongst them: “how much scope is a good thing”. Without
understanding the problem they face it is impossible to
decide whether their approach improves the situation. The
developer might need to master a new language feature in
order to express the solution to a problem effectively. The
author may need to simplify the subject matter to
communicate the ideas or because of space constraints. The
methodologist may be addressing the more serious
problems. (Admittedly they might not – just don’t jump to
this conclusion.)

Whatever the case, if you don’t take the time to
understand why someone is acting the way they are then
you will fail to engage them in a discussion of the merits
of that behaviour. I have a lot of sympathy with the
developer, author and methodologist (because I’ve done
these things). I also have a lot of sympathy with
confronting them (done that too). This editorial isn’t really
about solving these problems (and I don’t have all the
answers) but rather than leave them unresolved this is what
I do in their positions:
● As a developer experimenting with a new coding

technique I try to leave it a while and to write it up
before using it in production. (I’ll be submitting an
article about template metaprogramming for the next
issue.) And if I can’t explain it then I don’t understand
it well enough to use it. (So, if you don’t see the article
next time...)  Occasionally I feel tempted to succumb to
the “haven’t got time for it” argument – but every time
I do that I am reminded that “if you haven’t got time to
do it right then you haven’t got time to do it wrong first
and then fix it”.

● As an author I try to structure my code so that the error
handling is as painless as possible and doesn’t need to be
omitted in articles. More often I’ll omit whole functions
or sections of code whose implementation is
unsurprising. Sometimes I have to omit error handling
during the initial presentation of ideas and then cover
errors in a second pass. (And sometimes that second pass
gets cut for space or time – to my subsequent regret.) But
messy error handling usually indicates bad design: mine,
or the API, or the programming language that I’m
working with. (And that leads to another interesting

discussion: how to work within the constraints of an
imposed bad design.)

● In talking about development methods I find that it is
problematic to get ideas relating to team formation and
environmental factors across. I don’t yet know if this is a
problem with me or the audience. (I have my suspicions –
one senior manager dismissed my observation that
improved morale on a project indicated that things were
getting better with “they feel better because they think they
can meet the new delivery dates, but that doesn’t prove
they will”.) Seriously, though: it is my task to get the
message through and I’m still working on it.  (If you have
ideas that can help, I, and a certain journal, will be
interested.)

The moral of this editorial is to ensure that we understand
the impact that our actions will have on others and the
motives of others whose actions affect us. If only everyone
in the industry would write code others will understand,
would explain (and apply) techniques for handling error
conditions, and would promote teamwork and improve (not
denigrate) people’s ways of working. If only everyone
could be like us...

The team that produces Overload is dealing with a
problem: the world is changing and we change with it.
ACCU is changing – what was once a C specialist user
group has now expanded its interests. Not only to other
languages (C++, Java, Python, C#, etc.) but to software
design, working practices and organisational issues. I think
that most of us are programmers because we delight in
novelty – I would certainly prefer to solve a new problem
each day than to repeat a tired old solution endlessly. This
is unusual in the population at large, but the ACCU
members I speak to have that same attitude. Overload is
changing – because the editorial team is solving the
problems they think matter. These problems are reflected in
the articles submitted and the experience of the team
members. If you don’t like our solution, try to understand
why we are doing this – and if you have a better solution
then we’ll be glad of your help.

Alan Griffiths
alan@octopull.demon.co.uk

5

Overload issue 56 august 2003

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such.  The use of such terms is not intended to support nor
disparage any trade mark claim.  On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines
All articles intended for publication in Overload 57 should be submitted to the editor by September 1st, and for Overload 58 by
November 1st



Reshaping an Old Piece
of Design

by Mark Radford

In C++, virtual functions are fundamental in supporting the
capability to implement an object-oriented design. They allow a call
to a member function made on a pointer/reference to a base class to
result in a member function of the object’s concrete class being
called. In doing so, they are the language’s fundamental mechanism
of run time polymorphism – the function actually called depends on
the type of the object pointed to, as determined at run time.

Sometimes being able to select a function to call based on the run
time type of one object is not enough. Sometimes there is a need to
create the effect of a function being virtual with respect to two or more
objects. Some languages (e.g. CLOS) have such a mechanism, and
such functions are known as multi-methods. However C++ has no such
feature, and where multi-methods are required in C++ the effect must
be achieved using design and programming techniques.

In this article I will first describe a problem I once faced, that
motivated me to take an interest in these techniques. I will describe
the solution I chose (which unfortunately was not a good one) and
the alternatives I considered, examining the tradeoffs they offer.
Then I will go on to look at the solution I would choose if I faced
the problem now, and explain why I would prefer it.

The Problem

A few years ago I was involved in the development of a package
for producing two-dimensional technical drawings. The drawing
program supported two basic shapes: straight lines, and semi-
circular arcs, and it is easy to understand how the hierarchy in the
figure below was fundamental to the design.

It is obvious that these shapes would need an interface capable of
supporting the operations the user is certain to expect, such as being
able to move the shapes around and rotate them. However, because
the program was for producing drawings of a technical nature –
essentially 2D CAD – an operation to calculate the intersection with
another shape was also necessary. Unfortunately having available a
shape abstraction is not good enough: the intersection()
methods need to implement the intersection calculation formula, and
implementing the formula requires the concrete type of both shapes.
In passing, it was to my delight that I found Bjarne Stroustrup cites
almost this very problem as an example (in [D&E]) of where multi-
methods would be useful. 

The solution I came up with at the time was not very good and
the irritating thing was that I knew I knew this – I just didn’t know
what else to do. I could think of other approaches, but they all
seemed worse than the one I used. For example, some sources (e.g.
[More Effective C++]) use the brute force approach of downcasting
in conjunction with RTTI. In hindsight though, the RTTI approach
offered a better set of tradeoffs.

This problem has been in my mind (on and off) ever since, and years
later, I have come up with what I think is a satisfactory approach.

Two Alternative Solutions

I considered two solutions at the time. One of them worked by
finding out the run time types of the shapes using run time type
information (RTTI); this could be described as a “brute force”
approach. The alternative used an object-oriented approach, and I
consider it to be a classic example of a solution being flawed
while being unquestionably object-oriented.

Solution 1: The RTTI Approach

First consider what a fragment of the code to implement this
approach would look like. Here, dynamic_cast is used to
check for each possible type, and to provide the necessary
downward conversion (or downcast):

void intersection(const line& l, const shape& s,

intersection_points& where) {

if (const line* lp

= dynamic_cast<const line*>(&s)) {

lines_intersection(l, *lp, where);

}

else if (const arc* ap

= dynamic_cast<const arc*>(&s)) {

line_arc_intersection(l, *ap, where);

}

else

//..

}

void intersection(const arc& a, const shape& s,

intersection_points& where)

{ /* .. */ }

Now consider the consequences of adding a new specialisation of
shape, e.g. an elliptical arc. This would mean two things:
1 Adding a new intersection() function overload.
2 Adding more code to the existing intersection functions.
In passing, note there is a historical twist to my rejection of this
solution: neither dynamic_cast, nor any other form of RTTI
for that matter (remember I said it was a few years ago), were
implemented in the compiler used on the 2D CAD project!
Therefore, this approach would have required the manual
implementation of some kind of an RTTI substitute (e.g. each
class having an integer constant to identify it).

Solution 2:
A Flawed Object Oriented Approach

This is the solution I implemented at the time. It employs an object-
oriented mechanism of type recovery using virtual functions. The
mechanism takes advantage of the fact that an object’s concrete type
is known within the member functions of the object’s class.

Let’s look at a C++ fragment showing relevant parts of the
shape hierarchy’s class definitions:

6

Overload issue 56 august 2003



class shape {

public:

virtual ~shape();

virtual void intersection(const shape& s,

intersection_points& where) const = 0;

virtual void intersection(const arc& s,

intersection_points& where) const = 0;

virtual void intersection(const line& s,

intersection_points& where) const = 0;

//...

};

class arc : public shape {

private:

virtual void intersection(const shape& s,

intersection_points& where) const;

virtual void intersection(const arc& s,

intersection_points& where) const;

virtual void intersection(const line& s,

intersection_points& where) const;

// ...

};

class line : public shape {

private:

virtual void intersection(const shape& s,

intersection_points& where) const;

virtual void intersection(const arc& s,

intersection_points& where) const;

virtual void intersection(const line& s,

intersection_points& where) const;

// ...

};

The shape class provides the interface class heading up the
hierarchy. Note that it has a virtual function overload taking
shape as a parameter, as well as one for each of line and arc;
if another type of shape (e.g. an elliptical arc) were ever to be
added to the hierarchy, shape would need a further virtual
function taking the new type as a parameter, and derived classes
would need to implement it. Therefore, this design is awkward to
extend because it would require a change to code in many of the
files participating in the implementation of the shape hierarchy.

The next code fragment shows what happens during an attempt
to find the intersection (if any) of objects of type line and arc:

shape* shape1 = new line(..);

shape* shape2 = new arc(..);

shape1->intersection(*shape2, where);

// Calls line::intersection()

void line::intersection(const shape& s,

intersection_points& where) const {

s.intersection(*this, where);

// Call is re-dispatched...

}

void arc::intersection(const line& s, 

intersection_points& where) const {

line_arc_intersection(s, *this, where);

// ...and handled by the

// arc::intersection()

// overload that handles lines

}

The first call is made on an object of concrete type line, so the
first virtual function implementation entered is that of the
overload line::intersection(const shape&, ..).
Note: the type of the pointer returned by this is line* (rather
than shape*).

Next, a call to s.intersection(*this, ..) is made,
and results in a call to the intersection() overload taking a
line as a parameter. Given that the pointer passed in (i.e.
shape2) points to an object of concrete type arc, the result is a
call to arc::intersection(const line&, ..). Now the
concrete types of both objects is known.

Sadly this solution is flawed because, in a nutshell, it renders
derived classes intrusive not only on each other, but also on the base
class. It must be remembered that calculating intersection points is
only one aspect of shape functionality, yet providing it needs three
virtual functions in the interface of each class in the hierarchy.

Towards A Better Solution (?)

In seeking a better solution, I’m going to start by asserting that
the flawed object oriented solution would actually have been
quite reasonable but for one thing: classes are intrusive on each
other. My point is that this intrusiveness would not be such a
problem if it could be compartmentalised and therefore its impact
limited. To this end I will recruit the help of the EXTENSION

OBJECT design pattern (originally documented by Erich Gamma –
see [PLoPD3] for the full write-up). What follows is only a brief
and slightly C++ centric summary of the pattern, but the
description (below) of how it is used to implement a better
solution should complete the picture.
Pattern
EXTENSION OBJECT.
Context, problem and forces
Different clients will have different requirements of an object’s
interface. The precise interface that will be required by each
client cannot always be anticipated at design time. Also, it is
often unacceptable to trade provision for them against the
interface bloat that would result. In C++ this problem can be
addressed to some extent by an approach using freestanding
functions. However this does not solve all the (potential)
problems (for example, freestanding functions cannot be virtual).
Solution
Support the additional interfaces using separate objects and give
the Subject an interface for returning Extension Objects.
Configuration
The extensions hierarchy (see figure below) is headed up by the
extension interface, while the facilities the extension offers to

7

Overload issue 56 august 2003



clients are made available through the interface
specific_extension.

The extensioninterface does not support the operations required
by the client, because different extensions will offer different
operations. Therefore client obtains access to extensions via
get_extension(), to which it passes type, where type is simply
some kind of indication of the extension type being requested.
Consequences
It can be seen that this pattern offers benefits in terms of flexible
extensibility, but there are some drawbacks, for example:
1 Some of the behaviour of subject is moved out of it, so subject

no longer expresses all the behaviour that clients can perceive it
as having (whether this is a good or bad thing depends on the
actual behaviour).

2 The client code will need to recover the specific_extension
type. A typical method of doing so in C++ is by using
dynamic_cast. Therefore, clients become more complex in the
face of the “machinery” needed to use the extensions. This
machinery can be encapsulated, but the issue still needs to be kept
in mind. 

Solution Using Extension Objects

The solution presented as a flawed object-oriented solution was in
some ways an attractive one, exhibiting the benefits of object-
oriented design, keeping code performing a function together and
separate from code performing other functions. It was only flawed as
a consequence of making classes within the shape hierarchy
intrusive on each other, and the interface clutter caused (three virtual
functions were needed in each class’s interface). Introducing
EXTENSION OBJECT allows the same mechanisms to be deployed
while keeping the intrusiveness and interface clutter out of the shape
hierarchy. The design now looks as shown in the figure below.

In this design, the following mappings from the EXTENSION

OBJECT configuration are used:
● shape’s create() method takes over from subject’s
get_extension() method. This is because of a C++ object
lifecycle issue that will soon become clear. 

● shape_extension and shape_intersector assume the
roles of extensionand specific_extension, respectively.

● line_intersector and arc_intersector are the
concrete_specific_extensions.

As an aid to understanding these mappings, the names from the
configuration are used as stereotypes in the exposition in UML
(see figure below).

Implementation

The mechanics of recovering the types and working out the
intersection points are the same as in the flawed solution – the
only difference is that this time the participants are
shape_intersector , arc_intersector ,
line_intersector and the additional
shape_extension.

The class definition contains very little:
class shape_extension {

public:

virtual ~shape_extension();

// ... 

};

It has a virtual destructor, but that needs no explanation:
namespace intersections {

class shape_intersector {

public:

virtual ~shape_intersector();

virtual void intersection(

const shape_intersector& obj,

intersection_points& where) const = 0;

virtual void intersection(

const line_intersector& obj,

intersection_points& where) const = 0;

virtual void intersection(

const arc_intersector& obj,

intersection_points& where) const = 0;

// ... 

};

boost::shared_ptr<shape_intersector>

down_cast(

boost::shared_ptr<shape_extension> obj);

}

The shape_intersector class
is the first one in the hierarchy to
have an interface of any substance.
It declares intersection()
member function overloads in
much the same way as shape did
in the flawed object oriented
solution – the difference here
being that these overloads take
line_intersector and
arc_intersector parameters,
in place of line and arc
parameters respectively.

Another declaration of interest is
that of the down_cast()
function: not a member of
shape_intersector but
provided within the
intersections namespace. To
understand its role, first we need to
look at shape:

8

Overload issue 56 august 2003



class shape {

public:

virtual void move_x(coordinate_units x) = 0;

virtual void move_y(coordinate_units y) = 0;

virtual void rotate(radians rotation) = 0;

// ...

virtual boost::shared_ptr<shape_extension>

create(const std::type_info& type) const=0; 

};

The shape interface class provides (besides the functional interface
supporting user operations) a virtual member factory function
create() that returns a shape_extension instance. Here
there is a deviation from the canonical EXTENSION OBJECT

configuration, because concrete_subject (line or arc,
omitted from the UML diagram) is designated as its owner, which is
not quite the case here. The design in this example uses the C++
idiom of using a smart pointer to manage memory acquisition and
release, to avoid running into problems with object lifetimes.

Returning to down_cast(): in order to use the
shape_intersector interface, the
shared_ptr<shape_extension> instance returned from
shape::create() must be converted to type
shared_ptr<shape_intersector> (remember this was
listed as a consequence of the EXTENSION OBJECT design pattern).
A custom mechanism in the form of down_cast() is provided
to achieve this, because unfortunately the use of a smart pointer
cuts across the natural approach of using dynamic_cast.

The definitions of classes line and arc are self-explanatory:
they just provide implementations of shape’s virtual member
functions move_x(), move_y(), rotate() etc. I’m not going
to list them here because I don’t believe they will actually add
anything to the illustration. Instead I’m going to move on to
intersection(), another freestanding function declared within
the intersections namespace:

namespace intersections {

intersection_points intersection(

const shape& s1, const shape& s2) { // 1

intersection_points where;

boost::shared_ptr<shape_intersector> first

= down_cast(s1.create(

typeid(shape_intersector)));  // 2

boost::shared_ptr<shape_intersector> second

= down_cast(s2.create(

typeid(shape_intersector)));  // 3

first->intersection(*second, where);    // 4

return where;

} }

Before looking at intersection()’s implementation, I feel it
is worth digressing briefly to look at a trade-off that has been
made. It was observed that as a consequence of the EXTENSION

OBJECT design pattern, the machinery for obtaining extension
(shape_extension) instances and down casting them to
specific_extension (shape_intersector) adds
complexity to clients. It was also observed that one way to
address this complexity is to encapsulate it, and this is the
approach taken here: i.e. it’s all wrapped up in the
intersection() function. This encapsulation introduces a
tension with the design decision to create shape_extension
instances on the heap (instead of the originating object owning

them): there is no way to preserve these instances between calls
to intersection(). Thus efficiency is traded for simplicity
of usage (and tidiness of exposition in an article :-)).

Getting back to intersection()’s implementation...
The function takes two shape instances (by reference so they

exhibit run time polymorphism), s1 and s2, as its parameters
(statement 1). Statements 2 and 3 create first and second, these
being the shape_intersector instances, and here two things
should be observed:
● The shape::create() function is called within the call to
down_cast() so the instances, although present, never appear
explicitly as type shape_extension.

● In the calls to shape::create(), the arguments are in both
cases typeid(shape_intersector), i.e. not the typeid
of the most derived classes. This is because the concrete classes
line and arc know they must create line_intersector
and arc_intersector respectively – they only need to be
told they are creating extensions to a type
shape_intersector, as opposed to any other type of
extension.

Statement 4 is where the intersections (if any) are calculated. The
rest of how this works is very similar to the way in which the
flawed object-oriented solution worked:

shape* shape1 = new line();

shape* shape2 = new arc();

And their intersections calculated:
intersection_points where =

intersection(*shape1, *shape2);

The workings of the intersection() function were
explained above, so we now need to look at how
line_intersector::intersection() and
arc_intersector::intersection() work. When
intersection() is called with shape1 and shape2 as
arguments, statement 4 in its implementation results in a call to
the line_intersector::intersection() overload
taking a shape_intersector parameter:

void line_intersector::intersection(

const shape_intersector& s,

intersection_points& where) const {

s.intersection(*this, where);

// Call is re-dispatched...

}

Remember shape2 has concrete type arc, so re-dispatching the
call results in a call to arc_intersector::intersection()
– specifically, the overload that takes a line_intersector as a
parameter:

void arc_intersector::intersection(

const line_intersector& s,

intersection_points& where) const {

line_arc_intersection(s, *this, where);

}

That’s it. At this point the concrete types of both
shape_intersectors are known, and the calculation (details
of which we are not concerned with here) can be performed.

Phew!

Tradeoffs – In Favour

Intersection logic is non-intrusive with respect to the shape
hierarchy. In the case of the flawed object oriented solution, the

[concluded at foot of next page]

9

Overload issue 56 august 2003



[continued from previous page]

problem was that derived classes were intrusive on the base class,
and on each other. In the case of the solution that uses EXTENSION

OBJECTs, classes derived from shape_intersector are also
intrusive on each other, but there is a very important difference:
there is no intrusiveness on the shape hierarchy. For example: if
another shape is added, only the classes in the multi-methods
hierarchy are affected.

Note that, in the case of the example of adding another type of
shape (an elliptical arc for example), the bodies of existing
shape_intersector member functions will not need their
implementations changing. This is a consequence of virtual
functions being used to automate the control flow by placing it in
the hands of the C++ language. By contrast, in the case of the RTTI
solution, the control flow is implemented directly in the code, and
as a consequence adding the code for a new type of shape means
modifying existing code. In the former case, the absence of a need
to change existing code means that the chance of introducing an
error into it is reduced.

Tradeoffs – Against

The shape and shape_intersector hierarchies have
parallel corresponding classes. Working with and maintaining
such parallel hierarchies always creates a balancing act of design.

The most obvious burden is the extra types that now inhabit the
design, and these must be managed – not just in physical terms but
also in addressing the communication issues that arise (more
documentation will be needed).

More subtle is the lack of any direct mention of intersections in
the shape interface, and in the interfaces of classes derived from
it. Here, a consequence associated with applying the EXTENSION

OBJECT design pattern haunts the design.

In Conclusion

Using the object-oriented paradigm does not automatically make a
design superior. In the past object orientation has been adopted in the
hope that it would be the silver bullet that would solve all software
development problems. Of course, history now records that nothing
was further from the truth. There were many factors involved, one
being the lack of understanding of object orientation itself. Another
critical factor however, was the assumption that being object
oriented automatically made a design a good one. The flawed object
oriented solution presented earlier is an excellent counter example. 

An important lesson is that even good OOD has its costs. It
comes back to the fact that when solving problems with any level
of complexity, there is no such thing as a solution per-se – there are
options and tradeoffs.

Finally, the BSI C++ panel are currently discussing a proposal
by Julian Smith to add multi-methods to the language – therefore
this feature may or may not be present in the language when the
next edition of the standard appears. Full details of the proposal can
be found at Julian’s web site (see [Multi-Methods Proposal]).

Mark Radford

References

[Boost] The Boost library (see www.boost.org)
[D&E] Bjarne Stroustrup, The Design and Evolution of C++, Addison-
Wesley, 1994
[More Effective C++] Scott Meyers, More Effective C++: 35 New Ways
to Improve Your Programs and Designs, Addison-Wesley, 1996.
[Multi-Methods Proposal] Julian Smith’s proposal for adding multi-
methods to C++ (www.op59.net/cmm/readme.html) 
[PLoPD3] Robert Martin, Dirk Riehle and Frank Buschmann (Editors),
Pattern Languages of Program Design 3, Addison-Wesley, 1998.

10

Overload issue 56 august 2003

Stream-Based Parsing in C++
by Frank Antonsen

This paper shows how to implement general parsers as a family
of streams. This allows for very readable, maintainable and
flexible parsers. The method is illustrated with a parser for simple
arithmetic expressions, but can easily be extended to a parser for
a full-fledged programming language. Moreover, the same
technique can be applied to the entire process from lexing to
execution, since actions can be associated with each sub-parser.

Introduction

The parsing of input is a very important problem appearing in many
different parts of software development – parsing user input in the
form of command-line options, the parsing of arithmetic expressions
in a calculator, parsing values in a user-defined configuration file or
compiling some programming language.

This makes it important to have different approaches. What we will
present here in this paper, is a method of parsing inspired by what is
done in functional programming (FP). The paper is not about functional
programming in C++1, rather it is about how to implement a
particularly elegant idea from FP in an object oriented context.

The entire process, from lexical analysis to actual execution of
a program can be divided into a number of individual steps: 

source -> lexer -> parser -> optimiser

-> execution -> output

In FP, this could be represented by a family of functions:
output = execution ° optimiser ° parser

° lexer(source)

The advantage of this approach is flexibility: it is easy to omit or
modify individual steps, which is important for playing around with
different approaches in language design or compiler construction.

One could attempt to implement the different sub-parsers as
functions or (better) function objects in C++. The disadvantage of
doing so, however, is the proliferation of parentheses this would
entail. In C++ there is no operator for function (or functor)
composition corresponding to ° above (which may be called many
different things in a functional language – e.g. a period or simply
the letter ‘o’). Nor can such an operator be defined in a natural way
– none of the overloadable operators are well suited for becoming
composition operators.2

Moreover, the presence of too many parentheses makes the code
harder to read and is hence also more error prone.

One can consider a function as a stream, however. Instead of
writing x=f(y) one could try to write x << f << y. Here, we
do have a natural operator for composition, namely the stream
operator <<. This suggests considering the entire process as a
collection of streams:

output << execution << optimiser

<< parser << lexer << source

1 Although, C++ being a multi-paradigm language this would be a worthwhile topic.

2 That being said, it ought to be mentioned too that the Standard Template Library
(STL) has introduced many FP features, among these a limited support for partial
binding and the ability to write function composition operators, [7], although this still
cannot be done by overloading a natural operator.



This won’t work, however, since << is left-associative. Hence,
either one needs to introduce parentheses once more, e.g., write x
<< (f << y) and so on, or one will need to use another, right-
associative operator. The former case will automatically suffer
from the abovementioned problems with using function objects.

Consequently, we will have to use a right-associative operator
instead. Unfortunately, C++ does not allow one to declare an
operator to have a user-defined associativity, so instead we will have
to replace << by one of the right-associative operators defined by
C++. There are very, very few of these. In fact, the only binary right-
associative operators are the assignment operators +=, *=,.... Thus,
the simplest possible change is to use operator<<=. This also
has the added advantage of resembling an arrow, more showing the
direction of the flow of data. 

Now, even though strictly speaking the sub-parsers won’t be
stream objects, we will still refer to them as such by analogy to
ordinary streams (I/O stream, file streams, string streams) present
in C++. The reason being that the defining feature of a stream is its
ability to process input and to be pipelined, which is precisely what
our generalised stream will do. 

In this paper, we will concentrate on the parsing step, but in such
a way that the remaining steps of the process could be implemented
in a similar fashion. In fact, we will see how to make a simple
modification to our parser and turn it into an expression calculator.
For concreteness, we will consider a particular example, which is
simple enough not to introduce unnecessary complications yet
complex enough to be non-trivial. The chosen example is the
parsing of arithmetic expressions like 1+(2-3)*4. We will only
consider integers.3 Furthermore, we will not worry about the
precedence levels of the standard arithmetic operators – this could
be done by slightly modifying the grammar as shown in for
instance, [1]. It will be shown later how to accommodate this with
very few changes to our framework.

Hence, the basic ingredients in our language are:
<digit>     ::= 0 | 1 | 2 | 3 | 4 | 5 | 6 |

7 | 8 | 9

<operator>  ::= + | - | * | / 

<lpar>      ::= (

<rpar>      ::= )

To this we add the definition of a number as a sequence of one or
more digits:

<num> ::= <digit>+

Now, a simple expression is either a number on its own or it is
two numbers separated by an operator:

<simexp> ::= <num> | <num> <operator> <num>

Such an expression is the smallest string composed from the
symbols which makes sense in this simple language. A general
expression can then be built like this:

<exp> ::= <simexp> | <lpar> <exp> <rpar>

| <exp> <operator> <exp>

Actually, the simple expression is redundant and could be omitted by
replacing the first option in the production for <exp>. In any case,
the set of rules above constitute the entire grammar.

The basic idea in the FP-style of parsing is to split-up the parser into
a family of sub-parsers each corresponding to a term in the grammar,
with special combinators corresponding to ways of combining these
sub-parsers (there will be one for combining them – often just standard
function composition in an FP-language – and one for representing

options in the BNF grammar), see [2-4]. For a way to implement part
of this in another multi-paradigm language, Perl, see [5].

In the functional language Miranda, for instance, one could write a
parser for this simple language like this (following [2] and ignoring
problems with left-recursive grammars for sake of illustration):

exp = (exp $then operator $xthen exp) $alt

(literal '(' $then exp $xthen

literal ')') $alt simexp

Here, exp, then, xthen, alt, literal and simexp are all
sub-parsers (the prefix ‘$’ turns any function into an infix operator in
Miranda, and brackets around arguments are optional in Miranda as
well as in Haskell and ML). The sub-parser operator simply
parses operators, while the sub-parser literal parses the literal
string given as the argument, and alt is a sub-parser representing
alternatives as given by the symbol ‘|’ in the BNF grammar. We
won’t be able to reach the same level of conciseness in this C++
implementation though, but we will try to get as close as possible. 

Such parsers may not be as efficient as the ones generated by
general high-quality parser-writing tools such as lex and yacc
(and their various relatives such as flex and bison from GNU),
but they have other advantages:
● Readability: By splitting the parser up into a number of sub-

parsers each corresponding to a term in the BNF grammar, there
will be a much closer relationship between the structure of the
entire parser and the original BNF grammar. 

● Maintainability: Since the syntax is fairly straightforward and
closely mirrors the corresponding BNF grammar, such parsers
are easy to maintain.

● Flexibility: The same splitting-up also implies that productions
can be added or omitted very easily. Hence, such parsers are
extendable. Furthermore, different versions of the various sub-
parsers can be tried out.

For simplicity, we will assume that the lexing has been done and
resulted in an array of single characters. This is of course a rather
trivial lexing (which, moreover, is easy to implement) – most
lexers would return not a list of characters but a list of tokens. In
order to show the power of the technique, however, it is
advantageous to consider such trivial lexers. Such a lexer, for
instance, could be implemented by simply reading from a file, one
character at a time, returning a list of characters read when done.

This paper will be structured as follows: First, the abstract base
class is defined. This is a very basic class skeleton, but will form
the foundation of all the richer sub-parsers to be defined later. At
the same time we define the basic parse tree class and other related
datatypes. Secondly, we introduce some simple general utilities (a
Boolean function for testing for digits and two list processing
functions found in all functional languages). Next, we define our
first generic sub-parsers for numbers and operators. The fourth step
is to define general parser combinators, allowing us to combine sub-
parsers to generate new types of sub-parsers. 

All of these steps are completely general and form a basic parsing
library. We then turn to using these general tools to actually parse
integer arithmetic expressions. This turns out to be very easy and there
is a very, very close relationship between the BNF grammar and the
actual implementation of the sub-parsers as promised.

Finally, we discuss various ways to refine the framework.

The basic stream class

We will begin by defining a general parse stream or pstream. The
various sub-parsers will then all be derived from this base class.

11

Overload issue 56 august 2003

3 Floating point numbers could be accommodated with small changes, but this will
introduce an unnecessary level of complexity



The parser will need to keep track of a list which is passed on
between consecutive parses. Even though, we will only consider
lists of single characters here, it is worthwhile to work with a
more general set-up, namely that of lists of strings.

Our pstreams will have a state, containing the parse tree
constructed so far. In order to be able to pipe pstreams together,
thereby building more complex parsers from simple sub-parsers,
we will also need the pstream to keep track of the remaining tokens.

Hence, we define a new data type:
typedef std::pair<Ptree, List> Presult;

where Ptree is the class defining parse trees and where List is
defined by:

typedef std::list<std::string> List; 

which will be our basic data structure. Similarly, Ptree is a
specialisation of a more general parse tree:

typedef ParseTree<std::string> Ptree;

The ParseTree class is a simple binary tree:
template <class T>

class ParseTree {

private:

ParseTree *left;  // left sub tree

ParseTree *right; // right sub tree

T root;

public:

... // constructors & destructor

bool isEmpty() const { return root==T(); }

bool isLeaf() const

{ return left==0 && right==0; }

T getRoot() const { return root; }

ParseTree* getLeft() const { return left; }

ParseTree* getRight() const

{ return right; }

void setLeft(ParseTree& lft) { left = &lft; }

void setRight(ParseTree& rgh)

{ right = &rgh; }

void setRoot(T rt) { root = rt; }

void update(T); // used for operators

void insert(T); // used for numbers

void insert(ParseTree&);

// used for parentheses

};

The member functions update and insert are there to allow
parsers to manipulate the parse tree. The former adds a node as
the root, copying the old tree to the left sub-tree, this is to be used
when parsing binary operators. The latter inserts a node at the
first empty sub-tree it finds. This is used for parsing either
numbers or parentheses. 

Using just recursion these methods could be implemented simply
like this:

template<class T>

void ParseTree<T>::update(T val) {

if(isEmpty())

throw std::logic_error(

"Syntax error: Missing operand");

ParseTree* newLeftSubtree

= new ParseTree(*this);

root = val;

left = newLeftSubtree;

right = 0;

}

template<class T>

void ParseTree<T>::insert(T val) {

if(isEmpty()) {

setRoot(val);

return;

}

if(getLeft() == 0) {

setLeft(*new ParseTree(val));

return;

}

else {

if(getRight() == 0) {

setRight(*new ParseTree(val));

return;

}

getRight()->insert(val);

// use right recursion

}

}

template<class T>

void ParseTree<T>::insert(ParseTree<T> &pt) {

if(isEmpty()) {

setRoot(pt.getRoot());

setLeft(*pt.getLeft());

setRight(*pt.getRight());

return;

}

if(getLeft() == 0) {

setLeft(pt);

return;

}

else {

if(getRight() == 0) {

setRight(pt);

return;

}

getRight()->insert(pt);

// use right recursion

}

}

The if-statements in the above implementations are the C++
analogue of the argument pattern matching of functional
languages4, they are needed to control the recursive steps and to
ensure termination. The code above can be shortened a little bit
and most of the return-statements can be omitted if one
instead uses nested if-clauses. While this will make the code a
few lines shorter, I think the present coding style has the
advantage of clearly showing the reader that the function returns
after having handled each special case.  

Both methods first handle the case of an empty tree. For
insert, the value passed  simply becomes the new root, whereas
for update an exception is thrown. Next comes the case of a leaf,
i.e., a node without children. Here, update inserts the passed value
as a new root moving the leaf to the left subtree, while insert
merely inserts its value as the left subtree rooted at the original leaf
node. If the left subtree is occupied, insert first tries the right

12

Overload issue 56 august 2003

4 This “pattern matching” is really an advanced dispatch mechanism allowing the user
to “overload” functions not just on basis of different types of arguments but also on
different values.



one, if this is also non-empty it uses recursion to find the first empty
subtree.

The abstract base class, pstream is now:
class pstream {

protected:

Presult pres;  // contents so far

public:

... // constructors & virtual destructor

List const& getList() const 

{ return pres.second; } // accessor method

Presult const& getPres() const 

{ return pres; }        // accessor method

virtual Presult operator<<=

(const List &) = 0;

virtual Presult operator<<=

(const Presult&) = 0; 

};

Notice that only the accessor methods, getList and getPres,
are non-trivial and that the streaming operator, operator<<= is
a pure virtual function.

Writing the parser

We will now turn to the question of actually writing the parser by
splitting it up into a number of sub-parsers as stated in the
introduction.

Utility functions

It is advantageous to define a number of utility functions
representing the basic ingredients of the grammar. This can be
done by defining a few boolean functions like this:

bool isDigit(std::string c) {

return c == "0" || c == "1" || c == "2"

|| c == "3" || c == "4" || c == "5"

|| c == "6" || c == "7" || c == "8"

|| c == "9";

}

with a similar function isOperator for testing whether a
character is an operator. In general, one should write one such
Boolean utility function for each type of symbol in the language.
Hence, we define two such functions, isDigit and
isOperator. It is, of course, also possible to define a Boolean
function testing for brackets but since we only have one type of
these it is much easier to simply insert a test c == "(" or
c == ")" directly in the code than define special functions
isLPar and isRPar respectively. 

Of course, a similar result could be obtained by using built-in
functions such as isdigit but the advantage of writing them
ourselves is the ability to illustrate the general principle.

We will also need a pair of basic list processing functions
available in all FP languages.  The first is for extracting the head
of a list, i.e., its first element. This function is called  first, car
or hd in various functional languages (Common Lisp, old Lisp,
and ML respectively). Here we will settle for the name used in
Haskell:

string head(List ls) {

return ls.front();

}

Similarly, for extracting the tail of a list, i.e., the remaining
elements, we will write a wrapper around one of the STL list
member functions:

List tail(List ls) {

ls2.pop_front();  // remove head

return ls2;

}

The tail function also goes under various names in the FP-
community, e.g. rest, cdr or tl in Common Lisp, old Lisp
and ML respectively. Once more, we have settled for the Haskell
name. Note, by the way, that none of these actually change the
list passed to them – we could have declared the arguments
const, but we would then have to use const_cast<> all the
time, whenever we want to call them, and this would be rather
tedious. 

These are the only two list utility functions we will be needing.

The sub-parser for numbers

The entire code for the sub-parser for numbers is very simple,
illustrating the ease of the functional-style parsing. It is
simply:

class pNum : public pstream {

public:

pNum() {};

pNum(const List & ls)

{ pres = make_pair(Ptree(),ls); };

pNum(const Presult &pt) { pres = pt; };

pNum() {};

inline Presult operator<<=(const List &);

inline Presult operator<<=(const Presult &);

};

inline Presult pNum::operator<<=(

const List &ls) {

return operator<<=(make_pair(Ptree(),ls));

}

inline Presult pNum::operator<<=(

const Presult &pr) {

List ls = pr.second;

if(ls.empty())

return pr;    // nothing to parse

std::string c = head(ls);

if(!isDigit(c)) {

return pr;    // not a number, do nothing

}

else {

std::string val(c);

ls = tail(ls);

while(isDigit(c=head(ls)) && !ls.empty()) {

val += c;        // construct number

ls = tail(ls);

}

Ptree pt(pr.first);

pt.insert(val);

return make_pair(pt,ls);

}

}

This sub-parser illustrates the basic idea of FP-style parsing using
streams: To parse a particular expression-type, write a very
simple parser (basically just a copy of the abstract base class) and
implement the corresponding operator<<= for acting upon a
reference to a Presult-object. 

13

Overload issue 56 august 2003



The sub-parser for operators

The sub-parser for operators is almost identical, with the only
significant change taking place in operator<<=:

inline Presult pOp::operator<<=

(const Presult &pt) {

List ls = pt.second;

if(ls.empty())

return pt;  // nothing to parse

std::string c = head(ls);

if(!isOperator(c))

return pt;

Ptree ptt(pt.first);

ptt.update(c);

return make_pair(ptt,tail(ls));

}

The main difference between parsing numbers and operators is
the way the parse tree is updated. Parsing numbers simply inserts
the number at the first available empty place, whereas operators
have to identify their operands first and hence use the update
method instead. Numbers are typically leaves while operators are
roots of subtrees.

Parser combinators

It is convenient to be able to handle combinations of sub-parsers
as well, e.g. to indicate that a particular token must always come
after another (sequencing) or to indicate a choice between two
tokens (alternatives). In the BNF grammar, such combinators are
represented by concatenation and by |, respectively.

Combinators are higher-order parsers, taking parsers as
arguments and returning new parsers. In typical FP-
implementations, in Haskell, say, these would often be represented
by currying, i.e., by partial binding of arguments.5 In C++, however,
it is more convenient to define new objects. As an illustration, we
will define the following combinators pAlt, for handling
alternatives, pThen, for handling sequencing, and finally pMore
for handling one or more occurrences of a token. We will also define
some syntactic sugar by overloading the operators ||, && and ++,
respectively, to be alternative methods to use these combinators.

The combinators are just parsestreams, although higher-order,
hence they are defined by deriving from the abstract base class and
by implementing operator<<=. Since they have to be able to
deal with all kinds of parsers, they are defined using templates. In
a sense, one can think of templates as C++’s analogue of such
higher order constructs. One might call them “higher order objects”.

For instance, the combinator for alternatives can be written like this:
template <class T, class S>

class pAlt : public pstream {

private:

T p1;

S p2;   // component pstreams

public:

... // constructors & destructor

// & accessors & operator<<=

};

This class differs from the previous parsestreams in having two
pstreams as internal data members (together with the appropriate
accessor methods). These are just defined, for simplicity, as

general classes of types T and S respectively, relying on compile-
time polymorphism to ensure that these can be used as pstreams. 

To actually be able to use this combinator, we must implement
operator<<=. This can be done as follows:

template<class T, class S>

inline pAlt<T, S> operator||

(const T& p1, const S& p2) {

return pAlt<T, S>(p1,p2);

// alternative way of creating pAlt objects

}

// definition of how pAlt works is given

// by operator<<=

template<class T, class S>

inline Presult pAlt<T, S>::operator<<=

(const Presult& pr) {

Presult lp1(p1 <<= pr), lp2(p2 <<= pr);

// use component parsers

List l1=lp1.second, l2=lp2.second;

return (l1.size() <= l2.size())? lp1 : lp2;

// return best parse

}

where we have also taken the opportunity to add some syntactic
sugar by providing p1 || p2 as an alternative syntax for
constructing a pAlt-object out of two sub-parsers.

The implementation of operator<<= is a bit naive, but will suffice
for the present case. In general, one may need a more complicated
criterion for “best parse” than simply returning the parse resulting in
the smallest list of remaining tokens, but in our case it will suffice. 

Similarly, the code for pThen, the sequencing combinator, is:

template<class T, class S>

class pThen : public pstream {

private:

T p1;

S p2;   // component parsers

public:

... // usual stuff

};

template<class T, class S>

inline pThen<T, S> operator&&

(const T& p1, const S& p2) {

return pThen<T,S>(p1,p2);

// alternative syntax

}

template<class T, class S>

inline Presult pThen<T, S>::operator<<=

(const Presult& pr) {

return p2 <<= p1 <<= pr;

}

Finally, the combinator for one or more occurrences of a token,
which would be expressed by a regular expression in BNF,
(token)+, can be written as:

template<class T>

class pMore : public pstream {

private:

T p;   // component parser

public:

... // usual stuff

};

14

Overload issue 56 august 2003

5 C++ can also do this in a limited way using bind1st and bind2nd on
function objects. These are available in the <functional> header file and
provide one more example of FP-concepts being introduced into C++. See e.g. [7]



template<class T>      

inline Presult pMore<T>::operator<<=

(const Presult& pr) {

Presult pr2(p <<= pr);

List ls  = pr.second;

List ls2 = pr2.second;

while(!ls2.empty() && (ls2.size()

< ls.size())) { // something was parsed

pr2 = (p <<= pr2);   // continue parsing

ls  = ls2;

ls2 = pr2.second;

}

return pr2;

}

template<class T>

inline pMore<T> operator++(const T pp) {

return pMore<T>(pp);

}

Here, we have settled for a straightforward “procedural”
implementation, one could also have used recursion (as one would
almost certainly have done in FP) in the definition of operator<<=.

In a sense, these combinators together with a parser for literal
substrings, pLit, which we haven’t given but which is almost identical
to pNum and pOp earlier, are all we need to parse anything. Parsing
numbers, for instance, could symbolically be written as:

pNum = ++(pLit("0") || pLit("1") || pLit("2")

|| pLit("3") || pLit("4") || pLit("5")

|| pLit("6") || pLit("7") || pLit("8")

|| pLit("9"));

which is more or less what one would have written in a functional
language such as Haskell or Miranda. C++, however, does not allow
one to define new classes from old ones in this manner, hence one
would have to put this definition of pNum into the implementation of
operator<<=. In the next section we will see that this is precisely
what we will do to parse general expressions.

There is one more reason, however, one cannot simply use the above
trick to write pNum. Parsing numbers, as well as operators, one needs
to perform certain actions (inserting or updating the parse tree). We
will later see how to associate actions to parsers, but for now we will
have to make do with custom-written parsers pNumand pOp explicitly
taking care of the necessary parse tree manipulations.

The sub-parser for
bracketed expressions

This is slightly more complicated. It turns out to be advantageous
to consider bracketing as a kind of parser combinator. Hence,
given a parse stream p we will define a new pstream type just
like we did for pAlt and the other combinators. This, by the
way, is one way in which our implementation differs from the
normal functional approach.

The definition of the bracketing combinator, pBrack, is very
similar to the previous combinators:

template<class T>

class pBrack : public pstream {

private:

T p;  // internal sub-parser

Presult pr2;

public:

... // usual stuff

};

As usual, all of the work is done in the overloaded operator<<=:
template<class T>

inline Presult pBrack<T>::operator<<=

(const Presult &pr) {

if( (pr.second).empty() )

throw logic_error(“Syntax error.

Closing bracket expected!”);

std::string c = head(pr.second);

if(c == "(") {

Presult prr( p <<= make_pair

(pr.first, tail(pr.second)) );

// apply internal parser

(pr2.first).insert(prr.first);

// update internal parse tree

return operator<<=

(make_pair(pr.first, prr.second));

}

if(c == ")") {

Ptree pt(pr.first);

pt.insert(pr2.first);

// insert parsed subtree

return make_pair(pt,tail(pr.second));

//skip closing bracket & terminate recursion

}

return pr;       // do nothing

}

The only subtlety is in maintaining an internal, temporary parse tree.
Upon returning, this internal parse tree will hold the parse tree for the
entire bracketed expression, which can then be inserted into the full
parse tree. This pstream mimics the way human beings often read
parenthesised expressions – one sees an opening bracket and
immediately one begins to parse the internal expression until one
sees a matching end bracket. If nested brackets are found, one resorts
to recursion.

Putting it all together

We now have all the ingredients needed for parsing integer
arithmetic expressions. One could put the previous classes and
functions into general header files to be used for all parsers, and
then proceed to write parsers for the specific language at hand,
which is what we will turn to now.

Now, the grammar is recursive and while C++ is certainly capable
of handling recursion (in fact, we have used it frequently in this paper),
the language is not really capable of handling recursive definitions such
as the grammar in its present state. Hence, we will have to introduce
an extra layer of indirection. Rewrite the grammar as:

<aexp> ::= <num>  | <num> <op> <num>

<sexp> ::= <aexp> | <lpar> <aexp> <rpar>

<exp>  ::= <sexp> | <lpar> <sexp> <rpar>

| <sexp> <op> <sexp>

The idea is now simply to write three parsers pAExp, pSExp
and pExp. These classes are completely trivial, with all the work
being done in operator<<= as usual. 

The first sub-parser is:
inline Presult pAExp::operator<<=

(const Presult &pr) {

pOp po;

pNum pn;

return pn || (pn && po && pn) <<= pr;

}

15

Overload issue 56 august 2003



Notice the simple expression in the last line. It is a simple,
faithful reflection of the definition of the corresponding term in
the BNF grammar. 

The remaining sub-parser, pSExp, and final parser, pExp, are
very simple and only their non-trivial operator<<= function will
be given. 

For pSExp the code is simply:
inline Presult pSExp::operator<<=

(const Presult &pr) {

pAExp pa;

return pa || pBrack<pAExp>(pa) <<= pr;

}

Which, once more, is a faithful representation of the
corresponding definition in the BNF grammar.

Finally, the full parser, parsing general integer arithmetic
expressions is simply:

inline Presult pExp::operator<<=

(const Presult &pr) {

pSExp ps;

pOp po;

return ps || pBrack<pSExp>(ps)

|| (ps && po && ps) <<= pr;

}

Hence, with the generic sub-parser tools defined, writing a
functional style parser using pstreams is an easy task, which
makes it well suited for language experiments and for rapid
prototyping.

With these definitions in place, to parse a list of characters, ls,
using this parser, one simply writes:

pExp pe;

result = pe <<= ls;

where result is of type Presult. For a complete parse, this
would contain a parse tree as first component and an empty list as
second.

Refinements

The previous sections have shown one way to implement
functional-style parsing in C++ using a generalisation of streams
together with operator overloading. Incidentally, the heavy usage
of operator overloading shows one advantage of C++ over a
language like Java that does not support the overloading of
operators. Most of the above could also be carried out in Java,
but one would then have to use functions instead of operators
resulting in harder to read code. Java also lacks C++’s features
for generic programming (the templates), although a library
providing some of this support is available. Some of the same
effects could be mimicked in Java, however, by judicious use of
the universal base class Object and frequent casting. Such an
approach will not be as easy to read and will, moreover, be more
error prone than the one presented here. Although a direct
translation of the above C++ code into Java would not be
satisfactory, one could instead use Java Beans – in some sense,
these are able to model a behaviour similar to that of functions in
a functional language. 

On the other hand, C++ is not perfect in this respect either, since it
lacks the possibility of user defined operators as well as a method to
specify the associativity of an operator and whether it is to be applied
as infix, postfix or prefix. Such possibilities are often available in FP
languages, e.g. in ML and Haskell, and they are also likely to be
available in future versions of existing languages such as Perl6.

The necessity of writing the execution from right to left lies in
the standard OO-convention that y<<=f is really short for
y.operator<<=(f) and hence treats the left hand operand
differently from the right hand one. This is a consequence of OOP’s
dispatching rules. If one wanted to make left-to-right parsing work
instead, one would have to define, inside all classes, methods for
handling the different parsestreams. For instance, one would have
to define List::operator>>=(T &p), where the typename
T can be any valid parsestream subclass. This could of course be
done with templates much the same way as was done for the
combinators, but it would also necessitate the writing of a wrapper
class for the List-object in order to be able to extend it this way. A
much cleaner solution would be to use multi-methods. However,
unlike Lisp’s CLOS, these are not directly available in C++. There
are ways around this, of course, C++ being after all a very flexible
language, [6].

A problem not addressed at all in this paper is the problem of
optimisation. Clearly, the parsestreams as developed here are
optimised neither for speed of execution nor for space, but rather
for speed of definition. By this phrase, it is to be understood that
the method is intended for rapid prototyping and for experimenting
with language features. Although the program isn’t slow, it would
certainly be advantageous to have the parsestreams run faster in
real-life applications. One simple way of doing this is to pass a
tree-iterator around keeping track of where the last insert/update
of the parsetree occurred, for instance by pointing to the first empty
subtree. This would speed up the insert and update
operations.

Handling ambiguity and precedence

For simplicity, we did not consider operator precedence in the
example above, i.e., 1+2*3 will be parsed as (1+2)*3 and not
1+(2*3). Of course, this could always be enforced by
appropriate use of parentheses, but it would clearly be
advantageous to conform closer to the likely expectations of the
end-user.

It is well-known that operator precedence can be handled by
slightly modifying the grammar (see e.g. [1]):

<expr>   ::= <term> + <term> | <term> - <term>

| <term>

<term>   ::= <factor> * <factor>

| <factor> / <factor> | <factor>

<factor> ::= <number> | ( <expr> )

Thus, at the cost of adding new terms to the grammar, one can
handle operator precedence in the expected way. It is trivial to
change our family of sub-parsers to accommodate this, in
particular since the recursive definitions have been removed in
the same step. 

Our parser stream framework worked well for the simple case
of basic arithmetic expressions, but a general grammar is likely to
be ambiguous with the parser effectively having to make certain
choices at various stages of the parsing. Clearly, it would be of great
interest to be able to handle this case too.

The standard way this is dealt with in FP is to replace the
Presult data type with another one,  [2-4].

In the face of ambiguity, what we have to deal with is not a
single, unique parse, but rather a family of possible parses. Hence,
the proper way of dealing with ambiguity is to introduce a new data
type, let’s call it LPresult (for List of Parse results). This is
defined as:

16

Overload issue 56 august 2003



typedef std::list< Presult > LPresult;

All the parsers must then return this data type instead. This, of
course, necessitates some modifications. Each sub-parser must
now act on all the elements of the list of possible parses.
Consequently, the individual parse trees will have different sizes,
in general with the largest one corresponding to an empty list of
remaining tokens, and thus to a complete parse.  

With these quite simple changes, our parse stream framework
will be able to deal with ambiguous grammars as well.

Adding actions

The FP-style of parsing discussed in this paper opens up further
modifications. In the arithmetic expression example, we saw how
one of the types (the operators) had to perform some non-trivial
operations on the parse tree. 

This can be generalised. Instead of just allowing the simple
manipulations involved in parsing binary operators and parentheses,
one could allow more general actions to be associated with steps in
a parse.

Various examples could be:
a) a pretty printer, printing out the code in a nicely formatted

manner as the parse goes along;
b) cross-translation, translating each element of a parse into some

code in another language, in the same way as yacc and similar
tools do;

c) execution of the result as it goes along, in the case of arithmetic
expressions this would be one very natural action to add,
effectively turning the parser into a calculator. 

To associate an action with a step in a parse, i.e., with a particular
sub-parser, we need two things. First of all, we need a function to
perform. This is done by using a function object, as this is the
best way of passing around function definitions in C++.
Secondly, we need an operator associating an action with a given
sub-parser. This latter step will be done by overloading the >>=
operator. Hence, given a sub-parser p and a functor f, we will
define p>>=f to be the sub-parser p with the actions given by f
added to it.6 This is consistent with interpreting the sub-parsers as
streams: the output of one pstream is sent to the associated
function object for further processing.

The definition of the corresponding sub-parser type, pUse, is
just like the definitions of all the other combinators. Explicitly7:

template<class T, class S>

class pUse : public pstream {

private:

T p;     // component parser

S f;     // function to apply

public:

... // usual stuff

};

template<class T, class S>

inline Presult pUse<T,S>::operator<<=(const

Presult& pr) {

Presult pr2(p <<= pr);  // apply parser

return f(pr2);  // apply function – MUST

return Presult

}

template<class T, class S>

inline pUse<T,S> operator>>=

(const T &pp, const S &ff) {

return pUse<T,S>(pp,ff);

// alternative syntax

}

To use this, one must then define a function object. For instance:
class printer {

public:

Presult operator() (Presult &pr) const {

std::cout << "Parse tree: ";

(pr.first).print();

std::cout << std::endl << " and ";

prList(pr.second);

return pr;

}

};

assuming that a print method has been added to the
ParseTree class and that the function prList prints a list in
some appropriate format.

Let ls be a list of characters, one can then write:
pUse<pExp,printer> pu(pe,prn);

pu <<= ls;

where pe , prn are instances of pExp and printer
respectively. This would then print the parse tree together with
the list of unparsed characters. In fact, precisely such a
construction was used during the test phase of developing the
programs presented here.

Alternatively, one could write:
(pe >>= prn) <<= ls;

leaving the creation of the proper classes to C++. This latter
syntax is probably as close as one will be able to get to the FP-
syntax in C++.

Similarly, one could define a function object, executor, which
executes the code found in the parse tree.

Finally, once pUse has been defined, one could redefine pNum
and pOp in terms of it and pLit. The former would have to
extract the inserted individual digits, combine them to form a
number and re-insert this at the proper place in the parse tree, while
the latter would have to extract the operator and call update.

Conclusion

We were able to extend the functional-style parsing using sub-
parsers to C++ by defining a generalised class of streams, called
pstreams. With this, we could define combinators allowing us to
build new sub-parsers by combining old ones. With these general
tools out of the way, it turned out to be very easy, once recursion
had been handled properly, to implement the BNF grammar for
integer arithmetic expressions. Moreover, similarly to the
situation in FP, there was a very intimate relationship, in fact
more or less an isomorphism, between the actual BNF production
rule and the corresponding sub-parser, making it very easy to
write such sub-parsers – it would even be feasible to write a
general sub-parser generator to do so automatically.

It was also shown how to handle operator precedence and,
perhaps even more importantly, ambiguous grammars. None of this
involved major changes to the framework, thus the proposed
framework scales well to more complicated grammars such as those
of typical programming languages. 

[concluded at foot of next page]

17

Overload issue 56 august 2003

6 In monadic parsing in Haskell one often uses the sequencing operator >>= for
precisely this purpose, hence we will use that here too.

7 In most FP languages one would say that f must be of type Presult ->
Presult.



[continued from previous page]

Moreover, we showed how one could associate actions to
individual sub-parsers thereby dramatically extending the
possibilities of stream-based parsing. The associated actions could
be used to create a pretty printer, or even to translate or execute the
code. 

Frank Antonsen
frankantonsen@netscape.net

References

[1] J. C. Martin, Introduction to languages and the theory of
computation, 2nd ed, McGraw-Hill (1997).

[2] G. Hutton, “Higher-order functions for parsing”, J. Funct.
Prog. 2 (3), p323 (1992).
[3] J. Fokker, “Functional parsers”,  Lect. Notes of the Baastad
Spring School on Funct. Prog. (1995).
[4] S. L. Peyton-Jones, D. Lester, Implementing functional
languages. A tutorial, Prentice-Hall (1992).
[5] F. Antonsen, “Functional programming in Perl”, to appear in
The Perl Review.
[6] A. Alexandrescu Modern C++ Design : Generic Programming
and Design Patterns Applied, Addison-Wesley, 2001.
[7] N. M. Josuttis, The C++ Standard Library. A tutorial and
reference, Addison-Wesley, 1999.

18

Overload issue 56 august 2003

EuroPLoP 2003
Conference Report

by Allan Kelly

Exciting.  Tiring.  Fun.  Intoxicating.  Mind stretching.  Brilliant.
Just a few words to describe EuroPLoP 2003, the annual
European conference on Pattern Languages of Programming held
in Germany during the last week of June.  Although, I’m not
completely sure ‘conference’ is the right word, nor does the
gathering confine itself to programming patterns.  I’ll try and
give you an idea of what happened somewhere in Bavaria

Where is it?

The venue, as always with EuroPLoP, is Kloster Isree, a former
monastery turned hotel and conference venue about 100km west
of Munich.  The hotel is set in beautiful countryside outside a
small town – not that you have much time to explore the town or
the countryside, but it adds to the general feeling of calm.  The
conference is actually something of a retreat, albeit a retreat
which involves a lot of hard work (and, erh, beer.)

Full price this year was €900, but this included the conference,
accommodation, meals, refreshments and as much beer as you can
drink – or any other liquid refreshment you may prefer.  As if all
this didn’t make for enough of a bargain the organisers threw in a
brightly coloured yoyo.  Who could ask for more?

Who goes to EuroPLoP?

Since everything is included the conference really starts over
breakfast where conversation quickly turns to the conference
itself and all matters patterns.  This continues through lunch and
dinner down to the bar and into the small hours of the night.
Only interrupted by traditional conference drinking songs.  And
this is a conference with traditions carried on by a core of regular
attendees.

For the conference newbie this core of regulars could seem off
putting.  But everyone is very friendly and by the end of the first
day this feeling is disappearing, is gone by the end of the second,
and by the time the conference ends you feel like you’re part of an
extended family.

In total there were 65 people at this year’s conference.
Unsurprisingly the majority of attendees were German but the
second largest group (14) people, were from the UK.  Add to this
a couple of New Zealanders, half a dozen Americans, 5-6
Scandinavians and another dozen from assorted other European
countries.

These seem to be split in equal thirds between academics,
independent consultants and regular employees.  The academics

have a particular problem to wrestle with when it comes to patterns,
that is, academia places a particular emphasis on original work, yet
the very essence of patterns is that they document known solutions
to problems.

The small scale and interactive nature of the conference means
that by the time it comes to leave you have 64 new friends.  (Well,
in my case a few less as about 8-9 people are also to be seen at
ACCU conferences.) 

At most conferences the speakers list is one of the attractions to
pull in the crowds, providing the opportunity to hear known
speakers address a topic.  EuroPLoP doesn’t have any speakers, no
big names, instead there are authors, and most of the attendees are
themselves pattern authors.  And rather than receiving a speakers
list before the conference, you leave with a participants list.  This
leaves me thinking the conference is kind of upside-down.

What do you do?

Like any conference EuroPLoP is split into sessions, punctuated
by meals and coffee breaks.  The sessions though are split into
Workshops and Focus Groups – the former in the morning and
the latter in the afternoon.

Workshops are an opportunity for workshop members to review
the patterns presented by the members of the group.  These have
been submitted and shepherded in advance so are already of high
quality.  The author introduces their paper then steps back,
becoming a fly on the wall while the group discuss the paper.  Only
at the end is the author allowed to return and talk, and then he/she
is only allowed to ask for clarification, they do not engage in
defence of the paper.

The objective is to improve the paper.  Over the months
following the conference the author incorporates those suggestions
they wish to into their paper.  The revised paper is then resubmitted
to be included in the conference proceedings.  This is another way
in which the conference is upside-down, the papers which make it
into the proceedings have been changed from the papers presented.

I’m glad to say that my paper, a pattern entitled Encapsulate
Execution Context, was well received by my group.  However,
when they turned their attention to improvements it can be most
frustrating as the group discusses changes you have already
wrestled with, or different group members contradict one another.
Receiving feedback, even that meant positively, can be a bruising
experience.  Only later when I had a chance to write up my notes
and reflect on the experience could I honestly say it was all positive.

Most of the afternoon is taken up with focus groups.  The format
of each group differs depending on what the workshop leader(s)
wish to achieve.  For example, one of this year’s groups worked
with Lego Mindstorms to build robots.  The group leader’s intention



was to investigate the pattern discovery process by looking for
patterns in robot construction.

Another group discussed team working and practices for human
interaction in groups.  Again the objective was pattern discovery.
This meant working in small teams and discussing what we do in
the work environment and looking for documentable practices.

In addition to workshops and focus groups there are a variety of
other activities such as writers’ groups and birds-of-a-feather
sessions.  The third night sees a grand banquet during which prizes
are awarded, some serious, some humorous.

I’ve heard you play games at
EuroPLoP?

Something which marks out EuroPLoP from your average
conference, and even your not so average conference, is the
presence of games and art.  The conference has a resident artist
who runs an art studio and organises games at several breaks
during the day.  The games are non-competitive and not
necessarily physically demanding – although some attendees
made a decision not to offer themselves for stage diving!

Apart from having some good fun there is a serious intent behind
the games.  Giving feedback to people can be difficult, and it can
be more difficult to hear people talk openly about one’s own work.
However, it is hard to take any of this personally when the person
giving it was sitting on your knees last night.

There is also a lot of humour at EuroPLoP.  This occurs inside
meetings where there is a very relaxed, upbeat atmosphere, in the
drinking songs and in the conference’s own daily magazine.
(Although Overload readers may have felt strangely at home with
a magazine edited and largely written by two regular Overload
contributors.)

The games also add to the sense of “getting to know you” that
breeds trust and creates a sense of community between the people
there.  In a sense, the conference didn’t end when everyone went
home, it goes on, each of us is part of something bigger than
ourselves that will continue to evolve.

Where are patterns going?

If anyone still thinks Patterns equals the Gang of Four (Gamma et al,
1994) book and “Pattern Languages of Programming” (PLoP)
means the conference concerns itself with just programming or IT
matters, now is the time to wake up and smell the Bavarian Beer.

In fact, I think the pattern I presented was one of the most GoF
like as it concerned itself with a common high level programming
technique.  Other patterns in my workshop dealt with embedded
systems – giving their example in assembler code – or techniques
for using Aspect Oriented Programming.  Other workshops looked
at pedagogical patterns, use case patterns, pattern writing,
leadership patterns, and even patterns of shepherding patterns.

I detected three trends in patterns in the papers presented and the
conversations about patterns:
● Pushing the boundaries: pattern writers are starting to explore

the boundaries of what patterns can do and where they can be
used.  As already mentioned academia has problems with
patterns, however, this is not stopping some academics from
trying to use them and research with them.  A recurring theme
was the use of patterns as a form of knowledge management.

● Application to new domains: software people may have
adopted patterns from architects but they have been more
successful than architects in spreading the word.  Fields with

immediate relevance to software are now starting to experiment
with patterns, educators are starting to write pedagogical
patterns, while the IT security community is attempting to frame
much of their work as patterns.

● Division of patterns: another recurring theme is the correct “level”
or “audience” for patterns.  Some people are exploring how we may
group patterns into hierarchies, so we may have abstract patterns at
the top, with other implementation patterns forming a second layer
of concrete patterns.  For example, an abstract pattern may describe
how to implement a scheduler, while a concrete pattern would
extend this to techniques on DOS based computers.  There is also
a debate as to whether this kind of information is best presented as
a concrete pattern or as a case study.
Others are interested in how to present patterns to different
audiences.  A format and content that is great for an
inexperienced developer may not work so well for a battle
hardened veteran.  Even one’s own demands on a pattern may
change when the document moves from being an introduction
to being a reference.  What is the solution?  Multiple styles?
Hypertext?

What is increasingly clear is that patterns can lend a more human
dimension to technical literature.  This may occur directly,
through patterns about human behaviour, or through the
presentation of highly technical information in more accessible
formats.  Either way, the greater emphasis on people makes
patterns a useful knowledge management tool.  

(Now I come to think about it, I seem to recall Jim Coplien,
either in print or more likely at an ACCU conference talking about
Christopher Alexander’s reaction to software patterns.  If I recall
correctly, he thought that the software community wasn’t paying
enough attention to the human aspects of patterns.  Maybe the
software patterns community is now addressing this, or maybe
Alexander didn’t realise that by computer industry norms, the
patterns community does appreciate people more.)

What else?

What else can I say about EuroPLoP?  I got home and felt as if I
had been running for three days, physically it was very tiring.
This was not just from the games and beer, the conference
maintains a very high level of intellectual activity.  My body may
have been exhausted but my mind felt like it had been given a
workout in a mental gym.

Much of the credit must rest with the conference regulars who
form the pattern community, and in particular the European patterns
community centred on Hillside Europe.  This is a community with
a noticeable ACCU overlap, I counted about 10 participants had
been to one or other of the ACCU conferences – most notably the
programme was chaired by our own Kevlin Henney.

Different conferences fulfil different roles.  Academic
conferences may be little more than presenting papers.  Commercial
conferences may be glorified training sessions.  For me EuroPLoP
was about two things.  Firstly it was about contributing to the
growing body, and secondly it was about growing as a person and
opening myself to some new ideas.

Would I recommend it?  Yes with one reservation: if you are
going, be prepared to be open, this is not a conference for those with
fixed ideas, fears or a point to prove.  It is a conference where you
give and you receive, and like Christmas, much of the pleasure
comes from the giving.

Allan Kelly

19

Overload issue 56 august 2003



Three Phantastic Tales
by Alan Griffiths

When people work together (and most software development
involves people working together) they are often not pulling in
the same direction. When you notice that others are pulling in a
different direction it is natural to assume that they are the cause
of the problem. After all you know that you are not doing
anything stupid. But in reality the behaviour of your colleagues
isn’t stupid, it is just strange, because you don’t understand what
they are trying to achieve. And you can’t fix what you don’t
understand.

Strange behaviour requires explanation, and the form the
explanation takes reflects the prevailing cultural context.
Behaviourists will talk of “conditioned responses”, psychologists
of “archetypes”, evolutionists of “memes”, and I’m going to talk
of ghosts. On one level these particular ghosts are a narrative device
but, on another, they are very real and pose a danger to any project
that is visited by them. Anyone experienced in software
development will recognise the spirits in the stories that follow. I
have met them many times with many names but, to protect the
people who have been possessed by them, I have chosen to use
names that reflect their essence.

These shades are Mr Deadline, Seymour Checks and Noah
Shortcut; the first of these is a project manager and the others are
developers. Each of them contributes to the failure of a project,
although each is working in a way that is a rational response to the
way they see events unfolding.

Mr Deadline’s tale

Like most project managers Mr Deadline has a lot of demands on
his time. He keeps the customer and management informed and
contented with progress of the project. He ensures that the
equipment, software and developers required for the project are
available when they are needed. And he ensures that work is
allocated to and completed by developers.

With so many demands upon his time he seeks simple strategies
for satisfying them: create a plan against which he marks off
progress, predicts when resources will be needed, and records the
allocation and completion of development tasks.

At the beginning of the project he gives out the first tasks to
Seymour Checks and Noah Shortcut and, happily, both tasks are
completed on time. But, as the project progresses, he finds that
although Noah continues to complete his work on time Seymour
takes longer and longer to complete his work and the project falls
behind the planned schedule.

Adding developers to the project helps a little, but none of them
are as productive as Noah Shortcut (or as slow as Seymour). Mr
Deadline ensures that all the critical elements of the system are
completed on time by giving them to Noah, while anything less
urgent (or unplanned) is passed to the less reliable developers
(Seymour and the others).

The project continues to fall further behind schedule and,
additionally, some serious bugs are detected during testing and
acceptance testing leading to significant delays through rework.
Eventually, the planned delivery date is reached without all the
work being completed to an acceptable standard. The project has
failed to deliver (and, because of the extra staff, is also over budget).

Sometimes a project will be cancelled at this point, but in this
case the project continues. Mr Deadline is required to fix the
problems as soon as possible but also comes under pressure to

release staff to the next project. In the hope of avoiding a repeat of
these problems the next project is staffed with the most productive
developers. After a while Seymour is left as the sole developer on
the project to fix the remaining problems.

Eventually, all the problems are fixed and the project brought to
an (unsuccessful) conclusion.

Noah Shortcut’s tale

Noah is bright, eager and understands the need to minimise the
amount of time and effort spent on the project. From the moment he
receives his first piece of work he is trying to avoid any activity that
would delay the delivery of that work. When he looks through the
documentation for that work there may be a few things that he
doesn’t fully understand, but he can see what classes and functions
he needs to write – which is all he needs to start cutting code.

Once the code is done the job is almost over – he just needs to
integrate it and check that it is working. He spends some time
exercising his code through the debugger “to make sure it works”,
fixing any problems he encounters, and he can soon announce that
he’s finished.

As time passes his confidence grows: he always finishes on time
and is trusted with all the important new stuff to write. He’s also
very aware that the project is behind schedule – and he does his best
to catch up by finding new shortcuts through the project processes.
In particular, he finds that he can reduce the time spent checking
his work: if the testers find problems he can fix them easy enough;
and, since they don’t find many, this approach avoids a duplication
of effort.

When the last piece of functionality is handed over Noah feels
a sense of triumph – there are probably a few bugs to fix, but the
hard part is over. And, in recognition of this achievement, Noah and
the other great programmers are moved onto the next project to
work their magic there!

Seymour Checks’ tale

Despite the impression one may gain from Mr Deadline’s story,
Seymour writes reliable code quickly. Why then does he take so
long completing his tasks?

When Seymour receives his first piece of work he reads through
the documentation and makes notes on anything that isn’t clear and
on how he will prove the code that he writes (to be specific, he does
this by writing automated tests). Then he seeks clarification on all
the issues, writes the code and checks it works (by running his tests)
before announcing he’s finished.

As the project progresses he finds that more and more of his
work relies on existing code. Where this is code Seymour wrote
himself it is clear what the code should be doing and there are tests
that demonstrate that this is indeed what it does. Where another
developer wrote the code this is not the case and it is frequently
unclear whether the code achieves its intent. At first Seymour
assumes that his colleagues have validated their code. But after
repeatedly finding that his code is failing because of errors in the
existing codebase Seymour becomes disillusioned with the slapdash
work of his colleagues. 

Because in addition to the work assigned to him, Seymour is
fixing problems in existing code, he begins to fall behind Mr
Deadline’s schedule. Seymour is conscious of these delays and
especially of the length of time it takes to prove that the problem
isn’t in his new code and to locate it. So, in an effort to find and
correct these problems effectively, he takes to writing tests for any

20

Overload issue 56 august 2003



existing code he uses that is missing tests and fixing the problems
he discovers. However, as more and more code is added to the
project (and as changes are made to the production code without
updating the tests) the effort of doing this leads to an even greater
overhead to Seymour’s activities.

Only when the codebase in the project begins to stabilise
(because no more features are being added and developers are
leaving the project) does it become possible for Seymour to make
progress in addressing the many bugs hidden in the codebase.

Seymour is the last developer on the project: the hero tracking
down and fixing the problems that others left unresolved.
Eventually he succeeds: the system reaches an acceptable standard
and work on the project is brought to a close.

Why does the project fail?

Clearly the above tales are different views of the same failing
project, and each of the tales describes someone who is doing
their best to ensure that the project succeeds. There is no evil
villain plotting to prevent the success of the project, nor anyone
doing anything that is obviously stupid at an individual level. The
problem lies in the interaction between individuals – our spirits
do not consider the effect that their actions have on other project
members or the project as a whole:
● Mr Deadline attempts to speed up the project by getting each piece

of work done as fast as possible. But the pressure that he places on
Noah and Seymour promotes hidden rework and this slows down
the project. He cannot see this without understanding the dynamics
of the project as a whole. Unless he realises that he is part of the
problem he will resist changing his behaviour.

● Similar comments apply to Noah Shortcut who is going as
quickly as he can but, in doing so, produces careless work that
(sooner or later) needs rework and so delays the progress of the
project. Once again, unless the connection is made apparent then
he will continue to focus on speed to the detriment of progress.

● By now you should see the pattern: Seymour Checks’ effort to
remove the bugs conceals the level of rework and prevents it
being recognised as a problem. But, without an appreciation that
this is happening, he won’t change his approach.

One reason that I’ve discussed these stories together is that these
spirits travel together. Once a team member succumbs to one of
the spirits they (unintentionally) encourage the other behaviours.
This point is important when effecting an exorcism, so we will
examine this mechanism more closely now.

By not enforcing an adequate quality check on the work done
Mr Deadline creates an environment that encourages cutting
corners. The spirit of Noah Shortcut will soon possess anyone who
looks for the simplest way to complete a task. The opportunity to
cut corners also affects Seymour Checks – although his self-
discipline is sufficient to keep him from shortcuts it also tempts him
to the opposite excess (introducing redundant tests). Mr Deadline
also fails to ensure that rework is recognised as a continuation of
the original task; this creates an environment that encourages
Seymour to “just go ahead and fix it” and keeps from Noah an
awareness of the cost of his carelessness.

Noah Shortcut’s need for speed will lead him to skimp on any
quality checks included in the project process (review meetings,
tests or whatever) and to discourage any such “time wasting”
procedures. Mr Deadline is eager to speed things up and will listen
sympathetically to ideas that will “save time”. At the same time
Noah is leaving a trail of careless mistakes through the codebase –

while each time Seymour is tripped up by one of them he becomes
more determined to root them all out.

Seymour Checks is keeping key information to himself: the cost
of the time spent fixing other people’s mistakes. To him it is
reasonable: by the time he’s found the bug, it is quicker and easier
to fix it than to explain it to someone else (who is probably in the
middle of something important). But if Mr Deadline isn’t aware
that rework is happening (and that it is mainly in work produced by
Noah) then he will assume that the code is of an adequate quality.
Equally, if Noah isn’t made aware that he is making mistakes he
will not try to rectify them.

How to fix it

The first step is to be sure that what is going on really matches
the tales I’ve told. Not every project manager is Mr Deadline, not
every quick programmer is Noah Shortcut and not every slow
programmer is Seymour Checks. But they are easy to recognise
once you know their characteristic behaviours.

Now, it is pretty well known that if people are to be changed they
must first want to change. And unless your colleagues (or you) realise
that they are possessed by one of these three spirits then they won’t
take any steps to exorcise them. Accordingly the next step is to explain
to them just what is going on. This isn’t easy because, as the tales
illustrate, each of them is already doing his best according to his
understanding. The stories are a useful device to sidestep the tar pit of
telling people they are doing something wrong. It is human nature to
react defensively to such a confrontational approach (which allows the
ghosts to entrench themselves). The stories are much less threatening
– so feel free to use them to present the case for change.

Until I came up with these stories I struggled to get the necessary
ideas across. Naturally the stories are not enough: you must tell
them at the right time and have evidence to show that they apply to
the current project. For example: you might find occasion to tell
your project manager how substandard work products can impact
downstream tasks and use the story of Noah Shortcut to illustrate
that his fastest programmer could be a liability. He won’t know if
this is really what is happening on his project, so you also need
evidence that Noah’s shortcuts are costing other people on the
project time. In one recent case I’d just told this tale to the project
manager when the integration test team complained that it had been
stalled for two hours trying to compile the system. A little
investigation showed that Noah had checked in a change without
first building the system properly. (This led to a tightening of
procedures and a willingness to consider the other tales.)

There are no guarantees: the battle isn’t over once there is
agreement that there is a problem – habits do not change easily. The
ghosts will still put up a fight! You will need to have an answer to
the argument that “there isn’t anything we can do about it”. The
different spirits have different ways of putting it: 
● Mr Deadline will tell you that “I can’t tell if a piece of code

works until it is tested. And, after a bug is found in testing and
someone has tracked it down to the right piece of code, it would
take too long to give it back to the original developer.”

● Noah will see most suggestions as a waste of time: “there are
always bugs regardless of any checking process – so why knock
yourself out trying to eliminate them?”

● Seymour will tell you that “I’ve already done most of the work
tracking down the problem, people don’t want to do anything if
I do tell them and I don’t want to make a big deal of it.”

[concluded at foot of next page]

21

Overload issue 56 august 2003



[continued from previous page]

You need answers that fit your organisation (like using pair
programming, test harnesses or code reviews to ensure the
standard of work). These are all techniques that focus on quality
– but the truth is that is it quicker to develop things right than to
develop them wrong and then fix them. This is often a hard
cultural change for an organisation because the connection
between quality and progress isn’t easy to make explicit.

Whatever working practices you try to introduce you also must
lead each of the affected individuals to realise that their habits are
causing problems on the project. Unless the majority of these
individuals are prepared to change at the same time the individuals
concerned will return to the “comfort zone” of their habitual
behaviour and the project will slip back into failure mode.

Alan Griffiths
alan@octopull.demon.co.uk

22

Overload issue 56 august 2003

A Unified Singleton
Framework

by Jeff Daudel

Introduction

Software systems often contain objects that exist for the duration
of the program.  A relatively small system may have only a
handful of these objects, where a large system could have
hundreds.  At first glance, maintaining these objects, including
their creation and destruction order, may not seem too difficult.
However, closer inspection reveals the true magnitude of the
complexity involved.  Only ten such objects have over 3.6
million different orderings; one hundred objects have a number
of orderings that is represented with 157 zeros.  Now consider
periodically adding or modifying the relationship of these
objects.  In a system where core systems and even pieces in those
systems are built with these objects, it would not be unreasonable
for a system to have many ongoing changes, even if it were well-
designed.  Accounting for all these factors, maintenance of both
the proper orderings and all the dependencies can quickly
become a nightmare.

Many developers attempt to handle these objects by hand and
encounter difficulties. Others conclude that large C++ systems
cannot be written without automated garbage collection, and I
would say that the belief has a lot of credit given the numbers they
are up against.  But garbage collection can be costly.  The run-time
and memory overhead, coupled with its complexity, make it
unacceptable for many applications.  And I would have to ask, “Is
this the best we can do to handle such a critical problem?”

Additionally, let me add that this may not even be an isolated
problem, but only one of several unaddressed issues of a common
design pattern.  Similar problems exist and are more prevalent as a
system grows. This design pattern is a powerful tool to build complex
C++ systems, but it also might have a few gaping holes in its support.

The pattern I am referring to is the singleton.  I believe it is one
of the most fundamental patterns for a software foundation.  If a
system consisted purely of objects, singletons might be the only
reason to have the word “the” in a programmer’s vocabulary.
Anyone that ever said, “the manager”, “the renderer”, or “the
startup state” would be referring to a specific singleton object.  But
just because something has a lot of potential, does not mean a
gloomier side doesn’t exist.  Unfortunately in software, the
gloomier side is usually in the implementation details.  The
singleton pattern is no exception.

In this paper, I will outline the classical singleton pattern in more
detail.  I will present a generic system that will not only provide the
basic capabilities of the singleton pattern, but will provide several
other useful abilities.  It will extend the notion beyond the current
scope of a singleton to provide answers in a larger context of
problems. I will discuss the common problems that occur when

implementing the pattern in the C++ language.  I will then describe
how the system attempts to solve all the issues, even on massive
scales.

More specifically, the new system will deal with:
1 Integrating two different families of singletons – static and

dynamic
2 Handling massive numbers of dynamic dependencies
3 Deducing a valid destruction order for all singletons
4 Providing robustness by detecting cyclic dependencies and

invalid uses of the system
These benefits, along with several others, will be provided to the
programmer at a cost of usually two lines per object.

These capabilities form “A Unified Singleton Framework”. It
attempts to unify common problems of all such objects.  It unifies
different classifications of singletons.  It unifies their solutions,
relieving the usual hand crafting on an object by object basis.  Once
I have demonstrated this system to you, I hope you will agree that
you would not want to write another system without using the
unified singleton approach.

The Classic Singleton

The first book to formally document the singleton was the Design
Patterns book by Gamma et al.  The book describes singletons as
objects that have two properties – global access and single
instance. Let’s examine each in turn.

Global access could be another term for “convenient access”.
The benefit of easily accessing an object, such as not having to pass
a parameter through a multitude of functions, is less code and less
up-front planning. This together means simpler. One downside to
a singleton being globally accessible, is that it conflicts with the
principle of encapsulation.  If there were a way to make an object
conveniently accessible but only selectively available to its intended
audience, there would be room for improvement on the pattern.  But
current methods of restricting access encroach on convenience,
which would void the primary reason in the first place.

The second principle assures the use of the same object.  Many
assumptions and synchronization requirements rely on this
singularity, and the singleton pattern delivers this well.

Singleton Usage

Consumers of singletons really care about one usage feature –
getting a singleton.  They need not concern themselves when
singletons are created or destroyed, or the dependent relationship
between one singleton and another.  Nor do they care about
where they came from, where they live, or what parameters were
needed to create them. They proclaim, “Give me! No Details
Please!”  I will demonstrate this in code shortly.

It is this “getting” that provides the simple interface into the
singleton abstraction.  The following is an interface for singletons
which covers all possible singleton classes. It is a templated
function that takes the singleton class as a type parameter.



template<class TSingleton>

TSingleton* GetSingleton();

Using the interface, an example of singleton usage would be:
GetSingleton<Printer>()->

Print(GetSingleton<DocManager>()->

GetMyDocument());

This shows two singletons, Printer and DocManager, being
accessed in the same line. No previous preparations were made.
No objects had to be passed in. This is especially useful for the
main function, since no objects are ever passed in.

Making a Singleton

How difficult is it to make a class a singleton? This is a good
question since many highly regarded books have differing
opinions. Effective C++ by Scott Meyers, and the Design
Patterns book present slightly modified versions based on what
appear to be a similar theme.  You might have to write a half-
dozen or more lines of cookie-cutter code using a static variable
of some sort:

class Singleton {

public:

static Singleton& GetSingleton() {

static Singleton instance;

return(instance);

}

private:

Singleton() {}

};

Singleton Singleton::instance;

Modern C++ Design by Andrei Alexandrescu takes a step
forward in providing some templated classes to alleviate most of
this work, but there are still several template decisions and
instantiations to make.  He also presents several usage
modifications that can be applied to individual singletons.  This is
important given there are probably innumerable variations of
problems.  But what is equally important is to allow a system to
deal with these pieces in a unified manner.  This will be
demonstrated later on.

If the previous code seems like a lot, that’s because it is.
There is a simpler way, and it can be done in two additional
lines:

class log {

public:

API_SINGLETON(log);

};

// In a .cpp file

DEFINE_SINGLETON(log_impl);

That’s it. log is now a singleton. Any function can retrieve the
singleton by making the call:

GetSingleton<log>();

The function will retrieve the one and only instance of log. The
log_impl class can be the log class itself or any derived type.
This would allow for polymorphic singletons and their
implementations to be encapsulated from the user. The singleton
will be properly created by the time it is needed and destroyed
before the program exits. No further work is needed and no
singleton memory leaks are assured.

The following is a simplified version of the API_SINGLETON
macro. I’ve temporarily stripped out the notion of multiple types of
singletons, linkages and private data:

#define API_SINGLETON(T)\

class SingletonTraits {\

public:\

SingletonTraits();\

~SingletonTraits();\

static T* mpInstance;\

};\

SingletonTraits SingletonTraitsInstance

This macro declares an internal class traits type and then makes
an instance of that trait.

You might wonder why not use a templated traits class instead
of a macro.  It is a technical issue about what can be templated and
what cannot.  I will point out later in the article that a unified
singleton can be shared across component boundaries.  On some
platforms, such as Microsoft’s Windows, certain linkage specifiers
cannot be templated.  One component is required to export the
definition while another component will need to import it.  There
is some leeway for member functions, but not for member data.
Although not my preference, macros seem like the only way around
this issue.  But that’s ok.  The macro/template combination provides
a powerful idiom. The DEFINE_SINGLETON() macro has
requirements that cannot be templated either.

This trait instance allows the system to detect whenever the class
is constructed or destroyed, by monitoring the respective methods.
Because of this, the system is always aware if more than one
singleton is created, or if one is improperly destroyed.  It will
immediately notify the user of any invalid usage, making it difficult
to accidentally subvert the system.  It will be shown later that some
singletons need to be made by the user at least once, so we cannot
protect the constructors or destructors for their implementation type.

For example, if a user attempts to make a singleton class on the
stack, the system will report an assertion. If a user attempts to delete
the singleton by calling delete, an assertion is reported. There isn’t a
lot of room for misuse, which means less time tracking down errors.

The DEFINE_SINGLETON() macro is a bit more involved. It
implements several features that are not present in previous
singleton frameworks. I would like to outline their functionality
first before discussing it further.

With these traits, a simplified version of the GetSingleton
template looks like this:

template<class T>

inline T* GetSingleton() {

typedef typename T::singleton_traits traits;

if(traits::mpInstance == NULL) {

Create< T >();

}

return(traits::mpInstance);

}

Most of the difficult work is deferred to the Create() method
which is defined by the DEFINE_SINGLETON macro and
explained later.

Dynamic Singletons

Let’s take another look at a different singleton case. There is one
case in particular that usually influences a programmer to reject
singleton as a design for managing an object’s lifetime.

Let’s assume that a program uses a global object called the
“Renderer”.  Let’s also say that we want two different versions of
the renderer – one for OpenGL and one for DirectX. They both
utilize the same interface.  We want to choose which renderer to

23

Overload issue 56 august 2003



use when the program starts.  This means the selection of which
object cannot be made until run-time.  We also want to create the
renderer with some run-time arguments.

This is where a programmer may now say, “Oh well. The
renderer is sort-of a singleton, but just doesn’t quite fit the pattern.
I’ll have do everything from scratch on this one and manage it by
hand.”  Let’s pause there.

This is the case where if something doesn’t exactly fit one’s
conception of singleton, then it might not fit at all. But if the
programmer were willing to slightly extend his notion of a
singleton, there would be a lot more room to work with.

If you recall, the original usage of a singleton is quite simple and
has only one requirement – “GetSingleton”.  If both renderers have
the same interface, then the consumer does not care which version
of the singleton he is getting.  He wants the one and only “renderer”.
Somebody else should have already taken care of selecting which
version the renderer represents underneath.

This is an example of a dynamic singleton. As far as the
consumer can tell, it is no different from a static singleton, which
is bound during compile-time. Consumers just say “get” and they
expect a singleton. Who bound it, created it, or anything else is
remains unnecessary detail to them.

A dynamic singleton is just as easy to make:
class Renderer {

public:

API_DYNAMIC_SINGLETON(Renderer);

};

// in the .cpp file

DEFINE_DYNAMIC_SINGLETON(Renderer);

Functions can get the singleton by making the same call:
GetSingleton<Renderer>();

The one instance of the renderer will be returned. It will either be
the OpenGL or the DirectX version, depending on the setting
code.

The dynamic singleton leads to other benefits as well. It can be set
by modules that are loaded later in the program, also called late-
binding.  They can also be swapped out for another singleton. For
example, it is possible to swap the OpenGL renderer for the DirectX
version during the middle of the program execution. If all the
consumers use the Renderer interface, they will never be aware of the
difference, allowing for a lot of flexibility.  If a singleton must be
created with run-time evaluated arguments, dynamic singletons should
be your choice. In contrast, static singletons are always ready, so there
really is no appropriate time to provide constructor arguments.

You might think that this violates the principle of single instance.
From a user’s point of view, there must be only one instance of a
singleton at any point in time. And the unified system assures this.
But deleting a current singleton and then immediately creating a
new one to replace it, would not imply multiple instances at any
frame in time.  Getting the singleton will never be ambiguous,
which as pointed out previously, is the fundamental requirement of
any singleton framework.

There is a slight extension to the interface of a dynamic
singleton.  We need to allow the singleton-producer code to select
which singleton to use, and we do this through SetSingleton:

template<typename TInterface,

typename TImplentation>

SetSingleton(TImplementation* pSingleton);

This method will set the singleton pointer. Any function that calls
GetSingleton() on a dynamic singleton that has not been set

would be undefined.  Notice there is a second templated
argument – TImplementation .  This type is used as the
derived type when deleting – which means the interface need not
expose a public destructor, and the implementation is kept
encapsulated from the consumer.  For trivial classes, the
implementation could be the same type as the interface.  When a
dynamic singleton is destroyed, it will be deleted properly.

Contrast this with a static singleton. Static singletons are always
set, and do not support the SetSingleton() interface. If you
were to call SetSingleton() on one, the compiler would report
a syntax error. One big advantage of static singletons is that you
can get them during global initialization as well, which occurs
before main is invoked. 

Destruction and Dependencies

Now that all superficial interface discussion has been touched
upon, I can discuss the real bread-and-butter of a unified
singleton framework. It solves a problem that is more devious
than most engineers may at first imagine, or at least until they
actually want their program to shutdown without making a
mess.

As a project’s lifetime progresses, developers are usually capable
of getting a program to boot up and eventually load up all the
objects they will need.  But, getting the program to shutdown and
actually delete all those objects is usually another matter. The
complexities of preventing one object being destroyed too early
(before another that it depends upon), or of avoiding an
unanticipated cyclic dependency during the development, are often
realized too late.  A program may not be able to shut itself down
cleanly without crashing and might have to rely on the operating
system to abruptly kill the process.

The solution to this problem lies in well-defined dependencies.
If the singleton framework knows the proper dependencies, then
this problem is easier to solve.

Let’s say there are a keyboard , a log and a disk .  The
keyboardwrites to the log. The log in turn writes to the disk.
The keyboard depends on the log, and the log depends on the
disk. It would look like this:

keyboard -> log

log -> disk

There is only one proper destruction order if a dependee were to
always be available to its dependent:
1 Destroy keyboard (no object depends on it)
2 Destroy log (keyboard is already destroyed)
3 Destroy disk (keyboard and log are already destroyed)
In Modern C++ Design, Andrei Alexandrescu suggests that a
programmer could manually assign longevity numbers to
singletons to convey these dependencies.  This is certainly
plausible if there were only a few objects, but what about a
dozen?  Longevity numbers themselves have no inherent
meaning; they are only relative to other singletons.  As a system
develops, some of those singletons will change. And if you recall,
ten objects already have 3.6 million different longevity orders.  If
a programmer were able to continually consider 1,000 of those,
there would still a few million he was omitting.  This is an
intractable problem.  One thing I learned in my computer science
classes, I could spend my time more wisely than trying to solve
an intractable problem. 

You might be tempted to think that finding an order for ten really
isn’t that hard.  If there are only a couple dependencies between

24

Overload issue 56 august 2003



singletons, finding one usually isn’t.  But every time a new
dependency is introduced, the entire order needs to be reevaluated
and could change.  As the system grows and more code needs to
get shared, the dependencies will get complex. That is when the
magnitude of this problem usually shows up.

Andrei does suggest an alternative by alluding to a dependency
manager for singletons.  But he also brings up a separate
optimization issue in that singletons that are not explicitly used
should not be created.  The overhead of unused singletons could be
inefficient.  Because of this, references must be placed in the
dependees that refer to the dependents.  Using the above example,
the diskwould have to refer to the log.  The relationships would
then look like this:

log->disk

disk->log

This would cause a circular dependency. Due to this, Andrei
dismisses the idea of singleton dependencies altogether.

I would first have to examine the reasoning for such an
optimization.  Most singletons that are at the system-level will
eventually be required anyway and must be allowed for. Another
difficulty is that one dependent may have multiple other
dependents, forming a large dependency tree.  Temporarily
optimizing out a root singleton may prevent many other
dependencies from being specified.  It may not be possible to
recover these at a later point in the program.

If a singleton’s creation overhead is really significant, there
are alternative solutions available.  The overhead could be
moved out of the singleton’s constructor and into the first usage
of the object, such as in its member methods. For example, in a
log class, a file could be opened when the “logging” method is
first executed.  I would describe the benefit of this removal
optimization as minimal compared to the enormous difficulty of
obtaining a proper destruction order out of a million
possibilities, or even a number represented with 157 zeros.  To
put this in different perspective, I wouldn’t want to be distracted
away from a taming a man-eating beast because a small mouse
crossed my path.

The reason why correct dependencies will find a proper
destruction order is that the unified singleton framework has a
“Singleton Stack”. Whenever an object is fully constructed, it is
pushed on to the singleton stack. When the program exits, it will
destroy the singleton stack in the reverse order it was created.

To specify a dependency, there is an additional line of code in
the dependent’s constructor:

disk::disk() {}

log::log() {

GetSingleton<disk>();

}

keyboard::keyboard() {

GetSingleton<log>();

}

A rule of thumb that has been helpful to me is that if you access
another singleton in any member function (or the destructor),
then you must get the singleton in the constructor as well. I call
this the principle of “symmetric getting”.  The result will be
correct dependencies.

A couple of others things to note. Static singletons are created
during their first get.  Singletons are not added to the singleton
stack until their constructors have completed. So no matter
which singleton is requested first – disk, log, keyboard,

the singleton stack will always be the same – disk,
keyboard, then log.

If log is asked for first, log will create disk and put it on the
stack first. If keyboard is asked for first, it will create disk and
then log and then keyboard . This is very similar to how
constructors in derived objects work in C++.  It represents the
essence of dependencies.

Cyclic Dependencies

There is also one inherently invalid sequence of dependencies –
cyclic dependencies. When cyclic dependencies are introduced,
they eventually lead to an infinite loop. Thus they always need to
be avoided. For example, if we had these dependencies:

log::log() {

GetSingleton<disk>();

}

disk::disk() {

GetSingleton<log>();

}

Which should be created first? Which should be destroyed first?
There is no correct answer. But that’s ok, since the unified
singleton framework will detect cyclic singleton dependencies
during run-time. An assertion will be encountered if one exists.
This means that if no assertion is encountered, you are
guaranteed to have a non-cyclic singleton design, which could
otherwise be very difficult to prove in a large system.  You can
then rest easy as a maintainer of such a system. This also
guarantees that there exists a correct destruction order, and the
system will be able to invoke that order – another comforting
thought.

Putting it all together

Now that I’ve touched upon the main issues that the unified
singleton framework addresses, we can return to the Create
method which is instanced by DEFINE_SINGLETON() macro.

At a high level, it implements the following:
1 Creation code for the polymorphic implementation type.
2 Registering the singleton onto the “singleton stack”
3 Tracking all possible states a singleton may be in.
4 Detecting misuse – cyclic dependencies, multiple runtime-bound

singletons
Here is the Create method from the static singleton
implementation:

template<typename T, typename TCreatePolicy,

typename TThreadPolicy = BasicThreadPolicy>

class static_singleton_impl

: public singleton_impl<T> { 

static void Create() {

T*& instance = Instance();

TState& state = State();

if(state == Constructing) {

// Cyclic construction was found

ASSERT_MSG(0, "Cyclic

singleton dependency detected");

}

else if(state == Destroyed) {

// Accessing a dead singleton

ASSERT_MSG(0, "Accessing

dead singleton");

}

25

Overload issue 56 august 2003



else {

// must be in uninitialized state

ASSERT(state == Uninitialized);

// set constructing state

state = Constructing;

instance = TCreatePolicy::Create();

// after instance has completed

// construction, register it on the

// singleton stack

state = Constructed;

GetSingleton<SingletonStack>()->

Register(Destroy);

// register an atexit call

atexit( AtExit );

}

}

}

The method is primarily responsible for dealing with two
variables – the instance and its state.  It treats the singleton as a
mini-state machine.

The first “if check” looks to see if the singleton is already being
constructed. If so, then this singleton has a construction cycle. This
can often be difficult to visually inspect, since singleton recursion
may occur several layers deep.

The second “if check” looks to see if the singleton was previously
destroyed.  This would be a “dead singleton” access.  The framework
is responsible for ensuring that this does not happen; that is the
benefit of the framework in the first place.  It is more of an internal
check to make sure the framework is working properly.

If the singleton passes all those tests, then the creation begins.  It
sets the state to Constructingand then invokes the creation policy,
which may be customized to each singleton.  A provided simple
creation policy will call new on the implementation type, which might
be a derived type or the type itself.  After it is fully constructed, the
state is set to Constructed and then registered with the
SingletonStack.  The SingletonStack is a singleton itself
and will always be on the bottom of its own stack.  The Destroy
parameter is a static class member that ensures smooth destruction of
the singleton in a similar fashion to how it was created.

An AtExit handler is then registered with the C run-time system.
It will detect when a module is being shutdown.  It is worth noting that
the atexitmust be called in singleton template implementation and
not in the SingletonStack implementation.  There can be several
atexit stacks when there are multiple run-time modules.  We want
to ensure that a singleton’s atexit is registered in the module that
was responsible for creating the singleton.

A dynamic singleton implementation does not have a related
Create method, since it never actually creates a singleton.  But it
does deal with custom destruction methods that are passed in when
a dynamic singleton is set.  At that time, it registers the destruction
with the SingletonStack.  There is a helper template that
makes it simple for users to pass in these destruction methods easily.

It is these details, and integration of the subtle variations of
singletons, that prove to be a bit of work.  If done by hand for each
singleton, I would ask if an individually written singleton is the best
choice for a robust system. 

Other Benefits

Singletons in a unified framework can be accessed across
component and dll boundaries. In fact, singletons could serve as

the only interface between components.  One component could
get a singleton that is provided by another.  Users would get this
for free and do nothing special when retrieving a foreign
singleton.  Gets are resolved at linking time so there is no run-
time performance penalty.

Developers also can have full access to all static singletons
before main is executed.  There could be a complex initialization
routine during program static initialization. They need not worry
whether a singleton is ready since the system ensures it will be, and
by the way, destroyed properly. The system works equally well
before or during execution of main.  This is a difficult task to do
outside such a system, and I had personally never seen anything do
it correctly, much less on a large scale.

This framework also allows for singletons to be template
template parameters. In modern generic programming, this provides
a powerful mechanism for many advanced techniques.

Future Directions

The unified singleton framework can serve as the foundation for
more complex systems. To date, factory systems, state machines, and
resource managers have all been built onto using this architecture.
Since no requirements are placed on any of their constituent, i.e. forced
base classes or required implementation, it is easy to build on top of.

Conclusion

Singletons can provide a basis for other components in a modular
system. They can come in two flavours: static and dynamic. Each
has a trade-off of capabilities.  The unified system maintains a live
singleton stack. Singletons are destroyed in the reverse order to that
in which they were created.  Cyclic dependencies represent an
invalid design and minimally can be detected by the singleton
framework at run-time.  Best of all, it provides a technique to solve
the large-scale dependencies and life cycles of all singleton objects.

Jeff Daudel
jeffdaudel@yahoo.com

References

[1] Design Patterns by Gamma et al., 1995
[2] Modern C++ Design by Andrei Alexandrescu, 2001
[3] Effective C++: 50 Specific Ways to Improve Your Programs
and Design (2nd Edition) by Scott Meyers, 1997

Full code of a unified singleton framework and usage examples
can be found at: http://daudel.org/code/Singleton.zip

EDITORIAL COMMENT
This article prompted considerable debate amongst the members of
the editorial team. Some feel it should not be published in this form
because it encourages excessive use of the Singleton pattern, while
others feel that it deserves publication because it describes a valid
technique for implementing Singleton classes.

Singleton does two things: 1) it ensures that no more than one
instance of a class can exist in a program and 2) it makes it easy to
access the single object from anywhere in the program. The first is
sometimes (although rarely) useful. The second is an invitation to
excessive coupling which needs to be resisted.

This is an unusual situation for the editorial board, as most issues are
fully resolved before publication, and I rarely (if ever) comment on articles
directly in these pages. We are not here to censor though, just to guide
authors through the process of creating technically correct, well written,
and interesting articles.  We would certainly welcome any comments from
the readership about this article for publication in Overload 57.

John Merrells, Editor

26

Overload issue 56 august 2003


