
3

Overload issue 62 august 2004

contents credits & contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Readers:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Chris Lowe
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Letters to the Editor(s) 6

A Template Programmer’s Struggles

Revisited Chris Main 7

Handling Exceptions in finally
Tony Barrett-Powell 10

ACCU Mentored Developers XML Project

Paul Grenyer and Jez Higgins 13

The Curious Case of the Compile-Time

Function Phil Bass 19

C++ Interface Classes - An Introduction

Mark Radford 21

From Mechanism to Method:

The Safe Stacking of Cats

Kevlin Henney 24

4

Overload issue 62 august 2004

Editorial: The Value of
What You Know

Thus it is not uncommon to see a developer who spent days or
weeks learning how to manage a technology expecting another to
“pick it up” in a matter of minutes. Naturally, as developers are not
a race apart, this also happens in other areas of endeavour: I’ve seen
chess players run through the moves and rules in less than a minute
and expect the explanation to be understood. Or those versed in
cooking giving explanations of a recipe that would only make sense
to someone that already knew most of the answer.

On the other end of such discussions the slightest confusion or
ambiguity becomes a major setback and an obstacle to understanding.
However, to my bemusement, the enigmatic mutterings are not seen
as a failure of explanation but as a failure of understanding.

This is the context in which Overload operates: we all have pieces
of knowledge that may be of use to others – but we fail to see the
value in them and often lack the expertise to explain them. There
can be very few of you reading Overload that do not have some
knowledge or expertise to share, and the “readers” are here to provide
assistance in conveying such expertise in a manner that is
comprehensible. One only has to note the number of authors that feel
the need to acknowledge their assistance to realise that this assistance
is both necessary and valued. But most importantly it is available.

Why am I telling you all this? It is because Overload is
dependent upon the willingness of ACCU members to write for it.
And, despite the increasing number of ACCU members the number
writing for Overload is not healthy. We get by but, on this occasion,
it was only achieved by the last minute efforts of a number of
contributors who responded to a plea from the editor. To avoid
placing that pressure on them again, I’m making a plea now: please
make a contribution to Overload. This means you!

Think back over the last week: how many things have you
explained to other developers? How many of these do you
understand well enough to think, “no-one would be interested in
that”? Well, those are the things that you are expert enough on to
write about. Try it – most of the authors find that the feedback they
get makes the effort worthwhile.

And speaking of feedback: I’d like to thank all of those that
helped with this issue, especially those that contributed to the last
minute effort to fill the pages. I know that this time of year there
are other demands on your time.

Three Perplexing Properties

There is rhetorical value in the number three (“The Three Bears”,
“The Three Billy Goats Gruff”, or any number of political
speeches). And it is also said that accidents happen in threes. I’m
sure that the following three incidents don’t quite qualify as
accidents – there was a certain amount of intent involved. But
they certainly represent missteps, did come as a triplet, and reflect
some of the difficulties that occur when working in our field.

There is often a need to store arbitrary elements of configuration
information and developers in many programming languages have
come up with the same approach: store an associative collection of
strings mapping keys to values. The keys provide convenient tags
for values to be retrieved without the collection needing to be
written with any knowledge of the information stored. And, since
most languages allow values of various types to be represented as
string values this affords the necessary degree of flexibility.
Sometimes other types of value are used as a key (see “The tale of
a struggling template programmer” [Overload 61] or its sequels
[Overload 61, 62]), sometimes it is possible to store the values
without converting their type.

In Java I’ve use the Properties class for this purpose and
wrote a translation of this design in C++ for a recent project. The
translation wasn’t exact – there are a number of design decisions
in the Java libraries that I find questionable. For example, the Java
library treats Properties as a specialisation of HashMap
whereas my implementation used delegation to a std::map. In
a strongly typed language why allow a Properties class
(which specifically contains Strings for both keys and values)
to be treated as a HashMap (that can contain arbitrary objects).
Anyway, I did things my way and refused to expose the container
interface.

The implementation language forced another difference – C++
doesn’t allow null references, so I had to decide what to do when
an invalid key was supplied. My decision caused a lot of discussion
during the code review (yes, this client has code reviews; no, the
moderators don’t stop digression into solutions). What did I decide
to do? Well, as I intend to cover the design options later, I’ll avoid
that discussion at this point.

First Motif

The code went into production and I didn’t look at it for several
months. I had no reason to until I happened to revisit some code
that had used it – when I noticed that the classname had changed.
Curiosity aroused I went to have a look. During the project
lifecycle the original properties class had been renamed to
foo_properties and “improved” by giving it a constructor
that parsed a domain specific string format and a member
function to produce such a string. This format (similar to field
value pairs in a URL) contains embedded key/value pairs. The
developer in question needed this functionality and was evidently
convinced that this was the right class to support this
functionality. (After all there was no other class to which these
functions belonged!) There is even prior art: the Java library
Properties class can serialise and deserialise itself.

Personally I didn’t (and don’t) see why these functions belonged
as part of this class. It already did one thing well, and adding a

One of the things that constantly surprises me is the differences in value placed
upon knowledge by those that have it and those that lack it. It often seems that
anything that one knows is considered trivial or easy – and that anything one

doesn’t know is correspondingly complicated or hard.

5

Overload issue 62 august 2004

second role makes it less, not more usable. The class didn’t need
these functions to perform its role: they could be implemented
efficiently via its public interface. And, if cohesion isn’t a strong
enough argument then consider the coupling introduced: the
properties class was now attached to this foo string format.

There are several points to be considered here: when the change
was made there was only one client of the properties class, so
it was simple to make the change. It is also a good pocket example
of how adding functionality to a component reduces its reusability.
For many of our colleagues this is counter-intuitive and a good
supply of examples is needed to convince them otherwise.

By the time I saw it, the code was in production (changes manage
to achieve that without being reviewed) and there was enough work
to do without fixing things that were not manifesting problems to
the user. (Like fixing things that didn’t work.)

Second Motif

“How do I return a NULL string?” came the voice from behind
me. Like most of these questions it is worth finding out a bit of
the context: I could guess that the language was C++, but why
would anyone want to return a NULL std::string?

The answer to that wasn’t illuminating: “because that’s what I’d do
in C”. My colleague knew that in C a string is represented as a char*
and that can be NULL. But he also knew that a C++ std::string
cannot be NULL. Stop. Rewind. What was he trying to do?

It turns out that the problem is how to indicate a lookup failure
in an associative map of string key to string value. And, as
with the way my colleague would have implemented it in C,
returning NULL is exactly the choice made in the Java library’s
Properties class:

public String getProperty(String key)
Searches for the property with the specified key in this property list.
If the key is not found in this property list, the default property list, and
its defaults, recursively, are then checked. The method returns null if
the property is not found.

So there are precedents for returning NULL. Also, in the C++
standard library is a similar solution in a different but analogous
situation. From “Associative container requirements” (23.1.2/7):

a.find(k)
returns an iterator pointing to an element with the key equivalent to
k , or a.end() if such an element is not found.

This may not be NULL, but it is definitely a special value – with
all the difficulties that this causes the client code.

Returning to Java the Properties class also provides an
alternative solution:

public String getProperty(String key,
String defaultValue)

Searches for the property with the specified key in this property list.
If the key is not found in this property list, the default property list, and
its defaults, recursively, are then checked. The method returns the
default value argument if the property is not found.

While we are considering possible solutions there is another one
in the C++ standard library. (From 23.1.1/12)

The member function at() provides bounds-checked access to
container elements. at() throws out_of_range if n >=
a.size().

Lets recap: we have seen three possible behaviours in the face of
a request for the value associated with an unknown key:
1. Return a special value to indicate failure
2. Return a default value supplied by the caller
3. Throwing an exception
While these may all be reasonable solutions they are not all
appropriate to every situation. And, there are additional options:
“fallible” return types; stipulating the result as “undefined
behaviour”; aborting the program; user-supplied callbacks and
status flags (of various scopes) indicators are all possibilities (but
less commonly used).

In order to recommend a solution it is necessary to know even
more about the problem. It turns out that my questioner was in the
process of designing a class to hold the configuration parameters
for an application. Hey! That sounds familiar, maybe there is some
prior art – even an existing implementation somewhere?

But before I could look for prior art or a library to use my
questioner was gone with: “the configuration values should be there
– I’ll throw an exception. Thanks!”

Third Motif

When I started this editorial I had three discussions of
implementations of “Property” classes to discuss. But between
then and now one of them has evaporated into the mists of memory
and been dispersed by the force of ongoing commitments. I’ll have
to trust that you have your own story to tell.

I fear that you will.
I wonder: how many times has this particular wheel been invented?

Alan Griffiths
alan@octopull.demon.co.uk

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines

All articles intended for publication in Overload 63 should be submitted to the editor by September 1st 2004, and for Overload 64
by November 1st 2004.

6

Overload issue 62 august 2004

Dear Editor
I was reading Stefan Heinzmann’s paper “The Tale of a

Struggling Template Programmer” in June 2004 Overload, and I
could not help thinking that a 2 page long code listing cannot
possibly be a proper solution to such a simple problem!

To make the following discussion clearer, this is Stefan’s
declaration of the lookup function:

template<class EKey, class EVal, unsigned n,

class Key, class Val>

EVal lookup(const Pair<EKey, EVal>(&tbl)[n],

const Key & key, const Val & def)

As it is clearly stated by Phil Bass in his solution, the real
problem in this declaration is the fact that we do not really want
the types of the key and def function arguments to be
automatically deduced by compiler. What instead we want is to
force the compiler to deduce the types of the EKey and EVal
template arguments by looking at the type of the tbl’s Pair
elements, and then use these deduced types as the types of the
key and def function arguments.

Using pseudo code this is how it would look:
template<class K, class V, int N>

V lookup(const Pair<K, V>(&tbl)[N],

typeof(K) key,

typeof(V) const & def)

Now in order to translate this pseudo code into real code the only
thing we need is a way to name the types of the Pair’s K and V
template arguments. And by far the simplest way to create a name
for the type of a template argument is by creating a typedef
within the definition of the template itself:

template<class K, class V>

struct Pair {

typedef K key_type;

typedef V mapped_type;

key_type key;

mapped_type value;

};

Once this is done we can rewrite the signature of the lookup
function this way:

template<class K, class V, int N>

typename Pair<K, V>::mapped_type

const & lookup(const Pair<K, V>(&tbl)[N],

typename Pair<K, V>::key_type key,

typename Pair<K, V>::mapped_type

const & default_value);

Which solves pretty much all of Stefan’s problems related to the
lookup function (no more ugly casts, function can return the
result by reference).

I am attaching the code for the complete solution at the bottom
of this mail.

In order to keep the code as simple and as clean as possible, I
have decided to provide global definitions of the < and == operators
for the Pair type instead of resorting to a custom function object.
Given that the Pair type is a very simple type whose usage is
entirely under our control I feel this is not at all inappropriate.

Kind Regards
Renato Mancuso

http://www.renatomancuso.com

#include <iostream>

// for std::cout, std::cerr, std::endl

#include <algorithm> // for std::lower_bound

#include <cassert> // for the assert macro

// This is the definition of the Pair

// template class.

// We do not declare a constructor since

// we want this struct to be a POD type.

template<class K, class V>

struct Pair {

typedef K key_type;

typedef V mapped_type;

key_type key;

mapped_type value;

};

// These are the global operator < and == for

// the Pair template class. They define a weak

// ordering relationship based on the value of

// the Pair's key data member. NOTE: Comeau

// 4.3.3 STL requires the declaration of the

// complete set of relational operators. This

// is not correct according to the Standard.

template<class K, class V>

inline bool operator<(const Pair<K, V> & lhs,

const Pair<K, V> & rhs) {

return lhs.key < rhs.key;

}

template<class K, class V>

inline bool operator==(const Pair<K, V> & lhs,

const Pair<K, V> & rhs) {

return lhs.key == rhs.key;

}

// This is the lookup function. It assumes

// that tbl's elements are sorted according

// to the // global < and == operators.

template<class K, class V, int N>

typename Pair<K, V>::mapped_type const &

lookup(const Pair< K, V >(&tbl)[N],

typename Pair<K, V>::key_type key,

typename Pair<K, V>::mapped_type

const & default_value) {

typedef Pair<K, V> pair_type;

typedef const pair_type * iterator_type;

const pair_type target = { key };

iterator_type first = tbl;

iterator_type last = tbl + N;

iterator_type found =

std::lower_bound(first, last, target);

if((found != last) && (*found == target)) {

return found->value;

}

return default_value;

}

[concluded at foot of next page]

Letters to the Editor(s)

7

Overload issue 62 august 2004

A Template Programmer’s
Struggles Revisited

by Chris Main

Overload 61 included a couple of lengthy articles ([1] and [2])
which demonstrated how difficult it is to undertake a small,
realistic and well defined programming task using function
templates and C++. The afterwords of the authors and of the
editor of Overload suggested that C++ is too difficult to use.

The solution in the second article does indeed look verbose.
Surely, I said to myself, there must be a better way. I wondered what
I would have done if I had been faced with the same task.

What’s Required?

A lookup table.
My initial reaction is to just use std::map unless there is a

good reason not to.
Is there a good reason not to? In this case, yes, because it is also

required to hold the table in non-volatile memory, which requires
the table to be POD (a C-style array of a C-style struct). std::map
does not fulfil this requirement.

We need something that behaves like std::map but is
implemented with POD.

First Pass: Defining the Interface

Let’s borrow the bits of the interface we need from std::map:
namespace rom {

template<typename T1, typename T2>

struct pair {

typedef T1 first_type;

typedef T2 second_type;

T1 first;

T2 second;

};

template<typename Key, typename T,

typename Cmp = std::less<Key> >

class map {

public:

typedef Key key_type;

typedef T mapped_type;

typedef pair<const Key, T> value_type;

typedef Cmp key_compare;

};

}

I’m sure if I had been doing this from scratch I would have tried
to use std::pair, then realised like Stefan that this wouldn’t
work because it is not an aggregate. However I’ve used the
hindsight I gained from reading his article to go straight to using
a pair that supports aggregate initialisation.

Our new rom::map does not need a template parameter for
allocation, since the whole point of it is that it uses a statically
initialised array, so we discard that parameter of std::map.

The constructor of rom::map seems to be the obvious way to
associate it with an array. The constructor would also be an ideal place
to check that the array is sorted. Stefan used template argument
deduction to obtain the size of the array but, as this fails on some
compilers, I pass the size as a separate argument. The arguments of
the constructor suggest the member variables the class requires:

[continued on next page]

// This template function checks that the

// table is sorted and that the key values

// are unique.

// Since this is a template function, it is

// only instantiated if it is called.

template<class T, int N>

bool is_sorted(T(&tbl)[N]) {

for(int i = 0; i < N - 1; ++i) {

if((tbl[i+1] < tbl[i])

|| (tbl[i+1] == tbl[i])) {

std::cerr << "Element at index " << i+1

<< " is not greater than its "

<< "predecessor.\n";

return false;

}

}

return true;

}

// This is our test array mapping error codes

// to error messages.

const Pair<int, char const *> table[] = {

{ 0, "OK" },

{ 6, "minor glitch in self-destruction module" },

{ 13, "Error logging printer out of paper" },

{ 101, "Emergency cooling system inoperable" },

{ 2349, "Dangerous substance released" },

{ 32767, "Game over, you lost" }

};

// This is how we check that the array is

// sorted. It is done only in DEBUG builds.

#if !defined(NDEBUG)

namespace {

struct check_sorted {

check_sorted() { assert(is_sorted(table)); }

};

check_sorted checker;

}

#endif /* !defined(NDEBUG) */

int main() {

// no need to cast the third argument to a

// (char const*) since now the type of the

// default_value argument is deduced from

// the type of the elements of table[]...

const char* result = lookup(table, 6, 0);

std::cout << (result ? result : "not found")

<< std::endl;

std::cout << lookup(table, 5, "unknown error")

<< std::endl;

return 0;

}

8

Overload issue 62 august 2004

template<typename Key, typename T,

typename Cmp = std::less<Key> >

class map {

public:

typedef pair<const Key, T> value_type;

map(const value_type array[],

unsigned int array_size)

: values(array), size(array_size) {}

private:

const value_type * const values;

unsigned int size;

};

The only member function we need is find(). For std::map
this returns an iterator, but we can simply return a value because we
are supplying a default value to use if none can be found. At this
stage I want to verify that the interface is sound, so to get something
that I can try out as early as possible I implement find() with a
linear search rather than a more efficient binary search:

template<typename Key, typename T,

typename Cmp = std::less<Key> >

class map {

public:

const T &find(const Key &k, const T &def) const {

for(unsigned int n = 0; n != size; ++n) {

if(!Cmp()(k, values[n].first)

&& !Cmp()(values[n].first, k)) {

return values[n].second;

}

}

return def;

}

};

Testing the Interface

Let’s try it out. We know that the rom::map should behave like a
std::map, so we write a utility to populate a std::mapwith the
same table as a rom::map and check that every entry in the
std::map can be found in the rom::map. Additionally we check
that if an entry cannot be found in the rom::map the supplied
default value is returned. (For brevity, I have implemented my tests
with plain C asserts rather than use a unit test framework.)

namespace {

typedef rom::map<unsigned int,

const char *> RomLookup;

RomLookup::value_type table[] = {

{0,"Ok”},

{6,"Minor glitch in self-destruction module"},

{13,"Error logging printer out of paper"},

{101,"Emergency cooling system inoperable"},

{2349,"Dangerous substances released"},

{32767,"Game over, you lost"}

};

typedef std::map<RomLookup::key_type,

RomLookup::mapped_type> StdLookup;

void PopulateStdLookup(

const RomLookup::value_type table[],

unsigned int table_size,

StdLookup &stdLookup) {

for(unsigned int n=0; n != table_size; ++n) {

stdLookup[table[n].first] = table[n].second;

}

}

class CheckFind {

public:

CheckFind(const RomLookup &romLookup,

const RomLookup::mapped_type

&def_value)

: lookup(romLookup), def(def_value) {}

void operator()(const StdLookup::value_type

&value) const {

assert(lookup.find(value.first, def)

== value.second);

}

private:

const RomLookup &lookup;

const RomLookup::mapped_type &def;

};

}

int main(int, char**) {

const unsigned int table_size

= sizeof(table)/sizeof(table[0]);

RomLookup romLookup(table, table_size);

StdLookup stdLookup;

PopulateStdLookup(table, table_size,

stdLookup);

std::for_each(stdLookup.begin(),

stdLookup.end(),

CheckFind(romLookup, 0));

assert(romLookup.find(1, 0) == 0);

return 0;

}

This is all fine. We have a usable interface and set of test cases.
Note that I didn’t need to do any type casting to pass 0 as the
default argument to romLookup.find(), it just compiled
straight away with no problems.

Second Pass: Implementing the
Binary Search

Now we need to refine find() to use a binary search, which
requires std::lower_bound. My first attempt is:

template<typename Key, typename T,

typename Cmp = std::less<Key> >

class map {

public:

const T &find(const Key &k, const T &def) const {

const value_type *value = std::lower_bound(

values, values+size, k, Cmp());

if(value == values+size

|| Cmp()(k, value->first)) {

return def;

}

else {

return value->second;

}

}

};

This gives me a compiler error saying it can’t pass
value_types to less<unsigned int>. It isn’t too hard
to work out that this is because I am passing a key_type
comparison function to std::lower_bound which attempts
to use it to compare value_types. So in the private part of
the map I write a function object that adapts the key
comparison function to work with value_types. Normally I
do not bother to derive private function objects from
std::unary_function or std::binary_function,
but as this raised problems in the original article I did so on
this occasion:

template<typename Key, typename T,

typename Cmp = std::less<Key> >

class map {

public:

const T &find(const Key &k,

const T &def) const {

const value_type *value =

std::lower_bound(values, values+size,

k, value_compare());

// rest of member function as before

}

private:

struct value_compare

: public std::binary_function<value_type,

value_type, bool> {

bool operator()(const value_type &v1,

const value_type &v2) const {

return Cmp()(v1.first, v2.first);

}

};

};

Still a compiler error, this time that I am trying to pass an
unsigned int as an argument to
value_compare::operator(). Again, it is not too
difficult to spot that I am passing a key_type as the third
argument of std::lower_bound where a value_type is
required. We use the elegant fix employed in [2]:

template<typename Key, typename T,

typename Cmp = std::less<Key> >

class map {

public:

const T &find(const Key &k,

const T &def) const {

const value_type key = { k };

const value_type *value =

std::lower_bound(values, values+size,

key, value_compare());

// rest of member function as before

}

};

Now everything compiles cleanly (including the use of
std::binary_function) and the test code also executes
successfully.

Third Pass: Considering the
Disadvantages

We have reached a solution that works. We reached it by a less
painful route, with less code and with simpler code. But does this
solution have some disadvantages the original did not have?

Most obviously, it does not provide a mechanism that can be
used equally well for any map-like container: it is a less general
solution. I’m not convinced this is a disadvantage. “Why restrict
ourselves to arrays?” asks [2]. I’m tempted to reply “Why not?”

Another difference is that our rom::maps have two member
variables that take up memory which the original solution did not.
This may be insignificant, but since the context of the task is an
embedded system it is conceivable that we may be required to
conserve memory. If this is the case there is a simple refactoring
that can be applied to the rom::map. The array can be passed
directly to the find()member function, which can be made static,
and the constructor and member variables removed. (If we had
implemented a check that the array is sorted in the constructor, that
code could also be refactored into a static member function).

At this stage, if I had a smart enough compiler, I could try to use
template argument deduction to determine the array size rather than
pass it as an explicit parameter. Personally, I don’t think I would go
to that trouble.

Fourth Pass: Things Get Nasty

If we find it necessary to eliminate the constructor and member
variables, leaving only a static member function, the next obvious
refactoring is to turn it into a standalone function. But if we do
that, we run into the problems experienced in [1]. So we are
faced with a choice: proceed with the refactoring and introduce
the necessary traits class as in [2], or abandon the refactoring and
stick with what we have. I’d go for the latter. The syntax is a little
less elegant, but overall it’s simpler.

Conclusion

Why did things run more smoothly with the approach I took? It is
because my solution uses a class template rather than a function
template. It therefore does much less template argument
deduction, which avoids a whole host of problems.

This suggests a design guideline: if you are struggling to
implement a function template, consider re-implementing it as a
class template (as an alternative to introducing traits).

Chris Main
chris@chrismain.uklinux.net

Afterword

Is C++ too difficult? I’m not so sure. I think I’ve demonstrated
that the code which provoked comments to that effect was
unnecessarily complicated. I think I did so not because I am a
C++ expert but because I followed strategies that are generally
useful when programming: follow the pattern of a known
working solution to a similar problem (in this case std::map),
work incrementally towards the solution, try to keep things as
simple as possible.

How would the problem be solved in other programming
languages? In C you could use the standard library bsearch().
I have used it, but it is quite fiddly to get the casting to and from
void * right, so in my experience it is not significantly easier to
use than C++. What other languages could be used?

References

[1] S. Heinzmann, “The Tale of a Struggling Template
Programmer”, Overload 61, June 2004

[2] S. Heinzmann and P. Bass, “A Template Programmer’s
Struggles Resolved”, Overload 61, June 2004

9

Overload issue 62 august 2004

10

Overload issue 62 august 2004

Handling Exceptions in
finally

by Tony Barrett-Powell

Recently I was reviewing some old Java code that performs SQL
queries against a database and closes the resources in finally
blocks. When I examined the code I realized that the handling of
the resources was flawed if an exception occurred. This article
looks at how the handling of the resources and exceptions was
problematic and some approaches to solving these problems.

The Problems

The code in question was made up of static methods where each
method used a Connection parameter and performed the
necessary actions to create a query, perform the query and
process the results of the query. My problem came from the
handling of the query and results resources, i.e. the instances of
PreparedStatement and ResultSet.

The PreparedStatement and ResultSetwere created in
the main try block of the method and were closed in the associated
finallyblock. The close()method of these classes can throw a
SQLException and in the finallyblock each close()method
was wrapped in a try/catch where the SQLExceptionwas
caught and converted into a RuntimeException to be thrown. The
outline of the original code is shown in the following listing:

public static ArrayList foo(Connection conn)

throws SQLException {

ArrayList results = null;

PreparedStatement ps = null;

ResultSet rs = null;

try {

// create a query, perform the query and

// process the results

}

finally {

try {

rs.close();

}

catch(SQLException ex) {

throw new RuntimeException(ex);

}

try {

ps.close();

}

catch(SQLException ex) {

throw new RuntimeException(ex);

}

}

return results;

}

There are a number of problems with this code:
1 If an exception is thrown in the try block and a subsequent

exception is thrown in the finally block the original
exception is lost.
The problem where an exception is hidden by a subsequent
exception is well known and is discussed in a number of books:
Thinking in Java [Eckel] ‘the lost exception’, Java in Practice
[Warren] and Practical Java - Programming Language Guide
[Hagger] to name a few. All discuss the problem and I will
present a trivial version here with some example code:

public void foo() {

try {

throw new RuntimeException("Really

important");

}

finally {

throw new RuntimeException("Just

trivial");

}

}

A caller of this function would receive the “Just trivial” exception,
there would be no evidence that the “Really important” exception
ever occurred at all. In the original code if an exception occurred
in the finally block after a SQLException had been thrown in
the try block, the SQLException would be lost.

2 The use of RuntimeExceptions to throw the Exceptions
caught in the finally block when the method would throw a
SQLException from the try block is inconsistent,
SQLException should be used for both.

3 If an exception is thrown by the closing of the ResultSet, no
attempt is made to close the PreparedStatment, that may
cause a possible resource leak.

Solutions

We can fix some of the problems very easily by nesting the
handling of the resources in try/finally blocks (as
demonstrated in [Griffiths]) and to remove the conversion to
RuntimeExceptions. This would be implemented in the
method as follows:

// assign query to ps

try {

// perform the query and assign result to rs

try {

// process the results

}

finally { rs.close(); }

}

finally { ps.close(); }

This solves the second problem, as the method is already
declared to throw a SQLException no conversion is required,
and the third problem, because even if a exception is thrown by
rs.close() the ps.close() will always be called.
However this leaves the first problem of the lost exception.

The suggested approach in [Warren] is to “Never let exceptions
propagate out of a finally block”, this would be implemented in
the finally block as follows:

finally {

try {

rs.close();

}

catch(SQLException ex) {

/* exception ignored */

}

try {

ps.close();

}

catch(SQLException ex) {

/* exception ignored */

}

}

This approach only solves the hidden exception problem in the
original code but as a consequence adds an additional problem: it is
possible for the rs.close() to be the original exception and this
is ignored. Ignoring an exception is likely to make recovery in
higher levels of the code more difficult, if not impossible. It is also
likely to mislead a user trying to determine the cause of a failure; a
later related exception may be mistakenly diagnosed as the source
of the problem. The consequences of ignoring exceptions are
discussed further in [Bloch] “Item 47: Don’t ignore exceptions”.

[Hagger] offers a different solution to this problem by collecting
up the exceptions thrown during processing of a method. This is
achieved by the creation of a derived exception class containing a
collection of other exceptions (a slightly modified version follows):

class FooException extends Exception {

private ArrayList exceptions;

public FooException(ArrayList exs) {

exceptions = exs;

}

public ArrayList getExceptions() {

return exceptions;

}

}

And the original code is modified to make use of this exception:
public static ArrayList foo(Connection conn)

throws FooException {

ArrayList exceptions = new ArrayList();

ArrayList results = null;

PreparedStatement ps = null;

ResultSet rs = null;

try {

// create a query, perform the query and

// process the results

}

catch(SQLException ex) {

exceptions.add(exception);

}

finally {

try {

rs.close();

}

catch(SQLException ex) {

exceptions.add(ex);

}

try {

ps.close();

}

catch(SQLException ex) {

exceptions.add(ex);

}

if(exceptions.size() != 0) {

throw new FooException(exceptions);

}

}

return results;

}

This approach doesn’t lose any of the exceptions thrown and the
PreparedStatement will be closed even if the close of the
ResultSet throws an exception, but now the method throws a
user-defined Exception instead of SQLException. It is
better to use standard exceptions where possible as discussed in

[Bloch] Item 42: Favor the use of standard exceptions. More
importantly the exceptions are collected as peers not as causes, and so
is not idiomatic (at least not since JDK1.4) where the Throwable
class allows nesting of another Throwable as a cause [JDK14].
SQLException was written before JDK1.4 and has its own

mechanism for nesting other SQLExceptions, this is supported by
methods setNextException() and getNextException().
This mechanism, being limited to SQLException, is not generally
idiomatic for all Throwable types and so will be not be considered
for the purposes of this article.

A More Idiomatic Approach?

So a Throwable (and its derived classes) can be constructed with a
cause (if this support has been implemented), or can be initialized
with a cause using the initCause() method. Nesting exceptions
at different levels of abstraction has been idiomatic even before
support was added to Throwable, an implementation of this can
be found at http://www.javaworld.com/javaworld/
javatips/jw-javatip91.html. So to be more idiomatic the
same approach should be taken within the original method.

We can use a modified version of Hagger’s solution, combining
this with nested try/finally blocks from the first solution and
nest the SQLExceptions using initCause(), if required.
Thus the original code is rewritten:

public static ArrayList foo(Connection conn)

throws SQLException {

SQLException cachedException = null;

ArrayList results = null;

PreparedStatement ps = null;

ResultSet rs = null;

// assign query to ps

try {

// perform query and assign result to rs

try {

// process the results

}

catch(SQLException ex) {

cachedException = ex;

throw ex;

}

finally {

try {

rs.close();

}

catch(SQLException ex) {

if(cachedException != null) {

ex.initCause(cachedException);

}

cachedException = ex;

throw ex;

}

}

}

catch(SQLException ex) {

if(cachedException != null) {

ex.initCause(cachedException);

}

cachedException = ex;

throw ex;

}

11

Overload issue 62 august 2004

12

Overload issue 62 august 2004

finally {

try {

ps.close();

}

catch(SQLException ex) {

if(cachedException != null) {

ex.initCause(cachedException);

}

throw ex;

}

}

return results;

}

This solves the three problems of the original code, no exception
is lost, the exception thrown is a SQLException and the
PreparedStatement is closed even if the attempt to close
the ResultSet results in an Exception. Unfortunately this
isn’t a general solution, the initCause() method is used to set
the cause of a SQLException if an existing SQLException
had been caught, but initCause() has some restrictions:

“public Throwable initCause(Throwable cause)
Initializes the cause of this throwable to the specified value. (The
cause is the throwable that caused this throwable to get thrown.)
This method can be called at most once. It is generally called from
within the constructor, or immediately after creating the throwable.
If this throwable was created with Throwable(Throwable) or
Throwable(String,Throwable), this method cannot be
called even once.” [JDK14]

This means that if the exceptions caught in the finally block
already have a cause then the initCause() method call will
fail with a java.lang.IllegalStateException. To
explain further this example demonstrates how to provoke the
failure:

void AnotherThrowingMethod() {

throw new RuntimeException();

}

void ThrowingMethod() {

try {

AnotherThrowingMethod();

}

catch(RuntimeException ex) {

throw new RuntimeException(ex);

}

}

void foo() throws Exception {

Exception cachedException = null;

try {

ThrowingMethod();

}

catch(Exception ex) {

cachedException = ex;

throw ex;

}

finally {

try {

ThrowingMethod();

}

catch(Exception ex) {

if(cachedException != null) {

ex.initCause(cachedException);

// error: IllegalStateException

// Exception ex already has a cause

}

throw ex;

}

}

}

The idiomatic approach could be written to check for this
situation, for example the handling of the
PreparedStatement could become:

if(ps != null) {

try {

ps.close();

}

catch(SQLException ex) {

if(ex.getCause() == null) {

if(cachedException != null) {

ex.initCause(cachedException);

}

}

throw ex;

}

}

But this will mean that the original exception is lost, as discussed
above, making Hagger’s approach better in this case.

Summary

Handling exceptions thrown while in a finally block is
problematic in the context of an existing exception. This article
has presented some approaches that solve at least some of the
problems discovered in the example but no approach is entirely
satisfactory. For the example presented the idiomatic solution
works and is the best solution.

In the wider context of a general solution each approach has
drawbacks or will not work, for example the idiomatic approach
will fail if the exception being handled already has a cause. Of the
approaches presented I would use, in order of preference, the
idiomatic version, then Hagger’s approach (if the exceptions being
handled could already have a cause). I would resist using the
approach in [Warren] as ignoring exceptions is a particularly bad
idiom and should be avoided under any circumstances.

Tony Barrett-Powell
tony.barrett-powell@blueyonder.co.uk

Bibliography

[Bloch] Joshua Bloch, Effective Java - Programming Language
Guide, Addison-Wesley 0-201-31005-8

[Eckel] Bruce Eckel, Thinking in Java, 3rd Edition, Prentice-Hall
0-131-002872

[Griffiths] Alan Griffiths, “More Exceptional Java,” Overload 49
and also available at http://www.octopull.demon.co.uk/
java/MoreExceptionalJava.html

[Hagger] Peter Hagger, Practical Java - Programming Language
Guide, Addison-Wesley 0-201-61646-7

[JDK14] http://java.sun.com/j2se/1.4.2/docs/api/
java/lang/Throwable.html

[Warren] Nigel Warren and Philip Bishop, Java in Practice - Design
Styles and Idioms for Effective Java, Addison-Wesley 0-201-
36065-9

13

Overload issue 62 august 2004

ACCU Mentored Developers
XML Project

Exercise 1: Validate XML
Files and Display

Element Structure
by Paul Grenyer and Jez Higgins

This article was originally written in December 2002 as part of
the ACCU Mentored Developers [MDevelopers] XML
[XMLRec] project. It has now been revised, with considerable
help from Jez Higgins, for publication in Overload.

The first exercise set for the project students by the project
mentors was as follows:

Incorporate either the Xerces[Xerces] or Microsoft
XML[MSXML] parsers into a C++ project and use it to:
1. Parse XML strings and files.
2. Output the element structure as an indented tree.
As most of my development experience has been on Windows I
followed the MSXML route.

Downloading and Installing MSXML

The MSXML parser can be downloaded from the Microsoft
website. The latest version at the time of writing is version 4.0
and requires the latest Windows installer, which is
incorporated into Windows XP and comes with Windows
service pack 3. The installer can also be downloaded as single
executable [InstMsi].

Assuming the latest Windows Installer is present on your system
installing MSXML is simply a case of running the installer package.
As MSXML is Component Object Model (COM) based this will
register the MSXML dynamic link library (msxml4.dll). The
installer also creates a directory with all necessary files needed to
use the parser in a C++ project.

Testing MSXML

Although there are the usual Microsoft help files incorporated with
MSXML there aren’t any examples, so I used Google to try and
find some and found the PerfectXML[PerfectXML] website. The
website includes a number of MSXML C++ examples and one in
particular, Using DOM [UsingDOM], that downloads an XML file
from an Internet location, parses it, modifies it and writes it to the
local hard disk. I used this example as a template for the following
simple MSXML console application test program:

#include <iostream>

#include <string>

#include <windows.h>

#include <atlbase.h>

#import "msxml4.dll"

int main() {

std::cout << "MSXML DOM: Simple Test 1: Creating"

<< " of COM object and parsing of XML.\n\n";

::CoInitialize(0);

{

MSXML2::IXMLDOMDocument2Ptr pXMLDoc = 0;

// Create MSXML DOM object

HRESULT hr = pXMLDoc.CreateInstance(

"Msxml2.DOMDocument.4.0");

if (SUCCEEDED(hr)) {

// Load the document synchronously

pXMLDoc->async = false;

_variant_t varLoadResult((bool)false);

const std::string xmlFile("poem.xml");

// Load the XML document

varLoadResult = pXMLDoc->load(xmlFile.c_str());

if(varLoadResult) {

std::cout << "Successfully loaded XML file: "

<< " file: " << xmlFile << "\n";

}

An XML Mini-Glossary

Attributes – XML elements can have attributes. An attribute is a
name-value pair attach to the element’s start tag. Names are
separated from their values by an equals sign, and values are
enclosed in single or double quotes. Attribute order is not
significant.
<bigbrain invented=”SGML”>Charles Goldfarb</bigbrain>

DOM – The Document Object Model is a W3C recommendation
which an application programming interface well-formed XML
documents [DOMRec], defining the logical structure of
documents and the way a document is accessed and
manipulated. The DOM is defined in programming-language
neutral terms. This leads to some slightly clumsy looking code,
but that aside the DOM is widely used (if not necessarily well-
loved). Its in-memory representation makes it well suited to
document editing, navigation and data retrieval applications.

DTD – Document Type Definition, the original XML schema
language described in the XML recommendation. A Document
Type Definition defines the legal building blocks of an XML
document. It defines the document structure with a list of legal
elements, each element’s allowed content and so on.

Elements & Tags – Here’s a tiny XML document
<bigbrain>Charles Golbfarb</bigbrain>

It consists of a single element named bigbrain and the
element’s content, the text string Charles Goldfarb. The
element is delimited by the start tag <bigbrain> and the end
tag </bigbrain>.

Valid – Documents which conform to a particular XML
application are said to be valid. In the early days of XML (all
of five years ago) validity meant conforming to a DTD. With
the development and widespread adoption of other schema
languages, valid has come to mean valid to whatever schema
you happen to be using.

Well-formed – Not all, quite probably most, XML documents are
not valid, nor do they need to be. However they are all well-
formed. An XML document is well-formed if it satisfies the
basic XML grammar – the elements are properly delimited, start
and end tags match and so on. A document which is not well-
formed is like a C++ program with a missing semi-colon, no
good for anything.

XML Application – A set of XML elements and attributes for a
particular purpose – for instance DocBook, SVG, WSDL, Open
Office file format – is called an XML application. An XML
application is often expressed in one of the many available
schema languages – DTD, XML Schema, RelaxNG,
Schematron, etc. An XML application is not an application
which uses XML.

14

Overload issue 62 august 2004

else {

std::cout << "Failed to load XML file: "

<< xmlFile << "\n";

// Get parseError interface

MSXML2::IXMLDOMParseErrorPtr pError = 0;

if(SUCCEEDED(pXMLDoc->get_parseError(

&pError))) {

USES_CONVERSION;

std::cout << "Error: "

<< W2A(pError->reason) << "\n";

}

}

}

else {

std::cout << "Failed to create MS XML COM "

<< "object.\n";

}

}

::CoUninitialize();

return 0;

}

This program takes the following XML file and parses it:
<?xml version="1.0" encoding="UTF-8"?>

<poem>

<line>Roses are red,</line>

<line>Violets are blue.</line>

<line>Sugar is sweet,</line>

<line>and I love you</line>

</poem>

If the parse fails an error message is written to std::cout
giving the reason. Although this code snippet does the intended
job, it is a bit rough and needs some work in order to achieve
the objective of this exercise. Among other things it would
benefit from wrapping of MSXML and some proper exception
handling.

It is worth noting #import is specific to Microsoft Visual C++
and is not supported by other Win32 compilers.

Engineering the Exercise Solution:
Part 1

I’m going to look at the exercise solution in two parts. The first
part will reengineer the PerfectXML example into a more general
solution with a clean interface, proper runtime handling and
exception handling. The second part will look at writing the
element structure to a stream.

COM Runtime

As MSXML is COM based, the COM runtime must be started
before any COM objects can be instantiated. The COM runtime is
started by the CoInitializeExAPI function and stopped with
CoUninitialize. MSDN states that every call to
CoInitializeEx must be matched by a call to
CoUninitialize, even if CoInitializeEx fails.
CoUninitialize must not be called until all COM objects

have been released. For instance in the example above there is an
extra scope wrapping the MSXML code so that the
IXMLDOMDocument2Ptr smart pointer destructor is called,
destroying the DOM, before CoUninitialize is called.

The easiest way to achieve this, even in the presence of
exceptions, is to take advantage of C++’s RAII (Resource

Acquisition Is Initialization) and place CoInitialiseEx in
the constructor of a class and CoUninitialize in the
destructor and to create an instance of the class on the stack, at
the beginning of the program before anything else.
COMRuntimeInit, shown below, is just such a class. The
copy constructor and copy-assignment operator are both private
and undefined, to prevent copying. A COMRuntimeInit
object has no state and therefore it does not make sense to copy
it. This method of preventing copying and some more of the
reasons behind it are discussed by Scott Meyers in Effective
C++[EC++].

#include <stdexcept>

#include <string>

#include <windows.h>

class COMRuntimeInit {

public:

COMRuntimeInit() {

HRESULT hr = ::CoInitializeEx(0,

COINIT_APARTMENTTHREADED);

if(FAILED(hr)) {

UnInitialize();

std::string errorMsg = "Failed to start COM "

"Runtime: ";

switch(hr) {

case E_INVALIDARG:

errorMsg += "An invalid parameter was "

"passed to the returning "

"function.";

break;

case E_OUTOFMEMORY:

errorMsg += "Out of memory.";

break;

case E_UNEXPECTED:

errorMsg += "Unexpected error.";

break;

case S_FALSE:

errorMsg += "The COM library is already "

"initialized on this "

"thread.";

break;

default:

errorMsg += "Unknown.";

break;

}

throw std::runtime_error(errorMsg);

}

}

~COMRuntimeInit() {

UnInitialize();

}

private:

void UnInitialize() const {

::CoUninitialize();

}

COMRuntimeInit(const COMRuntimeInit&);

COMRuntimeInit& operator=(const COMRuntimeInit&);

};

There are of course times when the initial call to
CoInitialiseEx may fail. The cause of the failure can be
ascertained from its return value. The obvious way to communicate

the cause of the failure to the user is via an exception. This has the
drawback that the destructor will not be called when the
constructor throws and therefore CoUninitialize must be
called manually. For now std::runtime_error will be
thrown when CoInitializeEx fails, later on we’ll look at a
custom exception type.

As stated above, the COMRuntimeInit instance must be
declared before any other object on the stack. The instance cannot
be put at file scope as it throws an exception if it fails, so the obvious
place is at the top of main’s scope. A try/catch block is also
needed to detect the failure.

#include <iostream>

#include "comruntimeinit.h"

int main() {

try {

COMRuntimeInit comRuntime;

}

catch(const std::runtime_error& e) {

std::cout << e.what() << "\n";

}

return 0;

}

Instantiating the MSXML DOM

Code that uses COM, as with most Microsoft API code, is just
plain ugly and really should be hidden behind an interface.
Exercise 1 of the XML project states that either the Xerces parser
or the MSXML parser can be used. Ideally they should be easily
interchangeable and their use completely hidden from the user.
Hiding the ugly code and making the parsers easily
interchangeable can be achieved with the Pimpl Idiom, as
discussed by Herb Sutter in Exceptional C++ [ExC++].

The first stage in the exercise is to create the MSXML DOM
parser. This is achieved with the DOM class:

// dom.h

// Forward declaration so that implementation

// can be completely hidden.

class DOMImpl;

class DOM {

private:

DOMImpl *impl_;

public:

DOM();

~DOM();

private:

DOM(const DOM&);

DOM& operator=(const DOM&);

};

The DOM class will form a basic wrapper for the DOMImpl class
which will do all the work. DOMImpl is forward declared, so
that its implementation can be completely hidden.

The DOM class implementation is shown below. It creates an
instance of the DOMImplclass on the heap in the constructor and
deletes it in the destructor.

// dom.cpp

#include "dom.h"

#include "domimpl.h"

DOM::DOM() : impl_(new DOMImpl) {}

DOM::~DOM() { delete impl_; }

DOMImpl creates the MSXML DOM parser in the same way as
the PerfectXML example:

// domimpl.h

#import "msxml4.dll"

class DOMImpl {

private:

MSXML2::IXMLDOMDocument2Ptr xmlDoc_;

public:

DOMImpl() : xmlDoc_(0) {

xmlDoc_.CreateInstance(

"Msxml2.DOMDocument.4.0");

}

private:

DOMImpl(const DOMImpl&);

DOMImpl& operator=(const DOMImpl&);

};

Both DOM and DOMImpl have private copy constructors and
copy assignment operators, again to prevent copying.

The above code does not include any error checking. It is
possible for the call to CreateInstance to fail. The
msxml4.dll may not be registered, for example. The success or
failure of the CreateInstance call can be detected by its return
value.

DOMImpl() : xmlDoc_(0) {

HRESULT hr = xmlDoc_.CreateInstance(

"Msxml2.DOMDocument.4.0");

if(FAILED(hr)) {

std::string errorMsg = "Failed to start "

"create MSXML "

"DOM: ";

switch(hr) {

case CO_E_NOTINITIALIZED:

errorMsg += "CoInitialize has not "

"been called.";

break;

case CO_E_CLASSSTRING:

errorMsg += "Invalid class string.";

break;

case REGDB_E_CLASSNOTREG:

errorMsg += "A specified class is "

"not registered."

break;

case CLASS_E_NOAGGREGATION:

errorMsg += "This class cannot be "

"created as part of an "

"aggregate.";

break;

case E_NOINTERFACE:

errorMsg += "The specified class "

"does not implement the "

"requested interface";

break;

default:

errorMsg += "Unknown error.";

break;

}

throw std::runtime_error(errorMsg);

}

}

15

Overload issue 62 august 2004

16

NonCopyable

We now have three classes which are “copy prevented”, with a
private copy constructor and copy assignment operator. There is a
clearer way to document the fact that a class is not intended to be
copied. When used by a number of different classes it also
reduces the amount of code.

The NonCopyable class, show below, has a private copy
constructor and assignment operator to prevent prevent copying.
When another class inherits from NonCopyable, the private
copy constructor and assignment operator are also inherited.
This both prevents the subclass from being copied and
documents the intention. The relationship between
NonCopyable and its subclass is not IS-A and therefore the
inheritance can be private.

As NonCopyable is intended only to provide behaviour to
a derived class, rather than act as a class in its own right, its
default constructor is protected, preventing a free
NonCopyable object being created. Its destructor too, is
protected to prevent a subclass being deleted via a pointer to
NonCopyable. To further document this intention, the
destructor is not virtual.

class NonCopyable {

protected:

NonCopyable() {}

~NonCopyable() {}

private:

NonCopyable(const NonCopyable&);

NonCopyable& operator=(const NonCopyable&);

};

The NonCopyable class was written by Dave Abrahams for the
boost [boost] library. I have recreated it here so that a
dependency on the boost library is avoided.

Now that the NonCopyable class is in place the copy
constructors and assignment operators can be removed from
COMRuntimeInit , DOM and DOMImpl . They can then be
changed to privately inherit from NonCopyable.

class COMRuntimeInit : private NonCopyable {

...

};

class DOM : private NonCopyable {

...

};

class DOMImpl : private NonCopyable {

...

};

Loading and Validating the XML

The MSXML DOM has a method that loads and parses an XML
file. While parsing the file it is checked to make sure it is well
formed and if there is a DTD or Schema specified it is also
validated. If the file cannot be opened, is not well formed or
cannot be validated the call fails.

The method is called load and takes a single parameter which
is the full path to the XML file. To load and parse an XML file, a
similar method can be added to DOMImpl and a corresponding
forwarding function added to DOM.

class DOMImpl : private NonCopyable {

public:

...

void Load(const std::string& fullPath) {

xmlDoc_->load(fullPath.c_str());

}

};

main can then be modified to call the new function with the path
to an XML file.

try {

COMRuntimeInit comRuntime;

DOM dom;

dom.Load("poem.xml");

}

catch(const std::runtime_error& e) {

std::cout << e.what() << "\n";

}

Once again there is no way of detecting failure and the return value
of the MSXML DOM load method must be tested to find out if it
failed. If a failure has occurred an exception should be thrown.

void Load(const std::string& fullPath) {

if(!xmlDoc_->load(fullPath.c_str())) {

throw std::runtime_error(ErrorMessage());

}

}

The method of extracting an error message from an MSXML
DOM is a little fiddly, so I have placed it in its own function,
ErrorMessage.

class DOMImpl : private NonCopyable {

public:

...

std::string ErrorMessage() const {

std::string result = "Failed to extract "

"error.";

MSXML2::IXMLDOMParseErrorPtr pError =

xmlDoc_->parseError;

if(pError->reason.length()) {

result = pError->reason;

}

return result;

}

};

A parse error is extracted from an MSXML DOM as an
XMLDOMParserError object. The error description is fetched
from the reason property. If no description is available, the
bstr_t returned by reason has a length of 0. bstr_t is a
wrapper class for COM’s native unsigned short* string
type. It provides a conversion to const char*, and thus can
be assigned to a std::string.

Custom Exception Types

Our main function’s body is
try {

COMRuntimeInit comRuntime;

DOM dom;

dom.Load("poem.xml");

}

catch(const std::runtime_error& e) {

std::cout << e.what() << "\n";

}

Overload issue 62 august 2004

Currently the example throws a std::runtime_error if the
COM runtime fails to initialise or if there is an XML failure. In
both cases the error message is prefixed with a description of the
type of error. Exceptions thrown as a result of the COM runtime
failing to initialise are probably fatal and it may be appropriate
for the program to exit, while for exceptions thrown due to an
XML parse fail it might be more appropriate to log the error and
move on to the next file.

These different categories of error would be better
communicated by the exception’s actual type and it is easy to add
custom exceptions. Throwing different types of exceptions helps to
maintain the context in which the exception was thrown and enables
the behaviour of a program to change based on the type of exception
that is thrown.

Deriving from std::exception not only means that
custom exception types can be caught along with other standard
exception types in a single catch statement if necessary, but
also provides an implementation for the custom exception
object.

class BadCOMRuntime : public std::exception {

public:

BadCOMRuntime(const std::string& msg)

: exception(msg.c_str()) {}

};

std::exception’s constructor takes a char*, but I know
that I will be building exception messages with strings and
following the model of std::runtime_error ,
BadCOMRuntime’s constructor takes a std::string.
COMRuntimeInit’s constructor must be modified for the new

exception:
COMRuntimeInit() {

HRESULT hr = ::CoInitialize(0);

if(FAILED(hr)) {

UnInitialize();

std::string errorMsg = "Unknown.";

switch(hr) {

case E_INVALIDARG:

errorMsg = "An invalid parameter was "

"passed to the returning "

"function.";

break;

...

default:

break;

}

throw BadCOMRuntime(errorMsg);

}

}

and main must be modified to catch the new exception:
try {

COMRuntimeInit comRuntime;

DOM dom;

dom.Load("poem.xml");

}

catch(const BadCOMRuntime& e) {

std::cout << "COM initialisation error: "

<< e.what()

<< "\n";

}

...

The exceptions thrown by DOMImpl are a little more
complicated. DOMImpl throws exceptions when two different
things happen and therefore requires two different exception
types, which should be in some way related. One way to solve
this is to have a common exception type for DOMImpl from
which two other exception types derive.
DOMImpl is the implementation of DOM and any exception

thrown by DOMImpl is most likely to be caught outside DOM.
Therefore, to the user of DOM, who is unaware of DOMImpl, it is
more logical for DOM to be throwing exceptions of type BadDOM
rather than BadDOMImpl.

#include <stdexcept>

#include <string>

class BadDOM : public std::exception {

public:

BadDOM(const std::string& msg)

: exception(msg.c_str()) {}

};

class CreateFailed : public BadDOM {

public:

CreateFailed(const std::string& msg)

: BadDOM(msg) {}

};

class BadParse : public BadDom {

public:

BadParse(const std::string& msg)

: BadDOM(msg) {}

};

The constructor and Load function in DOMImpl can now be
modified to use the new exception types and main modified
to catch a BadDOM exception. For completeness sake, we also
need a third catch block. The COM smart pointers
generated by #import raise a _com_error if a function
call fails.

try {

COMRuntimeInit comRuntime;

DOM dom;

dom.Load("poem.xml");

}

catch(const BadCOMRuntime& e) {

std::cout << "COM initialisation error: "

<< e.what() << "\n";

}

catch(const BadDOM& e) {

std::cout << "DOM error: "

<< e.what() << "\n";

}

catch(const _com_error& e) {

std::cout << "COM error: "

<< e.ErrorMessage() << "\n";

}

Engineering the Exercise Solution:
Part 2

Now that the DOM is loading and validating XML the next part
of the exercise is write the elements to an output stream as an
indented tree.

17

Overload issue 62 august 2004

18

Overload issue 62 august 2004

Writing the Element Structure

The first step in enabling the elements to be written to an output
stream is to pass one in. The obvious way to do this is to is to add
a function to DOMImpl, and a forwarding function to DOM,
which takes a std::ostream reference.

#include <ostream>

class DOMImpl : private NonCopyable {

...

public:

void WriteTree(std::ostream& out) {}

...

};

Modifying main to call the new function means that results can
be seen straight away as the WriteTree implementation is
developed.

try {

COMRuntimeInit comRuntime;

DOM dom;

dom.Load("poem.xml");

dom.WriteTree(std::cout);

}

...

In order to write the complete tree, every element must be
visited. Starting with the root element, the rest of the
elements can then be visited in a depth-first traversal. I wrote
the following function, based on some Delphi written by
Adrian Fagg, which gets a pointer to the root element and then
calls the function WriteBranch which recurses the rest of
the tree.

void WriteTree(std::ostream& out) {

MSXML2::IXMLDOMElementPtr root =

xmlDoc_->documentElement;

WriteBranch(root, 0, out);

}

The WriteBranch function is also based on Adrian Fagg’s
Delphi code. The code is self explanatory, but basically it:

1. Gets the tag name of the element passed to it.
2. Writes tag names to the supplied std::ostream at twice the

specified indentation.
3. The supplied element is then used to get a pointer to its first

child.
4. If the child pointer is not 0, it is used to get the node type.
5. If the node is of type NODE_ELEMENT the WriteBranch

method is called again (recursion).
6. The child pointer is then used to get the next sibling.
7. If there are no more siblings, the method returns.

void WriteBranch(

MSXML2::IXMLDOMElementPtr element,

unsigned long indentation,

std::ostream& out) {

bstr_t cbstr element->tagName;

out << std::string(2 * indentation, ' ')

<< cbstr << std::endl;

MSXML2::IXMLDOMNodePtr child =

element->firstChild;

while(child != 0) {

if(child->nodeType ==

MSXML2::NODE_ELEMENT) {

WriteBranch(child,

indentation + 1, out);

}

child = child->nextSibling;

}

}

The result of running the program is now that the following is
written to the console:

poem

line

line

line

line

With that the exercise is complete.

Next Step

The logical next step would of course be exercise 2. However, as
well as completing the exercises which help the students learn
about XML, one of the aims of the ACCU Mentored Developers
XML Project is to write a standard interface behind which any
parser, such as MSXML or Xerces can be used. Therefore, the
next step is to design a common interface to the DOM.

Paul Grenyer and Jez Higgins
paul@paulgrenyer.co.uk

jez@jezuk.co.uk

Thank You

Thanks to all the members of the ACCU Mentored Developers XML
Project, especially Adrian Fagg, Rob Hughes, Thaddaeus Frogley
and Alan Griffiths for the proof reading and code suggestions.

References

[boost] The boost library: http://www.boost.org
[DOMRec] W3C Document Object Model (DOM):
http://www.w3.org/DOM/

[EC++] Scott Meyers, Effective C++: 50 Specific Ways to improve
Your Programs and Designs. Addison Wesley: ISBN 0-201-
9288-9

[ExC++] Herb Sutter, Exceptional C++. Addison Wesley: ISBN
0201615622

[InstMsi] Windows Installer 2.0:
http://www.microsoft.com/downloads/details.aspx

?FamilyID=4b6140f9-2d36-4977-8fa1-6f8a0f5dca8f

&displaylang=en

[MDevelopers] ACCU Mentored Developers:
http://www.accu.org/mdevelopers/

[MSXML] Microsoft XML parser:
http://www.microsoft.com/downloads/details.aspx

?FamilyID=3144b72b-b4f2-46da-b4b6-c5d7485f2b42

&displaylang=en

[PerfectXML] PerfectXML: www.perfectxml.com/msxml.asp
[UsingDOM] Using DOM:

http://www.perfectxml.com/CPPMSXML/20020710.asp

[Xerces] Xerces XML parser:
http://xml.apache.org/xerces-c

[XMLRec] Extensible Markup Language (XML):
http://www.w3.org/XML/

19

Overload issue 62 august 2004

The Curious Case of the
Compile-Time Function

(An Exercise in Template
Meta-Programming)

by Phil Bass

A Crime Has Been Committed

18 months ago I described a version of my Event/Callback
library in an Overload article [1]. This library is used extensively
in my employer’s control systems software. A typical use looks
like this:

// A class of objects that monitor some event.

class Observer {

public:

Observer(Event<int>& event)

: callback(bind_1st(memfun(

&Observer::handler), this))

, connection(event, &callback) {}

private:

void handler(int); // the event handler

typedef Callback::Adapter<

void (Observer::*)(int)>::type

Callback_Type;

Callback_Type callback; // a function object

Callback::Connection<int> connection;

// event <-> callback

};

Exhibit 1: The event/callback library in action.

The key feature in this example is that a callback and an
event/callback connection are both stored in the Observer as
data members. Some attempt has been made to support this idiom
by providing various helpers (the bind_1st() and memfun()
function templates1 and the Callback::Adapter<Pmf> class
template). However, there is still quite a lot of rather verbose
boilerplate code. And that’s a crime.

It has been clear for some time that we should be able to
improve on this. There seems to be no fundamental reason, for
example, why we can’t combine the callback and its connection
into a single class template (Bound_Callback, say) and use it
like this:

// A class of objects that monitor some event.

class Observer {

public:

Observer(Event<int>& event)

: callback(event, &Observer::handler,

this) {}

private:

void handler(int); // the event handler

Bound_Callback<void (Observer::*)(int)>

callback;

};

Exhibit 2: The goal.

The question is how should we write the
Bound_Callback<Pmf> template?

Suspects and Red Herrings

The first thing that comes to mind is Boost [2]. There’s bound to
be a Boost library that provides what we need. The trouble is I
can’t find one.

Boost.Bind provides a lovely family of bind() functions that
generate all kinds of function objects. Unfortunately, their return
types are unspecified, so we can’t declare data members of those
types.

Then there’s Boost.Function, which was designed for a very
similar job and does provide types we can use as data members. I
believe we could, in fact, use the boost::function<> template
as the callback part of our Bound_Callback. What I haven’t told
you, though, is that an Event<Arg> can only be connected to
callbacks derived from Callback::Function<Arg>. Clearly, as
boost::function<> isn’t derived from this base class it doesn’t
provide everything we need. And, of course, it doesn’t know how
to make the event/callback connection, either.

So, what about Boost.Signals? Well, yes, we could replace
the whole of our event/callback library with boost::signals,
but I’m reluctant to do that for several (not very good) reasons.
First of all, I don’t like the names: “signal” is already used for
something else in Unix operating systems, and “slot” is a truly
bizarre word for a callback function. Secondly, Boost.Signals
does more than we need or want. Specifically, I’m not convinced
that a general-purpose event/callback library should do its own
object lifetime management and, anyway, we couldn’t use that
feature in common cases like Exhibit 1. Finally, if we were to
use Boost.Signals the crime would be reduced to a
misdemeanour and there would be little or no motivation for this
article!

A Promising Lead

The astute reader may have spotted a clue in the first exhibit. The
typedef isn’t there just to provide a reasonably short name for
the callback type – it also shows a template meta-function in
action.

A meta-function in C++ is a compile-time analogue of an
ordinary (run-time) function. Well-behaved run-time functions
perform an operation on a set of values supplied as parameters and
generate a new value as their result. Meta-functions typically
perform an operation on a set of types supplied as parameters and
generate a new type as their result.

In its simplest form, a meta-function taking a single type
parameter and returning another type as its result looks like this:

template<typename Arg>

struct meta_function {

typedef <some type expression involving Arg>

type;

};

Exhibit 3: A simple meta-function.

In C++, a meta-function always involves a template. The meta-
function’s parameters are the template’s parameters and the meta-
function’s result is a nested type name or integral constant. The
Boost Meta-Programming Library adopts the convention that a
meta-function’s result is called type (if it’s a type) or value (if
it’s an integral constant) and that same convention is used here.

Now, suppose we had a meta-function that takes a pointer-
to-member-function type and returns the function’s parameter
type.

1 These are not-quite-standard variat ions of std::bind1st() and
std::mem_fun() developed in-house for reasons that are not important
here.

20

Overload issue 62 august 2004

template<typename Pmf>

// Result (Class::*Pmf)(Arg)

struct argument {

typedef <magic involving Pmf> type;

// type == Arg

};

Exhibit 4: A magical meta-function.

Similarly, we can imagine meta-functions that extract from a
pointer-to-member-function the function’s result type and the
class of which the function is a member. We could now write a
Bound_Callback<Pmf> template along the lines of Exhibit 5.

// A callback bound to an event.

template<typename Pmf>

class Bound_Callback

: public Callback::Function<typename

argument<Pmf>::type> {

public:

typedef typename argument<Pmf>::type Arg;

typedef typename result<Pmf>::type Result;

typedef typename class_<Pmf>::type Class;

Bound_Callback(Event<Arg>& event, Pmf f,

Class* p)

: pointer(p), function(f)

, connection(event, this) {}

Result operator()(Arg value) {

return (pointer->*function)(value);

}

private:

Class* pointer;

Pmf function;

Callback::Connection<Arg> connection;

};

Exhibit 5: Using a meta-function.

This would be exactly what we need to implement the sort of class
illustrated in Exhibit 2. As Sherlock Holmes himself might say,
“Well done, Watson. Now, how can we implement the
argument<Pmf>, result<Pmf> and class_<Pmf> meta-
functions?”

Reviewing the Evidence

The argument<Pmf> meta-function shown in Exhibit 4 works
perfectly, but only if your name is Harry Potter. Plodding detectives
(and C++ compilers) can’t be expected to perform magic. I was
puzzled. Then I spotted something odd among the evidence:

template<typename Result, typename Class,

typename Arg>

struct argument {

typedef Arg type;

};

Exhibit 6: A meta-function for clairvoyants.

Here’s a meta-function that extracts the parameter type without
using magic. It just needs a little clairvoyance. If you know in
advance what the parameter type is you can use this meta-
function to generate the type you need. The heroic sleuth in
detective novels may seem to be clairvoyant at times but
programmers are not that clever (not even pizza-stuffed, caffeine-
soaked real programmers).

My search for the argument<Pmf> meta-function had run up a
blind alley. It was late. I was tired. I was getting desperate. And then
it hit me. We were looking for a meta-function with one parameter
(like the magical one), but to implement it we need three parameters
(like the one for clairvoyants). We need a specialisation.

// Declaration of general template

template<typename Pmf> struct argument;

// Partial specialisation for pointers to

// member functions

template<typename Result, typename Class,

typename Arg>

struct argument<Result (Class::*)(Arg)> {

typedef Arg type;

};

Exhibit 7: Extracting the parameter type.

The specialisation tells the compiler how to instantiate
argument<Pmf> when Pmf is a pointer to a member function of
any class, taking a single parameter of any type and returning a
result of any type.

The same technique works for the result<Pmf> and
class_<Pmf>meta-functions, too. In each case, the general template
takes one parameter, but the specialisation takes three. The compiler
performs a form of pattern matching to break down a single pointer-
to-member-function type into its three components. For example:

typedef result<

void (Observer::*)(int)>::type Result;

Result* null_pointer = 0; // Result is void

Exhibit 8: Using the result<Pmf> meta-function.

When it sees the result<Pmf> template being used the compiler
compares the template argument (pointer-to-member-of-Observer)
with the template parameter of the specialisation (any pointer-to-
member-function). In this case the argument matches the parameter
and the compiler deduces Result = void, Class = Observer,
Arg = int. The compiler then instantiates the specialisation which
defines result<void (Observer::*)(int)>::type as void.

The Case is Closed

So that’s it. The crime is solved. All that’s left is to prepare a case
for presentation in court and let justice take its course. I’ve had
enough for one day. “I’m off to the pub, anyone want to join
me?”, I called across the office.

“Well, that was the usual warm, friendly response”, I thought, as I
sat on my own with a pint. “No thanks”, “Sorry, can’t”, “Too busy”
they said. But something was still bothering me. Does
Bound_Callback<Pmf> still work if we try to connect a handler
function taking an int to an Event that publishes a short? And what
if we need to connect an Event<Arg> to something other than a
member function – like a non-member function or a function object?

These thoughts were still churning over in my mind when,
sometime after midnight, I tumbled into bed and soon fell into a
fitful sleep.

Phil Bass
phil@stoneymanor.demon.co.uk

References

[1] Phil Bass, “Implementing the Observer Pattern in C++”,
Overload 53, February 2003.

[2] See www.boost.org

21

Overload issue 62 august 2004

C++ Interface Classes – An
Introduction
by Mark Radford

Class hierarchies that have run-time polymorphism as one of
their prominent characteristics are a common design feature in
C++ programs, and with good design, it should not be
necessary for users of a class to be concerned with its
implementation details. One of the mechanisms for achieving
this objective is the separation of a class’s interface from its
implementation. Some programming languages, e.g. Java,
have a mechanism available in the language for doing this. In
Java, an interface can contain only method signatures. In C++
however, there is no such first class language feature, and the
mechanisms already in the language must be used to emulate
interfaces as best as can be achieved. To this end, an interface
class is a class used to hoist the polymorphic interface – i.e.
pure virtual function declarations – into a base class. The
programmer using a class hierarchy can then do so via a base
class that communicates only the interface of classes in the
hierarchy.

Example Hierarchy

The much used shape hierarchy example serves well here. Let’s
assume for the sake of illustration, that we have two kinds of
shape: arc and line. The hierarchy therefore, contains three
abstractions: the arc and line concrete classes, and the
generalisation shape. From now on, I’ll talk mainly about
shape and line only – the latter serving as an illustration of an
implementation. These two classes, in fragment form, look like
this:

class shape {

public:

virtual ~shape();

virtual void move_x(distance x) = 0;

virtual void move_y(distance y) = 0;

virtual void rotate(angle rotation) = 0;

//...

};

class line : public shape {

public:

virtual ~line();

virtual void move_x(distance x);

virtual void move_y(distance y);

virtual void rotate(angle rotation);

private:

point end_point_1, end_point_2;

//...

};

The shape abstraction is expressed here as an interface class –
it contains nothing but pure virtual function declarations. This is
as close as we can get in C++ to expressing an interface. Adding
to the terminology, classes such as line (and arc) are known as
implementation classes.

Now let’s assume this hierarchy is to be used in a two
dimensional drawing package. It seems reasonable to suggest that
in this package, drawing may be another useful abstraction.

drawing could be expressed as an interface class, like in this
fragment:

class drawing {

public:

virtual ~drawing();

virtual void add(shape* additional_shape)

= 0;

//...

};

Besides the virtual destructor, only one member function of
drawing – the add() virtual function – is shown. Note that
drawing does not collaborate with any implementation of
shape, but only with the interface class shape. This is
sometimes known as abstract coupling – drawing can talk to
any class that supports the shape interface.

Benefits

Having explained the technique of hoisting a class’s interface, I
need to explain why developers should be interested in doing
this. There are three points:

1 Hoisting the (common) interface of classes in a run-time
polymorphic hierarchy affords a clear separation of interface
from implementation. Further, doing so helps to underpin the use
of abstraction, because the interface class expresses only the
capabilities of the abstracted entity.

2 It follows on from the above, that new implementations can
be added without changing existing code. For example, it is
most likely that drawing will initially have only one
implementation class, but because other code is dependent
only on its interface class, new implementations can easily be
added in the future.

3 Consider the physical structure of C++ code with regard to the
interface class, its implementation classes, and classes (such as
drawing) that use it. Assuming common C++ practice is
followed, the definition of shape will have a header file – let’s
assume it’s called shape.hpp – all to itself, as will drawing
(i.e. drawing.hpp, using the same convention). Now, owing
to the physical structure of C++ (that is, the structure it inherited
from C), if anything in the shape.hpp header file is changed,
anything that depends on it – such as drawing.hpp – must
recompile. In large systems where build times are measured in
hours (or even days), this can be a significant overhead.
However, because shape is an interface class, drawing (for
example) has no physical dependency on any of the
implementation detail, and it is in the implementation detail that
change is likely to occur (assuming some thought has been put
into the design of shape’s interface).

Strengthening the Separation

Returning to the first point above for a moment, there is a way by
which we can strengthen the logical separation further: we can
make shape’s implementation classes into implementation only
classes. This means that in the implementation classes, all the
virtual member functions are made private, leaving only their
constructors publicly accessible. The line class then looks like
this:

22

Overload issue 62 august 2004

class line : public shape {

public:

line(point end_point_1, point end_point_2);

//...

private:

virtual ~line();

virtual void move_x(distance x);

virtual void move_y(distance y);

virtual void rotate(angle rotation);

//...

};

Now, the only thing users can do with line is create instances of
it. All usage must be via its interface – i.e. shape, thus enforcing
a stronger interface/implementation separation. Before leaving
this topic, it is important to get something straight: the point of
enforcing the interface/implementation separation is not to tell
users what to do. Rather, the objective is to underpin the logical
separation – the code now explains that the key abstraction is
shape, and that line serves to provide an implementation of
shape.

Mixin Interfaces

As a general design principle, all classes should have
responsibilities that represent a primary design role played by the
class. However, sometimes a class must also express
functionality representing responsibilities that fall outside its
primary design role. In such cases, the need for partitioning of
this functionality is pressing, and interface classes have a part to
play.

A class that expresses this kind of extra functionality is called a
mixin. For example, it is easy to imagine there might be a
requirement to store and retrieve the state of shape objects.
However, storage and retrieval functionality is not a responsibility
of shape in the application domain model. Therefore, a feasible
design is as follows:

class serialisable {

public:

virtual void load(istream& in) = 0;

virtual void save(ostream& out) = 0;

protected:

~serialisable();

};

class shape : public serialisable {

public:

virtual ~shape();

virtual void move_x(distance x) = 0;

virtual void move_y(distance y) = 0;

virtual void rotate(angle rotation) = 0;

// No declarations of load() or save() in

// this class

// ...

};

class line : public shape {

public:

line(point end_point_1, point end_point_2);

//...

private:

virtual ~line();

virtual void move_x(distance x);

virtual void move_y(distance y);

virtual void rotate(angle rotation);

virtual void load(istream& in);

virtual void save(ostream& out);

//...

};

This approach is intrusive to a degree because serialisable’s
virtual member functions must be declared in line’s interface.
However, at least there is a separation in that serialisable is
kept separate from the crucial shape abstraction.

Note that serialisabledoes not have a public virtual destructor
– its destructor is protected and non-virtual. It is not intended that
pointers to serialisableare held and passed around in a program
– i.e. it is not a usage type, that’s the role of the shape class. Making
the destructor non-virtual and not publicly accessible allows the code
to state this explicitly, without recourse to any further documentation.

Often mixin functionality is added to a class using multiple
inheritance. Here there is an analogy with Java, in which there is direct
language support for interfaces. In Java, a class can inherit from one
other class, but can implement as many interfaces as desired. The same
thing can be emulated in C++ using interface classes, but in C++ there
is an added twist – C++ has private inheritance to offer. This approach
comes in handy particularly when the usage type is outside the control
of the programmer – for example, because it is part of a third party API.
For example, consider a small framework where notifications are sent
out by objects of type notifier, and received by classes supporting
an interface defined by notifiable. The two interface classes (or
fragment of, in the case of notifier) are defined as follows:

class notifiable {

public:

virtual void update() = 0;

protected:

~notifiable();

};

class notifier {

public:

virtual void register_client(notifiable* o)

= 0;

// ...

};

Now consider using a GUI toolkit that provides a base class
called window, from which all window classes are to be derived.
The programmer wishes to write a class called my_window that
receives notifications from objects of type notifier – such a
class could look like this:

class my_window : public window,

private notifiable {

public:

void register_for_notifications(

notifier& n) {

n.register_client(this);

}

// ...

};

Using private inheritance has rendered the notifiable interface
inaccessible to clients, but allows my_window use of it, because

like anything else that’s private to my_window, its private base
classes are accessible in its member functions. This approach
helps to strengthen the separation of concerns which the use of
mixin functionality seeks to promote.

Interface Class Emulation Issues

The fact that we have to consider emulation issues at all is owing
to the fact that interfaces are being emulated rather than being a
first class language feature – all part of the fun of using C++! I
think there are issues in two areas, i.e. those concerned with:
● An interface class’s interface
● Deriving from an interface class

An Interface Class’s Interface

Consider the interface class shape:

class shape {

public:

virtual ~shape();

virtual void move_x(distance x) = 0;

virtual void move_y(distance y) = 0;

virtual void rotate(angle rotation) = 0;

// other virtual function declarations...

};

If we write only the above, the compiler will step in and provide:
a copy assignment operator, a default constructor, and a copy
constructor. I think we can safely say that, an interface class’ run
time polymorphic behaviour points to assignment semantics
being inappropriate and irrelevant. Therefore, the assignment
operator should be private and not implemented:

class shape {

public:

// ...

private:

shape& operator=(const shape&);

};

Interface classes are stateless by their nature, so allowing
assignment is harmless, but prohibiting it is a simple contribution
to avoiding errors.

What about the default constructor and a copy constructor? Here
we should just thank the compiler and take what is on offer, as this
is the easiest way to avoid any complications. Note that declaration
of constructors by the programmer has potential pitfalls. For
example, if a copy constructor only is declared, then the compiler
will not generate a default constructor.

Deriving From an Interface Class

Consider the following fragment that shows line being derived
from shape (as one would expect):

class line : public shape {

public:

line(int in_x1, int in_y1,

int in_x2, int in_y2)

: x1(in_x1), y1(in_y1),

x2(in_x2), y2(in_y2) {}

// ...

private:

int x1, y1, x2, y2;

};

The programmer has declared a constructor that initialises
line’s state, but not specified which of shape’s constructors is
to be called. As a result the compiler generates a call to shape’s
default constructor. So far this is fine. Because shape is
stateless it doesn’t matter how it gets initialised.

However, that’s not the end of the story ...
It is a common design re-factoring in C++ (and several other

languages), to hoist common state out of concrete classes, and place it
in a base class. So if common implementation is found between
shape’s derived classes line and arc, rather than have a two tier
hierarchy, it is reasonable to have a three tier hierarchy. For the sake of
an example, let’s assume that it is necessary for all shapes to maintain
a proximity rectangle– i.e. if a point falls within the rectangle, the point
is considered to be in close proximity to the shape. This functionality
can then, for example, be used to determine if a shapeobject should
be selected when the user clicks the mouse near by.

I’m going to assume a suitable rectangle class is in scope,
and introduce shape_impl to contain the common
implementation.

class shape_impl : public shape {

private:

virtual ~shape_impl() = 0;

virtual void move_x(distance x);

virtual void move_y(distance y);

virtual void rotate(angle rotation);

//...

protected:

shape_impl();

shape_impl(

const rectangle& initial_proximity);

//...

private:

rectangle proximity;

// ...

};

The implementation class shape_impl is abstract, as shown by
the pure virtual destructor. As a brief digression, it is also an
implementation only class – its implementation of shape’s
interface has been declared as private so clients can create
instances, but can’t call any of the member functions.

Now look what happens if line’s base class is changed, but
changing the constructor used to initialise the base class gets
forgotten about.

class line : public shape_impl {

public:

line(int in_x1, int in_y1,

int in_x2, int in_y2)

: x1(in_x1), y1(in_y1),

x2(in_x2), y2(in_y2) {}

// ...

private:

int x1, y1, x2, y2;

};

23

Overload issue 62 august 2004

24

Overload issue 62 august 2004

This will compile, and fail at run time. However, if in the first
place the programmer had written:

class line : public shape {

public:

line(int in_x1, int in_y1,

int in_x2, int in_y2)

: shape(), x1(in_x1), y1(in_y1),

x2(in_x2), y2(in_y2) {}

// ...

};

In the latter case, changing the base class to shape_impl would
cause a compile error, because shape is no longer the immediate
base class. This leads me to make the following recommendation:
always call an interface class’s constructor explicitly.

Finally

Interface classes are fundamental to programming with run time
polymorphism in C++. Despite this, I’m all too frequently
surprised by how little they are known about by the C++
programmers out there.

This article doesn’t cover everything: for example, the use of
virtual inheritance when deriving from mixins is something I
hope to get around to covering in a future article. However, I
hope this article serves as a reasonable introduction.

Mark Radford
mark@twonine.co.uk

Acknowledgements

Many thanks to Phil Bass, Thaddaeus Frogley and Alan Griffiths
for their feedback.

From Mechanism to Method:
The Safe Stacking of Cats
by Kevlin Henney

In spite of some obvious differences – and the similarity that
neither can be considered a normal practice – curling and
throwing have something in common: curling is a bizarre sport
played on ice; throwing in C++ is often played on thin ice. It is
the thin ice that has most often caused consternation, and the
balanced art of not falling through that has attracted much
attention.

By coincidence, curling is also something in which cats both
indulge and excel, putting the pro into procrastination. But more
on cats later.

Taking Exception

Exceptions are disruptive but modular. The common appeal to
consider them as related to the goto is more than a little
misleading (“considering goto” considered harmful, if you
like). That they are both discontinuous is one of the few features
they share. It is an observation that although true is not
necessarily useful: break, continue, and return also share
this description of behavior. A quick dissection exposes the
differences:

● Transferred information:
a goto can associate only with a label whereas a throw
communicates with respect to both type and any information
contained in the type instance. In this sense, the throw acts
more like a return, communicating an exceptional rather than
a normal result.

● Locality:
a goto has meaning only within a function, labels being the only
C++ entity with function scope. By contrast, exception handling
is primarily about transferring control out of a function. It shares
this with return, but potentially has the whole of the call stack
rather than just the immediate caller within its reach. It also
shares with break and continue a relationship with an
enclosing control flow primitive, so exception handling can also
be used simply at the block level.

● Destination coupling:
the target of a goto is fixed, hardwired at compile time.
There is no way to express “the following has happened, so
whoever can sort it out, please sort it out.” Exceptions are
independent of lexical scope and do not nominate their
handlers explicitly. Instead, nomination is dynamic and by
requirement – “the first one that can handle one of these gets
to sort it out.” Exceptions can be handled or ignored at
different call levels without intervention from any of the
levels in between. In many ways, the try/catchmechanism
resembles an advanced selection control structure – an
if/else with extreme attitude.

● Block structure:
Taligent’s Guide to Designing Programs pulls no punches in
stating that “a goto completely invalidates the high-level
structure of the code” [1]. Far from being merely a provocative
statement, this is a concise summary of fact. C++ is
essentially block structured: exceptions respect and work
within this structure, whereas gotos largely ignore and
disrespect it.

The differences are thrown (sic) into sharp relief when you
attempt to refactor code. Say that you wish to factor a block
out as a function (the Extract Method refactoring [2]); it is
trivial to factor out the data flow: looking at the data that’s
used and affected in the block tells you what arguments and
results you need to pass and how. With control flow, unless you
flow off the bottom of a block or throw, you cannot factor the
code simply. Traditional discontinuous control flow is non-
modular and requires additional restructuring to communicate
to the caller that a break, return, continue , or goto
(especially) must be effected. This is not the case with throw:
both the overall structure and the fine-grained detail remain
unchanged.

State Corruption

This all sounds straightforward – or straight backward if you take
the call stack’s perspective – because we know about modularity,
both structured programming and object-oriented programming
are built on that foundation. However, there is still that one small

matter of “disruption.” When an exception is thrown, the only
thing you want disrupted is the control flow, not the integrity of
the program.

Any block of code may be characterized with respect to the
program’s stability in the event of an exception. We can guarantee
different levels of safety, of which three are commonly recognized
[3], plus the (literally) degenerate case:

● No guarantee of exception safety:
ensures disruption, corruption, and chaos. Code written without
exceptions in mind often falls into this category, leaking memory
or leaving dangling pointers in the event of a thrown exception
– converting the exceptional into the unacceptable. In short, all
bets are off.

● Basic guarantee of exception safety:
ensures that the thrower will not leak or corrupt resources.
Objects involved in the execution will be in a stable and usable,
albeit not necessarily predictable, state.

● Strong guarantee of exception safety:
ensures that a program’s state remains unchanged in the presence
of exceptions. In other words, commit-rollback semantics.

● No-throw guarantee of exception safety:
ensures that exceptions are never thrown, hence the question of
how program state is affected in the presence of an exception
need never be answered because it is purely hypothetical.

The stroke of midnight separates the first, degenerate category of
exception unsafety from the last, Zen-like guarantee of benign
order through the simple absence of disruption. Code written to
achieve these guarantees may have the same structure, but will
differ in the not-so-small detail of whether or not exceptions
occur anywhere in their flow.

These guarantees apply to any unit of code from a statement to
a function, but are most commonly applied to member functions
called on objects. A point that is not often made relates exception
safety to encapsulation: not so much that exception safety can be
improved by better encapsulation, but that exception safety is one
measure of encapsulation. Prominent OO propaganda holds that
encapsulation is concerned with making object data private. Whilst
this view is not strictly false, it misses some important truths.

Encapsulation is neither a language feature nor a practice; rather
it is a non-functional property of code, and something that you can
have more or less of. Encapsulation describes the degree to which
something is self-contained, the degree to which its insides affect
its outsides, the degree to which internal representation affects
external usage. Encapsulation is about usability, about not imposing
on the user. Language features and idiomatic design practices can
be used to improve encapsulation, but of themselves they are not
encapsulation. Thinking back to exceptions, you can see that
without even thinking about internal representation, an object that
offers the strong guarantee on a member function is more
encapsulated than one that offers no guarantee.

Incorruptible Style

It is one thing to have a guarantee, but quite another to fulfill it.
What is the style and mechanism of the code that allows a thrown
exception to propagate out of a block in a safe manner? Including

the degenerate case, there are essentially four approaches to
achieving exception safety:

● Exception-unaware code:
code that is not written with exceptions in mind is as easy to read
as it is dangerous – going wrong with confidence.

● Exception-aware code:
code may be scaffolded explicitly with try, catch , and
throw to ensure that the appropriate stabilizing action is taken
in the event of a thrown exception. Alas, it is not always obvious
that exception-aware code is safe: such code is rarely clear and
concise.

● Exception-neutral code:
code that works in the presence of exceptions, but does not require
any explicit exception-handling apparatus to do so (i.e., no explicit
try/catch code). Not only is exception-neutral code briefer and
clearer than exception-aware code, but it is also typically shorter
than exception unaware code. So, exception safety and seamless
exception propagation aside, such minimalism offers another
strong motivation for reworking code in this style.

● Exception-free code:
code that generates no exceptions offers the most transparent
fulfillment of exception safety.

When Cats Turn Bad

There is a tradition – from Schrödinger to Stroustrup – of
employing cats for demonstration purposes, and I see no reason
to stand in the way of tradition. There appears to be sufficient
prior art in the stacking of cats [4] that I will also adopt that
practice. Of course, we are only dealing with abstractions – if you
are concerned for the poor cat, keep in mind that unless we set it
in concrete no act of cruelty actually occurs.

Assuming that we have an appropriate cat class definition, the
following fragment demonstrates exception-unaware code:

{
cat *marshall = new cat;
.... // play with marshall
delete marshall;

}

If an exception occurs during play, there will be a memory leak:
you will forget about your scoped cat. The following fragment
demonstrates exception-aware code:

{
cat *marshall = new cat;
try {
.... // play with marshall

}
catch(...) {
delete marshall;
throw;

}
delete marshall;

}

25

Overload issue 62 august 2004

26

Overload issue 62 august 2004

Safe? Yes. Unreadable? Certainly. What it lacks in elegance it
more than makes up for in verbosity. The code may be safe, but it
is not obviously so [5]. The following fragment demonstrates
exception-neutral code:

{
std::auto_ptr<cat> marshall(new cat);
.... // play with marshall

}

For all its faults (and they are many), this is one job that
std::auto_ptr does do well. If we know that default cat
constructors do not throw exceptions, and we recognize that
marshall is always bounded by scope, the following fragment
demonstrates exception-free code:

{
cat marshall;
.... // play with marshall

}

Clearly, for demo purposes, we are taking some liberties with the
common understanding of cats and their care, treating them as
disposable commodities. Taking further license with feline
appreciation and object design, let us also assume that they are
value-based rather than entity-based objects. This means that they
support copying through construction and assignment, are
generally not heap based, and are typically not deeply involved in
class hierarchies.

Modern cloning technology is imperfect, so cat copy
constructors are not always guaranteed to work. On failure they
throw an exception, but they are well behaved enough to avoid
resource leakage and to not corrupt the program’s state.

Throwing Gauntlets

In 1994 Tom Cargill laid down a challenge – or extended an
invitation to solution, depending on your point of view –
concerning exception safety [6]. The challenge was based on a
fairly typical stack class template. There were a number of
elements to the challenge; the one I want to focus on here is how
to write the pop member function.

Here is some code that demonstrates the challenge:

template<typename value_type>
class stack {
public:
void push(const value_type &new_top) {
data.push_back(new_top);

}
value_type pop() {
value_type old_top = data.back();
data.pop_back();
return old_top;

}
std::size_t size() const {
return data.size();

}
....

private:
std::vector<value_type> data;

};

I have used std::vector for brevity (performing manual
memory management does nothing to make the problem clearer)
and I am skipping issues related to assignment – I would
recommend looking at Herb Sutter’s thorough coverage of the
challenge to see how this is addressed [3].

We can now recruit our favorite cat to demonstrate the issue.
First of all, pushing cats is not problematic:

stack<cat> stacked;
stacked.push(marshall);
std::cout << "number of stacked cats == "

<< stacked.size() << std::endl;

The issue arises when we pop cats:

try {
cat fender = stacked.pop();
.... // play with fender

}
catch(...) {
std::cout << "number of stacked cats"

<< " == " << stacked.size()
<< std::endl;

}

If the copy made in pop’s return statement fails, we have lost the
top cat: the cat has been removed from data and size is one
less than before. pop, therefore, cannot satisfy the strong
guarantee of exception safety, because that requires everything to
be left as it was before the exception was thrown. The stack is
still usable and its resulting state is predictable, which means that
we can promise marginally more than the basic guarantee ... but
we’ve still got a missing cat.

Before setting about any solution, it is important to remember
that designs – and therefore design problems – do not exist in a
vacuum. Design is intimately bound up with purpose and context,
and without understanding these we risk either solving the wrong
problem or, as we so often do, solving the solution. Design is about
balancing goals – as well as cats.

Unasking the Question

Looking at the class interface, we might ask why two actions are
combined into one: Why does pop both return a queried value
and modify the target object? We know that such a return causes
an exception-safety problem, and we also know that it is
potentially wasteful. What if you do not plan to use the return
value? Even if you ignore it, the work that goes into copying and
returning the value still happens. You are potentially paying both
a cost and a penalty for something you didn’t use.

The Command-Query Separation pattern [7] – sometimes
referred to as a principle rather than a pattern [8] – resolves our
concerns by making a separation with respect to qualification:

template<typename value_type>
class stack {
public:
....
void pop() {
data.pop_back();

}

value_type &top() {
return data.back();

}
const value_type &top() const {
return data.back();

}
....

private:
std::vector<value_type> data;

};

The separation of modifier from query operations ensures that we
cannot make a change and lose the result. This separated
interface also supports a slightly different usage model:

cat fender = stacked.top();
stacked.pop();
.... // play with fender

No copying exception can arise within the stack, so there is no
need to deal with it. This separation of concerns (and member
functions) can be seen in the design of the STL sequences and
sequence adaptors.

Rephrasing the Question

It would seem that the problem is solved, except for one thing:
we never fully established the context of execution. It is entirely
possible that the basic guarantee of the original code was
satisfactory for our purposes, so there was no problem – from our
perspective – to be solved. Either we accept the loss of a cat or,
more commonly, the element type of the stack has exception-free
copying, which would be the case for built-in types as well as a
number of user-defined types. So under some circumstances, the
stack offers us the strong guarantee. If these are your
circumstances, the original code does not strictly speaking need
to be fixed. If they are not, there is indeed a problem to be fixed,
and Command-Query Separation offers one solution.

But there are others. Command-Query Separation is attractive
because it clarifies the role of interface functions. It could be said
to offer better encapsulation and cohesion. However, such a
statement is not universally true, and understanding why will
demonstrate why we must consider Command-Query Separation a
pattern (a design solution with consequences and a context) and not
a principle (an idea that expresses a universal truth).

Consider a clarification in design context: the stack is to be shared
between multiple threads. Ideally we would like to encapsulate
synchronization detail within the stack, ensuring that primitives such
as mutexes are used safely and correctly. Focusing just on the push
member, an exception-unaware implementation would be as follows:

template<typename value_type>
class stack {
public:
....
void push(const value_type &new_top) {
guard.lock();
data.push_back(new_top);
guard.unlock();

}
....

private:
mutable mutex monitor;
std::vector<value_type> data;

};

The exception-neutral approach is both shorter and safer:

template<typename value_type>
class stack {
public:
....
void push(const value_type &new_top) {
locker<mutex> guard(monitor);
data.push_back(new_top);

}
....

private:
mutable mutex monitor;
std::vector<value_type> data;

};

Where locker is a helper class template responsible for
abstracting control flow [9]:

template<typename locked_type>
class locker {
public:
explicit locker(locked_type &lockee)
: lockee(lockee) {
lockee.lock();

}
~locker() {
lockee.unlock();

}
private:
locker(const locker &); // no copying
locked_type &lockee;

};

Making each public member function of stack self-locking
would appear to preserve encapsulation. However, this works
only for usage scenarios that are based on single function calls.
For the Command-Query Separation solution, this would
introduce a couple of subtle bugs:

cat fender = stacked.top();
stacked.pop();
.... // play with fender

First of all, top returns a reference. Consider the following
simple action in another concurrent thread:

stacked.pop();

Assuming that all of the member functions we are talking about
are self-locking, what is the problem? Imagine that the second
thread executes pop just after the first thread completes the call
to top: the reference result from top is now dangling, referring
to a non-existent element. Undefined behavior. Oops. Poor
fender gets a very bad start in life.

27

Overload issue 62 august 2004

28

Overload issue 62 august 2004

Returning references to value objects from thread-shared objects
is a bad idea, so let’s fix stack:

template<typename value_type>
class stack {
public:
....
value_type top() const {
locker<mutex> guard(monitor);
return data.back();

}
....

private:
mutable mutex monitor;
std::vector<value_type> data;

};

This solves the problem of undefined behavior, but leads us straight
into the jaws of the second problem, which is that of “surprising”
behavior. Idiomatically, we treat the following as a single unit:

cat fender = stacked.top();
stacked.pop();
.... // play with fender

However, this usage is not cohesive in its execution. It can be
interrupted by another thread:

cat peavey;
stacked.push(peavey);

so that the push in the second thread occurs between the
initialization of fender and the pop in the first thread. This means
that the wrong element is popped from the stack. Oops, again.

We could expose the lock and unlock features in stack and
let the user sort it all out:

template<typename value_type>
class stack {
public:
void lock() {
monitor.lock();

}
void unlock() {
monitor.unlock();

}
....

private:
mutex monitor;
std::vector<value_type> data;

};

Giving rise to the following somewhat clunky usage:

cat fender; {
locker< stack<cat> > guard(stacked);
fender = stacked.top();
stacked.pop();

}
.... // play with fender

Let’s compare this with the original usage:

cat fender = stacked.pop();
.... // play with fender

There’s now more to write and more to remember – and
therefore more to forget. In addition to being more tedious and
error prone, it is easy to make the code pessimistic by forgetting
to enclose the locker in the narrowest scope possible, leaving
waiting threads locked out of stacked for far longer than
necessary.

Remember that the original design’s only safety shortcoming
was that it offered only the basic – rather than the strong – guarantee
of exception safety. It would take a leap of orthodoxy to say, hand
on heart, that Command-Query Separation has produced a more
cohesive and encapsulated solution – the opposite is true in this
context.

The Combined Method pattern [7] is one that sometimes finds
itself in tension with Command-Query Separation, combining
separate actions into a single, transactional whole for the benefit of
simplicity and correctness in, principally, multithreaded
environments. The original pop was an example of this tactical
pattern, but suffered from weakened exception safety. An alternative
realization that achieves strong exception safety in an exception-
neutral style is to overload the pure pop function with a Combined
Method that takes a result argument:

template<typename value_type>
class stack {
public:
....
void pop() {
locker<mutex> guard(monitor);
data.pop_back();

}
void pop(value_type &old_top) {
locker<mutex> guard(monitor);
old_top = data.back();
data.pop_back();

}
....

private:
mutable mutex monitor;
std::vector<value_type> data;

};

This design tightens the screws a little on the element type
requirements, additionally requiring assignability as well as copy
constructibility. In practice this often means that we also demand
default constructibility of the target because the overloaded pop
cannot be used in an assignment:

cat fender;
stacked.pop(fender);
.... // play with fender

Another consequence of the assignment-based approach is that
the result variable must be an exact type match for the element
type (i.e., it cannot rely on implicit conversions that would have
worked if pop’s result had been returned by value).

A Transactional Approach

Staying with Combined Method, but for brevity leaving aside the
code for thread synchronization, it turns out that it is possible to
write an exception-neutral version of pop that preserves the
original value-returning interface and satisfies the strong
guarantee of exception safety in slightly different circumstances
to the original:

template<typename value_type>
class stack {
public:
....
value_type pop() {
popper karl(data);
return data.back();

}
....

private:
class popper {
public:
popper(std::vector<value_type> &data)
: data(data) {}

~popper() {
if(!std::uncaught_exception())
data.pop_back();

}
private:
popper(const popper &);
std::vector<value_type> &data;

};
std::vector<value_type> data;

};

Here a small helper object, karl, is created to commit a pop
action if the copying of the return value is successful. The
popper object is passed the representation of the
surrounding stack, and on destruction, it will cause a
pop_back to be executed. If the copy is unsuccessful, the
popper destructor will not commit the intended change,
skipping the pop_back.

This approach has the benefit of preserving the signature
interface and typically reducing the number of temporaries
involved in copying. However, there is an important
precondition that must be publicized and satisfied for popper
to work as expected: pop should not be called from the
destructor of another object. Why? What if the destructor is
being called because the stack is being unwound by an
exception? The call to std::uncaught_exception in
popper’s destructor will return true even if the copy is
successful.

How you respond to this scenario is a matter of context-driven
requirement. Either you state that the behavior of a stack is
undefined in these circumstances or you define behavior for it.
One definition of behavior is shown above – in the presence of
existing exceptions, don’t pop – but could be considered
unsatisfactory because of its pessimism. An alternative, more
optimistic approach is to say that our pop offers a strong
guarantee of exception safety if there is no unhandled exception
present when it is executed, but only the basic guarantee
otherwise:

template<typename value_type>
class stack {
....
class popper {
public:
popper(std::vector<value_type> &data)
: data(data),
unwinding(

std::uncaught_exception()) {}
~popper() {
if(unwinding

|| !std::uncaught_exception())
data.pop_back();

}
private:
popper(const popper &);
std::vector<value_type> &data;
const bool unwinding;

};
....

};

std::uncaught_exception is a function that is
generally not as useful as it first appears. It often leads to false
confidence in code [10], but with an understanding of its
limitations, there are a few situations in which we can press it
into useful service.

A Lazy Approach

It is possible to take the transactional idea a step further using a
technique that I first saw Angelika Langer present at C++ World
in 1999:

template<typename value_type>
class stack {
public:
....
value_type pop() {
try {
--length;
return data[length];

}
catch(...) {
++length;
throw;

}
}
....

private:
std::size_t length;
std::vector<value_type> data;

};

Here the size of the stack is tracked in a separate variable that is
incremented and decremented accordingly. It uses an exception-
aware style to implement commit-rollback semantics, bumping
the length count back up again if the copy from the last element
fails with an exception.

The obvious benefit of this approach is that it will work
independently of whether or not the stack is already unwinding

29

Overload issue 62 august 2004

30

Overload issue 62 august 2004

because of an exception. However, the disadvantage with this
approach is not so much with the extra piece of state that has been
introduced but that popped elements are never actually popped.
They continue to exist in the data member long after they have
been popped: at least up until another modification operation
requires rationalization of data with length, such as a push. A
couple of minor refinements address this issue by introducing a
deferred but amortized commit operation:

template<typename value_type>
class stack {
public:
stack()
: uncommitted(false) {}

void push(const value_type &new_top) {
commit();
data.push_back(new_top);

}
value_type pop() {
commit();
try {
uncommitted = true;
return data.back();

}
catch(...) {
uncommitted = false;
throw;

}
}
std::size_t size() const {
commit();
return data.size();

}
....

private:
void commit() const {
if(uncommitted) {
data.pop_back();
uncommitted = false;

}
}
mutable bool uncommitted;
mutable std::vector<value_type> data;

};

Internally the committed state will be at most one element
different from the uncommitted state, but externally any
attempt to determine the state by calling an operation will
ensure that the books are kept balanced. This constraint
requires that all public functions call the commit function as
their first act, which requires that the object’s state to be
qualified as mutable to permit updates in query functions.
Thus, this design affects all member functions and imposes a
little more on the class developer. The class user is, however,
unaffected.

Conclusion

It is time to declare a moratorium on these exceptional
experiments on abstracted cats. They have served to demonstrate
that no design can be perfect, and that encapsulation is related to

usability; it is not just a matter of data hiding. Although we may
strive for absolute recommendations, there are times when only
relative ones can be made with confidence (and caveats). Design
is about compromise and about context, and therefore it is about
understanding consequences. Weigh up the benefits and liabilities
for a particular usage and then make your decision – what is
workable in one context may be unworkable in another, and so
what is “good” in one situation may be “bad” in another.

On the compromise of design in other fields I will leave you with
this quote from David Pye [11]:

It follows that all designs for use are arbitrary. The designer or his
client has to choose in what degree and where there shall be failure.
Thus the shape of all design things is the product of arbitrary choice.
If you vary the terms of your compromise – say, more speed, more
heat, less safety, more discomfort, lower first cost-then you vary the
shape of the thing designed. It is quite impossible for any design to
be “the logical outcome of the requirements” simply because, the
requirements being in conflict, their logical outcome is an
impossibility.

Kevlin Henney
kevlin@curbralan.com

References

[1] Taligent’s Guide to Designing Programs: Well-Mannered
Object-Oriented Design in C++, (Addison-Wesley, 1994),
http://pcroot.cern.ch/TaligentDocs/

TaligentOnline/DocumentRoot/1.0/Docs/

books/WM/WM_1.html

[2] Martin Fowler. Refactoring: Improving the Design of Existing
Code (Addison-Wesley, 1999), www.refactoring.com

[3] Herb Sutter. Exceptional C++ (Addison-Wesley, 2000).
[4] Bjarne Stroustrup. “Sixteen Ways to Stack a Cat,” C++ Report,

October 1990, www.research.att.com/~bs
[5] To quote C. A. R. Hoare:

“There are two ways of constructing a software design. One way is to
make it so simple that there are obviously no deficiencies. And the
other way is to make it so complicated that there are no obvious
deficiencies.”

[6] Tom Cargill. “Exception Handling: A False Sense of Security,”
C++ Report, November-December 1994.

[7] Kevlin Henney. “A Tale of Two Patterns,” Java Report ,
December 2000, www.curbralan.com

[8] Bertrand Meyer. Object-Oriented Software Construction, 2nd
Edition (Prentice Hall, 1997).

[9] Kevlin Henney. “C++ Patterns: Executing Around Sequences,”
EuroPLoP 2000, July 2000, www.curbralan.com

[10] Herb Sutter. More Exceptional C++ (Addison-Wesley, 2002).
[11] Henry Petroski. To Engineer is Human: The Role of Failure in

Successful Design (Vintage, 1992).

This article was originally published on the C/C++ Users
Journal C++ Experts Forum in February 2002 at
http://www.cuj.com/experts/documents/s=7986/

cujcexp2002Henney/

Thanks to Kevlin for allowing us to reprint it.

