
3

Overload issue 66 april 2005

contents credits & contacts

Overload Editor:

Alan Griffiths
overload@accu.org
alan@octopull.demon.co.uk

Contributing Editor:

Mark Radford
mark@twonine.co.uk

Advisors:

Phil Bass
phil@stoneymanor.demon.co.uk

Thaddaeus Frogley
t.frogley@ntlworld.com

Richard Blundell
richard.blundell@metapraxis.com

Advertising:

Thaddaeus Frogley
ads@accu.org

Overload is a publication of the
ACCU. For details of the ACCU and
other ACCU publications and
activities, see the ACCU website.

ACCU Website:
http://www.accu.org/

Information and Membership:

Join on the website or contact

David Hodge
membership@accu.org

Publications Officer:

John Merrells
publications@accu.org

ACCU Chair:

Ewan Milne
chair@accu.org

Letter to the Editor 6

Sheep Farming For Software Development

Managers Pippa Hennessy 6

Metaprogramming Is Your Friend

Thomas Guest 11

Separating Interface and Implementation

in C++ Alan Griffiths & Mark Radford 16

Overload Resolution - Selecting the

Function Mikael Kilpeläinen 22

Digging a Ditch - Writing a Custom Stream

Paul Grenyer 25

4

Overload issue 66 april 2005

Editorial:
Need to Unlearn

I need to use a similar strategy when I write articles and patterns.
Sometimes I draft a piece and there is a sentence or even a
paragraph which I really like, maybe it’s witty, sarcastic or makes
a subtle side point, or maybe it’s an excellent example of
something. So, I edit my draft – and I should mention I do a lot of
editing – and as I edit I keep the chosen sentence. But over time it
doesn’t connect as well with what is around it and maybe I have to
rewrite some of the surrounding text to lead up to this one sentence.

Eventually it becomes clear that this sentence is more of an
obstruction than a support. It has to be chopped out so the rest of
the text can make its point with brevity and clarity. It may be
painful to do – like getting rid of those old clothes – but you’re
better off without it.

(Actually, in truth, I usually use the same trick I do with old
trousers. Take them out of the wardrobe and put them to one side
somewhere, usually in a box under the bed. If you don’t need it in
the next six months you aren’t ever going to need it. So, I find files
on my hard disc with little bits of articles which I never get around
to using.)

The same thing is true in software. Sometimes a piece of code
is so attractive I don’t want to lose it – say it’s a nifty bit of template
meta-programming, or a well-formed class. No matter how nifty
the code it can still restrain you, sometimes these things have to go
for the greater good.

And it doesn’t end with code. In fact, those who study these
things would consider this unlearning. In the same way that we
learn something we sometimes need to unlearn something. A
solution that worked well in the past doesn’t work well now. If we
continue to rely on yesterday’s solutions we stop ourselves from
learning new things, like clothes our solutions come to look dated
and full of holes.

The software development community could benefit from a bit
more unlearning. While we’re pretty good at dreaming up new
languages and methods we’re not so good at throwing some old
ideas away. Sometimes our old ideas work to our benefit, they
allow us to quickly diagnose problems and develop solutions
because we’ve seen the problem before.

On other occasions these very shortcuts work against us. We
use mental models and assumptions that aren’t valid for the
problem in hand. Worst of all, we don’t always know we’re making
these assumptions. When I was an undergraduate I had a lecturer
who always told us to “Document your assumptions.” Problem
was, I didn’t realise that I was making assumptions. That’s one of
the problems we face, unconscious assumptions, how do we know
we are making them?

Sometimes of course there are big red flags telling us to drop
our assumptions. For example, when you change jobs, in a

different company with different people we need to change.
Unfortunately it’s too easy to keep fighting the last war, or see our
last employer through rose-tinted spectacles, your new colleagues
don’t necessarily want to hear about how good (or bad) the last
place was.

Too often new people are encouraged to “hit the ground
running” when they start a new job – especially if they are in a
contract position. To do this denies employees the time to learn
and to jettison some of the past and make a fresh start.

I’ve been guilty of this too, my blood starts the boil the moment
I’m introduced to a “project manager”, all these assumptions kick
in: all they care about is GANTT charts, they believe estimates and
the waterfall model, they want to divide, rule and micro-manage.
I have to fight these assumptions, ask myself “What proof is there
that this project manager is like this?”

Recognising and changing our assumptions isn’t easy. It is
especially hard when you try and do it on your own. Even looking
at data can be confusing, as we tend to see data that supports our
point of view rather than data that refutes it.

Writing in the Financial Times, Carne Ross (2005) described the
how the British and American Governments argued at the UN with
the French and Russian Governments about the 1991-2003
sanctions against Iraq. The two sides cited the same reports to
support their case. Ross suggests that both sides were not guilty of
ignoring the contradictory evidence, merely that they failed to see
it. The assumptions each side made blinded them to contradictory
data, they could read the words but their meaning was lost.

We often need other people to help us see our own assumptions;
talking problems through helps us understand them and expose our
assumptions. Other people come with their own, possibly different
assumptions and we can all help highlight one another’s. But, when
we are locked in confrontation with others we become defensive,
to admit an assumption, let alone change it, would be to give
ground.

The problem of incorrect and unspoken assumptions affects all
aspects of software development: we think we know what the
customer wants, or we think we know what the software design
should be, but sometimes we’re wrong. The need to unlearn
assumptions is particularly apparent when it comes to process and
literature.

Although it’s a great great book I’m getting a bit fed up of people
citing Brooks’ Mythical Man Month. It was written 30 years ago
about a project that occurred 40 years ago. Haven’t we moved on
a bit?

While there is some great advice in Brooks’ work there is some
we need to unlearn. Lets start with “Build one to throw away, you will
anyway.” Brooks himself has changed his mind on this:

Like many men I tend to like my old clothes. Unlike many I’ve come up with a
strategy that helps me enjoy buying new ones: I clear out the wardrobe; rather
ruthlessly I throw away things and make space. This done I know I need new

clothes and can enjoy buying them.

5

Overload issue 66 april 2005

“ ‘Plan to throw one away; you will anyhow.’ This I now perceive
to be wrong, not because it is too radical, but because it is too
simplistic.

The biggest mistake in the ‘Build one to throw away’ concept is
that it implicitly assumes the classical sequential or waterfall model
of software construction.”

(Brooks, 1995, p.265)

Then there are Chief programmer teams. This is the idea that we
can have a few great programmers and arrange things to support
them, keep them working productively and all will be right. This
approach leads to teams where several lesser programmers work
individually on minor pieces of functionality while the Chief or
super programmer(s) delivers the real value. Consciously or
unconsciously managers and programmers believe that Jim the
super-programmer will deliver 70% of the project while his three
helpers will deliver 10% each, of course they’d like four super-
programmers but they “can’t find them” so they settle for just
reducing the load on Jim.

This is quite the opposite of what many people now think and
flies in the face of what Agile methodologies advocate. Here – as
in much of twenty-first century modern business life – it is the team
that is important. Whether it is serving fries in McDonalds, building
a Nissan or writing software, simply, the scale of modern
endeavours means that it is the team that is the building block not
the individual.

So, it is with dismay that I hear developers and managers
proclaim, “If we only had a few more good people” or “Where can
we get more good people?” It is not the lack of individuals that
hold our developments back but the lack of good, productive, teams.

We need to apply a bit of unlearning here. Let’s try and unlearn
this particular mantra.

Sure, maybe one in 100 engineers is more productive than the
other 100 put together but are we right to base our entire
development process around finding this individual? We need to
find them, hire them, motivate them and retain this one person.
Even if we can do all that is it right to base an entire strategy around
this person? And the chances are, one person isn’t enough, we’re
going to need 10, 20, 100 more like him (and it usually is a him.)
And how do these guys work as part of a team? Usually not too
well.

It could be that our one individual is actually holding the team
back. They may actually block others from dealing with a problem,
or their very productivity may hide a fault with the team. Alistair
Cockburn tells the following story:

“...a consultant who visited his company and said words to the
general effect of, ‘If I go into a company and see one super-salesman
who is much better than all the rest, I tell the owners to fire this man
immediately. Once he is gone, all the others improve and net sales
go up’.”

(Cockburn, 2003, p.27)

Fact is, the super-programmer approach doesn’t scale.
Instead, we need to hire and develop teams of people. We give

them the tools they need to do the job, and we remove the blockages
that stop them from working more productively. We encourage
them to improve themselves, their environment, processes and the
company – and that means we aren’t scared to change, whether it
be moving desk or trying a new way of working, we reject the
assumption that tomorrow will be a repeat of today.

If we are to expose assumptions we need to enter into open
dialogue with others – not necessarily people who hold the same
point of view. We need to allow time for this, we need to understand
our goals and share mutual goals. Above all we must be prepared
to unlearn ourselves, if we start with a position to defend and
assumptions we’re unwilling to let go of then we aren’t going to
get very far.

Simple really. Well simple to say, unfortunately, it’s
incredibly hard to do, after our unlearning we need to learn
again.

Allan Kelly
allan@allankelly.net

References

Brooks, F. 1995 The mythical man month: essays on software
engineering, Addison-Wesley.

Cockburn, A., 2003 People and Methodologies in Software
Development. PhD. thesis, Oslo

Ross, C., 2005, War Stories, Financial Times Weekend Magazine,
29 January 2005

Copyrights and Trade marks
Some articles and other contributions use terms that are either registered trade marks or claimed as such. The use of such terms is not intended to support nor
disparage any trade mark claim. On request we will withdraw all references to a specific trademark and its owner.

By default the copyright of all material published by ACCU is the exclusive property of the author. By submitting material to ACCU for publication an author is,
by default, assumed to have granted ACCU the right to publish and republish that material in any medium as they see fit. An author of an article or column (not
a letter or a review of software or a book) may explicitly offer single (first serial) publication rights and thereby retain all other rights.

Except for licences granted to 1) Corporate Members to copy solely for internal distribution 2) members to copy source code for use on their own computers,
no material can be copied from Overload without written permission of the copyright holder.

Copy Deadlines

All articles intended for publication in Overload 67 should be submitted to the editor by May 1st 2005, and for Overload 68 by July
1st 2005.

6

Overload issue 66 april 2005

Sheep Farming for Software
Development Managers

(or Feeling a Bit Sheepish)
by Pippa Hennessy

“Software products are nothing like sheep – they’re not soft
and cuddly” Pip’s Mother

It is my contention (and following discussions on the subject with
my colleagues I use that word advisedly) that the software
development process can be compared to sheep farming. You may
find this a little hard to swallow at first (unlike the software as
pasta metaphor so ably expounded by Pete Goodliffe [1], which is
much more edible), but bear with me and I shall explain all.

My mother’s initial reaction (see above) was typical, but the
more I thought about it and the more I talked the idea through with
others, the more I came to the conclusion that all development
processes and the products that emerge from those processes have
features in common. I started this exercise more as a joke than
anything serious, after all, software products really aren’t anything
like sheep. However, I’ve found that many of the techniques,
methods, and even truisms that are applicable to software
development have very strong parallels in sheep farming – a
development process that’s been refined over millennia.

Setting the Scene

Last summer I had a job interview. The position I’d applied for
was effectively an internal promotion for me, although there were

a few external candidates as well. The second interview involved
the usual HR-generated “criteria-based” questions, whatever that
means, but an equally important part of the interview was for me
to give a 30-minute presentation on what I considered the best
approach to managing software development within my
department. Fair enough, I was applying for the Software
Development Manager job.

Now, I’ve pretty much got the hang of answering interview
questions, I can do aptitude tests standing on my head, I always
seem to confuse HR people who try to analyse my personality tests
(this article may go some way to explain that), and I’ve even had a
job offer resulting from a horrendous interview where they stood
me in front of a whiteboard and made me write and explain a C++
program to some highly intelligent nerds. I’ve also done lots of
presentations, ranging from giving papers at conferences to
demonstrating prototype software to clients. But for a couple of
reasons this particular presentation wasn’t anywhere near as
straightforward as it should have been. Firstly, I didn’t quite know
how to pitch it – should I go for “blue sky” and assume no
knowledge of the workings of our department, or should I address
the problems and issues that I knew (and they knew I knew)
existed? Secondly, the interview was two days before the final copy
deadline for the ACCU journals (I was the production editor at the
time), so my preparation time was drastically reduced, and I didn’t
even get time to sit down and think about it in any depth until the
day before.

So, perhaps understandably, I was a little worried about this
presentation. I’d managed to jot down a few ideas in spare

Letter to the Editor
Re: Overload, February 2005

editorial

Hi Alan,
I just want to thank you for your great editorial in the February

issue of Overload (“‘They’ Have Their Reasons”). As you write: “If
you can find and talk to them you will find that “they” are normal human
beings trying to achieve reasonable goals in reasonable ways.” Deep
inside, I know this to be true, but it’s still good to be reminded of
it, especially if you deal with someone who appears “unreasonable”.
They are probably reasonable, from their perspective.

What inspired me to write this is that I’ve lately been discussing
with some people in the PHP community, and “they” don’t appear
to appreciate the value of higher abstractions (preferring a “simple
language”, even though this may lead to complex or verbose code).
Or even stronger type-checking, I may add. In C/C++/Java, we may
write:

void f(int a, string b, vector c)

and we know it takes an int, string and vector, no more, nor
less, and returns nothing. In PHP, with the following:

function f($a, $b, $c)

we know hardly anything: We know that it takes (at least) three
arguments – but it may take more – and we know nothing about
their type, and any return type (and it may return different types,

or nothing at all, depending on its run-time path through the
function... All variables in PHP are like variants – they can take
on any type). I can’t for the life of me understand how someone
finds writing code like this more “productive” and “easier”.
Myself, I’ve spent way too much time chasing stupid type-related
bugs in PHP, that could have trivially been checked by the
compiler/runtime. Flexibility to do what? Make type-related
errors? Sorry, if I really want to do that, I want to say so
explicitly – by overriding the type-system with a cast.

My company makes web applications for other companies, and
we’re using PHP, and I’ve been using it professionally for a couple
of years, so it’s not like I’m a PHP beginner, but still the above
baffles me. I like not having to wait for compilation with PHP, but
if I could choose stronger type-checking, my answer would be
YES. The kind of absent type-checking above tends to encourage
sloppy coding, and you have to explicitly check for types inside
the function, if you want to do so (it’s similar to having to
explicitly check for return codes, which is often not done... At
least PHP 5 does have exceptions). You still can’t enforce a certain
return type, though. Really, if I wanted a particular parameter to
be a “variant”, I’d specify that (and if the types it could have were
known, I’d enumerate them, and if not, use something like
boost::any). It adds information and explicitness to the code,
and should make it easier to understand. Yet, it appears the
majority of PHP developers don’t want it (from what I’ve read on
various mailing lists and newsgroups). Why? Have you got any
idea?

Regards,
Terje

<tslettebo@broadpark.no>

7

Overload issue 66 april 2005

moments, when I wasn’t busy eating or sleeping or breathing, but
with two days to go before the interview I still didn’t have much
idea of what on earth I’d talk about. I was in a dither as to whether
to use my employer’s standard Powerpoint template, or whether
to even mention that I actually already work with the team I’d
hopefully be managing. After a long evening of typesetting
Overload I fell into bed and lay awake for a while trying
(unsuccessfully) to marshal my ideas into something resembling
a coherent framework. And so to sleep. An hour or so later I woke
up with a brilliant idea. You know how it is, you think about
something, and think, and think, and get absolutely nowhere, and
then you wake up in the middle of the night with the Ultimate
Solution. Then you go back to sleep again and forget all about it.
I was determined that this wasn’t going to happen this time, so I
lay there in the dark for an hour or two and got it all straight in
my head.

What was this idea? Why, that software products are like
sheep, and the software development process is just like sheep
farming. I have no idea where this came from. Possibly it was a
subconscious association with my boss’s surname (same as the
old bloke who has a farm and sings E-I-E-I-O), or it may be
related to my obsession with Lundy (a large lump of granite in
the Bristol Channel that’s liberally scattered with various kinds
of sheep), but it’s more likely something to do with my mother,
who has a flock of Grey-Faced Dartmoor – a rare and shaggy
breed of sheep. Blame the parents, at least that’s what I always
tell my kids.

Right, enough bleating. It’s time to see if I can convince you that
software products are indeed soft and cuddly, just like sheep.

Breeds of Software Products

One of the distinguishing features of software products is that
they don’t actually have many distinguishing features – there
are big ones and little ones, simple ones and complex ones,
huge monolithic desktop products and straggly internet
applications. This is in fact not so different from sheep, of
which there are many breeds, each with their own personality.
Some have horns, some don’t. Some have short wiry hair, some
have long shaggy wool. Some are large, some small, some
white and fluffy, some brown and scruffy. Some bounce around
and play, others simply sit and chew the cud. And as any
shepherd will tell you, each individual sheep has its own foibles
and eccentricities.

The Ram

Rams don’t actually do very much. They’re usually bigger than
the ewes, and assuming they get past the stage of being lambs
(when most rams are slaughtered for meat) their one purpose in
life is to father a new generation – for three or four weeks in the
autumn they have a great time. So they can be compared to a
typical large function-rich desktop software application, whose
main purpose is to process and pass on data to other applications
and to users. You don’t have to do very much with them from
year to year, just make sure they’re fit for their information-
providing purpose.

On a fairly regular basis rams are “rented out” to service other
flocks, ensuring widening of the gene pool. This may involve some
logistics, such as timing and transport, but in general it’s a fairly
straightforward process. Similarly, your large data-providing
application may be used to process data from other sources, or

provide data for a purpose outside its original business
specification. This may involve some additional plugins or external
data processing to deal with unfamiliar formats, but this tends to be
standard operational procedure and as such is relatively trivial.

Incidentally, did you know that when a ram is put with a flock
of ewes it has a sachet of dye tied to its midriff so the shepherds
can tell which ewes have been serviced by the bright splodges on
their backs? This may be stretching the metaphor slightly, but I
guess this could be considered similar to data copyright notices
that have to be included in reports that are produced using the
data.

What can we learn?
Rams are for life, not just for Christmas. Once they’re fully
grown, they need to be healthy enough to do their job and pull in
the stud fees, year in year out, without too much looking after.
So it pays to put the effort in to get them right in the first place.

The Old Ewe

This old lady is quite similar to the ram, in that all she really does
is to produce one or two healthy lambs every year, thus making a
valuable contribution to the productivity of the flock. Again,
she’s like one of those big desktop products we all know and
love, bringing in a steady income without too much attention.
She’ll probably need more looking after than the ram, but in
return she’ll provide spin-off products that will in turn go on to
contribute to the farmer’s income.

What can we learn?
Pretty much the same as the ram. Put the time and resources in
up front, and your flock will increase in size without much
further input from you.

The Prize Sheep

Farms are quite similar to IT companies in that they need to have
a good name among other farmers and farm product consumers.
There are a few ways in which a flock can make a name for itself.
Lundy has a very successful business selling lamb via the internet
– I think this has probably taken off because people who visit
Lundy try the lamb while they’re on the island and know it’s
extremely high quality (which, I guess, is another valid
comparison – if you see how well a software product performs by
trying an evaluation copy you’re more likely to buy that product
or others from the same company).

Anyway, back to the point. If one or two lambs show all the
required qualities of their particular breed they may well be kept
for entry into agricultural shows – the ram escapes the chop (and
if he’s lucky he might be kept for breeding purposes) and the ewe
doesn’t necessarily have to produce healthy lambs year in year
out to be assured of a long and happy life. Rosettes mean the
flock is marked as worth considering as a source for butchers or
other flocks. How many IT companies can you think of that have
based their reputation and their success on one or two flagship
products?

What can we learn?
Appearances matter too. Sometimes it’s not important for a
sheep to bring in much actual revenue – if it is covered in
rosettes it will draw attention to the quality of the rest of your
flock.

8

Overload issue 66 april 2005

Wild Sheep

There are many flocks of wild sheep in the UK and probably
worldwide. These are generally left to look after themselves,
possibly with a little judicious tinkering where required. They
tend to be hard to control as they’re not used to interference by
humans or collies, and they often go off in unexpected directions.
This is not necessarily a bad thing, as they’re hardy and tough
and can deal with whatever nature throws at them. Lambing just
happens, no need for a shepherd to be up at all hours ready to
lend a hand or bottle-feed rejected lambs.

Open source software seems to run along these lines.
Applications are developed with an initial idea in mind, and
assuming they survive the birthing process and don’t fall off a
cliff they take on a life of their own, being added to and modified
to deal with slightly different problem domains. I guess you
could argue that this is due to a high level of external influence,
but I imagine that to the original programmer it would seem that
their lamb has a life of its own and has taken control of its own
destiny.

What can we learn?
Don’t ignore a wild sheep because it has no pedigree – it may
have evolved attributes that are needed to deal with environments
common to all sheep (or a significant subset).

Rare Breeds

The sheep farming community has its equivalent of nerds –
those (like my mother) who keep flocks of rare breeds and are
actively involved in ensuring these endangered species don’t
die out. Rare breed shepherds are often also very active in
keeping knowledge and use of “outdated” breeding and farming
techniques alive along with the sheep. In general these breeds
and techniques were once commonplace, but have been
superceded by more commercially viable breeds and farming
methods.

Rare breeders can be compared to programmers who write
ZX Spectrum emulators for XBoxes, or Amstrad PCW emulators
for PCs. Often the reason for writing these emulators is to play
fondly-remembered games even after the original hardware has
fallen to pieces, but a more respectable excuse is to keep old
tools and techniques alive just in case they should prove useful
in the future. My mother claims this holds true for rare breeds
as well – keep the good old standbys around just in case
commercial breeding programmes could find a use for the
particular traits embodied in breeds that have been around for
generations. I’m prepared to give her the benefit of the doubt on
this one, especially as I still enjoy playing Hungry Horace on
my Psion.

What can we learn?
Don’t write off “old” breeds or farming methods, they are tried
and tested and can even be better in some situations than their
modern equivalents.

Lambs

Lambs are fun. Anyone who tries to tell my mother they’re not
gets a Hard Stare, and I’m sure many of you secretly number
gambolling lambs among the first signs of spring. Newly-born
software products are also fun – ask any programmer. You get to
try out new ideas, see how high you can make the product jump,

see how well it plays with other products, watch it grow – and
don’t they grow quickly? Coding a new product is like
bottlefeeding a lamb – you hang on as tight as you can to the
bottle while it gulps the milk down, little tail waggling away
madly, then when the bottle’s empty, off it goes to skip around
and see what mischief it can get into next.

Of course, there is the mortality rate to consider. Mum’s flock
usually produces around 30 lambs every year, and between one
and four of those lambs will not survive. There are those who are
stillborn (the sales manager’s bright idea for a program that he
knows he can sell, which is technically impossible to put into
practice), those who die soon after birth (write a prototype,
discover the client didn’t want it after all, or it’s impossible to
meet the business requirements), and those who require so much
effort and money to keep going that the decision has to be made
to let them die. There’s a useful shepherd’s adage that applies
equally to young software products – if a lamb’s no good, hit it
on the head.

What can we learn?
Let your shepherds and sheepdogs play with the lambs if they
want (within reason), it keeps them happy and productive. And
be realistic – not all lambs will survive to become useful
members of your flock.

Tending the Flock

Right, hopefully by this point I’ve persuaded you that the
metaphor is actually worth exploring. Hey, I’ve even almost
persuaded myself! Anyway, the above is an expansion of the
ideas that came to me in the middle of that fateful night. I didn’t
even start to consider the peripheral issues until later. OK, so
sheep are intrinsically like software products. What about their
respective development processes?

Stockmen

In general, a flock of sheep is managed by one shepherd on
behalf of the farmer. There may be other humans who help
manage the flock on a regular basis – farm hands, additional
shepherds, the farmer’s family. There will certainly be
specialists who are called in occasionally (either regularly or in
response to specific situations) – vets, shearers, seasonal
workers. Many shepherds also keep dogs to help manage the
flock – my mother usually enlists the help of my sister, or me
and my kids if we’re around – which is more or less the same
thing. In addition to the farmer, there may be other humans who
provide overall direction to the shepherd. There may be a farm
shop, whose manager might ask for more lamb, more mutton,
more wool, or even more ewe’s milk, depending on customer
requirements.

There are many (possibly unflattering) parallels to be drawn with
software development here. If sheep are the software products, the
farmer is the board of directors or CEO of the company, the head
shepherd is the software development manager, and the other farm
employees (human and canine) are the programmers. Seasonal
workers such as shearers would be contractors, and vets and other
experts are consultants. The chap who runs the farm shop may be
an account manager, product manager, or possibly the marketing
manager.

Interestingly, shepherds are as reluctant to spend money on
outside experts as software development managers. If there’s a

9

Overload issue 66 april 2005

problem, every possible home remedy (often passed down from
father/mother to daughter/son through the ages) will be tried first
before calling in the vet. This is usually OK – these folklore cures
have been tried and tested for centuries after all – but it can be
counterproductive in the extreme if modern veterinary science has
come up with a cheap simple solution to the problem. The mark of
a good shepherd is one who keeps up with the times and knows
when to call in the experts – qualities also required for managing
software development.

What can we learn?
Shepherds do not work alone. Being an expert at dealing with
sheep is not enough, a shepherd has to be able to communicate
with other humans and canines to get the job done. S/he also has
to be able to take in and effectively process and use information
relevant to his/her work, adapting to specific and general changes
in situations.

Breeding a Flock

There are many ways to develop a flock of sheep. You start
with some ewes – possibly just one or two, maybe a whole
existing flock, but more likely somewhere in between. You
might buy two or three year old ewes that are already proven to
be good breeders, or you might buy ewe lambs, who may or
may not produce lambs in the years to come. Over the next few
years you need to make decisions about which ram (or rams) to
use to service your ewes, which lambs to keep and which to
sell, whether to buy in new ewes to widen the gene pool,
whether to “retire” old ewes that don’t produce viable
offspring. With the strides made in cloning technology it may
even be possible at some point in the future to make copies of
your best sheep – although there are currently problems with
this process, I believe Dolly the Sheep suffered terribly from
arthritis and died at an early age. All the time you have to
balance the immediate profitability of your flock against
investments for future prosperity – you may know that in five
years’ time you’ll have the best flock in the county if you pay a
fortune to have Billy the SuperRam service your ewes this
autumn, but that’s no use to you if you then can’t afford to feed
your sheep in the spring.

Each of these options has advantages and disadvantages, which
I won’t go into here as they’re not particularly relevant. What is
interesting is that there are also several almost directly comparable
ways to develop a portfolio of software products. I’d guess most
software development organisations start with one or two ideas
that are developed into products. These will inevitably generate
offspring – related products which are either add-ons to the
original software or modified versions for different markets, or
new products for the existing market. As the company expands,
it may buy in and take over development of other software
products (with all the pain that can entail – no amount of due
diligence will expose all the potential time-bombs in someone
else’s code), and it will certainly produce newer and better
versions of much of its existing product set and continue to
develop new products. Software that is no longer profitable for
whatever reason will be deprecated and eventually no longer
supported. As with sheep farming, the bottom line is all-important.
Developing a product portfolio is expensive, there must be money
coming in from existing products to support the resources required
to develop new products.

What can we learn?
Planning is everything. Having a long-term strategy for the flock
is essential, but the farmer must also know how he’s going to
cover the day-to-day expenses while putting that strategy into
practice (and if necessary the long-term strategy must be
modified if it is not supportable).

Growth and Development

Sheep need grass. They don’t actually need too much else – if
you lived on a desert island with a flock of sheep and a field of
grass you’d probably be OK. Sure, you’d be better off if you had
a trusty collie, or access to a vet and modern medications, or
bedding and pens, but your flock would survive as long as it
could graze. In the real world, if the grass is poor quality you’ll
need to give your flock supplements – typically salt licks and
various trace elements in some form. You may also need to
provide more bulk in the form of hay. Conversely if the grass is
too rich you get interesting things happening at the other end (the
technical term is “daggy sheep”) and you’ll need to clean their
bottoms regularly to avoid all sorts of nasty possibilities.

Software products need a programming language, and not
much else. The equivalent of the field is the compiler/linker or
interpreter for that language, and the hardware/operating system
to run it on. If it’s a functionally sparse language you’re likely to
need to implement elements in other languages or call other
services – I vaguely remember that if you were going to do
anything worth doing with ZX Spectrum Basic you’d have to
write chunks of assembler code. On the other hand, if it’s an all-
singing all-dancing language like C++, your expert developers
will be able to produce fantastically elegant, fast and highly
functional programs... but when another (usually junior)
developer comes to de-dag the bottom end (in order to fix a bug
or extend the software) they’ve got an awful lot of untangling to
do to work out what’s going on.

There are many other minor not-quite-requirements that a sheep
farmer has to take into account: transporting sheep to market or
slaughter (packaging up software for distribution), tagging and
numbering sheep so they can be identified (setting up project ID
codes and directory structures), obtaining and paying for the
services of experts, for example vets and shearers (employing
consultants and contractors), providing and maintaining bedding,
fences, gates, pens as required (buying and maintaining hardware
resources), meeting health and safety regulations for meat produce
or meeting ideal standards for shows (QA to ensure software meets
user requirements)1.

What can we learn?
Decisions taken about the basic requirements for the
development of your flock will have consequences and potential
hidden costs – be aware of these as far as possible and make
informed decisions. Also, it’s not enough just to breed the perfect
sheep, you need to manage its growth and keep it healthy if you
intend to make any profit from it.

Bugs

Sheep have bugs. Lots of them. A major part of a shepherd’s
job is to keep an eye on his/her flock for any signs of disease,

1 Incidentally, a general rule of thumb for the “perfect sheep” is it should be like a table
– a flat top with a leg at each corner. If only user requirements for software products
were so simple!

10

Overload issue 66 april 2005

and to administer prophylactic treatments regularly to stave
off the possibility of infestations or infections. Preventative
measures such as spraying the entire flock once or twice a
year with insecticide and regularly dosing for worms are taken
as a matter of course, although they’re not much fun to do. It
is second nature for a good shepherd to spot symptoms of
acute infections early on so that they can be treated before
permanent damage is done to the flock (although see
comments on calling in the vet in the Stockmen section
above). Shepherds are also very conscious of what’s going on
with the neighbours – infestations such as lice or viruses can
spread very easily between flocks in adjacent fields, and if
allowed to proliferate can be potentially devastating – look at
the short and long term effects of the last foot and mouth
outbreak.

As software developers we too have to deal with bugs.
(Thankfully this task isn’t quite as offensive or messy as the
shepherd’s version though.) We all write and run unit tests as a
matter of course – don’t we? – so we spot and eliminate potentially
nasty infections before they can do much damage. We have QA
processes and (usually) a dedicated testing team to run detailed and
exhaustive checks for bugs, and when they find a bug we deal with
it according to its severity and impact. We also install firewalls and
virus-checkers on our computers to ensure our virtual neighbours
can’t pass any nasty surprises on to us, and a good software
developer will consider security issues during development of any
internet product.

What can we learn?
In general bugs are fairly apparent in both sheep and software
products, and must be dealt with as a matter of urgency. It is
important to spot bugs as early as possible in the development
process – it’s far cheaper to treat a single sheep for a maggot
infestation than to treat a whole flock.

General Cussedness

Sheep are stupid. If one sheep gets it into its head to run in the
wrong direction you can guarantee that most of the rest of them
will decide it’s a good idea and follow it. And there’s a good
reason why one of the standard tests at sheepdog trials is to split
off a given number of sheep from the flock – sheep are stupid.
They can also be quite vicious – you might introduce a new ewe
to your flock, only to find one of your existing ewes takes a
dislike to it and turns on it. I’ve even seen a ewe push her own
lamb into a crevasse to get rid of it.

Software can be stupid and vicious too (well, sort of). If your
team has always developed software one way, it is often very
difficult to effectively steer the products in a different direction.
One example that springs to mind is the development process
itself – if you’ve always used the waterfall method it’s
remarkably difficult to introduce elements of agile development.
Or you might find that one product is developed using extreme
programming, and everyone likes it so much that they race off
and start using XP for everything, whether or not it’s
appropriate. Another example might be the technologies used –
we’ve developed this product using ASP and JavaScript, so
we’ve got to develop all our internet products that way, whether
or not ASP.NET and web services makes more sense. As for
vicious software, I can think of countless examples of projects
where it’s seemed sensible to save some time by integrating a

third party component – it never seems to quite work out that
way.

What can we learn?
Don’t let your sheep (or your stockmen or collies) be stupid –
make decisions on a case by case basis. “We’ve always done it
that way,” or “They did it that way with that sheep and it worked
brilliantly,” are not in themselves good reasons for making
decisions. And be very wary of new sheep – they may be
incompatible with your existing flock.

Conclusion

Well, what can one possibly conclude from these slightly insane
ramblings? Hopefully not that I shouldn’t have got the job – I did
forbear from expanding on the sheepy metaphor in my
presentation, although I couldn’t resist mentioning it – my boss
was quite keen to hear about it, so I guess I’ll have to show him
this article and hope he doesn’t demote me (or have me
sectioned) on the spot.

I could get into a bit of theology here – for example, Christians
use the sheep idea a lot. But I don’t think I will, there are enough
holy wars about code layout and other such important issues in the
programming community as it is.

My preferred conclusion is that a shepherd’s crook, a couple of
well-trained collies, and a quad bike should be required equipment
for a software development manager, and should be provided by
every enlightened employer.

I guess if I were to be serious for a moment (it does happen
occasionally), I’d propose that it’s possible to find useful ideas
and process elements and rules of thumb in the strangest of
places. People have been farming and breeding sheep for
thousands of years – the development process that produces
sheep that are “fit for purpose” has been refined and improved
upon for generations, and although software products really
aren’t much like sheep the processes of developing those
products have sometimes surprising parallels which we can all
learn from.

My favourite example has to be, “If a lamb’s no good, hit it on
the head.” A shepherd will do this without a second thought. How
many times have you been involved in trying to rescue an infant
software product that is obviously too feeble to survive, and
wondered why you’re bothering?

Pippa Hennessy
pip@oldbat.co.uk

Acknowledgments

Thanks to my mother for many entertaining and informative
conversations about the ins and outs of sheep farming, to several
of my colleagues for joining me in thinking out of the sheep pen,
and to Mum, Phil Bass and Alan Griffiths for reviewing the
initial draft.

Any errors in my representation of the ins and outs of sheep
farming (and software development, for that matter) are entirely
my own.

References

[1] Pete Goodliffe, “Professionalism in Programming #21 -
Software Architecture”, C Vu 15.4, August 2003

11

Overload issue 66 april 2005

Metaprogramming is Your
Friend

by Thomas Guest

Introduction

Whenever I create a new C++ file using Emacs a simple elisp
script executes. This script:
● places a standard header at the top of the file,
● works out what year it is and adjusts the Copyright notice

accordingly,
● generates suitable #include guards (for header files),
● inserts placeholders for Doxygen comments.
In short, the script automates some routine housekeeping for me.

Nothing extraordinary is going on here. One program (the elisp
script) helps me write another program (the C++ program which
needs the new file).

By contrast, C++ template-metaprogramming is extraordinary.
It inspires cutting-edge C++ software; it fuels articles, newsgroup
postings and books [Abrahams and Gurotovy]; and it may even
influence the future direction of the language.

Despite (or maybe because of) this, this article has little more to
say about template-metaprogramming. Instead we shall investigate
some ordinary metaprograms. For example, the elisp script – a
program to write a program – is a metaprogram. There may be other
metaprograms out there which, perhaps, we don’t notice. And there
may be other metaprogramming techniques which, perhaps, we
should be aware of.

What is Metaprogramming?

I like the definition found in the [Wikipedia]:
“Metaprogramming is the writing of programs that write or

manipulate other programs (or themselves) as their data or that do part
of the work that is otherwise done at runtime during compile time.”

Actually, it’s the first half of this definition I like (everything up
to and including “data”). The second seems rather to weaken the
concept by being too specific, and in my opinion its presence
reflects the current interest in C++ template-metaprogramming –
but a Wikipedia is bound to relect what’s in fashion!

Why Metaprogram?

Having established what metaprogramming is, the obvious
follow-up is “Why?” Writing programs to manipulate ordinary
data is challenging enough for most of us, so writing programs to
manipulate programs must surely be either crazy or too clever by
half.

Rather than attempt to provide a theoretical answer to “Why?”
at this point, let’s push the question on the stack and discuss some
practical applications of metaprogramming.

Editor Metaprogramming

I’ve already spoken about programming Emacs to create C++
files in a standard format. We can compare this technique to a
couple of common alternatives:
1. create an empty file then type in the standard header etc.
2. copy an existing file which does something similar to what we

want, then adapt as required.
The first option is tough on the fingers and few of us would fail
to introduce a typo or two. The second is better but all too often
is executed without due care – maybe because a programmer

prefers to concentrate on what she wants to add rather than on
what she ought to remove – and all too often leads to a new file
which is already slightly broken: perhaps a comment remains
which only applies to the original file, perhaps there’s an
incorrect date stamp.

The elisp solution is an improvement. It addresses the concerns
described above and can be tailored to fit our needs most exactly.
All decent editors have a macro language, so the technique is
portable.

Of course, there is a downside. You have to be comfortable
customising your editor. (Or you have to know someone who can
do it for you.)

Batch Editing

By “batch editing” I mean the process of creating a program to edit
a collection of source files without user intervention. This is closely
related to editor metaprogramming – indeed, I often execute simple
batch edits without leaving my editor (though the editor itself may
shell-out instructions to tools such as find and sed).

Very early on in my career (we’re talking early 80’s) I worked
with a programmer who preferred to edit source files in batch mode.
His desk did not have a computer terminal on it. Instead, he would
study printouts, perhaps marking them up in pencil, perhaps using
a rubber to undo these edits, before finally writing – by hand – an
editor batch file to apply his changes. He then visited a computer
terminal to enter and execute this batch file.

Even then, this was an old-fashioned way of working, yet he was
clear about its advantages:
● Recordable: the batch file provides a perfect record of what it

has done.
● Reversible: its effects can therefore be undone, if required.
● Reflective: by working in this reflective, careful way, he was

less likely to introduce errors. When system rebuilds can only
be run overnight, this becomes paramount.

These days, builds are quicker and batch editing is more
immediate. With a few regular expressions and a script one can
alter every file in the system in less time than it takes to check
your email. As an example, in another article [Guest1] I describe
the development of a simple Python script to relocate source files
into a new directory structure, taking care to adjust internal
references to #included files.

The benefits of using a script to perform this sort of operation
are a superset of those listed above. In addition, a scripted solution
beats hand hacking since it is:
● Reliable: the script can be shown to work by unit tests and by

system tests on small data sets. Then it can be left to do its job.
● Efficient: editing dozens – perhaps hundreds – of files by hand

is error prone and tedious. A script can process megabytes of
source in minutes.

Again, there is a downside. You have to invest time in writing the
script, which may well require a larger investment in learning a
new language. Many of us would regard proficiency in other
languages as an upside but it may be difficult to make that initial
investment under the usual project pressures.

So, once again, it may end up being a team-mate who ends writes
the script for you. Indeed, many software organisations have a
dedicated “Tools Group” which specialises in writing and
customising tools for internal use during the development of core
products. Perhaps this team could equally well be named a
“Metaprogramming Group”?

12

Overload issue 66 april 2005

Compilation

The compiler is the canonical example of a metaprogram: it
translates a program written in one language (such as C) into an
equivalent program written in another language (object code).

Of course, when we invoke a compiler we are not
metaprogramming, we are simply using a metaprogram, but it is
important to be aware of what’s going on. We may prefer to
program in higher-level languages but we should remember the
compiler’s role as our translator.

We lean on compilers: we rely on them to faithfully convert our
source code into an executable; we expect different compilers to
produce “the same” results on different platforms; and we want
them to do all this while tracking language changes.

In some environments these considerations are taken very
seriously. For safety critical software, a compiler will be tested
systematically to confirm the object code produced from various
test cases is correct. In such places, you cannot simply apply the
latest patch or tweak optimisation flags. You may even prefer to
work in C rather than C++ since C is a smaller language which
translates more directly to object code.

In other environments we train ourselves to get along with our
compilers. We accept limitations, report defects, find workarounds,
upgrade and apply patches. Optimisation settings are fine-tuned.
We prefer tried-and-tested and, above all, supported brands. We
monitor newsgroups and share our experiences.

One last point before leaving compilers alone: C and C++
provide a hook which allows you to embed assembler code in a
source file – that’s what the asm keyword is for. I guess this too is
metaprogramming in a rather back-to-front form. The asm keyword
instructs the compiler to suspend its normal operation and include
your handwritten assembler code directly. Its exact operation is
implementation dependent, and, fortunately, rarely needed.

Scripting

The program which follows is a short but non-trivial Python
script. It makes use of a couple of text codecs from the Python
standard library to generate a C++ function. This C++ function
converts a single character from ISO 8859-9 encoding into UTF-
8 encoded Unicode.

def warnGenerated():

'''Return a standard 'generated code' warning.'''

import sys, time

return (

'// GENERATED CODE. DO NOT EDIT!\n'

'// generated by %s, %s' %

(' '.join(sys.argv),

time.asctime(time.localtime()))

)

def functionHeader(codec):

'''Return the decode function header.'''

return '''/**

* @brief Convert from %(codec)s into UTF-8

* encoded Unicode

* @param %(codec)s An %(codec)s encoded character

* @param it Reference to an output iterator

* @note If the input character is invalid, the

* Unicode replacement character U+FFFD will be

* returned.

*/

template <typename output_iterator>

void

%(codec)s_to_utf8(

unsigned char %(codec)s,

output_iterator & it)''' % { 'codec' : codec }

def convertCh(ch, codec):

'''Return the 'case' statement converting

the input character using the supplied codec'''

from unicodedata import name

ucs = chr(ch).decode(codec, 'replace')

utf = ucs.encode('utf-8')

ucname = name(ucs, 'Control code')

action = '; '.join(['*it++ = 0x%02x' % ord(c)

for c in utf])

return '''case 0x%02x: // %s

%s;

break;''' % (ch, ucname, action)

def codeBlock(prefix, body, indent = ' ' * 4):

'''Return an indented code block.

This code block will be formatted:

prefix

{

body

}'''

import re

indent_re = re.compile('^', re.MULTILINE)

return '''%s

{

%s

}''' % (prefix, indent_re.sub(indent, body))

codec = 'iso8859_9'

print warnGenerated()

print codeBlock(

functionHeader(codec),

codeBlock(

'switch(%s)' % codec,

iso8859-* encodings are 8-bit

'\n'.join([convertCh(ch, codec)

for ch in range(0x100)]),

indent = '' # don’t indent case: labels

)

)

By now, it should go without saying that this script is a
metaprogram. Before discussing why I think it’s a good use of
metaprogramming, some notes:
● The function warnGenerated() is used to place a standard

warning in front of the generated C++ function. If users of this
C++ function edit it by hand, their changes will be overwritten
next time the script is run: hence the warning.

● The generated code identifies the command which created it (this
information appears as part of the standard warning). This is to
help users regenerate the code, if required.

13

Overload issue 66 april 2005

● It is very important that the Python script is both maintained and
easy to locate. Ideally, the build system includes a rule to
generate the C++ from the script, though this behaviour may be
hard to integrate into some IDEs: it may prove more pragmatic
to run the script by hand and keep the dependent C++ code
checked directly into the repository.

● Notice how Python’s triple quoted strings allow us to create
neatly formatted C++ code from neatly formatted Python code
without needing lots of escaped characters.

● It is perhaps ironic that, according to the Python documentation,
some of Python’s builtin codecs are implemented in C
(presumably for reasons of speed). I haven’t worked out if this
applies to the ones this script uses.

I like this script since it makes use of the standard Python library
to create code we can use in a C++ program. The hard work goes
on in the calls to encode() and decode() and we don’t even
have to look at the implementations of these functions, let alone
maintain them. Their speed does not affect the speed of our C++
function and I am willing to trust their correctness, meaning I
don’t have to locate or purchase the ISO 8859 standards.

The second big win is that all the boilerplate code is generated
without effort. If, at some point in the future, we need a fuller range
of ISO 8859 text converters, then we tweak the script so the final
section reads, for example:

codecs = ['iso8859_%d' for n in range(1, 10)]

print warnGenerated()

for codec in codecs:

print codeBlock(

functionHeader(codec)

....

)

and let it run. And should we decide on a different strategy for
handling invalid input data, again, the metaprogram is our friend.

Preprocessor Metaprogramming

As mentioned in passing, C++ has a sophisticated templating
facility which (amongst other things) makes metaprogramming
possible without needing to step outside the language.

C++ also inherits the C preprocessor: a rather unsophisticated
facility, but one which is equally ready for use by metaprogrammers.
In fact, careful use of this preprocessor can allow you to create
generic C algorithms and simulate lambda functions.

For example:

#define ALL_ITEMS_IN_LIST(T, first, item, ...) \

do { \

T * item = first; \

while (item != NULL) { \

__VA_ARGS__; \

item = item->next; \

} \

} while(0)

#define ALL_FISH_IN_SEA(first_fish, ...) \

ALL_ITEMS_IN_LIST(Fish, first_fish, \

fish, __VA_ARGS__)

The first macro, ALL_ITEMS_IN_LIST, iterates through items in
a linked list and optionally performs some action on each of
them. It requires that list nodes are connected by a next pointer
called next. The second macro, ALL_FISH_IN_SEA, specialises
the first: the node type is set to Fish * and the list node iterator
is called fish instead of item.

Here’s an example of how we might use it:

/**

* @brief Find Nemos

* @param fishes Linked list of fish

* @returns The number of fish in the list called

* Nemo

*/

int findNemo(Fish * fishes) {

int count;

ALL_FISH_IN_SEA(fishes,

if(!strcmp(fish->name, "Nemo")) {

printf("Found one!\n");

++count;

}

);

return count;

}

Note how simple it is to plug a code snippet into our generic
looping construct. I have used one of C99’s variadic macros to do
this (these are not yet part of standard C++, but some compilers
may support them).

I hesitate to recommend using the preprocessor in this way for
all the usual reasons [Sutter]. That said:
● This is a technique I have seen used to good effect in production

code.
● Techniques like these are used in highly respected C software –

Perl and Zlib, for example. All C/C++ programmers should be
familiar with it.

● Although the preprocessor can be dangerous, the way it operates
is simple and transparent: use your compiler’s -E option (or
equivalent) to see exactly what the preprocessor is up to. (I
sometimes wish I had an equivalent option for working out how
the compiler is handling templated code)

● Template metaprogramming experts use every preprocessor trick
in the book. See, for example, some of Andrei Alexandrescu’s
publications [Alexandrescu], or the Boost preprocessor library
[Boost]. (This library’s documentation includes an excellent
introduction to the preprocessor’s limitations, and techniques for
working round them.)

One final point: the inline keyword (intentionally) does not
require the compiler to inline code. The preprocessor can do
nothing but!

Reflection and Introspection

Take a look at the following Python function which on my
machine lives in <PYTHONROOT>/Lib/pickle.py

def encode_long(x):

r"""Encode a long to a two's complement

little-endian binary string.

Note that 0L is a special case, returning

14

Overload issue 66 april 2005

an empty string, to save a byte in the

LONG1 pickling context.

>>> encode_long(0L)

''

>>> encode_long(255L)

'\xff\x00'

>>> encode_long(32767L)

'\xff\x7f'

>>> encode_long(-256L)

'\x00\xff'

>>> encode_long(-32768L)

'\x00\x80'

>>> encode_long(-128L)

'\x80'

>>> encode_long(127L)

'\x7f'

>>>

"""

....

The triple quoted string which follows the function declaration is
the function’s docstring (and the r which prefixes the string
makes this a raw string, ensuring that the backslashes which
follow are not used as escape characters). This particular
docstring provides a concise description of what the function
does, fleshed out with some examples of the function in action.
These examples exercise special cases and boundary cases, rather
like a unit test might.

Python’s doctest module [Doctest] enables a user to test that
these examples work correctly. Here’s how to doctest pickle
in an interactive Python session:

>>> import pickle

>>> import doctest

>>> doctest.testmod(pickle)

(0, 14)

The test result, (0, 14), indicates 14 tests have run with 0
failures. For more details try doctest.testmod(pickle,
verbose=True). In case anyone is confused, 7 of the tests apply
to encode_long – and unsurprisingly the other 7 apply to
decode_long.

Incidentally, if pickle.py is executed (rather than imported
as a library) it runs these tests directly.

The doctest module is a metaprogram – an example of
Python being used to both read and execute Python. To see how
it works I suggest taking a look at its implementation. The code
runs to about 1500 lines of which the majority are documentation
and many of the rest are to do with providing flexibility for more
advanced use.

In essence, note that docstrings are not comments, they are
formal object attributes. Now, Python allows you to list and
categorise objects at runtime, so we can collect up the docstrings
for classes, class methods and for the module itself. Once we have
all these docstrings we can search them to find anything which
looks like the output of an interactive session using Python’s text
parsing capabilities. The remaining twist is Python’s ability to
dynamically compile and execute source code using the compile
and exec commands. So, we can replay the documentation
examples, capturing and checking the output.

The doctest module provides no more than an introduction to
metaprogramming in Python. Given a Python object it is possible
to get at the object’s class, which is itself an object which can be
dynamically queried and even modified at run-time. This isn’t the
sort of trick which is often required: I haven’t tried it myself so I’d
better keep quiet and refer you to the experts. See for example [van
Rossum] or [Raymond].

Domain Specific Extensions

Sometimes the best way to solve a particular family of problems
is to create a domain specific language, which may be
implemented as an extension to a standard language

For example (and once again, quite early in my career), I worked
for an organisation – I’ll call it Vector Products – which specialised
in solid geometry software. Vector Products developed and actively
maintained a proprietary extension to C – I’ll call it C-cubed –
which provided native support for various domain-specific
primitives: vectors (the sort you find in 3D mathmematics, not
std::vector), ranges, axis-aligned boxes; and for domain
specific operators to work with these primitives.

I should stress that this C extension pre-dated standard C++. C++
classes and operator overloading can now handle much of what C-
cubed provided. Nonetheless, Vector Products’ investment paid off:
C-cubed allowed programmers to write vector mathematics in a
clean and legible way, thereby freeing them to concentrate on the
real solid geometry problems they needed to solve.

I believe that the earliest incarnations of C++ were essentially
domain-specific extensions to C. For early C++, the domain would
be “Object Oriented Programming”. [Stroustrup]

This again is metaprogramming, though (particularly with
respect to the supplied examples) it is closely related to
compilation.

Metaproblems

Most of this article puts a positive spin on metaprogramming. I’m
happy enough to leave you with this impression, but I should also
mention some problems.

Trouble-shooting

The first problem is to do with trouble-shooting. You have
problems with your program but the problem is actually in the
metaprogram which generated your program. You are one step
removed from fixing it.

I deliberately used the term “trouble-shooting” rather than
debugging. When you think about it, debug builds and debuggers
are there to help you solve these problems by hooking you back
from machine code to source code. It gives the illusion of
reversing the effect of the compiler. If you can provide similar
hooks in your metaprograms, then similarly the fix will be easier
to find.

Quote Escape Problems

The second problem I refer to as the “quote-escape” problem. It
bit me recently when I converted a regular C++ program into one
which was partially generated by another C++ program. For
details, I refer you to [Guest2].

For the purposes of this article, look at what happened when
I needed to generate C++ code which produces formatted
output.

Here’s the code I wanted to generate:

15

Overload issue 66 april 2005

context.decodeOut()

<< context.indent()

<< field_name << " "

<< bitwidth

<< " = 0x" << value << "\n";

Here’s the code I developed to do the generating:

cpp_file

<< indent()

<< "context.decodeOut() << context.indent() << "

<< quote(field_name

+ " "

+ bitwidth

+ " = 0x")

<< " << context.readFieldValue("

<< quote(field_name) + ", "

<< value

<< ") << \"\\n\";\n";

It looks even worse without the helper function, quote, which
returns a double-quoted version of the input string.

I was able to defuse this problem with some refactoring but the
self-referential nature of metaprogramming will always make it
susceptible to these issues.

This is also part of the reason why Python is so popular as a code-
generator: as has been shown by some of the preceding examples,
its sophisticated string support can subvert most quote-escape
problems.

Build Time Complexity

I have already mentioned the problem of integrating code-
generators into your build system. Some IDEs don’t integrate
them very well, and even if they do, we have introduced
complexity into this part of the system. In general we prefer to
trade complexity at build time for safety at run-time but we
should always check that the gains outweigh the costs.

Too Much Code

We’re nearing the end of our investigation, and I hope the “Why
Metaprogram?” question I posed at the beginning has been
addressed. The [Wikipedia] answers this question rather more
directly:

“[Metaprogramming] ... allows programmers to produce a larger
amount of code and get more done in the same amount of time as
they would take to write all the code manually.”

It’s possible to interpret this wrongly. As we all know, we want
less code, not more (more software can be good, though). The
important point is that the metaprogram is what we develop and
maintain and the metaprogram is small: we shouldn’t have to
worry about the generated code’s size.

Unfortunately we do have to worry about the generated code,
not least because it has to fit in our system. If we turn a critical eye
on the ISO 8859 conversion functions we discussed earlier we can
see that the generated code size could be halved: values in the range
(0, 0x7f) translate unchanged into UTF-8, and therefore do not
require 128 separate cases. Of course, the metaprogram could easily
be modified to take advantage of this information, but the point still
holds: generated code can be bloated.

See [Brown] for a more thorough discussion of this issue.

Too Clever

Good programmers use metaprograms because they are lazy. I
don’t mean lazy in the sense of “can’t be bothered to put the right
header in a source file”, I mean lazy in the sense of “why should I
do something a machine could do for me?”.

Being lazy in this way requires a certain amount of cleverness
and “clever” can be a pejorative every bit as much as “lazy” can. A
metaprogram lives at a higher conceptual level than a regular
program. It has to be clever.

Experienced C++ programmers are used to selecting the right
language features for a particular job. Where possible, simple
solutions are preferred: not every class needs to derive from an
interface, and not every function needs template-type
parameters. Similarly, experienced metaprogrammers do not
write metaprograms when they can, they do it when they choose
to.

Concluding Thoughts

This article has touched on metaprogramming in a few of its
more common guises. I hope I have persuaded you that
metaprogramming is both ubiquitous and useful, and that it
shouldn’t be left to a select few.

At one time, the aim of computer science seemed to be to come
up with a language whose concepts were pitched at such a high level
that software development would be simple. Simple enough that
people could program machines as easily as they could, say, send
a text message1. Compilers would be intelligent and forgiving
enough to translate wishes to machine code.

This aim is far from being realised. We do have higher-level
languages but their grammars remain decidedly mechanical.
Programs written in low-level languages still perform the bulk of
processing. Perhaps a more realistic aim is for a framework where
languages and programs are compatible, able to communicate with
humans and amongst themselves, on a single device or across a
network.

In such a framework, metaprogramming is your friend.
Thomas Guest

thomas.guest@ntlworld.com

References

[Abrahams and Gurtovoy] David Abrahams and Aleksey Gurtovoy,
C++ Template Metaprogramming: Concepts, Tools, and
Techniques from Boost and Beyond

[Alexandrescu] Andrei Alexandrescu’s homepage is at
http://www.moderncppdesign.com/main.html

[Brown] Silas S Brown, “Automatically-Generated Nightmares”,
CVu 16.6

[Doctest] doctest – Test interactive Python examples
http://docs.python.org/lib/module-doctest.html

[Guest1] Thomas Guest, “A Python Script to Relocate Source
Trees”, CVu 16.2 (also available re-titled “From A to B with
Python” at [Homepage]

[Guest2] Thomas Guest, A Mini-Project to Decode a Mini-
Language - Part 3, available at [Homepage]. (The first two parts
of this article appeared in Overloads 63 and 64).

1 Though maybe we aren’t so far off. To quote Bjarne Stroustrup [Stroustrup2]: “I have
always wished for my computer to be as easy to use as my telephone; my
wish has come true because I can no longer figure out how to use my
telephone.”

[concluded at foot of next page]

16

Overload issue 66 april 2005

Separating Interface and
Implementation in C++

by Alan Griffiths & Mark Radford

This article discusses three related problems in the design of C++
classes and surveys five of the solutions to them found in the
literature. These problems and solutions are considered together
because they relate to separating the design choices that are
manifested in the interface from those that are made in
implementing the class. The problems are:
● Reducing implementation detail exposed to the user
● Reducing physical coupling
● Allowing customised implementations
These have led developers to seek ways to separate interface
from implementation and practice has seen all of the following
idioms used and documented. We will be evaluating them to see
how they compare as solutions to the above problems:
● Interface Class
● Cheshire Cat
● Delegation
● Envelope/Letter
● Non-Virtual Public Interface
In order to illustrate the problems and solutions we are going to use
a telephone address book (with very limited functionality) as an
example. For comparison purposes we have implemented this as a
naïve implementation (see first sidebar) which does not attempt to
address any of the stated problems. We have also refactored this
example to use each of the idioms – the header files are reproduced
in the corresponding sidebars. (The full implementation and
sample client code for all versions of the example are available
with the online version of this article [WEB05].)

Examining the Problems

Problem 1: Reducing Implementation
Detail Exposed to the User

Client code makes use of an object via its public interface,
without any recourse to implementation details. Since the authors
of client code have to use an object through its public interface
that interface is all they need to understand. This public interface
typically comprises member function declarations.

C++ allows developers to separate the implementation code for
member functions from the class definition, but there is no
comparable support for separating the member data that implements
an object’s state (or, for that matter, for separating the declarations
of private member functions). Consequently the implementation
detail exposed in a class’s definition is still there as background
noise, providing users with an added distraction. The definition of
a class is typically encumbered with implementation “noise” that

Naïve Implementation
// naive.h – implementation hiding example.

#ifndef INCLUDED_NAIVE_H

#define INCLUDED_NAIVE_H

#include <string>

#include <utility>

#include <map>

namespace naive {

/** Telephone list. Example of implementing a

* telephone list using a naive implementation.

*/

class telephone_list {

public:

/** Create a telephone list.

* @param name The name of the list.

*/

telephone_list(const std::string& name);

/** Get the list’s name.

* @return the list’s name.

*/

std::string get_name() const;

/** Get a person’s phone number.

* @param person Person’s name (exact match)

* @return pair of success flag and (if success)

* number.

*/

std::pair<bool, std::string>

get_number(const std::string& person) const;

/** Add an entry. If an entry already exists for

* this person it is overwritten.

* @param name The person’s name

* @param number The person’s number

*/

telephone_list&

add_entry(const std::string& name,

const std::string& number);

private:

typedef std::map<std::string, std::string> dictionary_t;

std::string name;

dictionary_t dictionary;

telephone_list(const telephone_list& rhs);

telephone_list& operator=(const telephone_list& rhs);

};

} // namespace naive

#endif

[Homepage] http://homepage.ntlworld.com/thomas.guest
[Raymond] Eric S. Raymond, Why Python?,

http://pythonology.org/success&story=esr

[Stroustrup1] Bjarne Stroustrup, The Design and Evolution of
C++

[Stroustrup2] Bjarne Stroustrup, Did you really say that?, from
Bjarne Stroustrup’s FAQ http://www.research.att.com/~bs/
bs_faq.html#really-say-that

[Sutter] Herb Sutter, “What can and can’t macros do?”, Guru of the
Week 77 http://www.gotw.ca/gotw/077.htm

[van Rossum] Unifying types and classes in Python 2.2
http://www.python.org/2.2/descrintro.html

[Wikipedia] A free-content encyclopedia that anyone can edit,
http://wikipedia.org/

Credits

Thanks to Dan Tallis for reviewing an earlier draft of this article.

[continued from previous page]

17

Overload issue 66 april 2005

is of no interest to the user and is inaccessible to the client code
written by that user: the naïve implementation shows this with
MyDict, myName and dict.

Problem 2: Reducing Physical Coupling

The purpose of defining a class in a header file is for the
definition of that class to be included in any translation units that
define the client code for that class. If classes are designed in a
naïve manner this leads to compilation dependencies upon details
of the implementation that are not only inaccessible to the client
code but also (in most cases) do not affect it in any way.

These compilation dependencies are undesirable for two
reasons:
● Additional header file inclusions may be required to compile the

class definition. This increases the size of all dependent
translation units. The “Naïve Implementation” example needs
<map> even though std::map is not used in the public interface
– if this were a user header with its own inclusions these too
might be “bloat”.

● When changes are made to implementation elements in the
header – even without affecting the interface – the client code
must be recompiled. (When using shared libraries this can also
introduce binary incompatibilities between versions.) Should the
example implementation change the choice of using MyDict,
myName or dict this affects all client code.

In a medium to large system the effect of these compilation
dependencies can multiply to an extent that causes excessive and
problematic build times.

Problem 3: Allowing Customised
Implementations

Library code frequently defines points of customisation for user
code to exploit. One of the ways to do this is to specify an
interface as a class and allow the user code to supply objects that
conform to this interface.

Such a library is typically compiled before the user code is
written. In this case the library contains the “client code” and for
this to have compilation dependencies on the implementation would
be problematic.

Clearly, the naïve implementation makes no provision for
alternative implementations.

The Idioms

We present the best known idioms for implementation hiding
along with some comments in italics.

Each of these idioms can have advantages and these need to be
understood when choosing between them.

Cheshire Cat

A private “representation” class is written that embodies the same
functionality and interface as the naïve class – however, unlike
the naïve version, this is defined and implemented entirely within
the implementation file. The public interface of the class
published in the header is unchanged, but the private
implementation details are reduced to a single member variable
that points to an instance of the “representation” class, each of its
member functions forwards to the corresponding function of the
“representation” class.

The term “Cheshire Cat” (see [Murray1993]) is an old one,
coined by John Carollan over a decade ago. Sadly it seems to have

disappeared from use in contemporary C++ literature. It appears
described as a special case of the BRIDGE pattern in “Design
Patterns” [GOF95], but the name “Cheshire Cat” is not mentioned.
Herb Sutter (in [Sut00]) discusses it under the name “Pimpl idiom”,
but considers it only from the perspective if its use in reducing
physical dependencies. It has also been called “Compilation
Firewall”.

Cheshire Cat requires “boilerplate” code in the form of
forwarding functions (see “Cheshire Cat Implementation” sidebar
below) that are tedious to write and (if the compiler fails to optimise
them away) can introduce a slight performance hit. It also requires
care with the copy semantics (although it is possible to factor this
out into a smart pointer – see Griffiths99). As the relationship
between the public and implementation classes is not explicit it can
cause maintenance issues.

Delegation

One or more areas of the class functionality are factored out from
the naïve implementation into separate helper classes. The class
published in the header holds a pointer to each of these classes
and delegates responsibility for the corresponding functionality
by forwarding the corresponding operations. This is similar to
Cheshire Cat, except that some implementation may remain
exposed (like myName in the example) and there may be more
than one helper class. (The helper classes may be defined and
implemented in the implementation file – as in the sample code –

Cheshire Cat

// cheshire_cat.h Cheshire Cat –

// implementation hiding example

#ifndef INCLUDED_CHESHIRE_CAT_H

#define INCLUDED_CHESHIRE_CAT_H

#include <string>

#include <utility>

namespace cheshire_cat {

class telephone_list {

public:

telephone_list(const std::string& name);

~telephone_list();

std::string get_name() const;

std::pair<bool, std::string>

get_number(const std::string& person) const;

telephone_list&

add_entry(const std::string& name,

const std::string& number);

private:

class telephone_list_implementation;

telephone_list_implementation* rep;

telephone_list(const telephone_list& rhs);

telephone_list& operator=(

const telephone_list& rhs);

};

} // namespace cheshire_cat

#endif

18

Overload issue 66 april 2005

or placed in a header file and made available for use by other
code.)

Delegation is attractive where there is a distinct area of
functionality that can be factored out or shared with another class.
In maintenance and performance terms it is similar to Cheshire Cat.

Envelope/Letter

As with Cheshire Cat a private “representation” class is
written which implements the same functionality and interface
as the naïve class but is defined and implemented entirely
within the implementation file. The variations from Cheshire
Cat are:
● The “representation” class is derived from the public one.
● The member functions of the public class are declared virtual

(and overridden in the implementation class).
● The class published in the header holds a pointer to what appears

to be another instance of the class but, in fact, is an instance of
the derived class.

This is described in some detail in Coplien’s “Advanced C++
Style and Idioms” [Cope92].

Frankly Envelope/Letter confuses us – we don’t see what
advantage it gives over Cheshire Cat. (Maybe it is just a misguided
attempt to represent the correspondence of interface and
implementation functions explicitly?) But please read Coplien and

make up your own mind! In performance terms each client call
initiates two function calls dispatched via the v-table – so it is the
slowest of the idioms. (However it is rare that the overhead of a
virtual function call is significant.)

Interface Class

All member data is removed from the naïve class and all member
functions are made pure virtual. In the implementation file a
derived class is defined that implements these member functions.
The derived class is not used directly by client code, which sees
only a pointer to the public class.

This is described in some detail in Mark Radford’s “C++
Interface Classes – An Introduction” [Radford04].

Conceptually the Interface Class idiom is the simplest of those
we consider. However, it may be necessary to provide an additional
component and interface in order to create instances. Interface
Classes, being abstract, can not be instantiated by the client. If a
derived “implementation” class implements the pure virtual
member functions of the Interface Class, then the client can create
instances of that class. (But making the implementation class
publicly visible re-introduces noise.) Alternatively, if the
implementation class is provided with the Interface Class and
(presumably) buried in an implementation file, then provision of an
additional instantiation mechanism – e.g. a factory function – is

Envelope/Letter

// envelope_letter.h – Envelope/Letter

// implementation hiding example.

#ifndef INCLUDED_ENVELOPE_LETTER_H

#define INCLUDED_ENVELOPE_LETTER_H

#include <string>

#include <utility>

namespace envelope_letter {

class telephone_list {

public:

telephone_list(const std::string& name);

virtual ~telephone_list();

virtual std::string get_name() const;

virtual std::pair<bool, std::string>

get_number(const std::string& person) const;

virtual telephone_list&

add_entry(const std::string& name,

const std::string& number);

protected:

telephone_list();

private:

telephone_list* rep;

telephone_list(const telephone_list& rhs);

telephone_list& operator=(

const telephone_list& rhs);

};

} // namespace envelope_letter

#endif

Delegation

// delegation.h – Delegation implementation hiding

// example.

#ifndef INCLUDED_DELEGATION_H

#define INCLUDED_DELEGATION_H

#include <string>

#include <utility>

namespace delegation {

class telephone_list {

public:

telephone_list(const std::string& name);

~telephone_list();

std::string get_name() const;

std::pair<bool, std::string>

get_number(const std::string& person) const;

telephone_list&

add_entry(const std::string& name,

const std::string& number);

private:

std::string name;

class dictionary;

dictionary* lookup;

telephone_list(const telephone_list& rhs);

telephone_list& operator=(

const telephone_list& rhs);

};

} // namespace delegation

#endif

19

Overload issue 66 april 2005

necessary. This is shown as a static create function in the
corresponding sidebar.

As objects are dynamically allocated and accessed via pointers
this solution requires the client code to manage the object lifetime.
This is not a handicap where the domain understanding implies
objects are to be managed by a smart pointer (or handle) but it may
be significant in some cases.

Note: Interfaces may play an additional role in design to that
addressed in this article – they may be used to delineate each of
several roles supported by a concrete type. This allows for client
code that depend only on (the interface to) the relevant role.

Non-Virtual Public Interface

All member data is removed from the naïve class, the public
interface becomes non-virtual forwarding functions that delegate
to corresponding private pure virtual functions. As with Interface
Class the implementation file defines a derived class that
implements these member functions. The derived class is not
used directly by client code, which sees only a pointer to the
public class.

This is described in some detail in Sutter’s “Exceptional C++
Style” [Sut04].

We had thought Non-Virtual Public Interface an idea that had
been tried and discarded as introducing unjustified complexity.

While the standard library uses this idiom in the iostreams design
we’ve yet to see an implementation of the library that exploits the
additional flexibility (in implementing the public functions) it offers
over Interface Class. Further, there are some costs to providing this
flexibility:
● A class definition embodies the contract between code that uses

and code that implements that class. By splitting the contract into
(public) non-virtual usage and (private) virtual implementation
parts it introduces a need to understand both and also a need to
document and follow the relationship between them.

● There is a development and maintenance cost: because the
implementation functions are private to the base class they
cannot be called directly by a unit test.

● There is a potential performance cost: if the extra function call
is not optimised away it can use additional stack space and time.

Interface Class

// interface_class.h – Interface Class

// implementation hiding example.

#ifndef INCLUDED_INTERFACE_CLASS_H

#define INCLUDED_INTERFACE_CLASS_H

#include <string>

#include <utility>

namespace interface_class {

class telephone_list {

public:

static telephone_list*

create(const std::string& name);

virtual ~telephone_list() {}

virtual std::string get_name() const = 0;

virtual std::pair<bool, std::string>

get_number(const std::string& person) const = 0;

virtual telephone_list&

add_entry(const std::string& name,

const std::string& number) = 0;

protected:

telephone_list() {}

telephone_list(const telephone_list& rhs) {}

private:

telephone_list& operator=(

const telephone_list& rhs);

};

} // namespace interface_class

#endif

Non-Virtual Public Interface

// non_virtual_public_interface.h – Non-Virtual

// Public Interface implementation hiding example

#ifndef INCLUDED_NONVIRTUAL_PUBLIC_INTERFACE_H

#define INCLUDED_NONVIRTUAL_PUBLIC_INTERFACE_H

#include <string>

#include <utility>

namespace non_virtual_public_interface {

class telephone_list {

public:

static telephone_list* create(

const std::string& name);

virtual ~telephone_list() {}

std::string get_name() const

{ return do_get_name(); }

std::pair<bool, std::string>

get_number(const std::string& person) const

{ return do_get_number(person); }

virtual telephone_list&

add_entry(const std::string& name,

const std::string& number)

{ return do_add_entry(name, number); }

protected:

telephone_list() {}

telephone_list(const telephone_list& rhs) {}

private:

telephone_list& operator=(

const telephone_list& rhs);

virtual std::string do_get_name() const = 0;

virtual std::pair<bool, std::string>

do_get_number(const std::string& person) const = 0;

virtual telephone_list&

do_add_entry(const std::string& name,

const std::string& number) = 0;

};

} // namespace non_virtual_public_interface

#endif

20

Overload issue 66 april 2005

Evaluating the Solutions

Problem 1: Reducing Implementation
Detail Exposed to the User

All the idioms considered address this problem reasonably
successfully. The only implementation detail any of these idioms
expose is the mechanism by which they support the separation:

● Interface Class declares virtual functions
● Cheshire Cat exposes a pointer to the “real” implementation
● Non-Virtual Public Interface declares forwarding functions and

virtual functions
● Envelope/Letter declares virtual functions and a pointer to the

“real” implementation

Delegation is in a way the odd one out, because it does not by
nature conceal all the implementation detail. This point is

illustrated in our example implementation where the
std::string member myName is visible in the definition of
TelephoneList. Delegation reduces the implementation
noise exposed to clients, but – unless all functionality is
delegated to one (or more) other classes – it leaves the class
still vulnerable to the problems suffered by the naïve
implementation.

Problem 2: Reducing Physical
Coupling

When the principal concern is reducing compile time
dependencies the size (including indirect inclusions) of the
header is more significant than that of the implementation file.
However, in most cases, there is very little difference between the
header files required by the different idioms – in our example
they all have the same includes and the file lengths are as
follows:

Cheshire Cat Implementation

// MCheshireCat.cpp - implementation hiding example.

#include “cheshire_cat.h”

#include <map>

namespace cheshire_cat {

// Declare the implementation class

class telephone_list::telephone_list_implementation {

public:

telephone_list_implementation(

const std::string& name);

~telephone_list_implementation();

std::string get_name() const;

std::pair<bool, std::string>

get_number(const std::string& person) const;

void add_entry(const std::string& name,

const std::string& number);

private:

typedef std::map<std::string, std::string>

dictionary_t;

std::string name;

dictionary_t dictionary;

};

// Implement the stubs for the wrapper class

telephone_list::telephone_list(

const std::string& name)

: rep(new telephone_list_implementation(name)) {}

telephone_list::~telephone_list() { delete rep; }

std::string telephone_list::get_name() const {

return rep->get_name();

}

std::pair<bool, std::string> telephone_list::

get_number(const std::string& person) const {

return rep->get_number(person);

}

telephone_list& telephone_list::add_entry(

const std::string& name,

const std::string& number) {

rep->add_entry(name, number);

return *this;

}

// Implement the implementation class

telephone_list::telephone_list_implementation::

telephone_list_implementation(

const std::string& name)

: name(name) {}

telephone_list::telephone_list_implementation::

~telephone_list_implementation() {}

std::string telephone_list::

telephone_list_implementation::get_name() const {

return name;

}

std::pair<bool, std::string>

telephone_list::telephone_list_implementation::

get_number(const std::string& person) const {

dictionary_t::const_iterator i

= dictionary.find(person);

return(i != dictionary.end()) ?

std::make_pair(true, (*i).second) :

std::make_pair(true, std::string());

}

void telephone_list::telephone_list_implementation::

add_entry(const std::string& name,

const std::string& number) {

dictionary[name] = number;

}

} // namespace cheshire_cat

21

Overload issue 66 april 2005

$ wc *.h | sort

62 163 1580 cheshire_cat.h

62 184 1677 interface_class.h

65 162 1535 naive.h

66 163 1554 delegation.h

66 164 1605 envelope_letter.h

94 285 2688 non_virtual_public_interface.h

The lack of variation is not surprising: all of the examples have
eliminated the <map> header file and the only substantial
difference is that Non-Virtual Public Interface declares twice as
many functions (having both public and private versions of each).

Problem 3: Allowing Customised
Implementations

It should be noted that only Interface Class and Non-Virtual
Public Interface allow user implementation – the other idioms do
not publish an implementation interface.

When our principal concern is that of simplifying the task of
implementing the class then the size of the implementation file is
most significant:

$ wc interface_class.cpp /

non_virtual_public_interface.cpp

85 147 2013 interface_class.cpp

89 151 2186 non_virtual_public_interface.cpp

There is no substantial difference in implementation cost
between these approaches as they contain almost identical
code.

Conclusion

In scenarios where customisation of implementation needs to be
supported the choice is between Interface Class and Non-Virtual
Public Interface. In this case we would prefer the simplicity of
Interface Class (unless we have a need for the public functions to
do more work than forwarding – which leads us into the territory
of TEMPLATE METHOD [GOF95]).

Sometimes we wish to develop “value based” classes – these
can, for example, be used directly with the standard library
containers. Only three of the idioms (Cheshire Cat,
Envelope/Letter and Delegation) permit this style of class. (Using
value-based classes implies that the identity of class instances is
transparent – and that may not be appropriate). Of these options,
Cheshire Cat is most often the appropriate choice – although
Delegation may be appropriate if it allows common functionality
to be factored out.

There are many occasions where user customisation of
implementation is not required, and the identity of instances of the
class is important. In these circumstances it is reasonable to expect

Interface Class Implementation

// MAbstractBaseClass.cpp - implementation hiding

// example.

#include “interface_class.h”

#include <map>

// Declare the implementation class

namespace {

class telephone_list_implementation

: public interface_class::telephone_list {

public:

telephone_list_implementation(const std::string& name);

virtual ~telephone_list_implementation();

private:

virtual std::string get_name() const;

virtual std::pair<bool, std::string>

get_number(const std::string& person) const;

virtual interface_class::telephone_list&

add_entry(const std::string& name,

const std::string& number);

typedef std::map<std::string, std::string>

dictionary_t;

std::string name;

dictionary_t dictionary;

};

} // anonymous namespace

// Implement the stubs for the base class

namespace interface_class {

telephone_list* telephone_list::create(

const std::string& name) {

return new telephone_list_implementation(name);

}

} // namespace interface_class

// Implement the implementation class

namespace {

telephone_list_implementation::

telephone_list_implementation(const std::string& name)

: name(name) {}

telephone_list_implementation::

~telephone_list_implementation() {}

std::string

telephone_list_implementation::get_name() const

{ return name; }

std::pair<bool, std::string>

telephone_list_implementation::

get_number(const std::string& person) const {

std::pair<bool, std::string> rc(false,

std::string());

dictionary_t::const_iterator i

= dictionary.find(person);

return(i != dictionary.end()) ?

std::make_pair(true, (*i).second) :

std::make_pair(true, std::string());

}

interface_class::telephone_list&

telephone_list_implementation::

add_entry(const std::string& name, const

std::string& number) {

dictionary[name] = number;

return *this;

}

} // anonymous namespace

[concluded at foot of next page]

22

Overload issue 66 april 2005

client code to manage object lifetime explicitly (e.g. by using a
smart pointer). Both Interface Class and Cheshire Cat are
reasonable choices here. Interface Class is simpler, but where a
strong separation of interface and implementation is required
Cheshire Cat may be preferred.

Alan Griffiths & Mark Radford

References

[WEB05] http://www.octopull.demon.co.uk/c++/

implementation_hiding.html

[Cope92] J. Coplien. Advanced C++ Programming Styles and
Idioms, Addison-Wesley, 1992

[Murray1993] Robert B Murray, C++ Strategies and Tactics,
Addison-Wesley, 1993.

[Sut00] Herb Sutter. Exceptional C++, Addison-Wesley, 2000
[Griffiths99] http://www.octopull.demon.co.uk/c++/
TheGrin.html

[Radford04] Mark Radford, “C++ Interface Classes – An
Introduction”, Overload 62, and also available from
http://www.twonine.co.uk/articles/

CPPInterfaceClassesIntro.pdf

[Sut04] Herb Sutter. Exceptional C++ Style, Addison-Wesley, 2004
[GOF95] Gamma, Helm, Johnson & Vlissides. Design Patterns,

Addison-Wesley, 1995

Acknowledgments

Thanks to Tim Penhey and Phil Bass for commenting on drafts of
this article.

Overload Resolution
– Selecting the Function

by Mikael Kilpeläinen

Overloading is a form of polymorphism, however, the rules are
quite complex in C++. This article tries to explain most of the
rules and clarify concepts like the implicit conversion sequence.
The main aim is to explain how a function is selected from the set
of possibilities. This makes it easier to understand and correct
ambiguities the compilers might complain about.

Overview of Overloading Process

Declaring two or more items with the same name in a scope is
called overloading. In C++ the items which can be overloaded
are free functions, member functions and constructors, which are
collectively referred to as functions. The compiler selects which
function to use at compile time according to the argument list,
including the object itself in the case of member functions. The
functions that have the same name and are visible in a specific
context are called candidates. First the usable functions are
selected from the set of candidates. These usable functions are
called viable functions. A function is viable if it can be called,
that is the parameter count matches the arguments and an implicit
conversion sequence exists for every argument to the
corresponding parameter. A function having more parameters
than there are arguments in an argument list can also be viable if
default arguments exist for all the extra parameters. In such cases
the extra parameters are not considered for the purpose of
overload resolution. Access control is applied after overload
resolution, meaning that if the function selected is not accessible
in the specified context, the program is ill-formed.

Phases of the function call process:
1. Name lookup
2. Overload resolution
3. Access control

Many different contexts of overloading exist and each has its
own set of rules for finding the set of candidate functions and
arguments. Those rules are not covered here except for a few
important cases which involve a user-defined conversion. After
defining the candidates and the arguments for each context, the
rest of the overload process is identical for all contexts.

Ordering of Viable Functions

A viable function is better than another viable function if (and
only if) it does not have a worse implicit conversion sequence for
any of its arguments than the other function and has one of the
following properties:
● It has at least one better conversion sequence than the other

function.
● It is a non-template and the other function is a template

specialisation.
● Both are templates and it is more specialised than the other

function according to the partial ordering rules.
The ordering of implicit conversion sequences is explained later.
If only one function is better than other functions in the set of
viable functions then it is called the best viable function and is
selected by the overload resolution. Otherwise the call is ill-
formed and diagnostics are reported.

Member Functions and Built-in
Operators With Overloading

For overload resolution, member functions are considered as
free functions with an extra parameter taking the object itself.
This is called the implicit object parameter. The cv-
qualification1 of the implicit parameter is the same as the cv-
qualification of the specified member function. The object is
matched to the implicit object parameter to make the overload
resolution possible. This is an easy way to make the overloading
rules uniform for the member functions and free functions. The
implicit object argument is just like other arguments, except for
a few special rules: the related conversions cannot introduce
temporaries, no user-defined conversions are allowed and an
rvalue can be bound to a non-constant reference. For static
member functions the implicit object parameter is not considered
since there is no object to match it. Also the built-in operators
are considered free functions for the purpose of overload
resolution.

Examples:
struct type {

void func(int) const;

void other();

};

1 const and volatile are the cv-qualifiers.

[continued from previous page]

23

Overload issue 66 april 2005

The member functions are considered as

void func(type const&, int);

void other(type&);

char* p;

p[0];

The subscript operator is considered as

T& operator[](T*, ptrdiff_t);

where T is a cv-(un)qualified type

Conversions

The implicit conversion sequences are based
on single conversions. These simple implicit
conversions provide a great deal of flexibility
and can be helpful if used correctly. Even though single
conversions are quite easy, the interaction between the
sequences of conversions and the overloading is far from simple.
The standard conversions are the built-in conversions, those are
categorised and ranked to form an intuitive order. This is the
basis for ranking the conversion sequences consisting of only
standard conversions. There are three ranks for these
conversions (see Table 1). In addition to those standard
conversions, a derived-to-base conversion exists but only in the
description of implicit conversion sequences. It has a conversion
rank.

Examples:
char → int (integral promotion)
float → long (floating-integral conversion)
type → type const (qualification conversion)
type → type (identity conversion)

Besides standard conversions there are the user-defined
conversions, meaning conversion functions and converting
constructors. User-defined conversions are applied only if they
are unambiguous. It is good to know that at most one user-
defined conversion is implicitly applied to a single value. Three
forms of conversion sequences can be constructed from these
different conversions:

● Standard conversion sequence
● User-defined conversion sequence
● Ellipsis conversion sequence

Standard Conversion Sequences

The standard conversion sequence is either an identity conversion
or consists of one to three standard conversions from the four
categories when identity is not considered, at most one
conversion per category. The standard conversions are always
applied in a certain order: Lvalue transformation, Promotion or
Conversion and Qualification adjustment. The standard
conversion sequence is ranked according to the conversions it
contains, the conversion with the lowest rank dictates the rank of
the whole sequence.

Examples:
bool → short (conversion rank)
char → char const (exact match rank)
char → int → int const (promotion rank)
float[] → float* → float const* (exact match rank)

User-Defined Conversion
Sequences

A user-defined conversion sequence is a composition of three
pieces: first an initial standard conversion sequence followed by a
user-defined conversion and then followed by another standard
conversion sequence. In the case when the user-defined
conversion is a conversion function, the first conversion sequence
converts the source type to the implicit object parameter so that
the user-defined conversion can be applied.

On the other hand, if the user-defined conversion is a constructor,
the source type is converted to a type required by the constructor.
After the user-defined conversion is applied, the second standard
conversion sequence converts the result to a destination type. If the
user-defined conversion is a template conversion function, the
second standard conversion sequence is required to have an exact
match rank. A conversion from a type to the same type is given an
exact match rank even though a user-defined conversion is used.
This is natural when passing parameters by value and hence using
a copy constructor.

Examples:
struct A { operator int(); };

long var = A();

A → int → long

struct B { B(float); };

void func(B const&);

func(0);

int → float → B → B const

Ellipsis Conversion Sequences

The last and third form of conversion sequence is an ellipsis
conversion sequence, which happens when matching an
argument to an ellipsis parameter.

Conversion Category Ranking Rank

No conversions required Identity

Lvalue-to-rvalue conversion
Array-to-pointer conversion Lvalue transformation Exact match 1
Function-to-pointer conversion

Qualification conversion Qualification adjustment

Integral promotions Promotion Promotion 2
Floating point promotions

Integral conversions
Floating point conversions
Floating-integral conversions Conversion Conversion 3
Pointer conversions
Pointer to member conversions
Boolean conversions

Table 1: Standard Conversions (smallest number is highest rank)

24

Overload issue 66 april 2005

Examples:
void func(...);

func(0); // an ellipsis conversion sequence,

// int matching to an ellipsis

// parameter.

Reference and Non-Reference
Parameters

If a parameter type is not a reference, the implicit conversion
sequence models a copy-initialisation. In that case any difference
in top level cv-qualification is not considered as a conversion.
Also the use of a copy constructor is not ranked as a user-defined
conversion but as an exact match and hence is not a conversion.
However, if the parameter is a reference, binding to a reference
occurs. The binding is considered an identity conversion and
hence if the destination type binds directly to the source
expression, it is an exact match. An rvalue can not be bound to a
non-const reference and a candidate requiring such is not viable.
If the type of the argument does not directly bind to the
parameter, the implicit conversion sequence models a copy-
initialisation of a temporary to the underlying type of the
reference, similar to the case of a non-reference.

Basic Ordering of Conversion
Sequences

The implicit conversion sequences for the nth parameters of the
viable functions need to be ordered to select the best viable
function if one exists. The three basic forms of sequences are
ordered so that the standard conversion sequence is better than
the user-defined conversion sequence and the user-defined
conversion sequence is better than the ellipsis conversion
sequence. In case that two conversion sequences cannot be
ordered, they are said to be indistinguishable. This is rather easy
and intuitive ordering but there is a lot more to it.

Ordering of Standard Conversion
Sequences

Standard conversion sequences are ordered by their rank. The
higher the rank, the better the sequence. Another important
ordering is that a proper subsequence of another sequence is
better than the other sequence. The comparison excludes lvalue
transformations. An identity conversion is considered to be a
subsequence of any non-identity conversion sequence. Also
there are other rules that apply with the standard conversion
sequences: If two sequences have the same conversion rank,
they are indistinguishable unless one is a conversion of a
pointer to bool which is a worse conversion than other
conversions. In case of converting a type to its direct or indirect
base class, the conversion to a base class closer in the
inheritance hierarchy is a better conversion than a conversion to
a base class that is further away. The same applies with pointers
and references, also with pointers void* is considered to be the
furthest in the hierarchy.

Ordering of User-Defined
Conversion Sequences

User-defined conversion sequences are somewhat more
difficult to order. Constructing a user-defined conversion
sequence for a specific parameter means first using the

overload resolution to select the best user-defined conversion
for the sequence. This works just like ordinary overloading but
now the first parameter of a converting constructor is
considered as a destination type and similarly in the case of a
conversion function the implicit object parameter. In case there
is more than one best user-defined conversion, the second
standard conversion sequence is used to decide which
conversion sequence is better than the other. If there is no best
conversion sequence for that specific parameter, the sequence
is an ambiguous conversion sequence. It is treated as any user-
defined conversion sequence because it always involves a user-
defined conversion. The purpose of an ambiguous conversion
sequence is to keep a specific function viable. Removing the
function from the set of viable functions could cause some
other function to become the best viable function even if it
clearly is not. If a function using an ambiguous conversion
sequence is selected as the best viable function, the call is ill-
formed.

Examples:
struct A;

struct B {

B(A const&);

};

struct A {

operator B() const;

operator int() const;

};

void func(B);

void func(int);

func(A());

The call is ambiguous, however, the parameter B has an
ambiguous conversion sequence and if the function having this
parameter was eliminated the call would not be ambiguous. This
is because there would be only one function to select.

For each argument the implicit conversion sequences are
constructed. After that the sequences are compared and ordered.
Two user-defined conversion sequences are indistinguishable unless
they use the same user-defined conversion in which case the second
standard conversion sequence is conclusive.

Difficulties With User-Defined
Conversions

There are a few oddities with user-defined conversions, mostly
when the destination type is a reference.

One such context is an initialisation by conversion function
for direct reference binding. This means that a conversion
function converting to a type which is reference-compatible with
the destination type exists. In this case the candidates for
selecting the user-defined conversion are only the conversion
functions returning a reference that is compatible with the
destination reference.

Another thing is that in the same context, the second standard
conversion sequence is considered to be an identity conversion
if the result binds directly to the destination, or a derived-to-base
conversion in the case of a base class. This means for example

[concluded at foot of next page]

25

Overload issue 66 april 2005

that there is no ordering for different cv-qualifications. The rules
concerning this might change in future standards to make the
rules consistent and to meet one’s expectations.

Another Way to Handle User-
Defined Conversion Sequences

Considering the overload rules for user-defined conversions, it is
easy to notice that the selection of the user-defined conversion
can be combined with the rest of the overload process. This leads
to a few rules:

If the destination parameter is the same for two sequences, the
first standard conversion sequences are used to order these user-
defined conversion sequences.

After that the second standard conversion sequence is used to
select the best conversion sequence.

Of course one has to be careful not to mix those with the
conversion sequences that do not have the same destination.

Function Templates With
Overloading

In most cases a function template behaves just like a normal
function when considering overload resolution. The template
argument deduction is applied, if it succeeds, the function is
added to the candidates set. Such a function is handled like any
other function, except when two viable functions are equally
good, the non-template one is selected. In case both are a

specialisation of a function template, partial ordering rules are
applied. The partial ordering rules are out of the scope of this
article.

Conclusion

This just about covers all there is to know about conversion
sequences. However there are a lot of subjects to cover which are
related to the subject of this article, to mention a few: finding
candidate sets, overloadable declaration and partial ordering. It
can be somewhat hard to remember all the rules related to the
issue, however, only a subset is normally needed. The basic ideas
are easy enough to remember and those are the ones usually
needed and of course it is always possible to look up the exact
rules.

Mikael Kilpeläinen
mikael.kilpelainen@kolumbus.fi

Acknowledgements

Thank you to Rani Sharoni, Terje Slettebø, Stefan de Bruijn and
Paul Grenyer for providing important comments.

References

[1] ISO/IEC 14882-2003, Standard for the C++ language
[2] David Vandevoorde and Nicolai M. Josuttis, C++ templates:

The Complete Guide, Addison Wesley 2002

Digging a Ditch
Writing a Custom Stream

by Paul Grenyer
Writing a custom stream is easy! Most people are now entirely
comfortable using std::vector and std::list, and know the
difference between a std::map and a std::set. However, the
use and extension of the C++ standard library’s streams is still
considered difficult.

In this article I am going to look at writing a logging stream. A
logging stream inserts the current date and time at the beginning of
a buffer full of characters when it is flushed. The buffer is flushed
to another stream which can modify the characters further or write
them, for example, to the console (std::cout) or to a file
(std::ofstream).

In section 13.13.3 of The C++ Standard Library [Josuttis] Nico
Josuttis discusses how to write a custom stream in a fair amount of
detail. Even though the book is widespread among developers, the
section on streams does not appear to be widely read. Therefore in
this article I am going to follow reasonably closely the line that
Josuttis takes, but will cut out a lot of the unnecessary background
which may scare the people who, wrongly, feel it must be read and
understood before embarking on a custom stream. I will also discuss
and resolve a potential initialisation problem not explored by
Josuttis.

Stream Buffer

The heart of a stream is its buffer. Buffer is a misnomer as it does
not have to buffer at all and can, if it so chooses, process the
characters immediately.

Along with buffering, if required, the stream buffer does all the
reading and writing of characters for the stream. The standard
library provides std::basic_streambuf as a base class for
stream buffers. Listing 1 shows a stream buffer that converts all the
characters streamed to it to upper case and writes them with
putchar:

#include <streambuf>

#include <locale>

#include <cstdio>

template<class charT,

class traits = std::char_traits<charT> >

class outbuf

: public std::basic_streambuf<charT, traits> {

private:

typedef typename std::basic_streambuf<charT,

traits>::int_type int_type;

// Central output function.

// - print characters in uppercase.

virtual int_type overflow(int_type c) {

// Check character is not EOF

if(!traits::eq_int_type(c, traits::eof())) {

// Convert character to uppercase.

c = std::toupper<charT>(c,

std::basic_streambuf<charT,

traits>::getloc());

[continued from previous page]

26

Overload issue 66 april 2005

// Write character to standard output

if(putchar(c) == EOF) {

return traits::eof();

}

}

return traits::not_eof(c);

}

};

Listing 1: Example stream buffer

The overflow member function of std::basic_streambuf is
called for each character that is sent to the stream buffer.
Overriding it allows the behaviour to be modified. The example
in Listing 1 above performs the following for each character sent
to overflow:

1. The character is tested to make sure it is not an indication of the
end of a file or an error.

2. The character is converted to uppercase.
3. The character is written to standard out. If an error occurs while

writing the character this is indicated by returning
traits::eof().

4. An indication of whether or not the character represents the end
of a file or an error is returned.

Traits are used throughout Listing 1 to ensure that EOF is
detected and handled correctly. Streams can be used with any
character type that has a corresponding set of character traits. A
detailed knowledge of character traits is not required when using
the built in character types char and wchar_t as their traits are
already part of the standard library. Character traits are discussed
in 14.1.2 of Josuttis.

Output Stream

The easiest way to use a stream buffer is to pass it to an output
stream as shown in Listing 2 below:

#include <streambuf>

#include <ostream>

#include <locale>

#include <cstdio>

template<class charT,

class traits = std::char_traits<charT> >

class outbuf : public std::basic_streambuf<charT,

traits> {

private:

typedef typename std::basic_streambuf<charT,

traits>::int_type int_type;

// Central output function.

// - print characters in uppercase.

virtual int_type overflow(int_type c) {

// Check character is not EOF

if(!traits::eq_int_type(c, traits::eof())) {

// Convert character to uppercase.

c = std::toupper<charT>(c,

std::basic_streambuf<charT,

traits>::getloc());

// Write character to standard output

if(putchar(c) == EOF) {

return traits::eof();

}

}

return traits::not_eof(c);

}

};

int main() {

outbuf<char> ob;

std::basic_ostream<char> out(&ob);

out << "31 hexadecimal: "

<< std::hex

<< 31 << std::endl;

return 0;

}

Listing 2: Passing a stream buffer to an output stream

The output from the example in Listing 2 is:

31 HEXADECIMAL: 1F

The example in Listing 2 demonstrates a working stream, but is
not an ideal solution as the stream buffer must be declared
separately from the stream itself. A common solution is to create
a subclass of std::basic_ostream with the stream buffer as a
member which can be passed to the std::basic_ostream
constructor as shown in Listing 3:

template<class charT,

class traits = std::char_traits<charT> >

class ostream

: public std::basic_ostream<charT, traits> {

private:

outbuf<charT, traits> buf_;

public:

ostream() : std::basic_ostream<charT,

traits>(&buf_), buf_() {}

};

Listing 3: Subclass of std::basic_ostream

Having the stream buffer as a member introduces a potential
initialisation problem. The solution to the problem introduces a
further problem hidden deep within the C++ standard [C++
Standard]. However, this second problem is also easily fixed.

Problem 1

If the stream buffer is dereferenced in std::basic_ostream’s
constructor or in its destructor, undefined behaviour can occur
as the stream buffer will not have been initialised. At least
one well known and widely used standard library
implementation does nothing to avoid this and does not need
to. Library implementers know their stream implementations
and whether or not protection is needed. We, as stream
extenders writing for potentially any number of different
stream implementations, do not. There is no guarantee in the
C++ standard to fall back on either.

27

Overload issue 66 april 2005

Josuttis places the buffer before std::basic_ostream’s
constructor in the initialisation list, which makes no difference at
all as stated in 12.6.2/5 of the C++ standard:

Initialization shall proceed in the following order:
● First, and only for the constructor of the most derived class as

described below, virtual base classes shall be initialized in the order
they appear on a depth-first left-to-right traversal of the directed
acyclic graph of base classes, where “left-to-right” is the order of
appearance of the base class names in the derived class base-
specifier-list.

● Then, direct base classes shall be initialized in declaration order as
they appear in the base-specifier-list (regardless of the order of the
mem-initializers).

● Then, nonstatic data members shall be initialized in the order they
were declared in the class definition (again regardless of the order of
the mem-initializers).

● Finally, the body of the constructor is executed.
Note: the declaration order is mandated to ensure that base and
member subobjects are destroyed in the reverse order of initialization.

The fact that the stream buffer is not initialised before it is passed
to std::basic_ostream’s constructor may not cause a
problem with your compiler and library, but why risk it when
there is a simple and straightforward solution? On the other hand,
it may fail in a screaming fit immediately. Moving the stream
buffer to a private base class which is initialised before
std::basic_ostream solves the problem nicely. The
initialisation order of base classes is specified as stated in
12.6.2/5 above. Listing 4 shows the base class which is used to
initialise the stream buffer and how to use it with the output
stream.

template<class charT,

class traits = std::char_traits<charT> >

struct outbuf_init {

private:

outbuf<charT, traits> buf_;

public:

outbuf<charT, traits>* buf() {

return &buf_;

}

};

template<class charT,

class traits = std::char_traits<charT> >

class ostream : private outbuf_init<charT, traits>,

public std::basic_ostream<charT, traits> {

private:

typedef outbuf_init<charT, traits> outbuf_init;

public:

ostream() : outbuf_init(),

std::basic_ostream<charT,

traits>(outbuf_init::buf()) {}

};

Listing 4: Initialising the stream buffer

Problem 2

basic_ios is a virtual base class of basic_ostream. The C++
standard (27.4.4/2) describes its constructor as follows:

Effects: Constructs an object of class basic_ios (27.4.2.7)
leaving its member objects uninitialized. The object must be
initialized by calling its init member function. If it is destroyed
before it has been initialized the behavior is undefined.

basic_ios::init is called from within basic_ostream’s
constructor. This is where things get complicated. As basic_ios
is a virtual base class of basic_ostream, the objects which
make up an ostream object are initialised in the following order
(see 12.6.2/5):

...

basic_ios

outbuf

outbuf_init

basic_ostream

ostream

Therefore the constructors of basic_ios and outbuf are both
called before the constructor of basic_ostream and therefore
before basic_ios::init is called. This means that if the
outbuf constructor throws an exception, basic_ios’s
destructor will be called before basic_ios::init; resulting in
the undefined behaviour described in 27.4.4/2.

The answer to this problem is contained within 12.6.2/5 and is
very simple. Making ostream inherit virtually, as well as privately,
from outbuf_init causes it to be constructed before anything
else:

template<class charT,

class traits = std::char_traits<charT> >

class ostream

: private virtual outbuf_init<charT, traits>,

public std::basic_ostream<charT, traits> {

private:

typedef outbuf_init<charT, traits> outbuf_init;

public:

ostream()

: outbuf_init(),

std::basic_ostream<charT,

traits>(outbuf_init::buf()) {}

};

The initialisation order then becomes:

outbuf

outbuf_init

...

basic_ios

basic_ostream

ostream

Now, if output_buf does throw an exception there is no
undefined behaviour as the basic_ios has not yet been created.

28

Overload issue 66 april 2005

ostream can be made easier to use by introducing a couple of
simple typedefs for common character types:

typedef ostream<char> costream;

typedef ostream<wchar_t> wostream;

int main() {

costream out;

out << "31 HEXADECIMAL: " << std::hex

<< 31 << std::endl;

return 0;

}

Listing 5: Typedefs for using ostream

That completes the implementation for the simplest possible
custom stream.

Logging Stream Buffer

The previous example of a stream buffer was very basic,
potentially inefficient and didn’t actually buffer the characters
streamed to it. The logging stream mentioned at the start of this
article requires the characters to be buffered. When the buffer is
flushed the time and date are prepended before it is passed on to
the next stream.

Josuttis also has an example of a buffered stream buffer.
However, his example uses a fixed array for a buffer that gets
flushed when it is full. The logging stream should only flush the
buffer when instructed to do so, with a std::endl or a call to
flush. To accomplish this, the fixed array can be replaced with a
std::vector.

As already mentioned the logging stream simply buffers the
characters streamed to it and passes them on to another stream,
preceded by a time and date, when flushed. Therefore the stream
buffer must contain some form of reference to the other stream.

Listing 6 shows a basic implementation for the logging stream
buffer. A std::vector based buffer has been introduced and
overflow modified to check for EOF before inserting its character
into the buffer.

#include <streambuf>

#include <vector>

template<class charT,

class traits = std::char_traits<charT> >

class logoutbuf

: public std::basic_streambuf<charT, traits> {

private:

typedef typename std::basic_streambuf<charT,

traits>::int_type int_type;

typedef std::vector<charT> buffer_type;

buffer_type buffer_;

virtual int_type overflow(int_type c) {

if(!traits::eq_int_type(c, traits::eof())) {

buffer_.push_back(c);

}

return traits::not_eof(c);

}

};

Listing 6: Basic implementation of logging stream buffer

As it stands the stream buffer in Listing 6 only buffers
characters. It never flushes them. A pointer to an output
stream buffer, that the characters can be flushed to, is
required. The initialisation and undefined behaviour fixes
described in the previous section have the side effect that
logoutbuf will be a member of a virtual base class and
therefore should have a default constructor. A virtual base
class constructor must be called explicitly or implicitly from
the constructor of the most derived class (12.6.2/6). A default
constructor eliminates the need for explicit constructor
calling. This in turn means that a reference to an output stream
cannot be passed in through the constructor and therefore a
pointer to the output stream buffer must be stored instead and
initialised by way of an initialisation function. This is not
ideal, but a trade-off to guarantee safety elsewhere. The
initialisation function is also in keeping with the buffer
initialisation in basic_ios.

template<class charT,

class traits = std::char_traits<charT> >

class logoutbuf

: public std::basic_streambuf<charT, traits> {

private:

typedef typename std::basic_streambuf<charT,

traits>::int_type int_type;

typedef std::vector<charT> buffer_type;

std::basic_streambuf<charT, traits>* out_;

buffer_type buffer_;

public:

logoutbuf() : out_(0), buffer_() {}

void init(std::basic_ostream<charT,

traits>* out) {

out_ = out;

}

...

};

Listing 7: Initialising the output stream buffer

Listing 7 shows the logoutbuf stream buffer with the output
stream buffer pointer and initialisation function. A constructor
has also been added to make sure that the output stream buffer
pointer is initialised to 0, so that it can be reliably checked before
characters are sent to it.

When basic_ostream::flush is called, either directly or via
std::endl, it starts a chain of function calls that finally results in
basic_streambuf::sync being called. This is where the buffer
should be flushed. The buffer should also be flushed when a
logoutbuf object is destroyed, so sync should also be called from
the logoutbuf destructor.

template<class charT,

class traits = std::char_traits<charT> >

class logoutbuf

: public std::basic_streambuf<charT, traits> {

...

public:

...

29

Overload issue 66 april 2005

~logoutbuf() {

sync();

}

...

private:

...

virtual int sync() {

if(!buffer_.empty() && out_) {

out_->sputn(&buffer_[0],

static_cast<std::streamsize>

(buffer_.size()));

buffer_.clear();

}

return 0;

}

};

Listing 8: Synchronising the buffer

Listing 8 shows the implementation of the sync function. It
checks the buffer to make sure there is something in it to flush
and then checks the output stream buffer pointer to make sure
the pointer is valid. The contents of the buffer are then sent to
the output stream buffer, via its sputn function, and then
cleared.

basic_streambuf’s sputn function takes an array of
characters as its first parameter and the number of characters in the
array as its second parameter. std::vector stores its elements
contiguously in memory, like an array, so the address of the first
element in the buffer can be passed as sputn’s first parameter.
std::vector’s size function is used to determine the number of
elements in the buffer and can therefore be used as sputn’s second
parameter. The type of sputn’s second argument is the
implementation defined typedef std::streamsize. As the return
type of std::vector::size is also implementation defined (and
not necessarily the same type), sputn’s second parameter must be
cast to avoid warnings from compilers such as Microsoft Visual
C++. There is a possibility that the number of characters stored in
the buffer will be greater than std::streamsize can hold, but
this is highly unlikely.

logoutbuf is now a fully functioning, buffered output stream
buffer and can be plugged into a basic_ostream object and tested.

...

int main() {

logoutbuf<char> ob;

ob.init(std::cout.rdbuf());

// Flush to std::cout

std::basic_ostream<char> out(&ob);

out << "31 hexadecimal: " << std::hex

<< 31 << std::endl;

return 0;

}

Listing 9: Using logoutbuf

Listing 9 creates a logoutbuf object, sets std::cout’s stream
buffer as its output stream buffer and then passes it to a
basic_ostream object, which then has character streamed to it.
The output from the example in Listing 9 is:

31 hexadecimal: 1f

The next step is to generate the time and date that will be flushed
to the output stream buffer prior to the contents of the
logoutbuf buffer. The different ways of generating a date and
time string are beyond the scope of this article so I am providing
the following implementation, which will handle both char and
wchar_t character types, without any explanation beyond the
comments in the code:

#include <streambuf>

#include <vector>

#include <ctime>

#include <string>

#include <sstream>

...

template<class charT,

class traits = std::char_traits<charT> >

class logoutbuf

: public std::basic_streambuf<charT, traits> {

...

private:

std::basic_string<charT, traits> format_time() {

// Get current time and date

time_t ltime;

time(<ime);

// Convert time and date to string

std::basic_stringstream<charT, traits> time;

time << asctime(gmtime(<ime));

// Remove LF from time date string and

// add separator

std::basic_stringstream<char_type> result;

result << time.str().erase(

time.str().length() - 1) << " - ";

return result.str();

}

...

virtual int sync() {

if(!buffer_.empty() && out_) {

const std::basic_string<charT, traits> time

= format_time();

out_->sputn(time.c_str(),

static_cast<std::streamsize>

(time.length()));

out_->sputn(&buffer_[0],

static_cast<std::streamsize>

(buffer_.size()));

buffer_.clear();

}

return 0;

}

...

};

Listing 10: Adding date and time

30

Overload issue 66 april 2005

The sync function in Listing 10 now sends a date and time string
(plus the separator) to the output stream buffer before flushing
the logoutbuf buffer. The result of running the example from
Listing 9 is now:

Fri Apr 20 16:00:00 2005 - 31 hexadecimal: 1f

logoutbuf is now fully functional, but there is a further
modification that can be made for the sake of efficiency.
Currently overflow is called for every single character
streamed to the stream buffer. This means that to stream the 31
hexadecimal: string literal to the stream buffer involves 16
separate function calls. This can be reduced to a single function
call by overriding xsputn.

...

#include <algorithm>

template<class charT,

class traits = std::char_traits<charT> >

class logoutbuf

: public std::basic_streambuf<charT, traits> {

...

private:

...

virtual std::streamsize xsputn(const char_type* s,

std::streamsize num) {

std::copy(s, s + num,

std::back_inserter<buffer_type>(buffer_));

return num;

}

...

};

Listing 11: Overriding xsputn

xsputn takes the same parameters as basic_streambuf::sputn
and uses the std::copy algorithm together with
std::back_inserter to insert the characters from the array into
the buffer. logoutbuf is now complete.

logoutbuf does of course require its own logoutbuf_init
class and basic_ostream subclass, with a few modifications:

template<class charT,

class traits = std::char_traits<charT> >

class logoutbuf_init {

private:

logoutbuf<charT, traits> buf_;

public:

logoutbuf<charT, traits>* buf() {

return &buf_;

}

};

template<class charT,

class traits = std::char_traits<charT> >

class logostream

: private virtual logoutbuf_init<charT,

traits>,

public std::basic_ostream<charT, traits> {

private:

typedef logoutbuf_init<charT, traits>

logoutbuf_init;

public:

logostream(std::basic_ostream<charT,

traits>& out)

: logoutbuf_init(),

std::basic_ostream<charT,

traits>(logoutbuf_init::buf()) {

logoutbuf_init::buf()->init(out.rdbuf());

}

};

typedef logostream<char> clogostream;

typedef logostream<wchar_t> wlogostream;

Listing 12: logoutbuf_init class and basic_ostream subclass

The logoutbuf_init class is actually the same as the one form
the previous section; it’s the logostream that is slightly
different. The constructor takes a single parameter which is the
output stream and its body passes its stream buffer to logoutbuf
via init (suddenly the trade off doesn’t seem so bad).

The final test example is shown in Listing 13:

...

int main() {

costream out(std::cout);

out << "31 hexadecimal: " << std::hex

<< 31 << std::endl;

return 0;

}

Listing 13: Using the stream

Conclusion

The stream buffer is clearly the heart of an output stream. The
potential for a stream buffer being accessed before it is initialised
is easily avoided, as is the possibility of undefined behaviour,
with the minimal of tradeoffs.

The buffering of characters streamed to a stream buffer is easily
handled by a std::vector with no need for extra memory
handling. Multiple characters can be added to a std::vector just
as easily as single characters and the contiguous memory elements
make it easy to flush to an output stream.

Writing a custom stream is easy! I believe this article shows just
how easy it is, even with a minimum of background knowledge.

Paul Grenyer
paul@paulgrenyer.co.uk

References

[Josuttis] Nicolai M. Josuttis, The C++ Standard Library, Addison-
Wesley, ISBN: 0-201-37926-0.

[C++ Standard] The C++ Standard, John Wiley and Sons Ltd,
ISBN: 0-470-84674-7

Acknowledgments

Alisdair Meredith, Alan Stokes, Jez Higgins, Alan Griffiths,
Thaddaeus Frogley.

