
3

Overload issue 63 october 2004

contents credits & contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Advisors:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Chris Lowe
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

The Encapsulate Context Pattern

Allan Kelly 6

Microsoft Visual C++ and Win32

Structured Exception Handling

Roger Orr 15

A Mini-project to Decode a

Mini-language Thomas Guest 20

Garbage Collection and Object Lifetime

Ric Parkin 24

C++ Lookup Mysteries

Sven Rosvall 28

4

Overload issue 63 october 2004

Editorial: The Buzzword
Adoption Pattern?

Once again it’s my turn to write an editorial, and in search of
inspiration, I dug out Overload 62 and reread Alan Griffiths’
editorial “The Value of What You Know”. In that editorial,
Alan recounts how a colleague asked him how to return a
NULL string – because in C the colleague would have
represented the string using const char* and therefore
could, and would, have returned NULL . The developer just
expected to get a simple answer because it never occurred to
him that in the context he was working, a different solution
may have been appropriate; in other words, returning NULL
may or may not have afforded the best set of tradeoffs in the
given situation.

Anyway, why am I going on about this? Well, it’s because I
have observed on many occasions over the last few years, that
when a developer comes up with a solution to a problem, they
think the problem is solved and get on with implementing
whatever it is they’ve come up with. Like the developer in
Alan’s story, they don’t stop to consider that implementing a
particular solution has its own set of consequences – or, putting
it another way, they don’t consider that there are tradeoffs to be
considered.

A recurring example of this is speeding up the lookup process
in a data structure in memory, by keeping an index in memory in
addition to the data. This approach makes the simple trade of using
more memory in return for a gain in speed. Whether or not the
tradeoffs are acceptable depends very much on the execution
environment. For example, if the structure holds enough data to
take up (say) thirty percent of a computer’s memory, then the index
is likely to be sufficiently large to have an impact on both speed
and memory requirements. It should be noted that if measures must
be taken to speed up element lookup, then there is an implication
that the structure is likely to be large. Further, even if the structure
will be large, an index will not be of any benefit if most of the
elements searched for are near the starting point for the lookup
(typically the beginning of the structure). The upshot of all this is
that the solution using indexing is only a good idea if:
1. There is enough memory to support it
2. The overhead of referencing the index will not impose too much

overhead on lookup speed, too much of the time

What we’re heading towards here is Pattern territory. It’s worth
extending the discussion to consider Patterns, because the
original idea of Patterns was that any particular Pattern captures
not only a problem and a solution, but also the tradeoffs that
must be accepted if the solution is adopted. The problem of
speeding up lookup in a data structure and solving it using
indexing, may or may not qualify as a pattern (there are other
factors that are beyond the scope of this discussion). However,
there is an analogy to be drawn, because indexing is a solution to
the problem, but only if a certain set of tradeoffs – i.e. the two
cited above, at least – are acceptable.

The concept of a Pattern originates in “The Timeless Way of
Building” by the Architect Christopher Alexander, first published
in the late 1970s. The idea was imported into the software
development community in the early 1990s. However, it was the
publication of “Design Patterns: Elements of Reusable Object-
Oriented Software” by Erich Gamma, Richard Helm, Ralph
Johnson and John Vlissides, the “Gang of Four” (or “GoF”), that
brought Patterns to the attention of the software development
community at large, focusing on twenty-three patterns from the
domain of object-oriented design. Over the years this book has
become known as the “GoF book”.

Unfortunately the GoF book, in its attempt to make Patterns
more accessible, also (partly due to its presentation of Patterns,
and partly due to the way it has been read by the development
community at large) accidentally popularised some
misconceptions. For example:
● Patterns are for object-oriented design, and there are twenty-

three only, no more and no less
● A Pattern is a configuration of classes that works in more than

one place.
● Patterns are invented

Whereas, in reality (respectively):
● Patterns occur at all stages of the development process
● A Pattern captures a problem, a solution, and the tradeoffs

involved
● Very important: Patterns are harvested from existing

practice/experience

In my last editorial (in Overload 60, called “An Industry That Refuses to Learn”) I
asserted that the software development industry has not made significant progress
in the last quarter of a century. This assertion provoked enough of a response to

fill the letters page in the following issue. I’m pleased about that, but at the same time,
not so pleased. I’m pleased because I managed to provoke people into putting pen to
paper – or rather, in this day and age, putting fingers to keyboard. I’m not so pleased
because the response was one of overwhelming agreement, which is unfortunate
because it suggests that any hopes I may have had that my experience is the odd one
out, are false.

5

Overload issue 63 october 2004

In my Overload 60 editorial “An Industry That Refuses To
Learn”, I expressed my concerns that by bringing Patterns to
the attention of the development community at large, the GoF
book has lead to them being hijacked and turned into a
buzzword – not because of any fault of the GoF, but because it
is in the nature of the industry to do this. I am finding more and
more, that having the phrase “Design Patterns” on my CV is
becoming advantageous when applying for contract work, when
it comes to playing the inescapable “buzzword bingo” with the
agencies. I have a recollection from an interview, of being
asked if I was familiar with “The Patterns Book”; I recall telling
the interviewer, yes, I’ve read “Software Patterns” by James
Coplien. Naturally that approach didn’t get me anywhere. In
passing, and for the record, I regard “Software Patterns”1 to be
a much better candidate for being The Patterns Book than the
GoF book, because it is much more likely to leave the reader
with an understanding of what Patterns are and what they can
offer.

Above, I cited indexing as an example of speeding up lookup
in a data structure subject to certain tradeoffs being acceptable.
The industry’s hijacking of Patterns has meant that the tradeoffs
element has been lost. Given that the most effective means of
learning is by example, the loss of tradeoffs means that a valuable
example of considering tradeoffs when considering solutions has
been lost.

Anyway, at this point I’d like to move on to a different but related
topic, and this time on a more positive note. In this editorial and in
my previous one mentioned above, I have talked about the how the
software development industry has hijacked concepts and practices
and turned them into buzzwords. Well, it seems this has – by
accident rather than design – lead to an area of improvement, and
I can write about something other than doom and gloom.

Back in the early days of the desktop PC, programmers typically
just sat down at the computer and wrote code, testing their work by
some sequence of random actions that involved running the
program they were working on and seeing what happened. Their
practices were unfortunately a far cry from the rigor of their
mainframe counterparts. Today the computers used as both desktop
workstations and as servers, are much more advanced that the PCs
of ten and twenty years ago. Further, the software that runs on them
is much larger in scale and much more complex. However, all too
often, the software development practices have not advanced. Until
now, that is...

It seems that one of the age-old practices of the mainframe
developers of old, namely that of unit testing, has resurfaced!

You’ve probably heard mention of “Test-Driven Development”
(aka “TDD” or “Test-First Development”) in various places over
the last few months. Well, a friend of mine went for an interview
recently, and was asked what he knew about this practice. He got
the job, and it played a part that he’d read Kent Beck’s book “Test-
Driven Development”2, which went down well with the interviewer.
I have noticed recently myself, this phrase is beginning to be
mentioned occasionally when the agencies reel off their list of
buzzwords.

Granted, TDD is a bit more than just unit testing (it advocates
that a piece of code’s tests should be written before the code itself
is written), but that’s not really the point. The point is, there must
be some ironic twist in the fact that unit testing is finding its way
back into mainstream workstation/server programming, simply
because someone thought up a buzzword – or rather a buzz-phrase
– to associate with it. Don’t get me wrong though, I’m quite happy
that TDD is becoming trendy. Sadly it was for the wrong reasons
that TDD came to the attention of this development community at
large, but it can only have a positive effect on the quality of
software.

In “The Value of What You Know”, Alan finishes with the
sentiment to the readers: “I’ll have to trust you’ll have your own
story to tell”. Well, here I’ve told (one of) mine – or rather, I’ve
started in one place and followed a line of thought to where it
led me (there is an element of thinking out loud in this editorial).
I’ve looked at Patterns – or rather, all that has gone wrong for
Patterns – being adopted by the development community. I then
moved on to look at how by a happy accident TDD has been
adopted, but in this case to the benefit of the projects on which
it is used.

Perhaps we should learn from experience with TDD and take
stock of practices that we would like to see adopted more widely,
and then sharpen our skills in coming up with buzzwords and/or
buzz-phrases that are sufficiently catchy for the majority of
developers and/or managers. Then, as what happened to TDD
happens to other useful practices, maybe the “Buzzword Adoption
Pattern” will start to emerge.

Mark Radford
mark@twonine.co.uk

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines

All articles intended for publication in Overload 64 should be submitted to the editor by November 1st 2004, and for Overload 65
by January 1st 2005.

1 Available as a free download from: http://www.bell-labs.com/user/
cope/Patterns/WhitePaper

2 Note that Kent Beck is completely open about the origins of unit testing. In his book
“Extreme Programming Explained”, he asserts that XP is built on the premise that its
practices are of proven effectiveness.

6

Overload issue 63 october 2004

The Encapsulate Context
Pattern

by Allan Kelly

Prologue

Encapsulate Context was born after a query to accu-general
in Summer 2002. I don’t think I was looking to write a pattern
but I’m glad I did – in retrospect I wish I had begun writing
patterns earlier. However, writing patterns is hard work and
time consuming. Between the first draft and the version you are
about to read 18 months elapsed. The paper may bear my name
but it wouldn’t be the paper it is without the help of many
others.

The version here hasn’t changed in several months and is the
same as that printed in the EuroPLoP 2003 conference proceedings.
This doesn’t mean it won’t change again, to some degree patterns
are living entities that change as people use them and gain
experience. So, I wouldn’t be surprised if the pattern appears again,
elsewhere, with further revisions.

Abstract

A system contains data, which must be generally available to
divergent parts of the system, but we wish to avoid using long
parameter lists to functions or global data; therefore, we place the
necessary data in a Context container and pass this object from
function to function.

Audience

Encapsulate Context is principally written for software
developers designing and writing programs. The pattern was
originally written for C++ developers, however examples have
been reported from other languages such as Java and Smalltalk.
It is believed that users of any language will find the pattern
useful, although C++ developers may find the pattern of
particular interest.

By exploring the pattern in depth this paper offers a rigorous
explanation of where the pattern occurs, the forces and the
consequences of using the pattern. For reference purposes a
summary section has been included at the end of the paper.
Experienced developers may prefer to read the summary first before
reading the entire paper.

Example

In traditional structured programming, global data is minimised
by use of function call parameters. This tradition has continued,
with some modifications in object-oriented programming. For
example:

void ProcessMarketTrade(MarketMessage& msg,

MarketDataStore& store) {

if(msg.Trade() == Sell)

store.Sell(msg.Commodity(),

msg.Price(), msg.Quantity());

else

store.Buy(msg.Commodity(),

msg.Price(), msg.Quantity());

} // ProcessMarketTrade

We now decide that any trade which results in a negative quantity
should result in an error message, hence the function Sell must

have access to the log manager, consequently a handle must be
passed down. The code becomes:

void ProcessMarketTrade(MarketMessage& msg,

MarketDataStore& store,

LogManager* log) {

if(msg.Trade() == Sell)

store.Sell(msg.Commodity(), msg.Price(),

msg.Quantity(), log);

... as before ...

Such changes have a habit of reoccurring, so, when we add a
transaction history the code changes again:

void ProcessMarketTrade(MarketMessage& msg,

MarketDataStore& store,

LogManager* log,

TransactionHistory& history) {

if(msg.Trade() == Sell)

store.Sell(msg.Commodity(), msg.Price(),

msg.Quantity(), log, history);

... and so on ...

Several problems are clearly apparent. First the parameter list is
growing with a negative effect on comprehensibility, even though
the additional code is trivial it increases the bulk. Secondly, we
are breaking encapsulation. Initially Sell was an encapsulated
function, by adding more and more parameters its inner workings
are being exposed.

More ominously, we have a ripple effect running through
interface and implementation code. The function that calls
ProcessMarketTrade must itself have access to
LogManager and TransactionHistory, and in turn, the
function that calls that function, and so on. Even though these
functions will only act as pass-throughs for the handles they are
affected.

Less obvious is the capacity for redundant code to enter the
system. If at some future date we dispense with the transaction
history then removal impacts at least three different functions. To
be sure, the temptation would be to disable the code while leaving
it in place, hence we simply make it an anonymous parameter in
Sell:

void MarketStore::Sell(Commodity& c,

Price& p,

Quantity& q,

LogManager* log,

TransactionHistory&) {

....

In choosing not to delete the history in full we are storing up
complications for future refactorings, we are also half-way to
implementing the Poltergeist anti-pattern (Brown, 1998).

These problems are exacerbated when a dependency inversion
design is adopted. We may decide to recast our market message
processing as a Command pattern (Gamma, 1994):

class MarketMessageCommand {

public:

virtual void Action(MarketDataStore&,

LogManager*) = 0;

....

};

7

Overload issue 63 october 2004

class Buy : public MarketMessageCommand {

public:

virtual void Action(MarketDataStore&,

LogManager*);

....

};

class Sell : public MarketMessageCommand {

public:

virtual void Action(MarketDataStore&,

LogManager*);

....

};

To ensure substitutability each MarketMessageCommand
must implement Action with the same signature as the abstract
base class. Consequently commands such as Buy are
complicated with parameters which are unused. Worse, the
potential for ripple effects is magnified across all objects in the
hierarchy. If the exchange introduces a programmatic way of
signalling transition point in the trading day with an enumeration
such as:

enum TradingDay {

Closed, PreOpen, Open, Settlement, Suspended

};

A new market message is needed to handle this, but so too is a
state variable:

class TradingDayChange : public

MarketMessageCommand {

public:

virtual void Action(MarketDataStore&,

LogManager*,

TradingDay& activity);

....

};

Since our new message can change the state activity a new
parameter is needed, to maintain a common signature this
parameter must be added to MarketMessageCommand and all
derived classes. Again, we are increasing the length of the
parameter list, introducing a ripple effect and adding complexity.
Our main loop may look like:

int main() {

MarketDataStore marketData;

LogManager *log(LogFactory());

TradingDay exchangeStatus(Closed):

MessageSource source;

while(true) {

auto_ptr<MarketMessageCommand>

w(source.NextMessage());

w->Action(marketData, log, exchangeStatus);

}

delete log;

return 0;

}

Faced with the problem of adding yet more parameters we may
be tempted to consider global variables. After all, an exchange is
open or closed, there is only one instance of such a flag surely?
A tempting solution, the exchange status is a simple variable,

initialisation is not a significant problem, and being stack based a
memory leak is a non-issue.

However, for LogManager a global variable is decidedly less
tempting. The example above strictly controls the use of log
through scope and parameter passing, were the same variable global
it could potentially be accessed before creation, e.g. the
MarketDataStore constructor may choose to log a message.

We would then be forced into the position of trying to enforce
creation before use. This is known to be problematic and the best
known solution (access through a function) suffers from known
issues in multi-threaded systems. Further, the same problems occur
in reverse when cleanly ending the program.

While we may be able to survive one or two such global
variables we quickly find the number increasing, first the exchange
status, then the log manager, what of our transaction history? Have
we loaded any DLL plug-ins? Better have a global list of their
handles. As we add more global variables it becomes harder to
reason about the initialisation sequence for each – particularly
important when one makes use of another. It is also more difficult
to reason about the internal state of the program because it is
dispersed with no central point of reference.

Even with the best will in the world the old issues of globals still
exist. Judicious use of namespaces, and careful coding may afford
us the luxury of a few globals but the old issues have not gone away,
merely repositioned or hidden for a while.

The solutions so far suggested do nothing to improve either the
testability of our system or the transfer of components to follow-on
projects. Suppose we wish to use our MarketMessageCommand
in a market simulator. Long parameter lists, and global variables
force us to implement plumbing around the hierarchy so we can use
the commands.

Likewise, if we wish to write a test harness for our hierarchy, or
force test data through the system we must implement the necessary
plumbing to support the classes.

Each additional parameter or global variables makes the classes
and methods more specific and less of a commodity. Without such
specifics, the MarketMessageCommand hierarchy implements
generic, run-time polymorphic handling of messages. Longer
parameter lists increase coupling, tying classes closer to the
environment, shorter interfaces are more loosely coupled and result
in a more general the class.

The nub of the problem is the ever-expanding parameter list. At
first this appears simply unsightly, however, as we can see, the need
pass more and more parameters is a real issue.

Problem

Access to common data is important to many systems. Many
systems contain data which must be generally available to
divergent parts of the system, e.g. configuration data, run-time
handles and in-memory application data.

However, we wish to avoid using global data – such data is
normally regarded as poor engineering practice. Traditionally the
problem is addressed by passing such data as function call
parameters but over time parameter list become longer. Long
parameter lists themselves have an adverse effect on maintainability
and on object substitutability.

While access to such data is a common requirement neither of
the two common techniques are without problems. Access to the
data is not as trivial as it first appears, and as any system grows the
drawbacks of each solution become greater.

8

Overload issue 63 october 2004

Forces

There are several forces that any solution to this problem must
accommodate for it to be widely applicable.
1. Substitutability
Software designs based on common interfaces, with object
substitutability – either run-time polymorphic or compile-time
polymorphic – are restricted in the parameters that can be easily
passed to an object because all objects must conform to a
common interface with common function signatures to ensure
commonality of access – i.e. the Liskov Substitution Principle –
LSP (Liskov, 1988, Martin, 1996).

However, where all data is supplied to objects and function via call
parameters, if any object requires additional data it must be passed via
a call parameter, to keep LSP all similar objects must also accept this
parameter even if they have no functional requirement for it.

For an object, changing any function-method call signature,
whether by addition, revision or removal breaks LSP. The object
in question can no longer be substituted for other similar objects.
The compiler should refuse to compile the resulting program.
Typically we must either change every class in the same hierarchy
to match the new signature, change every call to the function-
method, or both.

Having broken LSP we are forced to restore LSP by changing
other parts of the system. This creates ripple effects through the
code base. A good solution to the overall problem would ensure
that LSP is not broken, and consequently, ripple effects within the
code base are minimised.
2. Encapsulation
Good software practice values encapsulation, however,
traditional solutions threaten encapsulation:
● Over-long parameter lists to function calls reduce encapsulation

because the parameters suggest the internal workings to
developers.

● Global variables break encapsulation by definition. They are
considered poor programming practice, leading to side-effects
and increased coupling.

● Within C++ systems there are additional problems associated
with instantiation and destruction – particularly in multi-threaded
developments. Although C++ namespaces allow better
management of globals they do not resolve instantiation and
coupling problems.

A good solution would preserve encapsulation thereby
minimising side effects and coupling.
3. Coupling to the Environment
The parameters passed to a function, or method, define the state of
the system external to the object in question. An object receiving a
method call knows its own state (even if this is stateless), what it
does not know is the state of the rest of the system, i.e. the context
in which it is called. If global data is used it becomes harder to
reason about the state of the system at the point of call.

Likewise, a simple function maintains little or no state between
calls, the external state is everything, the result of the function call
depends on the context in which it is called.

The more tightly coupled an object is to its environment the more
difficult it is to use the object in a different setting. Opportunities
for using the object in a different environment, e.g. within a test
harness, or re-used in a different system, are much reduced. At the
same time, the amount of consideration developers must pay the
object’s environment is increased. Thereby, reducing readability,
understandability and maintainability.

A solution that minimised coupling would do much to improve
understandibility, maintainability and improve the opportunities for
alternative uses.
4. Avoid Data Copying
One solution to the global v. parameter conflict would be to retain a
copy of such data in individual objects. Unfortunately, this is not
always practical, especially when the system has a large number of
small objects and/or objects exist in difference execution threads.

Reasons for not copying pieces of data may include, but are not
limited to:
● Data may be changing rapidly, e.g. equity market prices, and

needs to be available in several different locations in the program
● Data and operations on the data may overwhelm the class, e.g.

a simple command class used in a Command pattern may only
have one significant method, to additionally store data, handles,
and accessors would rob the class of its simplicity.

● Overhead of a copy operation both in terms of time and memory
used – this is particularly so if the data is seldom accessed, e.g.
command line options.

● Data may be singleton in nature, or encounter problems when
copied, e.g. a handle to a log file may be easily copied but we do
not wish to store multiple copies of the handle to prevent dangling
pointers (or references) when the file is closed. However, use of
the Singleton (Gamma, 1995) pattern may not be appropriate.

Since these potential solutions are unavailable they represent forces
in their own right. Further, as modern systems frequently end up
with a large number of small objects these problems are increasing.

Solution

Provide a Context container that collects data together and
encapsulates common data used throughout the system.

For example:

class Context {

LogManager* log_;

ComandLineOptions cmdOpts_;

ApplicationData* store_;

....

};

Rather than supply multiple parameters, we supply a Context
object. The object acts as a container for program state data, a
central repository for widely used data within the system. The
Context object provides few, if any, functions itself. The object is
passed, or more likely a reference is passed, to functions when they
are called – utilising the “parameterize from above” paradigm.

There are typically three types of data found in a context class:
● Configuration data, e.g. command line options.
● Application data, e.g. market data.
● Transient run-time data, e.g. handle to log manager.
The example given here uses one context class for simplicity. While
the simplicity of a single context has a lot to recommend it, without
careful attention the class may become a kitchen-sink, overwhelmed
with any, and all, data in a system. When this happens we start to
see the emergence of a Blob anti-pattern (Brown, 1998).

To counter the drift towards Blob we can split the class into two
or more discrete classes, e.g. one for system data and handles with
a second for application data (see Figure 1).

Specifically, we can distinguish three types of split:
● Temporal: data is separated on the basis of its lifespan, data

which is short lived is kept separate from data which exists for

long periods. . It is better not to mix transient data with persistent
data lest expired data remains in the container.

● Horizontal: separating reference data from value data, usually
needed when one application becomes large itself, inflating the
size of the context.

● Vertical: separating the context class into a small hierarchy,
usually needed when the same context is needed in a family of
programs. This allows for specialisation through inheritance to
provide each family member with a specialised Context object
and common code to be shared across the family.

Such splits will mitigate the Blob tendencies but also detract from
the pattern simplicity. Splitting the Context class should also
help improve compile times, since we can assume that although
some functions will need to be passed all the fragments of the
original context, many will require fewer fragments thus reducing
dependencies.

However, while it may be desirable to split the Context class for
a variety of reasons this can be taken too far. The use of many fine-
grained Context objects may return us over long parameter lists.

Thus, any implementation of Encapsulate Context pattern should
consider the following issues:
● Is a single Context class the best answer? The initially simplicity

of a single Context may lead to difficulties as anti-patterns emerge.
● What is the life expectancy of the data? Bundling short-lived

or rapidly changing data together with constant data may lead to
confusion or inaccuracies.

● Is there a family of programs under development? Is there
benefit from creating vertical hierarchy of Context facilitating
technology transfers between programs?

● Are we creating problems by mixing reference and value
data in the same context? Could this data be split horizontally
between several Context objects?

● Are we in danger of creating too many, fine-grained, Context
classes?

These issues must be addressed together as the
answers to each question influences the others.

Resolution

Applying this solution to the example given at the
start of this paper we get:

// MarketContext.hpp

class LogManager;

class CommandLineOptions;

class MarketDataStore;

class MarketContext {

LogManager* log_;

CommandLineOptions opts_;

MarketDataStore* marketData_;

public:

MarketContext(LogManager*,

CommandLineOptions&,

MarketDataStore*);

LogManager* Log();

MarketDataStore* MarketData();

CommandLineOptions& CmdOptions()

const;

};

With this context class the presence or absence, of a
TransactionLog is abstracted to a detail about
MarketContext.

The class should take a minimal role in the lifetime of enclosed
classes, it is better to present these as ready constructed to the class.
This removes life-cycle issues from the domain of the context class,
and, because enclosed classes are often just references or pointers,
the .hpp interface file should only need forward declarations thereby
reducing potential ripple effect.

(The decision on whether to use pointers or references to object
is outside the scope of this paper.)

Continuing this example the body of the program is
refactored:

class MarketMessageCommand {

public:

virtual void Action(MarketContext&) = 0;

....

};

int main() {

LogManager* log(LogFactory());

CmdLineOptions options(argc, argv);

MarketDataStore marketData;

MarketContext context(log, options,

&marketData);

MessageSource source;

while(true) {

auto_ptr<MarketMessageCommand>

w(source.NextMessage());

w->Action(context);

}

return 0;

}

The context provides access to data which otherwise may be
made Singleton, global or both, for example the LogManager.

9

Overload issue 63 october 2004

Figure 1: Solution places context data in a single container

10

Overload issue 63 october 2004

Variations
● Provide parent’s this pointer

The passing of this pointers to worker objects can be seen as a
variation on this theme, in effect the calling object is itself acting
as a context object for the worker objects. (One consequence of
using Context classes is that the need to pass this is usually
reduced.)

● Provide forwarding functions to encapsulated data
Rather than expose an entire member class the
MarketContext class could implement forwarding methods,
for example, the CmdOptionsmember could be replaced with:

class MarketContext {

...

bool IsVerbose() const {

return opts_.IsVerbose();

};

... and other forwarding functions ...

};

However, it is best to keep the class as lightweight as possible,
to this end, the class exposes the key objects encapsulated rather
than implement pass through calls onto the underlying data. It
is the underlying class that decides what to expose rather than
the context class. Further, although such forwarding functions
may be convenient they contribute the tendency for the context
class to become a Blob (Brown, 1998) so are best avoided.

Consequences

As a result of the pattern, several of the forces detailed above are
resolved or balanced:
1. Substitutability
Parameters passed to a function call can be restricted to Context
objects containing system state data and parameters which
specifically refer to the function call task in hand, e.g. market
trades. Function signatures are free of the clutter which can
make them fragile – there is no longer a need for every class
method in the hierarchy to accept every parameter ever needed.
2. Encapsulation
The Context object effectively compacts the parameter list on a
function call signature, thereby abstracting state variables and
promoting encapsulation of the function. In addition there is a
reduction in ripple effect as function signatures become more stable.

Having relieved the problems of passing parameter to a function
the attractions of global data are reduced. Indeed, the Context
object provides a natural home for data with characteristics of
global variables.
3. Coupling to the Environment
The Context class is encapsulated through its own, well-known,
common, interface. This allows the solution to be applied to
compile-time and run-time polymorphic designs, using either
template metaprogramming or v-table dispatch techniques.

By providing several context classes data is encapsulated along
temporal, horizontal or vertical lines further reducing coupling. It
is difficult to eliminate all coupling because some classes will
always need other classes, to be sure, choosing the granularity of
the coupling is a design issue.

Additionally, by separating the classes implementing algorithms,
from the plumbing which supplies the data the classes themselves
are less coupled and more like commodities, making transfer to
other developments easier.

4. Avoid Data Copying
Since the Context class contains common data with little
overhead there is no need to copy the data in local objects.

There may be multiple references to the Context object in the
system, particularly if multiple threads are being used. Hence
some care must be taken to avoid dangling references to Context
objects.

In addition there are other beneficial consequences:

5. Reasoning
State data that needs to be shared or retained is factored, objects
are left with either transient data or completely stateless. By
centralising the core data within a system we have made it easier
to reason about the system. We can halt the program and look in
one place to see what state the program is in rather than having to
look in multiple places.
6. Instantiation
Instantiation issues are simplified because objects must be
created before being placed in the context and are subsequently
only accessed through the context. Destruction issues are
similarly handled because all access is via the context. The life-
span of the context can be clearly defined at a high level.
7. Uncluttered Code
Pass-through code and long parameter lists have been minimised,
and the potential for future redundant code has been reduced – it
is easier to add and remove elements from the Context class.
(This may entail a recompile of the whole system when the
interface to the Context class is changed but recompilation should
be well-defined procedure.)
8. Synchronisation Point
The Context class can provide a useful place to add mutexes for
multi-threaded systems. In multi-threaded environments the
Context object can hold all shared data, acting as a gatekeeper
with mutex control. This is reminiscent of the Monitor Object
pattern (Schmidt, 2000) with the same potential for bottlenecks if
lock access is not carefully considered.

Bottlenecks may be avoided if the data is either immutable (e.g.
command line options which do not change), or data elements
manager their own locking (e.g. a log manager which implements
its own synchronisation) and application data is absent.

However, there are several less desirable consequences:

9. Blob Tendencies
As already mentioned, care must be taken as systems develop
that a context class does not become a Blob. Already in the
example given we see the mixing of value data and reference
data. Without vigilance context classes may grow to encompass
far more data and functionality than is strictly necessary.

Invariably, the context class ends up touching most aspects of
the system. It is therefore best-placed low down in the dependency
hierarchy of classes – although this can lead to its own dependency
inversion problems and small changes necessitate a major
recompile of the system.

Once this happens we are in danger of implementing the Blob
anti-pattern.

Fortunately, change to the Context class tends to be additive in
nature so seldom breaks other parts of the system, still, the friction
of change is increased. One way to minimise this is to ensure that
no operations are placed inside the context class. A second
technique is to use multiple Context classes as described above,

however, introducing too many Context classes will introduce some
of the original problems we sought to resolve.
10. Hidden Globals
Blind use of Context classes can give rise to an abuse known as
“Hide Forbidden Globals” (Green, 2001). This is characterised
by a kitchen-sink approach to the Context class where every
second variable is listed. Typically we see Context members
which are referenced in only a few points within the system,
usually such data would be better embedded in specific classes
rather than placed in Context.
11. Dominant Sibling
Program families may share a common root Context class, which
they embellish through inheritance. In this model the context
underpins the common code of the family. If one family member
becomes dominant there will be pressure to enhance the common
root to facilitate the dominant member. This has a negative effect
on the other family members which start to see the common root
as a Blob, forcing upon them additional dependencies and
complications they do not need.

In the program family we find elements of functional overlap,
e.g. a market trading system and a market simulation system.
Both may use the MarketMessageCommmand and hence rely
on the MarketContext class as above. As one program, say
the simulation, becomes more important and bigger objects start
to appear in the command hierarchy which are specific to the
one application, eventually, one of these will require some data
which is not available in the context class. For immediate
simplicity we are tempted to add this into the context.
Unfortunately, the trading system now has this data even though
it is never used. If continued, over time, the trading system will
be inhibited by a Context class which is obscured with unused
functions.

More confusing too are the results if the trading system now
develops its own specialist message commands, and makes
demands for specific fields on the context class.

This is normally an indication that the Context class should be
split vertically. We may choose to create a hierarchy of three
classes: a common base class, a derived class with simulator
enhancements and second derived class with the trading system
enhancements.

At this point we may compile different versions accepting either
a SimulatorContext or a TradingContext, or we may
choose to down-cast the provided context – assuming that the
simulator message classes will only ever be passed a
SimulatorContext by way of a MarketContext handle.

Known Uses

Chutney Technologies Apptimizer (C++)
Apptimizer uses a single Context object to store handles to
important system objects, e.g., Configuration ,
CachedData , ConnectionServer , etc. These system
objects are accessed by polymorphic command objects, which
receive the Context as a parameter to their execute()
method.

Reuters Liffe Connect Data Router (C++)
This system uses two context objects, split horizontally. The first
holds system data, log manager handles, a configuration cache,
COM parameters, and the second holds application data
exclusively.

Jiffy XML Database Server (C++)
The Jiffy server has three context objects split along temporal
lines. One Context object exists for the length of the program
run, this encapsulates process wide context, items such as: log
manager handle, command line options and the database store
index. A second Context class is used to represent data
associated with connections. Each TCP connection is assigned a
session context to hold items such as the user id for the
connection. Finally, the underlying database from Sleepycat uses
its own database-context object to maintain state between
database calls.

In this case, the database-context objects are short lived, each
one is limited to function call scope (although it will be passed to
several underlying functions in turn). A session context lives for
the duration of the TCP connection, while the process context is
created shortly after the application starts running and is destroyed
at the end of the program run.

Enterprise Java Beans
Enterprise Java makes use of Session Beans and Context Beans
that encapsulate program state information. Although the
objective of Java Beans is to implement component based
transaction programming the most of the underlying forces are
the same, namely: substitutability of different beans ,
encapsulation of context from server to client and clearly defined
coupling.

However, the fourth force, avoid data copying, is absent. In the
distributed environment for which Java Beans is designed data
copying is essential.

Related Patterns

Command, Chain of Responsibility and Objects for States.
Although the Command pattern is cited here the same principles
apply to any design based on the dependency inversion principle
using class hierarchies, e.g. Chain of Responsibility (Gamma,
1994), Objects for States (Henney, 2002), etc. For each of these
the hierarchy provides the algorithm while the Context object(s)
provide the data.
Singleton
Encapsulate Context may be a useful alternative to Singleton
(Gamma, 1994) in many program designs.
Observer
Encapsulate Context may be contrasted with Observer (Gamma,
1994). Like the Subject in Observer the Context class is a central
repository of data. Like Observer there is a many to one
relationship. However, the critical difference lies in the updating
mechanics.

The subject in Observer knows its observers, when it is
updated it will update all its observers. This satisfies the
motivation for the pattern that seeks to keep two, or more, objects
consistent. Thus, when one Observer changes, and hence
changes the Subject the other Observers must be informed. In
effect, Subject is an active participant in the execution of the
program.

In Encapsulate Context there is no requirement on the
Context class to inform its clients that something has changed.
Indeed, it doesn’t know who its clients are so it cannot inform
them. Encapsulate Context keeps the various objects consistent
by centralising the data. It is essentially passive during
execution.

11

Overload issue 63 october 2004

12

Overload issue 63 october 2004

While there is obvious transformation for turning a Context
object into a Subject, and hence Encapsulate Context into an
Observer pattern, and vice versa, there are fundamentally different
motivations and forces underlying the two patterns.
Monitor
As noted above (Consequences section), in multi-threaded
systems mutex control can be added to Encapsulate Context to
assist with synchronisation issues. In this the pattern is acting
like Schmidt’s Monitor Object (2000). While this can provide a
simple way to synchronise access to resources it is not without a
cost.

Firstly, by using the context class as a monitor introduces
pressure to perform more processing within the monitor class. This
contributes to the Blob tendencies already described.

Secondly, the consequences encountered by Monitor Object are
introduced into the design. Specifically, the liabilities associated
with Monitor Object need to be recognised, i.e. limited scalability,
complicated extensibility semantics, inheritance anomaly and
nested monitor lockout.

Readers are strongly advised to read Schmidt before using this
Encapsulate Context as a synchronisation point.
Arguments Object
This pattern shares much in common with Nobel’s Arguments
Object pattern (Nobel, 1997). The key difference is that Nobel
suggests the pattern as a code level pattern for reducing the
number of parameters passed to a function, while Encapsulate
Context advocates using the same paradigm as a high level
feature to wrap the state of the system.
Introduce Parameter Object
Both the Encapsulate Context and Arguments Object patterns
resemble Fowler’s Introduce Parameter Object refactoring
pattern (Fowler, 2000). However, Fowler introduces this as only
a refactoring pattern without discussion of the issues involved in
grouping data or alternative solutions. It is possible to view
Fowler’s pattern as an application of either Encapsulate Context
or Arguments Object when refactoring code.
Open Arguments
Some of the motivations of Encapsulate Context are shared with
Open Arguments (Patow, 2003). Both aim to provide a consistent
interface through which, diverse parts of a system may access
parameters. The focus of Open Arguments is internal
mechanisms of the context object and how this object may
support a dynamic set of parameters at run-time. In contrast,
Encapsulate Context focuses on parameter passing at compile-
time. Open Arguments considers a parameter block which stored
the various parameters, this has clear parallels with the context
class in Encapsulate Context. The two patterns do not exclude
one another, and under the right circumstances may be
complementary.

Discussion

Separating Data

At first glance Encapsulate Context may seem counter to the
principles of object-orientation, this is not so. Instead we are
separating the data into that which (a) truly belongs to a given
object (e.g. market price and quantity) and (b) that which is
owned the system as a whole. There is a casual similarity with
the separation of algorithm and container used by the Standard
Template Library.

Instantiation Issues

While this paper notes the instantiation problems associated with
global objects it does not provide an in-depth discussion or offer
detailed solutions. To do so is beyond the scope of this pattern.
However, it is suggested that some of these problems can be
alleviated by application of the Encapsulate Context pattern.

Testing

With designs based on Encapsulate Context we may arrange for
artificially configured context objects to used for testing. For
example, a test harness could create a context object and populate
with data to simulate a scenario we wished to test, the test can
then be run without to see how the system behaves in these
conditions.

Extending this ideas we can imagine two versions of the
MarketContext class, one of which validates all inputs and
one that is optimised for speed. Alternatively, a Context class
could load test data to create a specific test scenario, or dump their
“state” to file at the end of a test – or in the event of program
failure.

Aspect Oriented Programming

Aspect oriented programming may provide an alternative means
to resolving some of the forces which produce this pattern. The
data within the Context class certainly seems to cross-cut the
systems concerned. The logger functionality is both a core
example for both Aspect documentation and this pattern. Since
C++ does not currently support Aspects, nor are they a standard
part of Java, they cannot be regarded as a common solution to
this problem and forces.

The main difference appears to centre on the method of passing
the context object to the function. This pattern assumes that the
context object is passed by way of a function parameter, however,
beyond this assumption the concept of bundling the context into
one object is still applicable. The key difference is the mechanism
for accessing the context object.

Pre and Post Conditions

By their nature, context objects represent the state of the system.
This makes them very good places to make uses of pre and post
conditions to validate system state. Indeed, developers using
context objects should be encouraged to use pre and post
conditions.

Use of such pre and post conditions is regarded by many as good
programming practice. Used as comments these can help
developers reason about the state of the system, used as compiler
enforced checks (e.g. macros in C++, conditionals in C#) the system
can perform a degree of self validation as well as helping
programmers reason.

Pre and post conditions could be placed within the context
objects “getter and setter” functions to validate the state of the
object, or used by functions accepting context objects to ensure the
program is in a suitable state for the function.

Use of such conditions to check state of the system is common
practice formal methods systems, e.g. VDM (Jones, 1986) and Z
(Wordsworth, 1992). Such languages specify a “state” for the
system before and after and operation – the program state in VDM
parlance. Further research is need on whether Encapsulate Context
pattern can be useful in development of formal methods based
systems.

13

Overload issue 63 october 2004

Value Data or Reference Data

The solution section, above, notes that care should be taken
where reference and value type data is mixed within a single
Context object. Such mixing may be a signal that refactoring
may be required, and that the Context object should be split
horizontally.

However, Context objects observed in actual system frequently
mix these data types. While this may indicate poor design it also
reflects the fact that Context objects may be required to group
various types of data with different reference characteristics. This
fact may also indicate that the pattern has been introduced to a
system as the result of refactoring and that other parts of the system
have not been refactored yet.

Genesis of a Pattern Language –
Further Research

Many of the issues raised in the discussion section suggest
further variations of this pattern beyond those outlined already. It
is also possible to see how, taken together, Arguments Object,
Introduce Parameter Object, Singleton, Open Arguments and
Encapsulate Context may represent part of an entire pattern
language. We may tentatively label this pattern language Context
Objects.

For example, Singleton could be redefined as an example of
Encapsulate Context where there is only one instance of the Context
Object, and the object is accessed via a global variable instead of
via parameter passing.

There are four groupings within which to consider variation
within the Context Objects pattern language:

Access Mechanism
Function parameter passing is used in Encapsulate Context to
make the Context object accessible. In contrast, Singleton
uses a global access point. Thread local storage has been
suggested as an alternative access mechanism for multi-
threaded systems. A further access mechanism, where
available, is the Point Cut provided by AspectJ and other
aspect oriented languages.

Context Lifetime
While Singletons are generally instantiated for the lifetime of a
program run, Nobel’s Arguments Objects are more ephemeral,
being created and destroyed in a short space of time. By
extending the consideration of the temporal aspects – described
above for Encapsulate Context – more pattern variations are
possible.

Cardinality of Context
Related to the discussion of lifetime is the issue of cardinality of
Context objects. Obviously in cases such as Argument Object it
is of little importance whether one or one hundred Context
objects co-exist. However, in some cases it may be important to
limit the number of Context objects within a system, for example,
we may wish to limit each thread to one instance of an object, or
limit a whole program to one Context object corresponding to the
mouse state.

Internal Implementation
Encapsulate Context assumes a fixed internal state where data
elements are hard coded and fixed at compile time. In contrast

Open Arguments allows the content of the Context to change at
run time. As already noted both patterns share other similarities
and thus may belong to a common language. In this case, the
internal representation of data can have a significant effect on
system design.

The creation of a Context Objects pattern language is beyond the
scope of this paper. However, it is clear that such a language
could unify existing patterns and probably help identify more
patterns.

The author looks forward to hearing about such a project and is
more than willing to participate in such an endeavour.

More Examples

The examples presented are given in C++ although it is expected
that the pattern is generally applicable to all languages. The
author looks forward to hearing of implementations in Java and
C# especially.

Summary

In any non-trivial system there will be a number of data elements
that are widely used throughout the program, e.g. log manager
and the application data model. Typically these will be classes in
their own right and accessed through handles (references or
pointers.) Since global data is regarded as poor practice it is
likely that these handles will be passed by way of function call
parameters. However, this technique can soon lead to long
parameter lists which are not only difficult to understand but tend
to make the program more fragile.

Therefore, we create a context class that encapsulates these data
elements, and pass a handle to this object to the diverse functions.

While similar techniques have been suggested by others (e.g.
Nobel, 1997, Fowler, 2000) this pattern discusses the forces and
consequences when applied system wide. This can bring
considerable benefits to a design, but if used recklessly can result
in a number of known anti-patterns.

Rather than use a single context class it may be appropriate to
design a system with several. These are divided along temporal,
horizontal or vertical lines to ensure that each is consistent and
promotes good design.

Allan Kelly
allan@allankelly.net

http://www.allankelly.net

Acknowledgements

This pattern was the result of a conversation on the accu-
general mailing list entitled: “overload 49 and state” with
significant contributions from Kevlin Henney and Josh Walker,
running from 18th June 2002. I am grateful to Kevlin for acting
as initial pattern shepherd and Josh for reviewing the results and
providing an additional example. The paper was further
shepherded by Frank Buschmann in April 2003 for submission to
EuroPlop. Again, I am most grateful to Frank for his time and
interest.

In addition, I am most grateful to all in Workshop D at
EuroPLoP 2003 for their many varied and useful comments
concerning the pattern, their support and their suggestions for
improvement.

14

Overload issue 63 october 2004

Principles and Patterns Glossary

Bibliography

Brown, J. B., Malveau, R.C., McCormick, H.W., and Mowbray, T.J.
(1998) Anti-Patterns, Wiley.

Fowler, M. (2000) Refactoring, Addison-Wesley.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J, (1994) Design

Patterns, Addison-Wesley.
Green, R. 2001 How to Write Unmaintainable Code ,

http://www.web-

hits.org/txt/codingunmaintainable.html

Henney, K. 2002 Objects for State, http://www.curbralan.com
Jones, C. B. (1986) Systematic Software Development using VDM.
Liskov, B. (1988) “Data abstraction and hierarchy”, SIGPLAN

Notices, 23, 17-34.

Martin, R. C. (1996) “The Liskov Substitution Principle”, The C++
Report, http://www.objectmentor.com/resources/
articles/lsp.pdf.

Nobel, J. 1997, “Arguments and Results”, Pattern Languages of
Programming (PLoP) conference, Washington University,
http://citeseer.nj.nec.com/107777.html

Patow, G., and Lyardet, F. (2003) “Open Arguments”, EuroPLoP
2003, proceedings pending publication.

Schmidt, D., Stal, M., Rohnert, H., and Buschmann, F. (2000)
“Monitor Object”, in Pattern-Oriented Software Architecture 3 ,
Wiley, pp. 399-422.

Wordsworth, J. B. (1992) Software Development with Z.
© Allan Kelly

Pattern Name

Arguments Object
(Nobel, 1997)

Blob
(Brown, 1998, p.73)

Chain of Responsibility
(Gamma, 1994, p.223)

Command
(Gamma, 1994, p. 233)

Hide Forbidden Globals
(Green, 2001)

Introduce Parameter Object
(Fowler, 2000, p.295)

Liskov Substitution Principle
(Liskov, 1988)

Monitor Object
(Schmidt, 2000, p.399)

Observer
(Gamma, 1994, p.293)

Objects for State
(Henney, 2002)

Open Arguments
(Patow, 2003)

Singleton
(Gamma, 1994, p.127)

Description

“Large protocols [interfaces] are easy to use because they offer a large amount of behaviour to their clients.
Unfortunately, they are often difficult or time consuming to implement, and for client programmers to learn. [...]
Therefore: make an arguments object to capture the common parts of the protocol.”

“The Blob is found in designs where one class monopolizes the processing, and other classes primarily
encapsulate data. This AntiPattern is characterized by a class diagram composed of a single complex controller
class surrounded by simple data classes, [...]
Architectures with the Blob have separated process from data; in other words they are procedural-style rather
than object oriented architectures.”

“Avoid coupling the sender of a request to its receiver by giving more than one object a chance to handle the
request. Chain the receiving objects and pass the request along the chain until an object handles it.”

“Encapsulate a request as an object, thereby letting you parameterize clients with different requests, queue or log
requests, and support undoable operations.”

“Since global variables are ‘evil’, define a structure to hold all the things you’d put in globals. Call it something
clever like EverythingYoullEverNeed. Make all functions take a pointer to this structure (call it
handle to confuse things more). This gives the impression that you’re not using global variables, you’re
accessing everything through a “handle”. “

“Often you see a particular group of parameters that tend to be passed together. Several methods may use this group,
either on one class or in several classes. Such a group of classes is a data clump and can be replaced with an object
that carried all the data. It is worthwhile to turn these parameters into objects and just to group the data together. This
refactoring is useful because it reduces long parameter lists, and long parameter lists are hard to understand.”

“Functions that use pointers or references to base classes must be able to use objects of derived classed without
knowing it.” (Martin, 1996)
When using class hierarchies as a means of data abstraction, sub-types must be able to fully substitute for the
super-types.

Synchronises concurrent method execution to ensure that only one method at a time runs within an object. It
also allows an object’s methods to cooperatively schedule their execution sequences.

“Define a one-to-many dependency between objects so that when one object changes state, all its dependants are
notified and updated automatically.”

“Allow an object to alter its behaviour significantly by delegating state-based behaviour to a separate object.”

“Open Arguments is used to create a generic interface for parameter passing, decoupling the API declaration of
the procedures and functions from the type and number of the parameters they receive.
A parameter block is passed from function to function, the block contains a dynamic store (often a map) of
parameter names and values.”

“Ensure a class only has one instance, and provide a global point of access to it.”

15

Overload issue 63 october 2004

Microsoft Visual C++ and
Win32 Structured

Exception Handling
by Roger Orr

In an earlier article [1] I described some performance measurements
when using exceptions in various languages on Windows.

A couple of people since then have asked me questions about
how the windows exception model actually works and how it is
used to implement try...catch constructs in MSVC.

That’s quite a big question to answer, and this article is a start.
There is quite a lot written about how to use these language features
safely; but much less written about how they are implemented.
There are several good reasons for this:
● lessons learned about the language features themselves apply to

all versions of standard C++, whatever the platform, whereas
details of the implementation are specific to both the vendor and
the platform.

● knowing how it works is not necessary to using it
● the details are very sketchily documented and not guaranteed by

Microsoft to remain unchanged
On the other hand I for one like to know what is going on “under
the covers” so that:
● I can satisfy my ‘how do they do that?’ curiosity
● I can understand the flow of control when trying to debug

application problems
● I can perhaps provide some platform specific value-added services.
In order to give some motivation to the investigation here’s my
task: I want to develop an ‘exception helper’ so I can print out a
simple call stack for a caught C++ exception. Java and C# both
let you print the stack trace for the exception, but standard C++
does not provide a way to do this. Although I understand why
this feature is not part of the language I do miss it in C++ and
would like to do what I can towards providing it for a specific
platform, in this case MSVC.

There are some, rather intrusive, source level solutions involving
adding code to the constructors of all exception types used in your
application or adding code to each use of throw. This sort of
solution means you must change the way exceptions are used
throughout the code base which can be a large task even if you have
access to all the source code, and impossible if not.

I’ll describe writing a class for the MSVC compiler so that this code:
void testStackTrace() {

ExceptionStackTrace helper;

try {

doSomethingWhichMightThrow();

}

catch(std::exception & ex) {

std::cerr << "Exception occurred: "

<< ex.what() << std::endl;

helper.printStackTrace(std::cerr);

}

}

prints out a stack trace for the exception:
Exception occurred: A sample error...

Frame Code address

0x0012FE70 0x7C57E592 RaiseException+0x55

0x0012FEB0 0x7C359AED CxxThrowException+0x34

0x0012FF10 0x004013CA throwIt+0x4a at

teststacktrace.cpp(32)

0x0012FF18 0x004013E8

doSomethingWhichMightThrow+0x8

at teststacktrace.cpp(37)

0x0012FF58 0x0040142A testStackTrace+0x3a at

teststacktrace.cpp(45)

0x0012FF60 0x004014A8 main+0x8 at

teststacktrace.cpp(57)

0x0012FFC0 0x00404E87 mainCRTStartup+0x143 at

crtexe.c(398)

0x0012FFF0 0x7C581AF6 OpenEventA+0x63d

Processing the Stack Trace

Microsoft provide a debugging library, DbgHelp.dll, which
provides among other things functions to walk up the stack and print
out the return addresses. A full description of DbgHelp.dll is
outside the scope of this article – I refer you to Matt Peitrek’s MSJ
article [5] or John Robbins’ book [6] if you want more details.

The StackWalk() function provided by DbgHelp.dll takes
nine parameters, but the key ones are a StackFrame and a
ContextRecord. The StackFrame is an in/out parameter used
to contain data for successive stack frames and the ContextRecord
contains the thread state in a platform dependent manner. (Different
definitions of the structure are given in WinNt.h and the correct one
is picked by the C++ preprocessor). The ContextRecord is
technically optional, but contains enough information to initialise the
StackFrame and also improve the reliability of the StackWalk
function so it is preferable to require one.

So here is a function prototype for a simple stack trace routine
implemented using the functionality of DbgHelp.dll:

void SimpleSymbolEngine::StackTrace(

CONTEXT *pContextRecord,

std::ostream & os);

The implementation of this function sets up AddrPC,
AddrFrame and AddrStack in a StackFrame record from
the Eip, Ebp and Esp registers in the context record and then
calls StackWalk repeatedly until the stack walk is completed.
Each frame address is printed, together with the return address.
Two functions in the DbgHelp library (SymGetSymFromAddr
and SymGetLineFromAddr) are called to get any symbolic
information available for the return address. Note that even if you
don’t have debug symbols for your program (and DLLs)
DbgHelp will try to provide information based on any exported
names from in DLLs.

A context record can be obtained in a variety of ways. As it is
simply a snapshot of the thread state it could be built up manually
using inline assembler to populate the various fields from CPU
registers – or more easily by using the GetThreadContext call.
The operating system also uses them in various places when managing
thread state and finally they also crop up in exception handling.

The main reason to write the ExceptionHelper class is to
obtain the context record of the thread state when the exception
occurred. We can then use this key piece of data to extract the stack
trace. Let’s look at Microsoft’s implementation of try, throw
and catch in Win32 C++ to see how it lets us build something to
extract this information.

Structured Exception Handling

Microsoft integrated standard C++ exception handling with
window’s own exception handling model: so-called “structured

16

Overload issue 63 october 2004

exception handling” or “SEH” and this section tries to give an
overview of what is happening inside SEH from an application’s
viewpoint – however you don’t need to completely understand
the principles to follow the ExceptionHelper code.

The definitive article about Win32 structured exception handling
is by Matt Peitrek [2] and I refer interested readers there. However,
his article focuses on the Microsoft extensions to support SEH:
_try, _except and _finally and less on the language native
concepts embodied in try, throw, etc. Other articles, such as [3],
focus on what is happening at the assembler level which is great
for the minority of programmers who understand assembler but not
for the rest.

There is a relatively natural fit between the SEH exception model
and the try...catch exception model in programming
languages such as C++ so it is not too surprising that Microsoft
decided to use this operating system level structured exception
handling to provide the basis for their C++ exception handling code.
However other implementors of C++ on the Win32 platform have
not necessarily followed the same pattern.

Windows provides a portable exception architecture which
recognises two main type of exceptions: ‘system’ exceptions such
as an access violation or an integer divide by zero, which are also
known as ‘asynchronous’ exceptions, and ‘user’ exceptions
generated by a call to RaiseException(), which are also
known as ‘synchronous’ exceptions. Each thread contains a linked
list of exception handlers and when an exception occurs information
about the exception and a context record for the thread are passed
to each exception handler in the chain in turn for possible
processing. There are several things each handler can do; the
commonest cases are:
● return ‘keep looking’ (and the next exception handler will be

called)
● unwind the thread context back to a known state and execute a

failure path (in C++, a catch block).
If the context is to be unwound then each exception handler
which is unwound off the stack is called so it can perform any
required tidy-up. If all of the exception handlers return ‘keep
looking’ the operating system has a final, process wide, exception
handler which by default produces one of the ‘Application Error’
popups.

(Note that this is a slight simplification of the full picture)
Each handler has a signature like this:
DWORD exceptionHandler(

EXCEPTION_RECORD *pException,

EXCEPTION_REGISTRATION_RECORD

*pRegistrationRecord,

CONTEXT *pContext);

Where:
● pException contains information about the exception being

processed, such as the exception code and the fault address.
● pRegistrationRecord points to the current node in the list

of exception handlers
● pContext contains the processor-specific thread state when

the exception occurred
Our task is to retain the thread context from the last parameter so
we can use it later in a call to the StackTrace function.

What makes this exception style ‘structured’ is that the chain of
exception handlers exists in the thread’s own stack. In a typically
block-structured programming language each call to a function,
method or procedure pushes a new activation frame onto the stack;

this frame contains the current arguments, any local variables and
the exception handler for this function (if any). Additionally, the
algorithm which passes the exception along the chain of handlers
naturally moves from the most recently called function up the stack
to the top-most function.

In the Win32 world the ESP register contains the current stack
pointer, by convention the current frame pointer is usually held in
the EBP register and the FS selector register holds the base of the
thread information block (TIB) which holds, among other things,
the head of the exception chain.

To try and make this clearer here is a schematic representation
of the bottom of the stack when function A has called function B
which in turn has called function C.

Functions A and C have an SEH handler, but function B
doesn’t.

Inside the each stack frame the function arguments are above the
frame register (and appear in assembler as [EBP+ offset]) and local
variables are below the frame register (and appear in assembler as
[EBP – offset]). In practice things are more complicated than this
– particularly when the optimiser gets involved – and the frame
register EBP can get used for other purposes. To reduce the
complexity of this article I’m not going to worry about optimised
code.

We need insert our own exception helper object into the chain
of exception registration records so we can extract the context
record for the thrown exception.

MSVC Exception Handling

Before we can write our own exception handler we need to
know a bit about how MSVC makes use of SEH handling to
implement C++ exceptions. I’ve annotated the following code
fragment with some of the key places that SEH handling is
involved.

17

Overload issue 63 october 2004

void thrower() {

SomeClass anObject; // 5

throw std::runtime_error("An error"); // 2

}

void catcher() { // 1

std::string functionName("catcher");

try {

thrower();

}

catch(std::exception & ex) { // 3

std::cerr << functionName << ": "

<< ex.what() << std::endl;

}

} // 4

1) When you write a function containing try...catch the
Microsoft compiler adds code to the function prolog to register
a structured exception handler for this function at the head of the
thread’s exception handler chain. The actual structure created
for the exception registration extends the basic
EXCEPTION_REGISTRATION_RECORD; the additional fields
are used for managing the exception handling state and
recovering the stack pointer.

2) Throw is implemented by calling RaiseException with a
special exception code 0xe06d7363 (the low bits spell ‘msc’
in ascii). Other fields in the exception record are set up to hold
the address and run-time type of the thrown object – in this case
a std::runtime_error object.

3) The catchcode is actually implemented by the exception handler.
If the exception being handled has the special exception code value
then the run-time type information is extracted and compared to
the type of the argument in the catch statement. If a match is
found (or a conversion is possible) then the exception chain is
unwound and the body of the catch is entered, after which the
execution will continue directly after the try...catch block.
If a match is not found the exception handler returns the ‘keep
looking’ value and the new handler in the chain will be tried.

4) On function exit the exception handler for catcher is removed
from the chain.

5) There’s another place that SEH code is needed of course – the
destructor for anObject must be called during the unwind
back to the catch statement.
So there is actually yet another exception handler registered for
thrower too, to deal with ensuring that anObject gets
deleted. This one never tries to handle the exception but simply
ensures local variables are destructed during the unwind.

One key thing about the way MSVC exception handling works is
that it involves making extra calls down the stack. At point (2)
the C++ runtime calls RaiseException, which snapshots the
exception and thread state and then it in turn calls the code to
work along the exception chain calling exception handlers. At
point (3) when the exception handler for catcher gets control it
is a long way down the stack. The exception chain is unwound
by yet another call, this time to RtlUnwind. This function
throws another exception along the exception chain with a special
flag value EXCEPTION_UNWINDING set, giving each exception
handler in turn a chance to do tidying up before it is removed
from the exception chain. After returning from RtlUnwind the
body of the catch statement is then called. When the catch
body completes control returns back to the C++ runtime which
completes tidying up the stack pointer, deletes the exception

object and then resumes execution at the next instruction after the
catch block.

So how does the catch block make use of the local variable
functionName if it is so far down the stack when it gets control?

What the C++ runtime does is to use the extended exception
registration record (passed to the handler as the second argument)
to recover the value of the frame pointer EBP. Having reset the
frame pointer the code in the catch body can make use of local
variables and function arguments without difficulty. It is does not
affect the function that the stack pointer is not simply a few bytes
below the frame pointer but several hundred bytes below it.

The upshot is that, when the catch body is executed, the
complete stack down to the location of the throw is still available
in memory. The raw stack pointer will only be reset when the body
of the stack completes, and before this point the call stack will not
be touched. So if we can obtain the address of the context record
that was passed into each exception handler as the third argument,
the pointer will still be valid inside the body of the catch.

Looking back to the way the chain of exception handlers is
processed we can see that if we can hook our code into the
exception chain just before the compiler written exception handler
we can extract information from the context record and then use
that information inside the catch handler to allow us print a stack
trace. Let’s look at how we can do this.

Adding to the Exception Chain

The exception chain in Win32 consists of a singly linked list of
EXCEPTION_REGISTRATION_RECORDs on the stack.
Unfortunately Microsoft do not provide a C++ definition for this
structure (possibly because it is different on each hardware
platform running Windows) but they do provide one in an
assembler include file EXSUP.INC which can be translated into
C++ like this:

/** Typedef for the exception handler function

prototype */

typedef DWORD (fnExceptionHandler)

(EXCEPTION_RECORD *pException,

struct _EXCEPTION_REGISTRATION_RECORD

*pRegistrationRecord,

CONTEXT *pContext);

/** Definition of 'raw' WinNt exception

registration record – this ought to be in

WinNt.h */

struct _EXCEPTION_REGISTRATION_RECORD {

struct _EXCEPTION_REGISTRATION_RECORD

*PrevExceptionRegistrationRecord;

// Chain to previous record

fnExceptionHandler *ExceptionHandler;

// Handler function being registered

};

So all we need to do, it seems, is to create an
_EXCEPTION_REGISTRATION_RECORD, point
ExceptionHandler to our exception handling function and
insert the record at the top of the exception chain. Almost. There are
some complexities with registering your own exception handlers.

Firstly, the code which walks the exception chain requires (on
some but not all versions of Windows) that the nodes in the chain
are registered in strict address order. Fortunately the compiler
always puts local variables below the exception registration record
so by using a local variable for our exception helper we should

18

Overload issue 63 october 2004

always be able to insert it into the chain before the compiler
generated exception registration record.

Secondly, I want to register the exception handler in a constructor.
This function too has a compiler-generated exception handler. I must
ensure that the handler is registered in the chain above the record for
the constructor or my exception handler will be unregistered when
the constructor completes! Additionally I want the code to work
properly should there be two or more exception helper objects in a
single function, and it is not in general possible to fix the offsets in
the stack frame assigned by the compiler for local variables.

Lastly, as part of the security improvements included with Visual
Studio .NET 2003 and Windows Server 2003/Windows XP service
pack 2, the exception handling function to be called must be marked
with a special attribute (SAFESEH) at link time so it will appear in
the “Safe Exception Handler Table” in the load configuration record.
Failure to do this results in a security exception occurring at runtime
which usually terminates the process. This check has been added to
Windows to prevent security exploits that use buffer overrun in order
to replace the exception handler address on the stack with a pointer
to injected code. The SAFESEH attribute can only be granted by
assembler code so it is therefore necessary, when using Visual Studio
.NET 2003, to make use of a very simple piece of assembler code to
add this attribute to the exception handling function.

Note: the assembler ml.exe provided with the first Beta edition
of Visual Studio 2005 access violates when using /safeseh [4]
and that from 2003 must be used.

One mechanism I’ve found that provides good ease of use under
the above constraints is to create a common base class for my own
exception handlers. This class contains a static exception handling
function which can be marked, once and for all, with the SAFESEH
attribute. This common handler then makes a virtual call into the
derived class for the specific action required for exception handling.

class ExceptionHelperBase : public

_EXCEPTION_REGISTRATION_RECORD {

public:

/** Construct helper object */

ExceptionHelperBase();

/** Make safe to extend */

virtual ~ExceptionHelperBase() {}

/** Allow subclass to hook exception */

virtual void onException(

EXCEPTION_RECORD *pException,

CONTEXT *pContext) = 0;

private:

// Disable copy and assign

ExceptionHelperBase(

ExceptionHelperBase const &);

ExceptionHelperBase& operator=(

ExceptionHelperBase const &);

// The one and only exception handler function

static fnExceptionHandler exceptionHandler;

};

The exception handling function simply casts the exception
registration record back to an ExceptionHelperBase and
invokes onException:

DWORD ExceptionHelperBase::exceptionHandler(

EXCEPTION_RECORD *pException,

struct _EXCEPTION_REGISTRATION_RECORD

*pRegistrationRecord,

CONTEXT *pContext) {

ExceptionHelperBase &self =

static_cast<ExceptionHelperBase&>(

*pRegistrationRecord);

self.onException(pException, pContext);

return ExceptionContinueSearch;

}

I would like my exception class to register itself in the
constructor and deregister itself in the destructor.
Unfortunately I can’t simply do this in the
ExceptionHelperBase constructor and destructor without
risking problems if I get an exception during the
constructor/destructor code itself.

However, a use of the ‘curiously recurring template pattern’ fixes
this problem and ensures registration happens last in the constructor
and first in the destructor:

template <typename RegistrationRecord>

class AutoRegister : public RegistrationRecord {

public:

/** Auto-register an exception record for

'RegistrationRecord' */

AutoRegister() : RegistrationRecord() {

registerHandler(this);

}

/** Unregister and destroy an exception

record */

~AutoRegister() {

unregisterHandler(this);

}

};

Where registerHandler will install the handler in the
exception chain and unregisterHandler will remove it
from the chain by using standard logic for singly-linked lists.
The list head is held in the NT_TIB structure pointed to by the
FS register and the list tail is the value -1.

Processing the Exception

The first derived class simply prints out the exception
information to demonstrate that things are working properly:

class ExceptionHelperImpl1

: public ExceptionHelperBase {

/** Print the address of the exception

records */

virtual void onException(

EXCEPTION_RECORD *pException,

CONTEXT *pContext) {

printf("pException: %p (code: %p,

flags: %x), pContext: %p\n",

pException,

pException->ExceptionCode,

pException->ExceptionFlags,

pContext);

}

};

typedef AutoRegister<ExceptionHelperImpl1>

ExceptionHelper1;

Since this code is executing while an exception is actually
being processed I used printf() rather than std::cout
to avoid any potentially harmful interactions with the standard
library.

19

Overload issue 63 october 2004

Sample code:
int main() {

ExceptionHelper1 helper;

try {

printf("About to throw\n");

throw std::runtime_error(

"basic exception");

}

catch(std::exception & /*ex*/) {

printf("In catch handler\n");

}

return 0;

}

When executed this program generates output for two exceptions:
About to throw

pException: 0012FBA0 (code: E06D7363, flags:

1), pContext: 0012FBC0

pException: 0012FBA0 (code: E06D7363, flags:

3), pContext: 0012F670

In catch handler

The second call is generated by the Microsoft supplied exception
handler unwinding the exception chain. This is easily identified
as the EXCEPTION_UNWINDING flag (value 2) is set in
pException->ExceptionFlags for the second exception.
For our purposes we want to extract context data from the first
call since this context describes the thread state when throw
was executed. (Note that our exception handler is removed from
the chain during the exception unwind so would need to be re-
inserted to catch subsequent exceptions in the same scope)

We now have everything we need for the basic version of the
code to print a stack trace:

class ExceptionStackTraceImpl

: public ExceptionHelperBase {

public:

ExceptionStackTraceImpl()

: pSavedContext(0) {}

/** Use the saved pointer to print the stack

trace */

void printStackTrace(std::ostream & os)

const {

if(pSavedContext != 0)

SimpleSymbolEngine::instance()

.StackTrace(pSavedContext, os);

}

private:

/** Capture the thread context when the

initial exception occurred */

virtual void onException(

EXCEPTION_RECORD *pException,

CONTEXT *pContext) {

if((pException->ExceptionFlags

& EXCEPTION_UNWINDING) == 0) {

pSavedContext = pContext;

}

}

PCONTEXT pSavedContext;

// context record from the last exception

};

typedef AutoRegister<ExceptionStackTraceImpl>

ExceptionStackTrace;

We have now achieved the original aim of be able to print a stack
trace in the catch block.

Interaction With Normal SEH

This method of ‘hooking’ in to the MSVC handling of C++
exceptions means that the exception handler is also called for every
other SEH exception, such as access violation. In released versions
of MSVC the implementation of catch(...) also processed
these types of exceptions. Although this seems at first sight to be a
good thing it actually tends to cause more problems than it solves.

One particular issue is that genuine problems such as corrupt
memory, I/O errors on the paging file or load time problems with
DLLs get handled in the same way as a C++ exception of unknown
type, by code not written to deal with these error conditions. For
current versions of MSVC it is usually best to avoid use of
catch(...) unless either the code re-throws the exception or
terminates the process.

Visual Studio 2005 Beta 1 handles non-C++ SEH exceptions in
a catch(...) only when the compiler flag /EHa is set, which
is a great improvement and gives maximum flexibility.

Whether or not /EHa is specified we can use
ExceptionHelper to extract information about the OS
exception. Microsoft provide some other ways to achieve a similar
end, __try/__except and _set_se_translator, but they
are not total solutions. Also not all compler vendors provide such
extensions and the ExceptionHelper code could still be used
to extract information about the exception.

For example I modified ExceptionHelper1 class for gcc
on win32 (a couple of minor changes were required for a clean
compile). Since gcc does not seem to use SEH for C++ exception
handling ExceptionHelper1 did not capture information for
such exceptions but it did do so for Win32 exceptions, such as
access violations. For a “proof of concept” I changed the exception
handler to throw a std::runtime exception rather than printing
the exception information and was successful in mapping an SEH
exception into a C++ exception, thus allowing additional tidyup to
be performed before the program exited.

Conclusion

I have given a brief overview of how the Microsoft compilers on
Win32 implement C++ exception handling. Using this information
we’ve seen a simple class which enables additional information to be
obtained about the exception during program execution.

What is the main strength and weakness of this approach?
On the positive side it enables better diagnostic information to

be produced at runtime for MSVC on Win32. This can significantly
reduce the cost of finding bugs, since enough information might be
gathered in the field to identify the root cause. Without this extra
information it might be necessary to try and reproduce the problem
under a debugger, with potential difficultly of getting the right
execution environment to enure the problem does in fact appear.

The main weakness is that the code is platform specific and relies
on undocumented behaviour of the compiler. Other compilers
under Win32 do not use the SEH mechanism to handle C++
exceptions so this code is useless should your code need to be
portable to them. The implementation of the exception mechanism
even under 64 bit Windows is not the same as for 32 bit Windows,
so the technique described here will not work unchanged (if at all)
in that environment even for Microsoft compilers.

[concluded at foot of next page]

20

Overload issue 63 october 2004

A Mini-project to Decode a
Mini-language – Part One

by Thomas Guest

This article appears in two parts. Part One – this part – describes
the first stages of a mini-project to write a codec for a mini-
language. (If you don’t know what codecs and mini-languages
are, don’t worry. Read on!) Part two will describe the later stages
of this project and present an actual implementation of the codec.

Keen readers will, then, have the opportunity to try out an
implementation of their own before part two appears, based on the
specification arrived at during the course of the following
paragraphs. As encouragement, I provide a (link to a) data suite
which can be used for test purposes.

Motivation

The motivation for this article comes from “The Art of UNIX
Programming” by Eric Raymond ([Raymond]). This is one of the
most inspiring books I’ve read on how to write software:
although firmly rooted in the traditions of the UNIX operating
system, the culture and philosophy it describes applies far more
widely. It has reinforced my belief that software development can
indeed be an art.

Having read this book, I wanted to put some of its ideas into
practice. So I set myself a mini-project.

An Idea For a Mini-project

As a starting point, I’d like to summarise two of [Raymond]’s
most important lessons.
● Data structures, not algorithms, are central to programming.
● Prefer text file formats: they’re human-readable and extensible.

If you must use a binary format then invest in a tool which
converts from this format to a textual one and back again. This
will facilitate working with your data.
I work in a domain where the need for compression requires the

use of binary file formats: namely digital television (DTV). Digital
video is typically MPEG-2 encoded. This is a highly compressed
encoding designed to squeeze as much content as possible into a
limited bandwidth. MPEG-2 encoding also allows video and audio
content to be combined with metadata: for example, a television
programme might be accompanied by a text description of itself
and of what’s showing next1.

To get to grips with this metadata a conversion tool is required.
The specific task I set myself, then, was to write a tool to convert
MPEG-2 metadata from binary to text, and, if required, to reverse
the process. Such an encode/decode tool is commonly referred to
as a ‘codec’.

My project, then, was to implement a digital television codec.

The MPEG-2 Bit Stream Syntax:
An Example of a Mini-language

The metadata format is specified using the MPEG-2 bit stream
syntax which is defined in [ISO/IEC 13818-1]. Data items are
described by name and length in bits using a C-like procedural
syntax. An example makes this clear:

TS_program_map_section() {

table_id 8

section_syntax_indicator 1

'0' 1

reserved 2

section_length 12

program_number 16

reserved 2

version_number 5

current_next_indicator 1

section_number 8

last_section_number 8

reserved 3

PCR_PID 13

reserved 4

program_info_length 12

for(i=0; i<N; i++) {

descriptor()

}

for(i=0;i<N1;i++) {

stream_type 8

reserved 3

elementary_PID 13

reserved 4

ES_info_length 12

for(i=0; i<N2; i++) {

descriptor()

}

}

CRC_32 32

}

[continued from previous page]

The decision depends on the relative balance between these two
items. However, having isolated the logic into a single class
ExceptionStackTrace it can be conditionally compiled to a
do-nothing implementation on other platforms, or if may even be
possible to re-implement the logic for another platform.

Roger Orr
rogero@howzatt.demon.co.uk

References

[1] Roger Orr, “Efficient Exceptions?”, Overload 61, June 2004
[2] Matt Pietrek, A Crash Course on the Depths of Win32™

Structured Exception Handling, http://www.microsoft.
com/msj/0197/Exception/Exception.aspx

[3] Jeremy Gordon, Win32 Exception handling for assembler
programmers, http://www.jorgon.freeserve.co.uk/
Except/Except.htm

[4] MSDN Product Feedback Center, http://lab.msdn.
microsoft.com/ProductFeedback , search on keyword
“FDBK12741”

[5] Matt Pietrek, Improved Error Reporting with DBGHELP 5.1
APIs, http://msdn.microsoft.com/msdnmag/issues/
02/03/hood/default.aspx

[6] John Robbins, Debugging Applications for Microsoft .NET and
Microsoft Windows, Microsoft Press

1 The proper term for these particular items of metadata is Event Information, present
and following. Since this article is not primarily about digital television I shall avoid
such jargon as far as possible.

21

Overload issue 63 october 2004

What we have here is the bit stream syntax for a section of the
Program Map Table. The first 8 bits give the table id (which
happens to be 2, for this particular table); the single bit which
follows provides the section syntax indicator; the next bit is
always set to zero; the next two bits are reserved (and should
each be set to one); and so on, until we get to the 32 bit CRC2.

To provide a little context: the Program Map Table (PMT)
supplies basic information about the digital television services
present in an MPEG-2 transport stream. A section of this table – as
shown above – defines the elementary streams which comprise a
single television service. For example, the PMT for the BBC1
digital television service consists of a video stream, an audio stream,
a subtitle stream and some data streams. Of course, [ISO/IEC
13818-1] defines the format of many other tables and sections, and
related specifications – such as [EN 300468] define many more.

This textual specification of a binary format is an example of
what [Raymond] terms a mini-language. In fact we have a Turing-
complete mini-language: that is, it allows for loops and
conditionals. The particular example shown here does not include
any conditionals, though we do have nested loops. Note also the
referenced descriptor() items. To fully parse the
TS_program_map_section() we’ll need the
descriptor() format specified too:

descriptor() {

descriptor_tag 8

descriptor_length 8

for(i=0; i<N; i++) {

private_data_byte 8

}

}

Complications

The syntax is easy to read, particularly to anyone familiar with C.
However, if we look more closely at the for-loop in Example 2,
although it’s apparent that i must be an integral loop counter, it’s
less clear where N is defined. Similarly, in Example 1, how do we
find the values of N1 and N2?

[ISO/IEC 13818-1] answers these questions. In Example 2, the
descriptor_length data element encodes an unsigned integer
which tells us how many bytes of data are to follow: so N is simply
the value obtained by decoding descriptor_length. Example
1 is not quite so simple. N is easy enough – it’s as many variable-
length descriptors as it takes to fill the total length specified by
program_info_length . N2 is similarly the number of
descriptors to fill the length specified by the most recent occurrence
of ES_info_length. For N1 however, we have to keep
decoding elementary streams until the following is true:

Sum of elementary stream lengths (in bytes)

== 'section_length' -

- (2 + 5 + 1 + 8 + 8

+ 3 + 13 + 4 + 12) / 8

- 'program_info_length'

- 32 / 8

We have to divide by 8 since field widths of values within the PMT
section are given in bits – but length fields give values in bytes.

Despite these complications, the encoding is well-designed: we
can parse these binary data structures sequentially without needing
to look ahead; and we can skip over any bits we’re not interested in.

In fact, the more closely we inspect our examples, the more we
notice. This is good. Recall that data structures, not algorithms, are
central to programming. Already we’re getting stuck into the data.

While we’re in this positive frame of mind, let’s review the full
range of control structures required by the [ISO/IEC 13818-1]
bitstream syntax:

while(condition) {

data_element

...

}

do {

data_element

...

}

while(condition)

if(condition) {

data_element

...

}

else {

data_element

...

}

for(i=0;i<n;i++) {

data_element

...

}

So, we’ve got pretty much C’s control structures, excepting
switch, break, return and continue.

This is starting to look alarming. How complex can a
condition be? How shall we handle three different looping
constructs? Our mini-project has become rather bigger than we
imagined.

Back to the Data

The thing to do at this point is to shelve these concerns and get
back to specifics. So, I got hold of some PMT section data and
parsed it by hand. I used two types of data:
● PMT sections pulled out of recorded digital TV broadcasts
● a simple PMT section synthesised by hand.
I shall spare you the details. Note though that in parsing by hand
we’re already starting work on our text output format. For
example, given the binary contents of a synthesised descriptor:

0a 04 0a 0b 0a 0b

and recalling the descriptor syntax:

descriptor() {

descriptor_tag 8

descriptor_length 8

for (i=0; i<N; i++) {

private_data_byte 8

}

}

2 I assume the ‘reserved’ parts of the section are included to provide room for a degree
of future extensibility. But not much room. This is one of the reasons why [Raymond]
advocates text file formats: “if you need a larger value in a text format, just write it.”

22

Overload issue 63 october 2004

a suitable output might be:

descriptor() {

descriptor_tag 8 = 0x0a

descriptor_length 8 = 0x04

for (i=0; i<N; i++) {

private_data_byte 8 = 0x0a

private_data_byte 8 = 0x0b

private_data_byte 8 = 0x0a

private_data_byte 8 = 0x0b

}

}

I have deliberately chosen an output format which closely
resembles the syntax definition. The loop has been unrolled, but I
have retained the loop control to indicate the structure and origin
of the data. I have chosen a hexadecimal representation for the
data values – always a good choice for binary data – and
explicitly indicate the numeric base used by prefixing these
values with the string 0x. Finally, I have retained the bit widths
for convenience: this will mean that when converting from text to
binary, there will be no need to refer back to the descriptor
syntax.

Referrring back to our motivating reference, we see we have
instinctively followed one of [Raymond]’s recommendations:

“when filtering, never throw away information you don’t need
to”.

(Here, the term “filter” is used in its Unix sense, and applies well
to a codec; and the reasoning is that any discarded information
can never be used in any program further down the Unix
pipeline). In our example, we can see that the output includes all
the information carried by both the descriptor syntax definition
and by the example descriptor.

Handling Failures

Suppose our descriptor was too short:

0a 04 0a 0b 0a

What should our codec make of such data?
Maybe something like this:

descriptor() {

descriptor_tag 8 = 0x0a

descriptor_length 8 = 0x04

for (i=0; i<N; i++) {

private_data_byte 8 = 0x0a

private_data_byte 8 = 0x0b

private_data_byte 8 = 0x0a

>>> ERROR: end of data reached. descriptor()

incomplete

It’s perhaps premature to tie down how errors should be handled,
other than to say that they should draw attention to themselves,
that they shouldn’t crash the codec, and that they should provide
useful diagnostics. But it certainly isn’t premature to include
some malformed data in our test set.

Another point [Raymond] makes about data conversion tools is
that they should be generous in what they accept (as input) but
rigorous in what they emit (as output). In our case, this means that
a user might change the layout of a text version of a
descriptor() to read like this:

descriptor()

{ descriptor_tag 8 = 0xA

descriptor_length 8 = 0x4

for (i = 0; i < N; i++)

{ private_data_byte 8 = 0xA

private_data_byte 8 = 0xB

private_data_byte 8 = 0xA

private_data_byte 8 = 0xB

}

}

and still expect the codec to convert this to binary as:

0a 04 0a 0b 0a 0b

One of the great benefits of having a codec is that we can
generate binary data from an easy-to-edit textual form: it would
be a severe limitation if the encoding process was over-sensitive
about whitespace, layout, or the capitalisation of hexadecimal
numbers.

Reducing Project Scope

Whilst tinkering around with my test data set, I’ve also been
paging through the MPEG-2 bitstream syntax. The bad news is
that the expressions which appear in conditionals may be quite
complex, making use of all the usual C arithmetic, bitwise,
logical and relational operators as well as a few domain-specific
additions.

The good news is that we can make good progress if we restrict
our scope as follows:

● Restriction 1: restrict the control structures to for() {...}
and if (condition) {...} else {...}

● Restriction 2: restrict conditions to the form field ==
value

These restrictions will not make a lot of sense to end users. In
end user terms, we can aim for a first release of our codec which
will only support sections from the following four tables:

● Program Association Table (PAT)
● Conditional Access Table (CAT)
● Network Information Table (NIT)
● Program Map Table (PMT)

This reduced scope may seem rather limiting.
Note however that these four tables – collectively termed the

Program Specific Information (PSI) Tables – “contain the necessary
and sufficient information to demultiplex and present programs” ([ISO
13818-1]).

Note further that our syntactic restrictions will not stop us
from extending our codec to handle the complete set of DVB
Service Information (SI) tables ([EN 300468]), which contain
just about all of the metadata used in European digital broadcasts.
Note finally that we remain faithful to our aims: [Raymond]
emphasises the need to release early and often, so that users can
drive (and implement, even, in an open source world) future
developments. By reducing scope, we allow for this early
feedback. We must take care, though, to follow another Unix
maxim, and keep our design extensible.

23

Overload issue 63 october 2004

A Prototype Descriptor Decoder

/**

* @brief Decode a descriptor.

* @param begin The start of the descriptor data

* @param end One past the end of the descriptor

* descriptor data

* @param out Output stream for the decoded data

*/

bool decodeDescriptor(desc_iter begin,

desc_iter end, std::ostream & out) {

out << "descriptor() {\n";

if(begin != end) {

out << " descriptor_tag 8 = "

<< *begin++ << "\n";

}

// We don’t know yet how much data we need to

// decode. Use a special non-zero value to

// indicate this.

unsigned int to_decode = 0xff;

if(begin != end) {

to_decode = *begin++;

out << " descriptor_length 8 = "

<< to_decode << "\n";

out << " for(i=0; i<N; i++) {\n";

while(begin != end && to_decode != 0) {

out << " "

<< "private_data_byte 8 = "

<< *begin++ << "\n";

--to_decode;

}

out << " }\n";

}

if(begin != end) {

out << "ERROR: descriptor() too long.\n";

}

else if (to_decode != 0) {

out << "ERROR: end of data reached. "

<< "descriptor() incomplete.\n";

}

else {

out << "}\n";

}

return begin == end && to_decode == 0;

}

The function above is a direct first attempt at writing a descriptor
decoder. Whilst there may be some mileage in this approach,
some weaknesses are apparent:
● The indentation is fixed. This won’t do if we are decoding a

descriptor in the broader context of a PMT section, when it can
appear at two different levels.

● The error handling is clumsy.
● Data – in this case, the descriptor’s syntax – has become muddled

with control flow.
Now is not the time to deal with these weaknesses. We shall simply
note that the first is simple to fix and the second can easily be
improved on. It’s the third weakness which, in the longer term, will
lead to code which is harder to understand, maintain and extend. On

the other hand, this function demonstrably works on our test data set,
which is encouraging; and it’s not hard to see how the approach
taken could be extended to decode PAT, CAT, NIT and PMT sections
– which is all we’ve decided to do.

Design Alternatives

We are now in a good position to consider the design of our dtv-
codec. Three alternatives spring to mind:
● Implement a descriptor-codec, a pmt-codec, and so on as

required. Here, each mini-codec understands its own designated
part of the syntax. Then the dtv-codec simply farms out work as
appropriate. This extends the direct approach described above.

● Implement a general dtv-codec which understands the full bitstream
syntax and can use it to parse an arbitrary section format. All that
then remains is to prime this codec with the required section formats.

● Devise a code generator which, given a section format, will
generate a program to code/decode that particular format.

All three alternatives are good, and all seem in line with our
motivating aims. The third, in particular, exemplifies [Raymond]’s
“Rule of Generation: Avoid hand-hacking; write programs to write
programs when you can.”

In choosing which route to take, we should remember the [XP]
mantra: “Do the simplest thing possible”; which, in UNIX-speak,
becomes the more prosaic: “Keep it Simple, Stupid!”

More Details

For those who want to implement their own codec I have posted
a zip archive to my website [HomePage]. This archive contains:
● binary PAT, CAT, NIT and PMT sections
● synthesised text sections
● alternative text versions
● malformed binary sections
● the relevant section syntax definitions
● table_id values
● a README
For those who’d prefer to see my attempt; you’ll have to wait for
part two of this article.

Conclusions

Progress has been made, and without the need to compromise our
artistic aims. Even before we’ve completed the project, we’ve
started to receive the main benefit: of understanding our data.

The second part of this article is where we compromise, get our
hands get dirty, bite off more than we can chew – that is, we write
some code.

Thomas Guest
thomas.guest@ntlworld.com

References

[Raymond] Eric S. Raymond, The Art of UNIX Programming,
Addison-Wesley 0-13-142901-9

[ISO/IEC 13818-1] Information Technology - Generic Coding Of
Moving Pictures And Associated Audio: Systems
Recommendation H.222.0 ISO/IEC 13818-1

[ETSI EN 300468] Digital Video Broadcasting (DVB);
Specification for Service Information (SI) in DVB systems

[XP] Extreme Programming,
http://www.extremeprogramming.org

[HomePage]
http://homepage.ntlworld.com/thomas.guest

24

Overload issue 63 october 2004

Garbage Collection and
Object Lifetime

by Ric Parkin

It seemed a simple bug report. “When we close the editing
screen the framework asks the user to save the temporary
portfolio we use internally as storage. Make sure it gets
removed cleanly instead”. “Should be easy,” I thought. “We
can’t be leaking the objects, as the whole form and its helpers
are written in C#. I just need to destroy the portfolio object at
the right time.”

The resulting solution opened my eyes to what Garbage
Collection does and, more importantly, what it doesn’t do.

To understand this, we’ll go back to the very basics of memory
and object management, and see what various techniques are
available. I’ll concentrate on the C family of languages: C, C++,
C# and the upcoming C++/CLI.

Memory and Object Lifecycle

The diagram below shows the stages in the life of memory and
objects.

Raw memory is very simple: you acquire some from a pool of
available memory, use it, and release it back to the pool to be reused.
Failing to release it causes it to be considered “leaked”.

Objects are slightly more complex because as well as obtaining
the raw memory for their storage, they need to be initialised to a
usable state and establish their class invariant, and have that state
destroyed before releasing the memory. If an object is not
destroyed then its state is considered leaked, which is important
if that state is a scarce non-memory resource such as system file
handles.

Let’s look at some pseudo-code for creating and destroying an
object, and then see how the C family languages map onto each
part:

Memory_location memory_for_T

= Acquire_Memory(size_of_T);

if(succeeded) {

T_location T_object

= Initialise_T(memory_for_T);

if(not succeeded)

Release_Memory(memory_for_T);

else {

// use T_object....

Destroy_T(T_object);

Release_Memory(memory_for_T);

}

}

There are four situations I’ll look at: creating an object on the
stack; as a base class of some other object; as a member of an
object; and on the heap. We’ll illustrate these by considering a
class described loosely as:

class B : A {

C c;

D* d;

}

We’ll initialise each instance of A, B, C, and D with the numbers
1, 2, 3, and 4.

C++

C++ provides a very simple and clean solution

class B : public A {

public:

B(int b_param)

: A(1),

c(3),

d(new D(4)) {}

private:

C c;

std::auto_ptr<D> d;

};

int main() {

B b(2);

// use b

}

In C++, and all the other languages, the size of an object is
worked out by the system, and takes into account all the space for
the sub-objects.

If objects are constructed on the stack, then the memory is
acquired and released automatically, often by just adjusting the
stack pointer. Constructors play the part of the initialise function,
and the programmer usually writes them, although there are cases
where the compiler will generate them. When objects go out of
scope the destructor is automatically called and the memory
released.

Destructors are the destroy functions and the compiler
automatically calls the destructors for base classes and members.
It can even write them too – if there is nothing else needed other
than the members’ destructors to be called, then the required
destructor is trivial, and the compiler will generate it for us if we
leave it out altogether.

Members of other objects are very similar to stack variables. In
particular, when the outer object is destroyed, all its member objects
are destroyed too.

Allocation on the heap is done using a “new-expression” which
allocates memory and calls the required constructor. A “delete-
expression” calls the destructor and frees the memory.

Experts at Kipling’s game of “Kim” may have spotted something
missing – error checking. Fortunately the compiler generates it all
for you using exceptions. I’d have to be more careful if I had raw
pointers in my class, but wrapping them up in auto_ptr makes
that problem go away and I can be lazy and correct, which is every
programmer’s ideal.Figure 1: Memory and Object Lifecycle

C

C is more verbose – after all you have to do a lot more
yourself. The only things the compiler will do for you is
allocate and deallocate space on the stack and for struct
members, and tell you the size needed for objects using the
sizeof operator.

typedef struct B_tag {

A a;

C c;

D* d;

} B;

D* D_new(int d_param) {

void* memory = malloc(sizeof(D));

if(memory == NULL)

goto malloc_failed;

D* d = D_init(memory, d_param);

if(d == NULL)

goto init_failed;

return d;

init_failed:

free(memory);

malloc_failed:

return NULL;

}

B* B_init(void* memory, int b_param) {

A* a = A_init(memory, 1);

if(a == NULL)

goto A_failed;

C* c = C_init(memory + offsetof(B, c), 3);

if (c == NULL)

goto c_failed;

d = D_new(4);

if(d == NULL)

goto d_failed;

return (B*)memory;

d_failed:

C_destroy(c);

c_failed:

A_destroy(a);

A_failed:

return NULL;

}

void* B_destroy(B* b) {

// assume destruction can’t fail

free(D_destroy(b->d));

C_destroy(&b->c);

A_destroy((A*)b);

}

int main() {

B b;

B_init(&b, 2);

// use b

B_destroy(&b);

}

This is directly analogous to the C++ solution, and illustrates the
sort of tricks the C++ compiler is doing behind the scenes, in
particular the error checking and clearing up of partially
constructed objects. But it is a lot of work. I’ll leave it as an
exercise for the reader to come up with a better solution in terms
of writing and maintaining this sort of code.

What Is Garbage Collection?

Garbage Collection replaces manual releasing of memory such
that ‘leaked’ memory is automatically reclaimed by the system
and is then available for use.

It does this by finding objects that are no longer needed
(technically, objects that are unreachable from “root” objects such
as global variables and the stack by following member references)
and reclaims their memory for future use. It can be compared to
treating the program as having an infinite amount of memory – if
you can never run out, then you don’t need to bother to delete
anything, and all objects can live forever and can be thought of as
immortal [1].

It is very tempting, when starting to use garbage collection, to
think that it means you don’t have to worry any more about the
tedious work of keeping track of object ownership and lifetimes,
and the programmer can concentrate on more interesting and more
productive work.

“... Garbage collection relieves you from the burden of freeing
allocated memory ... First, it can make you more productive...”
[2]

“A second benefit of garbage collection ... is that relying on
garbage collection to manage memory simplifies the interfaces
between components ... that no longer need expose memory
management details (“who is responsible for recycling this
memory”).” [3]

Unfortunately, this misses a subtle point in the relationship
between ownership, object lifetimes, and memory
management – they aren’t the same thing. Garbage Collection
frees you from having to clean up the memory, true. But
Ownership and Lifetime still have to be carefully considered
as part of design.

For example, holding on to object references for too long, or
giving them to global objects, will keep them locked into memory.
This is often referred to as a memory leak, although it is achieved
by incorrectly holding onto things for too long, and not by forgetting
to clean up as in C++.

C# and .Net

In C# construction is very much like C++ in that the new
keyword combines allocating the memory and calling the
constructor.

There is no explicit memory deallocation stage – that’s done
automatically by the Garbage Collector – but is there something
that can destroy an object? Not for releasing memory for its
members – again that’s done by the Collector – but something for
cleaning up non-memory resources at a specific time?

25

Overload issue 63 october 2004

26

Overload issue 63 october 2004

There is a special function called when an object is being
reclaimed – the finalizer. At first sight this looks very much like a
destructor (the C# syntax is the same, and the designers of
Managed C++ in VC7 thought they were the same – MC++
destructors are actually the finalizer in disguise), but it has since
become clear that the finalizer can’t be used to destroy an object,
for three reasons:
● You don’t know when it gets called. Things get finalized when

the garbage collector runs, but all you know is that is may run at
some unspecified point in the future, so you can’t rely on it being
called at a specific time

● You don’t know how many times it gets called, if at all. It’s
possible that the program finishes before the collector runs, in
which case the finalizer is never called. Also, an object that
has been finalized can be kept alive using the
ReRegisterForFinalize method, and then finalized
again. And again. And again.

● You can’t do much in it. When your finalizer is running, you
don’t know which other managed objects you have references
to have already been finalized, so unless your design guarantees
they’re still living – in other words, you’ve carefully thought out
their lifetimes – you can’t touch any other objects. The only
sensible thing you can do is to log some information somewhere
to say it’s been finalized.

It is sometimes recommended to use the finalizer to clean up
important unmanaged resources that need to be released, such as
handles from the operating system that the Garbage Collector
doesn’t know about. Unfortunately you may have run out of these
resources before the collector runs and the finalizers get called,
so you can’t rely on that1.

Dispose

Recall in my original problem, that I needed to tidy up a
particular object at a particular time. A common solution is to
write a teardown method, and the .Net designers have
provided a standard interface: IDisposable, which has a
single method Dispose() to be called when you want the
object to clean up and “die”. However, as there can be other
references to the object, Dispose may be called on an object
multiple times, and it is also allowed that a disposed object
may be reused, for example a disposed File Object could be
reopened, and become “alive” again, but I suggest that this
would get too confusing to recommend – keep it simple:
Dispose destroys the object, and nothing else can use it
afterwards.

Used like this, Dispose is a candidate for the equivalent of a
destructor. If an object has resources that must be released at a
specific time, implement Dispose and remember to call it. C# has
even added help to the language to do this – using – which will
automatically call Dispose on its argument at the end of a
statement block, in a similar way to auto_ptr , or Boost’s
scoped_ptr.

So finally, here’s the example in C#
We’ll have our base class A inherited from a helper class

Disposable – it’s based on a pattern for writing disposable

objects where both the Finalizer and the Dispose methods are
dispatched to a single virtual helper [4]. Some classes in the .Net
framework such as UserControl use this technique

public class Disposable : IDisposable {

private bool isDisposed = false;

public Disposable() {}

~Disposable() {

Dispose(false);

}

public sealed virtual void Dispose() {

if(!isDisposed) {

isDisposed = true;

Dispose(true);

GC.SuppressFinalize(this);

}

}

protected virtual void Dispose(

bool isDisposing) {}

protected sealed void TryDispose(

Object object) {

TryDispose((IDispose)object);

}

protected sealed void TryDispose(

IDispose idispose) {

if(idispose != null)

idispose.Dispose();

}

}

public class B : A {

public B(int b_param)

: base(1) {

try {

c = new C(3);

d = new D(4)

}

catch(Exception e) {

Dispose();

throw e;

}

}

public override void Dispose(

bool isDisposing) {

if(isDisposing) {

// dispose of managed resources here

TryDispose(d); d = null;

TryDispose(c); c = null;

}

// dispose of unmanaged resources here

// and call the base class

base.Dispose(isDisposing);

}

1 As Java’s Garbage Collection is very like .Net’s, this has led to some implementations
of the Java library to try and get around this for file handles by triggering the garbage
collector if an attempt to get a file handle fails, then trying again. This helps that
particular program avoid running out, but may still be starving the system of the
handles in the meantime.

public static int main() {

B b;

using(b = new B(1)) {

// use b;

} // b.Dispose called automatically

}

}

Unfortunately using only works for objects whose lifetime is a
local scope, but not for members, and they have to be cleaned up
by hand.

C# doesn’t allow objects embedded in other objects, only simple
types and references to objects on the heap, so c has to be created
on the heap, and this makes writing the constructor to cope with an
exception being thrown more difficult.
Dispose has to be written by hand every time and if you

forget to dispose of something, or it didn’t used to be disposable
but now ought to be, the resources haven’t been disposed of at the
right time.

An Improvement? C++/CLI

Microsoft is about to release their new attempt at getting C++ to
work with CLI (the common language part of .Net). Its previous
Managed C++ suffered from many problems, and is not widely
used.

In this language, the solution can use many familiar C++
idioms:

ref class B : public A {

public:

B(int b_param)

: A(1), c(3), d(gcnew D(4)) {}

private:

int b;

C c;

auto_ptr<D> d;

// write one for CLI references

};

int main() {

B b(1);

// use b

}

The destructors here are Dispose() , and the compiler is
generating the implementation and the calls, just like C++.

I’ve assumed that there is an auto_ptr analogue that works
with CLI references and the rest is just the slightly different syntax
for creating an object on the managed heap.

Back To The Problem

In the original system, storage for financial instruments was
managed by a simple Portfolio object, which had a Close
method to tidy it up. An instance of this was shared between
several Processor objects used to manipulate the portfolio,
instances of which were in turn shared between several User
Interface components.

The obvious first step was to make the Portfolio implement
Dispose, and have that close the storage.

But it was not obvious who should be disposing of this object
or when – there was no clear ownership and no notion of how
long the object would remain usable for – one Processor could
dispose of the Portfolio and the others could then try to use it
again. My solution was to push the issue of ownership and
destruction up a level, by making all the Processors that used the
Portfolio themselves disposable, and documented that they could
use the Portfolio given to them until they themselves were
disposed of.

The User Interface objects were already disposable, so it was a
simple matter to pass in the Processor they needed, and again define
that they could use it throughout their own lifetime.

The top-level form created the Portfolio and Processors, hooked
them up to the User Interface and set everything going. Finally, in
response to the form needing to close, it was then a simple matter
to dispose of all the User Interface objects, dispose of the
Processors, and then dispose of the Portfolio.

So here we have an interesting consequence: if a resource
must be cleaned up promptly, then every object that uses it needs
to think about when it is no longer allowed to use it. In this case
I did it by imposing a lifetime on the Processors and User
Interface objects and guaranteeing that the Portfolio would
outlive them.

The consequence of having a lifetime managed by calling
Dispose has just spread from a low level helper tucked away in
some other objects, all the way up to a top level object. It is very
pervasive.

In this case, the solution resulted in virtually all non-trivial
classes needing to implement Dispose, and involved a non-trivial
amount of design rework to make the ownership relations and
lifetime issues clear. The only classes that were not affected were
very simple “value” types used to group together data items. The
language and compiler provided no help as I had to write all the
Dispose methods by hand, call Dispose for every non-trivial
member, and hope that if a new member is added in the future or a
class becomes disposable, then the writer remembers to update the
Dispose method.

Conclusions

Far from Garbage Collection relieving the programmer of having
to think about ownership and lifetime, these issues still exist in
just the same way as in C++. Only relatively simple types have
no need of the Dispose idiom and can be left to the collector –
any type that uses, directly or indirectly, resources that need to be
released in a timely fashion, needs to have their relative lifetimes
thought about.

Current languages such as C# don’t help the programmer in
writing the mechanics of these things, but the forthcoming C++/CLI
will bring many of the tools that C++ provides to improving this
area.

Ric Parkin
ric.parkin@ntlworld.com

References

[1] Alan Griffiths, “Heretical Java #1: Immortality – at a price”,
Overload 59

[2] http://www.artima.com/insidejvm/ed2/gc.html
[3] http://www.iecc.com/gclist/GC-faq.html
[4] http://msdn.microsoft.com/library/en-us/cpref/

html/frlrfsystemidisposableclassdisposetopic.asp

27

Overload issue 63 october 2004

28

Overload issue 63 october 2004

C++ Lookup Mysteries
by Sven Rosvall

One day, my friend Tommy asked me why his C++ code failed.
He wanted to print out a number of objects (of his own class) to a
stream. It worked well with a plain for-loop and an output
operator (<<), so he knew that his output operator for the class
worked as intended. But when he used std::copy() and
std::ostream_iterator it failed. He wanted to “go STL”
because everyone, myself included, was telling him how great the
STL is.

It took us a while to figure out what was wrong and it brought
us down the dark sides of the inner workings of C++. It was an
interesting experience and one that I would like to share.

This article investigates function lookup in C++ and also
contains a suggestion of what to do when you want to use several
different output formats and still use output operators and STL.

The Code

Tommy used a class developed for a toolbox. This toolbox was
declared inside a namespace, following project guidelines to
avoid name collisions. Namespaces were considered good and
were used a lot throughout the project.

Tommy followed the guidelines and put the toolbox client code
in a different namespace. In here he had a need to print out objects
of this new class stored in a container. He wrote a function that
iterates over the container and an output operator for this purpose.
His code was something like this:

namespace Client {

std::ostream & operator<<(std::ostream &os,

Tools::Spanner const & s) {

os << "Spanner{ID=" << s.getID()

<< ", gapSize=" << s.getGapSize()

<< "}";

return os;

}

void printSpanners(std::ostream & os,

Tools::Toolbox const & tb) {

for(Tools::SpannerCollection

::const_iterator sit

= tb.getSpanners().begin();

sit != tb.getSpanners().end();

++sit) {

os << *sit << "\n";

}

}

}

This code worked nicely. He then introduced some STL-isms
and rewrote the printing function to use std::copy() and
std::ostream_iterator. These functions are often
together in C++ books to show the power and flexibility of the
STL. An std::ostream_iterator is an output iterator
and is used with algorithms in the same way as any other output
iterator. When an object is assigned to a dereferenced
std::ostream_iterator, this object is written to the
output stream that the std::ostream_iterator was
constructed with, using an output operator defined for that
object. The std::ostream_iterator is specialised with

a type of the objects it shall print out. The constructor of
std::ostream_iterator can also take an optional second
parameter that will be used as separator string between the
printed objects. Every time an object is assigned through an
std::ostream_iterator, that object is printed to the
std::ostream object using the output operator.

The rewritten output operator code looked something like
this:

void printSpanners(std::ostream & os,

Tools::Toolbox const & tb) {

std::copy(tb.getSpanners().begin(),

tb.getSpanners().end(),

std::ostream_iterator<

Tools::Spanner>(os, "\n"));

}

Nice simple code, except that it didn’t compile. The compiler
could not find an appropriate output operator. The error message
from the compiler was not very helpful. It said it could not find
the output operator, but did not provide many clues to what it was
looking for or why it could not find the output operator that is
shown above.

Tommy was very puzzled, he knew that an output operator
existed. He had used it successfully just a minute ago. He tried to
move the output operator to the global namespace to make sure that
it would be visible, but this did not work either.

When neither Tommy nor his colleagues could figure this out,
he lost his enthusiasm for the STL. When we met again, he was
very quick to vent his frustration with the STL in front of everyone
around. I was puzzled too when I heard this story and of course I
tried to defend C++ and STL. But was the problem with the
compiler, the C++ standard or was there something in his code?

I asked him to come up with a small example, but he said there
was too much code involved and too little time to reduce the code
bit by bit while preserving the symptoms. Instead we had a
discussion on how the code looked and we came up with the
example above. We ran it through a couple of compilers and came
up with similar error messages for all of them. So we probably
could not blame the compiler. But what was wrong?

The C++ Lookup Rules

Now that I had a code example, I could play with it a bit more
and read the standard thoroughly.

During lookup, operators are treated as any function, they just
have a special name. The rules for finding unqualified functions
and operators have two main parts. Firstly, the nearest enclosing
namespace is searched for ‘entities’ with the same name. Note that
as soon as a name is found the search stops. A function in an
enclosing namespaces will be ignored even if the name found
cannot be called with the arguments or if in fact it is not even a
function, thus:

namespace A {

void f(int);

void g(int);

namespace B {

void f(double); // hides A::f(int)

void g(const char*); // hides A::g(int)

void caller() {

f(1); // calls A::B::f(double)

g(1); // error: cannot convert '1'

// to a 'const char*'

}

}

}

In this example we see that A::B::f(double) hides
A::f(int) and is thus the only function considered in the first
call. The int argument can be converted to double so this call
is legal.

In the same way, A::B::g(const char*) hides
A::g(int). But the int argument in the second call cannot
be converted to a pointer and the call is illegal.

Note that A::g(int) is not considered at all, even though
A::B::g(const char*) cannot be used in the call.

After searching the current and enclosing namespaces, any
functions with the same name are searched in namespaces
associated with the types of the arguments to the function. This
second part is called argument-dependent-lookup (a.k.a. ADL or
Koenig-lookup). Consider:

class X {};

void f(const X &);

namespace A {

class Y : public X {};

void f(const Y &);

}

void caller() {

A::Y y;

f(y); // calling A::f(const Y &);

}

Both functions f(const X &) and A::f(const Y &) are
found by the lookup rules and considered for overload resolution.
f(const X &) is found by looking at the nearest namespace
and A::f(const Y &) is found using argument-dependent-
lookup.

The argument y has a type defined in namespace A where the
function A::f(const Y &) is found. The overload resolution
rule looks at both functions and chooses A::f(const Y &) as
a better match.

So, in the function printSpanners(), using the for
loop, we find the output operator in the same namespace
(Client). If the output operator was declared in the global
namespace instead, we would find it there, unless there were
other output operators in the namespace Client . The
namespace Tools would also be looked at as the argument type
Spanner is declared there, but there are no output operators
there.

The problem for Tommy is that when std::copy() is used,
the first stage of the search starts in the namespace std, and not
in namespace Client. This is because the call to the output
operator is from within the function body of std::copy().
Namespace std has a number of output operators as defined in
the C++ standard in order to facilitate formatted output of any
built-in type and some types defined in the C++ library. It

doesn’t matter that none of these overloaded output operators can
be used with Spanner. The lookup rule says that we find the
function in the nearest enclosing namespace and stop. The output
operator defined in the namespace Client is not considered at
all as this namespace is not an enclosing namespace of
namespace std. The compiler won’t even find the output
operator if it was defined in the global namespace as it had
already found some output operators in namespace std, its
nearest namespace.

Had Tommy declared the output operator in the same namespace
as the class (namespace Tools), he would have avoided this
problem as the second rule (ADL) would have found it. It can be
seen as part of the interface of the class and should be declared close
to the class itself, preferably in the same header file. This is fine if
you have control over the header file. It does not work if the header
is part of a third party library. As a workaround it is possible to put
the declaration in any header file by re-opening the namespace like
this:

namespace Tools {

std::ostream & operator<<(std::ostream & os,

Spanner const & s) {

...

}

}

The Real Problem

So what was Tommy trying to do? Why was the output
operator declared in the Client namespace and not in the
Tools namespace where it belongs? Tommy said that he
could have added the output operator in the Tools
namespace, but he wanted different output formats for
different client applications. He couldn’t place the output
operators beside the Spanner class definition as you can
only have one of them in the same namespace. There is no
way to overload two output operators with another parameter.
For his project it was easy to use namespaces to separate the
output operators as no client in the same namespace would use
more than one format.

A Solution to the Real Problem

So how can we make a design where we can have different
output formats? How can we use these formats using output
operators? And how can we make a design that will work when
we use std::copy() and std::ostream_iterator?

To start this off, we want some way to select different formats
when a Spanner object is printed to a stream. Possibly you
could derive from Spanner and then overload the output
operator on these derived classes. Not a very nice design and it
won’t work as you cannot downcast a Spanner object to the
derived class.

A simpler approach is to use different named functions that do
the formatting. We want a simple syntax such as:

std::cout << spanner.printNameAndGap()

<< std::endl;

This can be implemented by letting the member function
printNameAndGap() return a string in the format we want.

29

Overload issue 63 october 2004

30

Overload issue 63 october 2004

Nice and simple. Except that it is not always possible to add
things to the class we are using, for example third party libraries.
Here, the formatting belongs to the user, not to the class itself.
The class designer does not know what format all clients can
possibly want to use. This approach is also inefficient, as a
temporary string has to be created.

Instead we want to use a non-member function and we want
writes made directly to the output stream. This function can return
an object of a class that can be used with an overloaded output
operator. To make it easy, we use the constructor of this formatting
class instead of a separate function.

class PrintSpannerNameAndGap {

public:

PrintSpannerNameAndGap(Spanner const & s)

: m_s(s) {}

void print(std::ostream & os) const {

os << "Spanner{ID=" << s.getID()

<< ", gapSize="

<< s.getGapSize()

<< "}";

return os;

}

private:

Spanner const & m_s;

};

std::ostream & operator<<(std::ostream & os,

PrintSpannerNameAndGap

const & spanner) {

spanner.print(os);

return os;

}

We can now use this class like this:

std::cout << PrintSpannerNameAndGap(spanner)

<< std::endl;

This does not look too bad. Just watch out for that member
reference to the original object. The
PrintSpannerNameAndGap object must not exist longer
than the referenced Spanner object. This is not a problem
when it is used as shown above as it only exists as a tempo-
rary object and disappears at the end of the statement.

Using std::copy() and
std::ostream_iterator

std::copy() is nice but it is not possible to insert a
formatting object in the way shown above. We have to look at
other ways to indicate that we want different output.

If we look at the line using std::copy() and
std::ostream_iterator there aren’t many opportunities for
modification. We could adapt the source iterators (the begin/end
pair) to return a different object when dereferenced, and define an
output operator for each different object type. The mechanism for
choosing the correct overloaded output operator would be similar
to the approach above.

But there is no need to create the iterator adaptor. We only have
to specify to the std::ostream_iterator that it shall work

with PrintSpannerNameAndGap objects. This makes the code
much simpler:

std::copy(tb.getSpanners().begin(),

tb.getSpanners().end(),

std::ostream_iterator<

PrintSpannerNameAndGap>(

os, "\n"));

PrintSpannerNameAndGap is the same class as above. As
the std::ostream_iterator requires a PrintSpanner-
NameAndGap, then the Spanner objects returned by the
source iterators are implicitly converted to PrintSpanner-
NameAndGap objects. This works because we did not make the
constructor explicit. The PrintSpannerNameAndGap
object is a temporary object and is deleted after the assignment
statement in std::copy() has completed. The
PrintSpannerNameAndGap object holds a reference to the
Spanner object coming from the iterators to avoid unnecessary
copying. This reference is OK as the PrintSpannerName-
AndGap object has shorter lifetime than the Spanner object.

Possible Improvements

We could use templates to reduce the amount of boilerplate code.
But introducing templates does not reduce enough code to
motivate the extra complexity.

Another approach would be to let the formatting class
PrintSpannerNameAndGap inherit from a base class that is
used by all classes supporting different output formats. This base
class would keep the reference to Spanner and declare the
function print() pure virtual. A single output operator definition
for this base class replaces all specific output operators. This only
pays off when there are many different output formats for the same
object type.

A specific functor object can be used with the C++ library
algorithm std::for_each() to print out each element.
Initialise the functor with the output stream and define an
operator()(Spanner const &) that prints each object to
the output stream in the required format.

Conclusion

It is not always easy to understand what happens under the hood
in C++. But there are solutions to every problem even if good
understanding of C++ may be required. Don’t be afraid of asking
friends or other ACCU members for advice.

Sven Rosvall
sven-e@lysator.liu.se

Acknowledgements

Thanks to Tommy Persson who had the problem originally and
spent time describing the problem to me, to Richard Corden for
clarifying the C++ standard and to Thaddaeus Frogley for
reviewing.

[The name lookup rules in C++ are not only confusing for the non-
expert, they present serious problems to the expert. One such expert
(Dave Abrahams) has presented these problems, and proposed a
solution, for consideration by the standards committee:
http://www.boost-consulting.com/writing/n1691.html

– Alan (ed)]

